EP0324667B1 - Collecteur d'électrons pour tube électronique - Google Patents

Collecteur d'électrons pour tube électronique Download PDF

Info

Publication number
EP0324667B1
EP0324667B1 EP89400031A EP89400031A EP0324667B1 EP 0324667 B1 EP0324667 B1 EP 0324667B1 EP 89400031 A EP89400031 A EP 89400031A EP 89400031 A EP89400031 A EP 89400031A EP 0324667 B1 EP0324667 B1 EP 0324667B1
Authority
EP
European Patent Office
Prior art keywords
collector
winding
electron
component
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89400031A
Other languages
German (de)
English (en)
Other versions
EP0324667A1 (fr
Inventor
Georges Mourier
Georges Faillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Publication of EP0324667A1 publication Critical patent/EP0324667A1/fr
Application granted granted Critical
Publication of EP0324667B1 publication Critical patent/EP0324667B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors

Definitions

  • the present invention relates to an electron collector for an electronic tube. It finds an application in the production of microwave tubes such as gyrotrons, klystrons, traveling wave tubes, etc.
  • a gyrotron is a microwave generator whose structure is shown schematically in Figure 1. This structure includes an electron gun 10, a section 12 of magnetic compression, a cavity 14 and a collector 16 also serving as an output guide.
  • a solenoid (not shown) creates a magnetic field 20 giving the electrons emitted by the gun helical trajectories 22.
  • the end part 16 comprises a metal wall 23, responsible for collecting the electrons at their exit from the tube. This collection is carried out on an annular sector 24. Such a sector may have, for example, 10 cm in diameter and 10 cm in height. For an electron beam carrying a power of 2 MW, the power density dissipated in this sector will be 6.37 kw / cm2.
  • the object of the present invention is precisely to remedy this drawback. To this end, it proposes a device according to claim 1 which makes it possible to spread the zone of impact of the electrons along the collecting wall and to create an axial magnetic field of periodic amplitude over time so as to thereby reduce the dissipated power density.
  • the invention provides a device having the characteristics listed in claim 1.
  • the magnetic field can be obtained by any means and, for example, by a winding having a number of turns per unit of length which decreases along the collector in the direction of movement of the electrons.
  • Such a winding can be tapered.
  • the spatial spread effect obtained can be combined with a periodic sweep effect.
  • the current flowing through the winding can be formed of a continuous component and a periodic variable component.
  • variable component has the form of a triangular signal.
  • the device of the invention can be used for all electronic power tubes such as klystrons, traveling wave tubes, etc. It is however particularly well suited to the gyrotron because, in this case, the electron beam fills a tube which, on the one hand, has a thin thickness and, on the other hand, cannot be modified at will since it forms at the same time the output waveguide.
  • the collector shown in FIG. 2 is arranged at the end of a gyrotron of which only the main winding 32 is seen.
  • the collector comprises a conductive wall 34, of slightly flared shape.
  • the guide thus formed is closed by a window 35 transparent to the generated wave.
  • this wall is arranged in a coil 36 which, in the example illustrated, is unique and has the shape of a truncated cone. This coil creates a slightly decreasing magnetic field as you move away from the tube (i.e. to the right in Figure 2).
  • the induction lines 37 are therefore slightly divergent to the right. To the left, they connect to the induction lines of the main winding 32.
  • the electrons of the beam 38 will wind around these lines; the beam will flare weakly and strike the wall 23 almost tangentially.
  • the impact zone 40 is then extended and the power density dissipated reduced.
  • the current I flowing in the winding 36 has a continuous component Io and a periodic variable component I1, as shown in FIG. 3, we will also obtain a sweep of the impact zone, at the rate of the periodic component . Thus, a large part (or even all) of the inner face of the wall 23 will collect the electrons, which further reduces the average density of dissipated power.
  • the component I1 has the form of a triangular signal of period T. But other forms are naturally possible (sawtooth or sinusoid).
  • the penetration or exit time of the magnetic field in a collector of thickness d is of the order of 1/140 ⁇ d seconds or d is expressed in cm. Likewise, for heat, the crossing time is around ⁇ d seconds.
  • T 0.1 seconds, which corresponds to a scanning frequency of 10 Hz. During this period T, the magnetic field can enter and leave the collector, while the wall will be cooled more or less constantly over time.
  • FIG. 4 represents, schematically, a collector 34 adapted to a klystron (part a ) with electron beams referenced F1, F2 and the power density dissipated P, expressed for example in kW / cm2, along the collector (part b ).
  • the points Z1 and Z2 which appear on the dotted line curve in part b correspond to the case where the beams are not spread out. They disappear or are greatly reduced when the beams are spread to make room for zones Z′1 and Z′2 shown in solid lines.
  • FIG. 4 corresponds to the case where the beam is not modulated by the high frequency; in other words, the klystron operates as a "diode", an unexcited input cavity. This may be the case when starting up an installation, at certain moments in the cycle of a scientific machine (synchrotron, plasma, etc.), of a telecommunications transmitter working at low speed (low number of communications ). If, on the contrary, the electron beam is modulated, the impact zone already scans at the rate of the modulation frequency, a more or less large area of the collector.
  • the invention makes it possible to go even further, as illustrated in FIG. 5 and to further spread the zones Z1 and Z2 (in dotted lines), in wide zones Z′1 and Z′2 (in continuous train). It is then possible to produce very powerful tubes, avoiding the problems mentioned above or to produce tubes of more modest power but with small collectors.
  • FIG. 6 illustrates an example suitable for producing a collector according to the invention, in the case of a klystron.
  • the latter comprises an outlet cavity 50 with two sliding tubes 52, 54, an outlet iris 56 and an outlet wave guide 58.
  • the collector 60 is separated from the klystron by a plate 61. It comprises a conductive wall 62 surrounded by two coils 66 and 68 whose shape is capable of creating a divergent field. These coils are supplied in phase or out of phase.
  • Cooling means include an inlet for refrigerant liquid 72, for example water, a sealed enclosure 73 in the form of a baffle, and an outlet 74.
  • a possible electrical supply circuit for supplying a device with several coils is shown in FIG. 7.
  • a single or three-phase sector 80 supplies a rectifier 82 and a synchronization and control generator 84.
  • Single-phase inverters 86-1, 86 -2, ..., 86-n receive a DC supply voltage from rectifier 82 and a synchronization signal from the generator 84. They deliver voltages V1, V2, ..., Vn comprising an AC component phase shifted from one inverter to the next. These voltages are applied to the n coils of a collector according to the invention.

