EP0482973A2 - Connecteur de ligne sans boîtier pour transmission de données et méthode de couplage - Google Patents

Connecteur de ligne sans boîtier pour transmission de données et méthode de couplage Download PDF

Info

Publication number
EP0482973A2
EP0482973A2 EP91402581A EP91402581A EP0482973A2 EP 0482973 A2 EP0482973 A2 EP 0482973A2 EP 91402581 A EP91402581 A EP 91402581A EP 91402581 A EP91402581 A EP 91402581A EP 0482973 A2 EP0482973 A2 EP 0482973A2
Authority
EP
European Patent Office
Prior art keywords
arrangement
cables
wires
coupling
encapsulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91402581A
Other languages
German (de)
English (en)
Other versions
EP0482973A3 (fr
Inventor
David Otis Gallusser
James Brownlow Lebaron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amphenol Corp
Original Assignee
Amphenol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amphenol Corp filed Critical Amphenol Corp
Publication of EP0482973A2 publication Critical patent/EP0482973A2/fr
Publication of EP0482973A3 publication Critical patent/EP0482973A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/70Insulation of connections
    • H01R4/72Insulation of connections using a heat shrinking insulating sleeve

Definitions

  • This invention relates to the field of electrical cable coupling and shielding, and in particular to a data bus coupling arrangement of the type including a transformer and isolation resistors for electrically coupling together three or more data buses.
  • Data bus coupling arrangements are known which permit coupling of multiple high frequency data buses via transformers and isolation elements such as resistors.
  • An example of such a coupler is disclosed in European patent application EP-A-O 448 230 in the name of thy Applicant.
  • This application describes a data bus coupler which includes a rigid housing for enclosing the coupling components.
  • the coupler housing is overbraided to provide a continuous uninterrupted shield over the entire coupler, while nevertheless reducing its size in comparison with couplers having a rigid or solid shield.
  • the data bus cables are themselves each shielded by a metallic outer braid, providing excellent protection from interference.
  • the problem to be overcome is that, at the point where the individual conductors are attached to the conventional coupler, shielding discontinuities may be present. The smaller the coupler, the more difficult it is to control such discontinuities.
  • overbraided data bus coupler size is reduced by providing a flexible braid over the rigid data bus coupler housing.
  • the housing is retained to protect the delicate coupling components from physical damage. While clearly an improvement over prior art arrangements, further size reductions in the size of the overbraided coupler were limited by the need to provide a housing for the coupling.
  • a rigid coupler housing is not necessary, and coupler size can be reduced without sacrificing protection of the coupler components from physical shocks, environmental degradation, or electromagnetic interference.
  • a data bus coupling arrangement in which individual wires of a data bus are directly wired to a transformer and corresponding isolation resistors, without an intervening terminal arrangement.
  • Support for the coupling is provided by a heat shrinkable, or otherwise mechanically shrinkable, flexible tubing which is filled with an encapsulant to provide structural support, vibration and shock dampening, and electrical isolation of all components.
  • overbraiding and an environmental seal are subsequently also included, according to the preferred embodiment, for the purpose of preventing EMI leakage and providing protection from such environmental contaminants as dust and moisture.
  • Figure 1 is a cross-sectional side view of an uncased data bus coupling arrangement according to a preferred embodiment of the invention.
  • Figure 2 is a circuit diagram of the coupling arrangement of Figure 1.
  • Figure 3 is a cross-sectional side view of the coupling arrangement of Figure 1, with the addition of an overbraided shield.
  • Figure 4 is a cross-sectional side view of the overbraided coupling arrangement of Figure 3, with the addition of an environmental seal.
  • FIG. 1 is a cross-sectional side view of an uncased data bus coupler 4 constructed in accordance with the principles of a preferred embodiment of the invention for electrically coupling three shielded data bus cables 1, 2, and 3.
  • Each of the shielded cables includes a respective jacket 5-7, enclosing respective braided shields 8-10.
  • Each cable carries two insulated stranded or solid wires (17 and 18, 19 and 20, and 21 and 22, respectively) each of which is surrounded by individual wire insulators 11 - 16.
  • the respective wires of cables 1, 2, and 3 are coupled through a toroidal transformer 23 and resistors 28 and 29 as follows: wires 17 and 18 from cable 1 are individually joined to ends 24 and 27 on individual windings of the transformer. The other ends 25 and 26 of the two windings of the transformer are joined to leads 30 and 32 of isolation resistors 28 and 29. Leads 31 and 33 of the two resistors are respectively coupled to wires 21 and 22 of cable 3 and 19 and 20 of cable 2, resulting in the circuit arrangement shown in Figure 2.
  • the values of the two resistors and the number of coils on the transformer are of course dependent upon the specific type of cables or data buses used.
  • other circuit elements may be added in place of or in addition to the transformer and resistors to effect an electrical coupling, and the type of transformer may be vied as required.
