EP0481052A1 - Tube d'amplification a grille avec barreaux de largeur variable. - Google Patents

Tube d'amplification a grille avec barreaux de largeur variable.

Info

Publication number
EP0481052A1
EP0481052A1 EP91908979A EP91908979A EP0481052A1 EP 0481052 A1 EP0481052 A1 EP 0481052A1 EP 91908979 A EP91908979 A EP 91908979A EP 91908979 A EP91908979 A EP 91908979A EP 0481052 A1 EP0481052 A1 EP 0481052A1
Authority
EP
European Patent Office
Prior art keywords
grid
bars
width
high frequency
tube according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91908979A
Other languages
German (de)
English (en)
Other versions
EP0481052B1 (fr
Inventor
Michel Pierre Tardy
Jean-Pierre Buge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP0481052A1 publication Critical patent/EP0481052A1/fr
Application granted granted Critical
Publication of EP0481052B1 publication Critical patent/EP0481052B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/28Non-electron-emitting electrodes; Screens
    • H01J19/38Control electrodes, e.g. grid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/46Control electrodes, e.g. grid; Auxiliary electrodes

Definitions

  • the invention relates to power amplification tubes such as for example tetrodes.
  • This high temperature of the grid can be the cause of tube malfunctions: the grid radiates a very large amount of heat towards the colder parts of the tube and causes abnormal degassing thereof.
  • the ions released in the tube are then sources of electrical breakdowns, disjunctions, etc.
  • Grid insulation ceramics can deteriorate (cracks) under the action of heat. In any case, this results in a reduction in the reliability and the service life of the tubes.
  • the object of the invention is to reduce the risks of malfunction which appear to be due to an abnormal increase in the temperature of the grid, in tubes whose grid is placed in a high frequency resonant circuit and is traversed by high frequency currents generated. by this resonance.
  • the width varies along a bar between one side where the bar is subjected to weaker currents and another side where the bar is subjected to higher currents.
  • the width of the bars is greater at the bottom of the grid (that is to say on the side of the connection towards the outside of the tube) than in the top .
  • the invention turns out to be particularly advantageous.
  • the top of the grid is most often placed with a current node and a high frequency voltage belly, but the bottom is much closer to a current belly.
  • the bars have a regularly increasing width as one approaches the bottom of the grid. Growth can be continuous or discontinuous.
  • the invention is applicable to grids with vertical bars or grids with oblique bars. Grids with oblique bars are often built to improve the mechanical strength of these grids.
  • the application of the invention is intended especially for grids produced by machining or cutting, such as grids of pyrolytic graphite machined by sandblasting or molybdenum grids cut by laser by electroerosion or by stamping.
  • FIG. 1 shows an example of a conventional power tetrode grid
  • FIG. 2 shows another example of a conventional grid, with oblique bars
  • FIG. 3 shows an embodiment of the grid according to the invention with vertical bars
  • FIG. 4 shows another embodiment for a grid with oblique bars.
  • the invention will be described in detail with regard to a triode or tetrode grid.
  • high power having a cylindrical cathode, a grid (triode) or two cylindrical grids (tetrode) of mesh structure, surrounding the cathode, and an anode surrounding the grids.
  • the invention is applicable to other tube structures where the same problems are encountered (anode surrounded by the grids and the cathode for example).
  • the grid whether it is a modulation grid (Gl) or a screen grid (G2), is very often made up (and it is this case which interests us especially here) of a sheet of refractory material in the shape of a machined cylinder. in a mesh structure.
  • the function of these grids is to establish a determined potential distribution in the vicinity of the cathode while letting pass the major part of the flow of electrons emitted by the cathode towards the anode.
  • the bars of the mesh structure are close enough to each other to allow the establishment of potentials as well distributed as possible, and yet they are sufficiently separated from each other by the free space of the meshes to let pass such a large proportion. as possible electrons.
  • the bars are either vertical bars (to allow an optimal evacuation of the high frequency currents because these propagate from top to bottom taking into account the distribution of the high frequency potentials along the height of the cylindrical grid), or bars crossed obliques (to improve the mechanical strength of the structure).
  • the bars are very thin compared to the intervals between bars.
