EP0481072A1 - Speizifische dns-sequenzen mit bezug zu einem "ibdv"-protein einschliesslich vektoren, wirte und impfstoffe - Google Patents

Speizifische dns-sequenzen mit bezug zu einem "ibdv"-protein einschliesslich vektoren, wirte und impfstoffe

Info

Publication number
EP0481072A1
EP0481072A1 EP91911529A EP91911529A EP0481072A1 EP 0481072 A1 EP0481072 A1 EP 0481072A1 EP 91911529 A EP91911529 A EP 91911529A EP 91911529 A EP91911529 A EP 91911529A EP 0481072 A1 EP0481072 A1 EP 0481072A1
Authority
EP
European Patent Office
Prior art keywords
ibdv
dna
ala
gly
thr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP91911529A
Other languages
English (en)
French (fr)
Other versions
EP0481072A4 (en
Inventor
Vikram Vakharia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Maryland at Baltimore
University of Maryland at College Park
Original Assignee
University of Maryland at Baltimore
University of Maryland at College Park
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Maryland at Baltimore, University of Maryland at College Park filed Critical University of Maryland at Baltimore
Publication of EP0481072A1 publication Critical patent/EP0481072A1/de
Publication of EP0481072A4 publication Critical patent/EP0481072A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2720/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsRNA viruses
    • C12N2720/00011Details
    • C12N2720/10011Birnaviridae
    • C12N2720/10022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • IBDV infectious bursal disease virus
  • IBDV belongs to a group of viruses called Birnaviridae which includes other bisegmented RNA viruses such as infectious pancreatic necrosis virus (fish), tellina virus and oyster virus (bivalve molluscs) and drosophila X virus (fruit fly). These viruses all contain high molecular weight (MW) double stranded RNA genomes.
  • Birnaviridae which includes other bisegmented RNA viruses such as infectious pancreatic necrosis virus (fish), tellina virus and oyster virus (bivalve molluscs) and drosophila X virus (fruit fly). These viruses all contain high molecular weight (MW) double stranded RNA genomes.
  • the capsid of the IBDV virion consists of at least four structural proteins. As many as nine structural proteins have been reported but there is evidence that some of these may have a precursor-product relationship. The designation and molecular weights of the four viral proteins (VP) are as shown in Table 1 below. Table 1: Viral Proteins of IBDV
  • VPX an additional protein, of 47 kDa was determined to be a precursor of the VP2 protein.
  • IBDV serotype I ST-C, standard challenge virus and attenuated virus BB
  • serotype II obtained from turkeys (OH, Ohio strain)
  • ST-C standard challenge virus and attenuated virus BB
  • serotype II obtained from turkeys (OH, Ohio strain)
  • Two segments of double stranded RNA were identified in the genome of IBDV.
  • the B69 and R63 MCAs are both neutralizing MCAs. Predictions on new variants can be made on the basis of their reactivities with the B69 MCA.
  • a virus that does not bind to this MCA in an AC-ELISA is very likely antigenically different from the standard type ("classic"), and would be termed as a variant virus.
  • classic standard type
  • the E/DEL variant can be distinguished from the GLS variant virus on the basis of its reactivity with the R63 MCA.
  • the GLS variant virus does not bind to the R63 MCA in AC-ELISA assay as is shown in Table 2 above.
  • the above vaccine strains are not virulent like the variant viruses and they may be given "live.” Thus, they do not have to be inactivated or “killed” in order to be used as vaccines. However, these vaccines are not fully effective in protecting against infection with variant viruses. A limited number of chickens immunized with the above vaccine strains are actually protected against challenge with Delaware (about 60%) and GLS (about 30%) variant viruses.
  • a “killed” IBDV vaccine is also available from Intervet Co. in Millsboro, Delaware. This vaccine is called “Breeder-vac” and contains standard ("classic"), Delaware and GLS variant virus types.
  • the use of the above “live” and “killed” vaccines has the following disadvantages, among others. The viruses have to be propagated in tissue culture, which is time-consuming and expensive. In “killed” vaccines, the viruses have to be inactivated prior to use, which requires an additional expensive step.
  • This invention relates to a biologically pure RNA segment that comprises at least one and up to 20 copies of an RNA sequence encoding at least one copy of a polypeptide of about 30 to 1012 amino acids, the polypeptide having the antibody binding characteristics of at least one US variant of the IBDV VP2 protein selected from the group consisting of E/DEL and GLS.
  • This invention also relates to a biologically pure DNA segment that comprises a single stranded DNA sequence corresponding to the RNA sequence described above. This DNA segment is also provided as a double stranded DNA segment.