  • the respective wires of cables 1, 2 and 3 may be attached to the leads of the transformer and resistors by any known method of electrical connection, although the well-known technique of wrapping followed by soldering is currently preferred.
  • the braids 8-10 are removed from the ends of the wires, and jackets 5-6 are removed a predetermined distance from the ends of the braid.
  • each of the wires including a portion of jackets 11- 16, and the electrical components 23, 28, and 29, are all encapsulated by a suitable electrically insulating material 34 such as silicon RTV which is supplied in liquid form and solidifies upon curing.
  • RTV encapsulant 34 provides structural support, vibration and shock damping, and electrical isolation of all components. It will be appreciated, however, that other encapsulants having similar properties may be substituted for the RTV. Also, it is noted that for best shock protection, the cured encapsulant should retain a degree of flexibility.
  • a shrinkable or "dimensionally recoverable" tubing 35 Surrounding the RTV is a shrinkable or "dimensionally recoverable" tubing 35 which encases the RTV prior to curing and provides electrical isolation.
  • the tubing 35 is made of a heat shrinkable material.
  • suitable heat shrinkable materials are known to those skilled in the art, for example crystalline polymers such as polyolefins, including polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer or other ethylene copolymers, polyvinylide difluoride, polyvinyl chloride, etc., whether cross-linked or inherently heat-recoverable.
  • Other examples include thermoplastic elastomers such as thermoplastic polyurethanes and silicone-styrene block copolymers.
  • Tubing 35 shrinks and becomes rigid upon application of heat, providing support for the encapsulant as it cures, while at the same time providing an inwardly directed pressure against the encapsulant which causes the encapsulant to completely fill all voids between the components. Because the encapsulant must remain fluid during shrinkage of the tubing, it is important for the respective shrinking and curing temperatures to be selected accordingly.
  • each of the individual shields 8-10 of cables 1-3 are electrically connected together by an overbraided shield 36, best shown in Figure 2, which completely encloses the uncased coupling.
  • overbraid 36 may be formed in two or more parts and joined by one or more seams.
  • the overbraid is woven from electrically conductive wires in the same known manner as the individual braids of the cables, and may include narrower sections 37 and 38 to fit closely around the individual cables.
  • the overbraid 36 may be electrically connected to the three respective cable shields by any of a variety of suitable electrical connection or bonding methods, including soldering or weaving the ends of the overbraid into the braided shields of the cable. Numerous other electrical connection methods will also occur to those stilled in the art.
  • overbraid instead of a rigid metal shield, assembly is greatly simplified due to ease of manipulating the braiding and the greater dimensional tolerances involved.
  • the overbraid may be replaced by substituting various other flexible or easily manipulated conductive materials such as, but not limited to, pressed-over metal, metal foil wrap, and vapor deposited conductive materials.
  • an environmental seal 40 encloses the overbraid 36 and the stripped back portions of the cable shields, ending at cable jackets 5-7.
  • Bond seals are preferably added between the outer seal 40 and jackets 5-7 in order to further protect the EMI shielded assembly from moisture, dust, and other environmental contaminants.
  • Outer seal 40 may be applied by any of a variety of known methods, including plasticoat dipping, conformal coating, overmolding, wrapping, seam welding, and so forth.
  • the uncased data bus coupler is preferably assembled according to the following method steps:
  • the individual cables are stripped to expose the pairs of wires therein and the braided shield.
  • the individual insulators of the respective wires are also stripped and the exposed bare wires or strands of wires are directly connected to the transformer and respective resistors by any suitable method such as soldering, after which a shrinkable tubing material such as heat shrink tubing is positioned over the coupling.
  • the heat shrink tubing is selected to shrink to a suitable shape upon application of heat.
  • RTV or a similar encapsulant is injected into the tubing, after which the heat is applied.
  • the tubing then shrinks to an appropriate shape causing the encapsulant to fill all of the voids within the tubing.
  • the encapsulant becomes solid to provide a solid structural support for the various components.
  • the coupling may be overbraided by adding an overbraid as described above, followed by addition of the environmental seal to complete the coupling arrangement.

Landscapes

  • Cable Accessories (AREA)
  • Insulated Conductors (AREA)
EP19910402581 1990-09-27 1991-09-26 Connecteur de ligne sans boítier pour transmission de données et méthode de couplage Withdrawn EP0482973A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58872890A 1990-09-27 1990-09-27
US588728 1990-09-27

Publications (2)

Publication Number Publication Date
EP0482973A2 true EP0482973A2 (fr) 1992-04-29
EP0482973A3 EP0482973A3 (fr) 1992-05-13

Family

ID=24355045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910402581 Withdrawn EP0482973A3 (fr) 1990-09-27 1991-09-26 Connecteur de ligne sans boítier pour transmission de données et méthode de couplage

Country Status (3)