  • the vertical direction conventionally chosen here is the axis of the cylinder constituting the grid.
  • FIG. 1 represents a conventional grid of high power amplification tube. This is a pyrolytic graphite grid, but it could also be a metal.
  • the grid 10 essentially consists of a network of vertical bars 12 extending between the top 14 of the grid and the bottom 16. The grid is electrically connected to the outside of the tube by a contact made at the bottom of the grid and not shown.
  • horizontal circular bars 18 make it possible to mechanically connect the vertical bars to one another in order to increase the rigidity of the structure.
  • the horizontal bars do not or hardly participate in the evacuation of the currents in the grid. Very few high frequency currents develop in the horizontal bars. On the contrary, the vertical bars are the seat of high frequency currents which, in this type of structure, are all the higher the closer you get to the bottom of the grid.
  • the grid is most often placed in a high frequency resonant circuit in which the top of the grid is at a belly of current and a node of tension, while the bottom of the grid approaches a current belly.
  • FIG. 2 represents another conventional grid structure in pyrolytic graphite.
  • the bars are oblique and there are two networks of crossed oblique bars 20 and 22.
  • the whole forms a diamond mesh network.
  • the bars have constant widths from top to bottom of the grid.
  • the increase in the width of the bar makes it possible to increase the cross section through which the currents flow, therefore to reduce the power dissipated by the Joule effect.
  • this increase in width makes it possible to increase the radiating surface of the bar.
  • the temperature of the bar will be reduced.
  • the currents at different points on the grid can be calculated from Maxwell's equations; currents and potentials indeed follow well-known physical and mathematical laws; we can therefore determine which are the places (for a given operation) where the current density will be the highest, and we give the bars a wider section in these places.
  • the current density in the bars of the grid is often very high at the bottom of the grid, on the connection side, for a cylindrical grid conventionally having a connection on only one side of the cylinder.
  • the width of the bars increases from the top of the grid downwards, at least in the lower part of the grid.
  • the vertical bars have a continuously variable width from top to bottom of the grid. But the variation can also be in stages.
  • the vertical bars have a constant width over part of the height of the grid, then, downwards, the width increases regularly or in stages.
  • the solutions are the same: continuous growth or in stages, from the top of the grid or only in the lower part of the grid.
  • the horizontal bars themselves may be wider at the bottom of the grid than at the top, if only for convenience of manufacture.
  • FIG. 3 illustrates an example of the constitution of a grid, for vertical bars: the width (L1, L2) of the bars goes downwards.
  • This figure represents a detail of the grid; the proportions are not respected, for reasons of convenience of representation, so that the increase in width of the bars can be clearly seen; in practice, in fact, the bars can be very thin compared to the interval between consecutive bars; on the other hand the interval between horizontal bars can be much wider than the interval between vertical bars.
  • the width of the openings between bars can be constant or not: the simplest is to use a mesh of constant pitch, which implies that the openings are reduced as the bars widen. The transparency of the electron grid therefore decreases where the bars are wider, but this is acceptable for two reasons:
  • the width of the bars can remain small in front of the opening even where the bars are the widest;
  • the invention is applicable in the same way to grids whose bars are not vertical but oblique, such as for example a grid such as that of FIG. 2 comprising a series of oblique bars all parallel crossed with another series of oblique bars all parallel.
  • FIG. 4 An exemplary embodiment of the invention with a grid of oblique bars reinforced by horizontal bars (triangular mesh) is represented in FIG. 4. It can be seen that the two networks of oblique bars 20 and 22 have widths increasing from the top towards the low. The horizontal bars 24 also have increasing widths from top to bottom, but only for reasons of manufacturing convenience; they could all have the same width because heating due to the circulation of current in these horizontal bars is weak.
  • the grids can be made of pyrolytic graphite; they are then generally cut by sandblasting by means of sand projection nozzles.
  • the grids are made of metal (preferably molybdenum). They are then produced by "laser cutting” or by mechanical cutting or by electroerosion.