  • Still part of this invention is a recombinant vector that comprises a vector capable of growing and expressing in a host structural DNA sequences attached thereto; and at least one and up to 20 copies of the DNA segment described above attached in reading frame to the vector.
  • the tandem attachment of a plurality of copies of the DNA segment is also be provided as part of this invention.
  • a host transformed with a recombinant vector comprising a vector capable of growing and expressing in a host structural DNA sequences attached thereto and at least one copy of the DNA segment of the invention attached in reading frame to the vector.
  • This invention also relates to a broad spectrum IBD poultry vaccine that comprises a poultry protecting amount of the recombinant vector described above; and a physiologically acceptable carrier.
  • Encompassed by this invention is also a biologically pure polypeptide that comprises at least one and up to 20 copies of an amino acid sequence of about 30 to 1012 amino acids encoded by the RNA segment of the invention.
  • a method of protecting poultry and its progeny from IBD is also part of this invention, the method comprising administering to the poultry an amount of the recombinant vector of the invention that is effective to attain an immunological response that will protect the poultry against the symptoms of IBD.
  • This invention arose from a desire to improve on prior art technology relating to the protection of poultry against the newly appearing variants of IBDV in the United States. This was attempted by studying the structural organization of the IBDV genome, and particularly that of the VP2, VP3 and VP4 proteins of the virus.
  • This invention thus provides a DNA vaccine representative of more than one IBDV VP2 US variant. When this DNA is utilized for vaccinating poultry it conveys a broad protection against subsequent infection by known IBDV variants as well as, it is postulated, subsequently appearing variants. The breadth of protection afforded poultry by this DNA vaccine also extends to other strains of IBDV which are known to diverge to a greater extent from the U.S.
  • RNA sequence may encode only one copy of the polypeptide having the antibody binding characteristics of at least one of the U.S. IBDV variants or up to about 20 copies thereof, preferably about 1 to 5 copies thereof, an antibody binding functional fragment thereof, a functional precursor thereof, or combinations thereof.
  • the RNA sequence may further encode at least one copy of a polypeptide having the antibody binding characteristics of the VP2 protein of another U.S. IBDV variant, e.g., the E/DEL, "classic" or GLS variant.
  • the RNA sequence may encode either one of these polypeptides, functional fragments thereof, functional precursors thereof or func- tional analogs thereof as defined below.
  • the polypeptide encoded by the RNA sequence comprises the antibody binding characteristics of amino acids 200 to 330 Of at least one US variant of the VP2 protein.
  • the RNA segment comprises about 90 to 9000 bases, more preferably about 150 to 5000 bases, and still more preferably about 300 to 750 bases.
  • One particular clone obtained in the examples of this application is about 3.2 kilobases long.
  • the functional fragments of the polypeptide may be about 5 to 450 amino acids long, and more preferably about 10 to 30 amino acids long. These fragments comprise the binding characteristics and/or the amino acid sequence of an epitope that makes the polypeptide antigenic with respect to antibodies raised against IBDV as is known in the art.
  • the functional polypeptide analogs of the IBDV VP2 protein from the E/DEL and the GLS variants may have the size of the VP2 viral protein, or they may be larger or shorter as was described above for the precursors and fragments thereof.
  • the analogs may have about 1 to 80 variations in the amino acid sequence, preferably about 1 to 30 variations, and more preferably at positions 5, 74, 84, 213, 222, 239, 249, 253, 254, 258, 264, 269, 270, 272, 279, 280, 284, 286, 297, 299, 305, 318, 321, 323, 326, 328, 330, 332, 433 or combinations thereof.
  • other positions may be varied by themselves as long as the antigenic binding ability of the polypeptide is not destroyed.
  • the RNA sequence encodes at least one copy of a VP2 protein selected from the group consisting of the GLS IBDV VP2 protein, the E/DEL IBDV VP2 protein, functional analogs thereof, functional fragments thereof, functional precursors thereof and combinations thereof.
  • the RNA sequence encodes at least one copy of the GLS and one copy of the E/DEL IBDV VP2 proteins, and up to 20 copies, and more preferably 5 to 10 copies thereof.
  • RNA and DNA sequences that encode a specified amino acid sequence.
  • all RNA and DNA sequences which result in the expression of a polypeptide having the antibody binding characteristics described herein are encompassed by this invention.