Country Link
EP (1) EP0482973A3 (fr)
JP (1) JPH04262307A (fr)
CA (1) CA2052206A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793308A1 (fr) * 1996-03-01 1997-09-03 W.L. GORE & ASSOCIATES GmbH Coupleur de ligne

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1278171A (en) * 1969-09-18 1972-06-14 S I R T I Soc It Reti Telefoni A process for the joining of coaxial cables having intermediate insulation of low melting point material, in particular of coaxial "micro" cables having intermediate insulation of expanded plastics material, and the joiny thus obtained
US3889047A (en) * 1974-02-15 1975-06-10 Lockheed Aircraft Corp Sealing and moisture-proofing of electrical joints
EP0063913A2 (fr) * 1981-04-21 1982-11-03 Sumitomo Electric Industries Limited Tubes thermorétractables
US4450318A (en) * 1981-09-29 1984-05-22 Siemens-Allis, Inc. Means and method for providing insulation splice
EP0136154A2 (fr) * 1983-09-20 1985-04-03 RAYCHEM CORPORATION (a Delaware corporation) Jonctions et terminaisons de câbles
AU6971287A (en) * 1986-03-04 1987-09-10 Ericsson Australia Pty Ltd Improvements in or relating to encapsulated electrical apparatus
EP0448230A2 (fr) * 1990-02-21 1991-09-25 Amphenol Corporation Bifurcation blindée pour bus de données

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1278171A (en) * 1969-09-18 1972-06-14 S I R T I Soc It Reti Telefoni A process for the joining of coaxial cables having intermediate insulation of low melting point material, in particular of coaxial "micro" cables having intermediate insulation of expanded plastics material, and the joiny thus obtained
US3889047A (en) * 1974-02-15 1975-06-10 Lockheed Aircraft Corp Sealing and moisture-proofing of electrical joints
EP0063913A2 (fr) * 1981-04-21 1982-11-03 Sumitomo Electric Industries Limited Tubes thermorétractables
US4450318A (en) * 1981-09-29 1984-05-22 Siemens-Allis, Inc. Means and method for providing insulation splice
EP0136154A2 (fr) * 1983-09-20 1985-04-03 RAYCHEM CORPORATION (a Delaware corporation) Jonctions et terminaisons de câbles
AU6971287A (en) * 1986-03-04 1987-09-10 Ericsson Australia Pty Ltd Improvements in or relating to encapsulated electrical apparatus
EP0448230A2 (fr) * 1990-02-21 1991-09-25 Amphenol Corporation Bifurcation blindée pour bus de données

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0793308A1 (fr) * 1996-03-01 1997-09-03 W.L. GORE & ASSOCIATES GmbH Coupleur de ligne
US5949300A (en) * 1996-03-01 1999-09-07 Olsson; Stellan Line coupler

Also Published As

Publication number Publication date
EP0482973A3 (fr) 1992-05-13
JPH04262307A (ja) 1992-09-17
CA2052206A1 (fr) 1992-03-28

Similar Documents

Publication Publication Date Title
US5194692A (en) Uncased data bus coupler
US5115105A (en) Overbraided in-line data bus loom
US4615578A (en) Mass termination device and connection assembly
JP2015222713A (ja) 遮蔽されたワイヤケーブルをスプライス接続するための方法およびそれによって作製されたケーブル
EP0382407B1 (fr) Barrage pour terminaux blindés
CA1231151A (fr) Joint pour cable
CA1244900A (fr) Joints et terminaisons de cables
US4518819A (en) Clamp assembly for power cables
EP3619782B1 (fr) Câble à fil blindé épissé et son procédé de fabrication
EP0091319B1 (fr) Dispositif de connexion d'écran
EP0070091A1 (fr) Moyen de terminaison d'écran de câble pour connecteurs à prise
EP0482973A2 (fr) Connecteur de ligne sans boîtier pour transmission de données et méthode de couplage
EP0546943B1 (fr) Resistance terminale à structure de pile
US4320252A (en) Telecommunication cable closure
RU2253192C2 (ru) Капсула для соединительного или нагрузочного конца электрического кабеля с ленточным нагревателем и способ ее изготовления
US5775948A (en) Electrical connector
CN216146075U (zh) 10-35kV熔接式交联电缆终端
KR102482112B1 (ko) 카메라 링크 케이블 및 그 제조 방법
CN113659494B (zh) 10-35kV熔接式交联电缆终端的制备工艺
GB2288696A (en) Cable splice or termination
US3248778A (en) Method of making an adapter assembly for electrical connectors
GB2230151A (en) Electromagnetic shielding of cable termination
JP2023538729A (ja) スプライスケーブル、特に高圧スプライスケーブル、およびケーブル、特に高圧ケーブルのスプライス接続方法
JPH0133913B2 (fr)
JPH08287999A (ja) 水中機器のケーブル差込口構造

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE ES FR GB IT LI SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19921114