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Solid Thermionic Cathode (AREA)
  • Microwave Tubes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'invention concerne les tubes électroniques de puissance à grille. Pour de fortes puissances et des hautes fréquences un échauffement très important et localisé de la grille se produit sous l'effet des courants élevés. C'est le cas par exemple pour la grille-écran (grille G2) des tétrodes à grille maillée à barreaux verticaux ou obliques (20, 22) en graphite pyrolytique. Pour améliorer la fiabilité de fonctionnement et la durée de vie du tube, on propose selon l'invention de donner aux barreaux de la grille une largeur plus importante dans le bas de la grille, là où les courants haute fréquence sont les plus importants.

Description

TUBE D'AMPLIFICATION A GRILLE AVEC BARREAUX DE LARGEUR VARIABLE
L'invention concerne les tubes d'amplification de puissance tels que par exemple les tétrodes .
Plus les tubes sont capables de fournir une puissance élevée, plus les pertes d'énergie dans le tube doivent être prises en compte et éliminées pour ne pas risquer de provoquer la détérioration ou la destruction du tube par échauffement anormal.
Dans les tubes fonctionnant à fréquence élevée , il se produit notamment des pertes dues à la circulation de courants à haute fréquence dans les grilles situées entre la cathode et l'anode du tube . Notamment, dans le cas d'une tétrode , la grille -écran, appelée le plus souvent grille G2, est parcourue par des courants haute fréquence circulant verticalement entre le haut et le bas de la grille . Ces courants proviennent de ce que la grille est placée dans un circuit résonnant de sortie du tube, et que dans tout circuit résonnant à haute fréquence s'établissent des régimes d'ondes stationnaires avec noeuds et ventres de courants et de tension. Les courants hyperfréquences les plus élevés sont bien sûr produits aux ventres de courant.
La grille est alors soumise à un échauffement très important. On ne sait pas précisément mesurer cet échauffement (à l'intérieur d'un tube à vide fermé) , mais on a constaté l'apparition de courants inverses de grille lors de fonctionnements à très forte puissance et haute fréquence . En d'autres mots, alors que le courant normal de grille est une consommation de courant dans un sens , on constate qu'une augmentation de la puissance de fonctionnement du tube conduit à l'inversion du sens de passage du courant dans la connexion de grille. On a constaté par exemple que lors du démarrage d'une tétrode le courant de grille passait très rapidement d'une valeur normale positive de quelques ampères à une valeur négative de quelques ampères (en quelques secondes) . Cette inversion du courant de grille laisse supposer que la grille se met à émettre des électrons en- grande quantité (alors qu'elle ne devrait pas le faire) . Cette émission d'électrons est vraisemblablement provoquée par l'augmentation de température de la grille . En effet, le matériau employé pour la grille est le plus souvent du graphite pyrolytique qui a un pouvoir émissif relativement faible à la température normale de fonctionnement du tube . Il est donc probable que c'est un échauffement anormal très important de la grille qui lui confère un pouvoir thermoémissif élevé. La quantité de courant qu'on peut mesurer laisse penser que la grille atteint des températures de l'ordre de 2000°C . Seules de telles températures peuvent en effet expliquer l'apparition d'un courant inverse de grille aussi élevé .
Cette température élevée de la grille peut être la cause de mauvais fonctionnements du tube : la grille rayonne une quantité de chaleur très importante vers les parties plus froides du tube et provoque un dégazage anormal de celle-ci. Les ions libérés dans le tube sont alors sources de claquages électriques , de disjonctions, etc . Les céramiques d'isolation de grille peuvent se détériorer (fêlures) sous l'action de la chaleur. Il en résulte de toutes façons une réduction de la fiabilité et de la durée de vie des tubes .
L'invention a pour but de réduire les risques de mauvais fonctionnement qui semblent dus à une augmentation anormale de température de la grille, dans des tubes dont la grille est placée dans un circuit résonnant à haute fréquence et est parcourue par des courants haute fréquence engendrés par cette résonnance .
Selon l'invention, on propose d'utiliser une grille ayant des barreaux dont la largeur est variable et est plus grande aux endroits où les courants haute fréquence qui circulent sous l'effet de la résonnance sont les plus élevés . De préférence , la largeur varie le long d'un barreau entre un côté où le barreau est soumis à des courants plus faibles et un autre côté où le barreau est soumis à des courants plus élevés . En particulier, dans un certain nombre de cas, on prévoira que la largeur des barreaux est plus grande dans le bas de la grille (c'est-à-dire du côté de la connexion vers l'extérieur du tube) que dans le hau .
En pratique, c'est dans le cas de tubes à grille cylindrique que l'invention s'avère particulièrement intéressante. Le haut de la grille est placé le plus souvent un noeud de courant et un ventre de tension haute fréquence, mais le bas est beaucoup plus près d'un ventre de courant.