  • the recombinant vector may also comprise other necessary sequences such as expression control sequences, markers, amplifying genes, signal sequences, promoters, and the like, as is known in the art.
  • the vaccine according to the invention is administered in amounts sufficient to stimulate the immune system and confer resistance to IBD.
  • the vaccine is preferably administered in a dosage ranging from about log 2 to about log 5 E I D c 0 (Embryo Infective Dose..,.), and more preferably about log 3 to about log 4 EID 5 _.
  • the amounts used when the vaccine is administered to poultry may thus be varied. Suitable amounts are about
  • Physiologically acceptable carriers for vaccination of poultry are known in the art and need not be further described herein. In addition to being physiologically acceptable to the poultry the carrier must not interfere with the immunological response elicited by the vaccine and/or with the expression of its polypeptide product.
  • adjuvants and stabilizers may also be contained in the vaccine in amounts known in the art.
  • adjuvants such as aluminum hydroxide, aluminum phosphate, plant and animal oils, and the like, are administered with the vaccine in amounts sufficient to enhance the immune response to the IBDV.
  • the amount of adjuvant added to the vaccine will vary depending on the nature of the adjuvant, generally ranging from about 0.1 to about 100 times the weight of the IBDV, preferably from about 1 to about 10 times the weight of the IBDV.
  • the vaccine of the present invention is administered to poultry to prevent IBD anytime before or after hatching.
  • the vaccine is administered prior to the time of birth and after the animal is about 6 weeks of age.
  • Poultry is defined to include chickens, roosters, hens, broilers, roasters, breeders, layers, turkeys and ducks .
  • the vaccine may be provided in a sterile container in unit form or in other amounts. It is preferably stored frozen, below -20°C, and more preferably below -70°C. It is thawed prior to use, and may be refrozen immediately thereafter.
  • the vaccine may be administered once to afford a certain degree of protection against IBD or it may be repeated at preset intervals. Or the vaccine may suitably be read inistered at anytime after hatching. A typical interval for revaccination is about 1 day to 6 months, and more preferably about 10 days to 4 months. However, the vaccine may be administered as a booster at other times as well.
  • Example 1 IBDV Propagation in Chicken Bursae and its Purification
  • plasmid DNA was isolated by an established method (Birnboim, H.C. and Doly, J., Nucleic Acids Res. 7, 1513-1520 (1979)).
  • the purified plasmid DNA was then digested with EcoRI enzyme and separated on 1% agarose gel to determine the size of the inserts. Fragments of Lamda DNA digested with Hind III and Eco RI were used as size markers.
  • the identity of the released inserts was determined by transferring the DNA to a Gene screen plus membrane (DuPont, Inc.) and hybridizing with a 32P labeled probe.
  • Recombinant bacteria each harboring a cDNA segment of the E/DEL and GLS strains of IBDV, were propagated in LB broth containing 100 ⁇ g/ml/ampicillin.
  • the large- scale isolation of plasmid DNA was carried out by the alkali lysis method (Birnboim, H.C. and Doly, J. , Nucleic Acids Res. 7, 1513-1520, (1979)).
  • the plasmid DNA was then purified by cesium chloride gradient centrifugation (Maniatis, T. et al., Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York (1982)).
  • Table 7 provides the DNA sequence of the GLS-1, GLS-2, GLS-3 and GLS-4 clone obtained above and the amino acid sequence deduced therefrom obtained from the DNA sequences with the aid of a computerized program.
  • TTC AAA GAC ATA ATC CGG GCC ATA AGG AGG ATA GCT GTG CCG GTG GTC TCC ACA TTG TTC Phe Lys Asp He He Arg Ala He Arg Arg He Ala Val Pro Val Val Ser Thr Leu Phe
  • GAG AAA ATA AGC TTT AGA AGC ACC AAG CTC GCC ACC GCA CAC CGG CTT GGC CTC AAG TTG Glu Lys He Ser Phe Arg Ser Thr Lys Leu Ala Thr Ala His Arg Leu Gly Leu Lys Leu
  • GAA GTT GCC AAA GTC TAT GAA ATC AAC CAT GGA CGT GGC CCA AAC CAA GAA CAG ATG AAA
  • IBDV antigenic variants Table 14 below shows the reactivity pattern of some MCAs with different antigenic variants of IBDV in an AC-ELISA system.
  • these amino acids may be part of the neutralizing epitopes of IBDV and the base pairs encoding them may be part of a special sequence (conformational epitope) minimizing the outer binding area of the protein. Since the BK44, BK179 and BK8 MCAs react with all the IBDVs, they must recognize a region(s) of amino acids that are almost identical in all viruses. Therefore, the binding region(s) for these MCAs cannot be predicted.
EP19910911529 1990-05-04 1991-04-30 Specific dna sequences related to an ibdv protein including vectors, hosts and vaccines Withdrawn EP0481072A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US51920290A 1990-05-04 1990-05-04
US519202 1990-05-04
CA002058598A CA2058598A1 (en) 1990-05-04 1991-12-30 Specific dna sequences related to an ibdv protein including vectors, hosts and vaccines