Dans une réalisation, les barreaux ont une largeur régulièrement croissante au fur et à mesure que l'on s'approche du bas de la grille . La croissance peut être continue ou discontinue .
L'invention est applicable à des grilles à barreaux verticaux ou des grilles à barreaux obliques . On construit en effet souvent des grilles à barreaux obliques pour améliorer la résistance mécanique de ces grilles .
En pratique l'application de l'invention est destinée surtout aux grilles réalisées par usinage ou découpage telles que les grilles de graphite pyrolytique usinées par sablage ou les grilles de molybdène découpées au laser par électroérosion ou par emboutissage .
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente un exemple de grille classique de tétrode de puissance ;
- la figure 2 représente un autre exemple de grille classique, à barreaux obliques;
- la figure 3 représente une réalisation de grille selon l'invention à barreaux verticaux;
- la figure 4 représente une autre réalisation pour une grille à barreaux obliques . L'invention sera décrite en détail à propos d'une grille de triode ou tétrode . de grande puissance ayant une cathode cylindrique , une grille (triode) ou deux grilles (tétrode) cylindriques de structure maillée, entourant la cathode , et une anode entourant les grilles . Mais bien entendu, l'invention est applicable à d'autres structures de tubes où les mêmes problèmes se rencontrent (anode entourée par les grilles et la cathode par exemple) .
La grille, que ce soit une grille de modulation (Gl) ou une grille écran (G2) , est constituée très souvent (et c'est ce cas qui nous intéresse surtout ici) d'une feuille de matériau réfractaire en forme de cylindre usinée en structure maillée .
La fonction de ces grilles est d'établir une répartition de potentiel déterminée au voisinage de la cathode tout en laissant passer la majeure partie du flux d'électrons émis par la cathode vers l'anode . Les barreaux de la structure maillée sont suffisamment proches les uns des autres pour permettre l'établissement de potentiels aussi bien distribués que possible, et cependant ils sont suffisamment séparés les uns des autres par l'espace libre des mailles pour laisser passer une proportion aussi grande que possible des électrons .
Dans les structures de grilles classiques , on parvient à ce compromis avec des réseaux de barreaux formant des mailles régulières . Les barreaux sont soit des barreaux verticaux (pour permettre une évacuation optimale des courants haute fréquence car ceux-ci se propagent de haut en bas compte tenu de la répartition des potentiels haute fréquence le long de la hauteur de la grille cylindrique) , soit des barreaux obliques croisés (pour améliorer la tenue mécanique de la structure) . Les barreaux sont très fins par rapport aux intervalles entre barreaux. Le sens vertical conventionnellement choisi ici est l'axe du cylindre constituant la grille.
La figure 1 représente une grille classique de tube d'amplification de forte puissance. C'est ici une grille en graphite pyrolytique , mais cela pourrait être aussi une grille en métal. La grille 10 est essentiellement constituée d'un réseau de barreaux verticaux 12 s 'étendant entre le haut 14 de la grille et le bas 16. La grille est connectée électriquement à l'extérieur du tube par un contact pris au bas de la grille et non représenté .
Dans la suite, lorsqu'on parlera du bas de la grille on se référera au côté de la connexion:
De place en place, des barreaux circulaires horizontaux 18 permettent de relier mécaniquement les barreaux verticaux les uns aux autres en vue d'accroître la rigidité de la structure .
Les barreaux horizontaux ne participent pas ou presque pas à l'évacuation des courants dans la grille . Très peu de courants haute fréquence se développent dans les barreaux horizontaux. Au contraire , les barreaux verticaux sont le siège de courants haute fréquence qui, dans ce type de structure, sont d'autant plus élevés qu'on se rapproche du bas de la grille .
La raison en est que la grille est le plus souvent placée dans un circuit résonnant à haute fréquence dans lequel le haut de la grille est à un ventre de courant et un noeud de tension, tandis que le bas de la grille se rapproche d'un ventre de courant .
La figure 2 représente une autre structure classique de grille en graphite pyrolytique. Dans cette structure , les barreaux sont obliques et il y a deux réseaux de barreaux obliques croisés 20 et 22. L'ensemble forme un réseau à mailles en losange . Bien qu'on ne l'ait pas représenté sur la figure 2, il pourrait y avoir en outre des barreaux circulaires horizontaux pour augmenter la rigidité ; par exemple, il peut y avoir des barreaux horizontaux reliant les points de croisement des deux réseaux obliques, de manière à transformer le maillage en losange en un maillage triangulaire (chaque losange divisé en deux triangles) . Ces barreaux horizontaux seraient là encore prévus pour augmenter la rigidité de la structure .
Aussi bien dans le cas de la figure 1 que dans le cas de la figure 2 , les barreaux ont des largeurs constantes du haut en bas de la grille . Selon l'invention, on propose de donner aux barreaux verticaux ou obliques des largeurs variables en fonction de la répartition de densités de courant haute fréquence dans la grille pour le fonctionnement désiré du tube (c'est-à-dire notamment pour une fréquence et une puissance désirée) . Là où la densité de courant tend à être plus importante, on utilisera des barreaux plus larges .
L'augmentation de la largeur du barreau permet d'augmenter la section efficace traversée par les courants donc de diminuer la puissance dissipée par effet Joule .
De plus, cette augmentation de largeur permet d'augmenter la surface rayonnante du barreau. Pour une même puissance dissipée par effet Joule et évacuée principalement par rayonnement (très faible évacuation par conduction thermique dans ces structures de grille cylindriques et plus faible encore par convection puisqu'on est dans le vide) , la température du barreau sera réduite .
Les courants en différents points de la grille peuvent être calculés à partir des équations de Maxwell; les courants et potentiels suivent en effet des lois physiques et mathématiques bien connues ; on peut donc déterminer quels sont les endroits (pour un fonctionnement déterminé) où la densité de courant sera la plus élevée, et on donne aux barreaux une section plus large dans ces endroits .
En pratique, la densité de courant dans les barreaux de la grille est souvent très élevée dans le bas de la grille, du côté de la connexion, pour une grille cylindrique ayant classiquement une connexion d'un côté seulement du cylindre.
Dans une réalisation particulière préférentielle , la largeur des barreaux va en croissant du haut de la grille vers le bas, au moins dans la partie inférieure de la grille .
On obtient alors des barreaux de largeur non uniforme au fur et à mesure qu'on s'étend sur leur longueur, les barreaux étant plus larges là où les courants qui sont susceptibles de les parcourir sont les plus importants , et là où la température de la grille a par conséquent le plus de risque de S4élever trop .
En pratique , dans les cas qui seront les plus classiques , on choisira donc de donner aux barreaux verticaux une largeur croissante dans le bas de la grille . Les barreaux verticaux sont en effet les plus concernés par les problèmes de circulation de courants haute fréquence et c'est en bas de la grille que les risques d'échauffement anormal sont les plus élevés .
Par exemple, les barreaux verticaux ont une largeur variable continûment du haut en bas de la grille . Mais la variation peut aussi être par paliers .
Ou encore, les barreaux verticaux ont une largeur constante sur une partie de la hauteur de la grille, puis , vers le bas, la largeur croît régulièrement ou par paliers .
Pour des barreaux obliques , les solutions sont les mêmes : croissance continue ou par paliers, depuis le haut de la grille ou seulement dans la partie inférieure de la grille .
Les barreaux horizontaux eux-mêmes peuvent être plus larges vers le bas de la grille que vers le haut, ne serait-ce que par commodité de fabrication .
La figure 3 illustre un exemple de constitution de grille , pour des barreaux verticaux : la largeur (Ll, L2) des barreaux va en croissant vers le bas . Cette figure représente un détail de la grille ; les proportions ne sont pas respectées , pour des raisons de commodité de représentation , afin qu'on voie bien l'augmentation de largeur des barreaux ; dans la pratique en effet, les barreaux peuvent être très fins par rapport à l'intervalle entre barreaux consécutifs ; d'autre part l'intervalle entre barreaux horizontaux peut être beaucoup plus large que l'intervalle entre barreaux verticaux .
La largeur des ouvertures entre barreaux peut être constante ou non : le plus simple est d'utiliser un maillage de pas constant, ce qui implique que les ouvertures se réduisent à mesure que les barreaux s'élargissent . La transparence de la grille aux électrons diminue donc là où les barreaux sont plus larges, mais c'est acceptable pour deux raisons :
- d'une part, la largeur des barreaux peut rester faible devant l'ouverture même là où les barreaux sont les plus larges ;
- d'autre part, le plus souvent on aura des barreaux plus larges justement dans les régions (bas de la grille) où la densité de courant électronique issue de la cathode et récupérée par la grille G2 est la plus faible .
L'invention est applicable de la même manière à des grilles dont les barreaux ne sont pas verticaux mais obliques , comme par exemple une grille telle que celle de la figure 2 comportant une série de barreaux obliques tous parallèles croisés avec une autre série de barreaux obliques tous parallèles .
Un exemple de réalisation de l'invention avec une grille à barreaux obliques renforcés par des barreaux horizontaux (maillage triangulaire) est représenté à la figure 4. On voit que les deux réseaux de barreaux obliques 20 et 22 ont des largeurs croissantes du haut vers le bas . Les barreaux horizontaux 24 ont également des largeurs croissantes du haut vers le bas, mais uniquement pour des raisons de commodité de fabrication ; ils pourraient avoir tous la même largeur car réchauffement dû à la circulation de courant dans ces barreaux horizontaux est faible .
Les grilles peuvent être en graphite pyrolytique ; elles sont alors généralement découpées par sablage au moyen de buses de projection de sable.
On peut aussi prévoir que les grilles sont en métal (de préférence du molybdène) . Elles sont alors réalisées par découpage" au laser ou par découpage mécanique ou par électroérosion .