Publications (2)

Publication Number Publication Date
EP0481072A1 true EP0481072A1 (de) 1992-04-22
EP0481072A4 EP0481072A4 (en) 1993-06-09

Family

ID=25674909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910911529 Withdrawn EP0481072A4 (en) 1990-05-04 1991-04-30 Specific dna sequences related to an ibdv protein including vectors, hosts and vaccines

Country Status (5)

Country Link
EP (1) EP0481072A4 (de)
JP (1) JPH05501064A (de)
AU (1) AU7955591A (de)
CA (1) CA2058598A1 (de)
WO (1) WO1991016925A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632989A (en) * 1989-10-18 1997-05-27 University Of Maryland Attenuated, live vaccine for Delaware strain IBDV
AU670538B2 (en) * 1991-07-26 1996-07-25 Virogenetics Corporation Infectious bursal disease virus recombinant poxvirus vaccine
EP1650310A1 (de) * 1993-04-14 2006-04-26 Commonwealth Scientific And Industrial Research Organisation Rekombinanter Adenovirusvektor für Geflügel
US5788970A (en) * 1994-03-29 1998-08-04 The University Of Maryland College Park Chimeric infectious bursal disease virus CDNA clones, expression products and vaccines based thereon
US5871744A (en) * 1996-09-05 1999-02-16 University Of Maryland-Biotechnology Inst. Method for generating birnavirus from synthetic RNA transcripts
US6231868B1 (en) 1997-09-30 2001-05-15 University Of Maryland-Biotechnology Institute Method for generating nonpathogenic infections birnavirus from synthetic RNA transcripts
WO2000012677A2 (en) * 1998-09-01 2000-03-09 The University Of Hong Kong Generation of recombinant infectious bursal disease viruses by reverse genetics technology and the use of the recombinant viruses as attenuated vaccines
US6468984B1 (en) 1999-06-08 2002-10-22 Innovo Biotechnologies Ltd. DNA vaccine for protecting an avian against infectious bursal disease virus
US6485940B2 (en) * 2000-07-07 2002-11-26 Akzo Nobel N.V. Broad spectrum infectious bursal disease virus vaccine
EP1170302B1 (de) * 2000-07-07 2006-06-21 Intervet International BV Impfstoffe basierend auf Mutanten des Virus der infektiösen Bursal-Krankheit
AUPR546801A0 (en) 2001-06-05 2001-06-28 Commonwealth Scientific And Industrial Research Organisation Recombinant antibodies
US6764684B2 (en) 2001-09-28 2004-07-20 Zeon Corporation Avian herpesvirus-based recombinant infectious bursal disease vaccine
EP1722814B1 (de) 2004-03-12 2016-11-09 Zoetis Services LLC Antigene isolate und vakzine des infektiösen bursitis-virus
US7244432B2 (en) * 2004-12-08 2007-07-17 University Of Maryland Biotechnology Institute Infectious bursal disease virus (IBDV) variant from Georgia
CN104628865B (zh) * 2015-01-06 2017-12-19 青岛明勤生物科技有限公司 一种伪狂犬表位多肽基因工程疫苗
CN104628871B (zh) * 2015-02-09 2018-01-26 青岛明勤生物科技有限公司 一种重组法氏囊病蛋白工程疫苗的制备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007060A1 (en) * 1985-05-30 1986-12-04 Commonwealth Scientific And Industrial Research Or Cloning and expression of host-protective immunogens of ibdv
WO1988010298A1 (en) * 1987-06-26 1988-12-29 Commonwealth Scientific And Industrial Research Or Ibdv vp2 epitope recognised by virus neutralising and protective monoclonal antibodies
WO1990015140A1 (en) * 1989-05-30 1990-12-13 Commonwealth Scientific And Industrial Research Organisation Production of ibdv vp2 in highly immunogenic form

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986007060A1 (en) * 1985-05-30 1986-12-04 Commonwealth Scientific And Industrial Research Or Cloning and expression of host-protective immunogens of ibdv
WO1988010298A1 (en) * 1987-06-26 1988-12-29 Commonwealth Scientific And Industrial Research Or Ibdv vp2 epitope recognised by virus neutralising and protective monoclonal antibodies
WO1990015140A1 (en) * 1989-05-30 1990-12-13 Commonwealth Scientific And Industrial Research Organisation Production of ibdv vp2 in highly immunogenic form