Claims

REVENDICATIONS
1. Tube électronique d'amplification haute fréquence , comportant une grille placée dans un circuit résonnant de sortie du tube, caractérisé en ce que la grille a des barreaux dont la largeur est variable et plus grande aux endroits où les courants haute fréquence engendrés par la résonnance tendent à être plus élevés .
2. Tube électronique d'amplification haute fréquence, comportant une grille, caractérisé en ce que la grille a des barreaux allongés dont la largeur varie le long du barreau.
3. Tube électronique selon l'une des revendications 1 et 2, caractérisé en ce que la grille est en forme de cylindre vertical et les barreaux dont la largeur est variable sont des barreaux verticaux ou obliques par rapport à la verticale .
4. Tube électronique selon la revendication 3 , caractérisé en ce que les barreaux ont une largeur plus importante vers le bas de la grille, du côté d'une connexion électrique de grille, que vers le haut .
5. Tube électronique selon la revendication 4, caractérisé en ce que les barreaux ont une largeur régulièrement croissante au fur et à mesure que l'on s'approche du bas de la grille .
6. Tube électronique selon la revendication 4, caractérisé en ce que les barreaux ont une largeur continûment croissante .
7. Tube électronique selon la revendication 4, caractérisé en ce que les barreaux ont une largeur constante sur une partie de la hauteur de la grille et une largeur variable dans le bas de la grille .
8. Tube électronique selon l'une des revendications précédentes, caractérisé en ce que la grille est en graphite pyrolytique ou en métal.
EP91908979A 1990-05-04 1991-04-23 Tube d'amplification a grille avec barreaux de largeur variable Expired - Lifetime EP0481052B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9005640 1990-05-04
FR9005640A FR2661778A1 (fr) 1990-05-04 1990-05-04 Tube d'amplification a grille avec barreaux de largeur variable.
PCT/FR1991/000334 WO1991017559A1 (fr) 1990-05-04 1991-04-23 Tube d'amplification a grille avec barreaux de largeur variable

Publications (2)

Publication Number Publication Date
EP0481052A1 true EP0481052A1 (fr) 1992-04-22
EP0481052B1 EP0481052B1 (fr) 1995-04-05

Family

ID=9396335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91908979A Expired - Lifetime EP0481052B1 (fr) 1990-05-04 1991-04-23 Tube d'amplification a grille avec barreaux de largeur variable

Country Status (6)

Country Link
US (1) US5317230A (fr)
EP (1) EP0481052B1 (fr)
JP (1) JPH05501635A (fr)
DE (1) DE69108666T2 (fr)
FR (1) FR2661778A1 (fr)
WO (1) WO1991017559A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948122A (en) * 1931-12-29 1934-02-20 Frederick S Mccullough Thermionic tube
DE1134167B (de) * 1960-12-14 1962-08-02 Standard Elektrik Lorenz Ag Gitter fuer die gebuendelte Elektronenstroemung von Kathodenstrahl- oder Laufzeitroehren und Verfahren zu seiner Herstellung
FR1408119A (fr) * 1964-09-18 1965-08-06 Siemens Ag Tube électronique à grille-écran
FR2432215A1 (fr) * 1978-07-27 1980-02-22 Thomson Csf Tube electronique a grille cylindrique en graphite pyrolytique
FR2561820A1 (fr) * 1984-03-23 1985-09-27 Thomson Csf Tube a grilles avec ecran metallique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9117559A1 *

Also Published As

Publication number Publication date
DE69108666D1 (de) 1995-05-11
DE69108666T2 (de) 1995-08-17
EP0481052B1 (fr) 1995-04-05
FR2661778A1 (fr) 1991-11-08
JPH05501635A (ja) 1993-03-25
WO1991017559A1 (fr) 1991-11-14
US5317230A (en) 1994-05-31

Similar Documents

Publication Publication Date Title
FR3069368A1 (fr) Canon a electrons
EP0324667B1 (fr) Collecteur d'électrons pour tube électronique
EP0481052B1 (fr) Tube d'amplification a grille avec barreaux de largeur variable
EP0037309B1 (fr) Tube à ondes progressives à cavités couplées et focalisation par aimants permanents alternés, et ensemble amplificateur comprenant un tel tube
FR2733856A1 (fr) Cathode pour canon a electrons a grille, grille destinee a etre associee avec une telle cathode et canon a electrons comportant une telle cathode
WO2004042769A1 (fr) Generateur de rayons x a dissipation thermique amelioree et procede de realisation du generateur
FR2510815A1 (fr) Circuit en echelle pour tube a ondes progressives
FR2496337A1 (fr) Structure d'aimants permanents pour tubes electroniques a faisceau lineaire
FR2548829A1 (fr) Tube a rayons x a anode tournante muni d'un dispositif d'ecoulement des charges
FR2691012A1 (fr) Canon de pierce à électrode d'échelonnement.
FR2606937A1 (fr) Ligne a retard a couplage par cavites pour tube a onde progressive
EP0456550B1 (fr) Tube électronique à grille cylindrique
FR2790595A1 (fr) Circuit de ligne a retard en helice
BE1009144A6 (fr) Appareil de radiologie portable.
BE333021A (fr)
EP0684625B1 (fr) Tube électronique à vide de très forte puissance à anode refroidie par circulation forcée
WO2002093707A1 (fr) Canalisation electrique
EP1055246A1 (fr) Grille pour tube electronique a faisceau axial
WO2021136918A1 (fr) Dispositif pour connecter une source de puissance a un inducteur
FR2833749A1 (fr) Refroidissement d'un tube electronique
JPH05275775A (ja) イオンレーザ管
BE458271A (fr)
FR2627898A1 (fr) Tube electronique refroidi par circulation d'un fluide
FR2692075A1 (fr) Micro-structure d'une cathode chaude pour tube électronique.
BE438120A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19911206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17Q First examination report despatched

Effective date: 19940510

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950430

Ref country code: LI

Effective date: 19950430

REF Corresponds to:

Ref document number: 69108666

Country of ref document: DE

Date of ref document: 19950511

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950615

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: AUV

Free format text: LE BREVET CI-DESSUS EST TOMBE EN DECHEANCE, FAUTE DE PAIEMENT, DE LA 5E ANNUITE.

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070419

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070418

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070411

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080423