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF GENERAL VIROLOGY vol. 70, 1989, pages 1473 - 1481 Fahey, K.J. et al.; 'A conformational immunogen on VP-2 of Infectious Bursal disease Virus that induces virus-neutralizing antibodies that passively protect chickens.' *
See also references of WO9116925A1 *
THE JOURNAL OF GENERAL VIROLOGY vol. 71, no. 3, March 1990, pages 569 - 577 Kibenge, Frederick S. B.; Jackwood, Daral J.; Mercado, Cynthia C.; 'Nucleotide sequence analysis of genome segment A of infectious bursal disease virus' *
VIROLOGY vol. 149, no. 2, 1986, pages 190 - 198 Azad, A. A.; Fahey, K. J.; Barrett, S. A.; Erny, K. M.; Hudson, P. J.; 'Expression in Escherichia coli of cDNA fragments encoding the gene for the host-protective antigen of infectious bursal disease virus.' *

Also Published As

Publication number Publication date
JPH05501064A (ja) 1993-03-04
EP0481072A4 (en) 1993-06-09
WO1991016925A1 (en) 1991-11-14
AU7955591A (en) 1991-11-27
CA2058598A1 (en) 1993-07-01

Similar Documents

Publication Publication Date Title
Cao et al. Molecular characterization of seven Chinese isolates of infectious bursal disease virus: classical, very virulent, and variant strains
Vakharia et al. Molecular basis of antigenic variation in infectious bursal disease virus
Nagarajan et al. Infectious bursal disease virus: a review of molecular basis for variations in antigenicity and virulence.
EP0755259B1 (de) CHIMÄRE cDNA-KLONE DES VIRUS DER INFEKTIÖSEN BURSAL-KRANKHEIT, EXPRESSIONSPRODUKTE UND DARAUF BASIERENDE IMPFSTOFFE
Fodor et al. Induction of protective immunity in chickens immunised with plasmid DNA encoding infectious bursal disease virus antigens
EP0481072A1 (de) Speizifische dns-sequenzen mit bezug zu einem "ibdv"-protein einschliesslich vektoren, wirte und impfstoffe
NZ236294A (en) Recombinant vaccines using herpes virus of turkeys against mareks disease; infectious bronchitis; newcastle disease and infectious bursal disease
JP2009203242A (ja) インビボ(invivo)マルチプルdnaワクチンと多価dnaワクチン
US5595912A (en) Specific DNA and RNA sequences associated with US IBDV variants, vector carrying DNA sequences, host carrying cloned vector, deduced amino acid sequences, vaccine and method of vaccination
Wang et al. Comparison of four infectious bursal disease viruses isolated from different bird species
US7022327B1 (en) Recombinant birnavirus vaccine
EP0690912A1 (de) Rekombinanter adenovirusvektor für geflügel
RU2340672C2 (ru) Мутант вируса инфекционной бурсальной болезни (ibdv), экспрессирующий вирус-нейтрализующие эпитопы, специфичные для классического и вариантного штаммов ibdv
EP0423869B1 (de) Impfstoff gegen IBV
WO2000012677A2 (en) Generation of recombinant infectious bursal disease viruses by reverse genetics technology and the use of the recombinant viruses as attenuated vaccines
AU667782B2 (en) Specific DNA sequences related to an IBDV protein including vectors, hosts and vaccines
US5833980A (en) Sustainable cell line for the production of the Marek's disease vaccines
US6485940B2 (en) Broad spectrum infectious bursal disease virus vaccine
WO1996001116A9 (en) Chicken infectious anemia virus vaccine
KR102421251B1 (ko) 국내 분리 중국형 항원변이형 닭전염성 f낭병 바이러스 및 이를 포함하는 백신조성물
KR102421249B1 (ko) 국내 분리 미주형 항원변이형 닭전염성 f낭병 바이러스 및 이를 포함하는 백신조성물
EP1170302B1 (de) Impfstoffe basierend auf Mutanten des Virus der infektiösen Bursal-Krankheit
CA1339265C (en) Ibdv vp2 epitope recognised by virus neutralising and protective monoclonal antibodies
SONDERMEIJER et al. Sommaire du brevet 2028045
Barrie Characterization of an immunoreactive region of the major capsid protein for infectious pancreatic necrosis virus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19930420

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19950220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RIC1 Information provided on ipc code assigned before grant

Free format text: 7C 12N 15/40 A, 7C 07K 14/01 B, 7A 61K 39/12 B, 7C 12N 1/21 B, 7C 12N 5/10 -, 7C 12N 1/21 J, 7C 12R 1:19 J

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20010922