Description

  • La présente invention a pour objet un collecteur d'électrons pour tube électronique. Elle trouve une application dans la réalisation de tubes hyperfréquences du genre gyrotrons, klystrons, tubes à ondes progressives, etc.
  • Un gyrotron est un générateur d'ondes hyperfréquences dont la structure est représentée schématiquement sur la figure 1. Cette structure comprend un canon à électrons 10, une section 12 de compression magnétique, une cavité 14 et un collecteur 16 servant également de guide de sortie.
  • Un solénoïde (non représenté) crée un champ magnétique 20 donnant aux électrons émis par le canon des trajectoires hélicoïdales 22.
  • La partie extrême 16 comprend une paroi métallique 23, chargée de collecter les électrons à leur sortie du tube. Cette collection s'effectue sur un secteur annulaire 24. Un tel secteur peut avoir, par exemple, 10 cm de diamètre et 10 cm de hauteur. Pour un faisceau d'électrons transportant une puissance de 2MW, la densité de puissance dissipée dans ce secteur sera de 6,37 kw/cm².
  • Une telle densité est considérable. Elle nécessite donc un refroidissement énergique de la paroi. Ce refroidissement est obtenu en général par une circulation d'eau, à l'aide d'une installation volumineuse et encombrante.
  • La présente invention a justement pour but de remédier à cet inconvénient. A cette fin, elle propose un dispositif selon la revendication 1 qui permet d'étaler la zone d'impact des électrons le long de la paroi collectrice et de créer un champ magnétique axial d'amplitude périodique dans le temps de manière à réduire ainsi la densité de puissance dissipée.
  • Un tel champ a pour effet de coucher les trajectoires des électrons pour les rendre quasi parallèles à la paroi. La zone d'impact se trouve alors considérablement allongée.
  • Il est connu par le document FR-A-1 404 711 d'utiliser, pour un collecteur d'électrons, un champ magnétique axial légèrement divergent mais statique et invariable dans le temps. Il est également connu, par le document US-A-3 538 366, d'utiliser plusieurs bobines le long d'un tube électronique pour focaliser un faisceau électronique. Un autre dispositif connu de l'art antérieur est décrit par le document FR-A-991 127, qui enseigne l'utilisation d'un champ magnétique transverse, périodiquement variable et prévoit à cet effet des bobines alimentées par le courant du secteur ou d'un champ magnétique tournant.
  • Dans un autre domaine technique, celui des électroaimants, il est également connu, notamment par le document FR-A-1 105 382, que l'on peut faire varier l'amplitude d'un champ magnétique crée par la circulation d'un courant électrique dans une bobine en faisant varier l'amplitude du courant.
  • L'invention propose un dispositif ayant les caractéristiques énumérées dans la revendication 1.
  • Le champ magnétique peut être obtenu par tout moyen et, par exemple, par un enroulement ayant un nombre de tours par unité de longueur qui décroît le long du collecteur dans le sens de déplacement des électrons.
  • Un tel enroulement peut être tronconique. Mais on peut utiliser également une bobine cylindrique coaxiale à une bobine conique; ou encore une juxtaposition de bobines de même diamètre intérieur mais de diamètre extérieur décroissant, etc.
  • L'effet d'étalement spatial obtenu peut être combiné à un effet de balayage périodique. A cette fin, le courant parcourant l'enroulement peut être formé d'une composante continue et d'une composante variable périodique.
  • De préférence, la composante variable a la forme d'un signal triangulaire.
  • Le dispositif de l'invention peut être utilisé pour tous les tubes électroniques de puissance tels que les klystrons, les tubes à ondes progressives, etc. Il est cependant particulièrement bien adapté au gyrotron parce que, dans ce cas, le faisceau d'électrons remplit un tube qui, d'une part, présente une épaisseur mince et, d'autre part, ne peut être modifié à volonté puisqu'il forme en même temps le guide d'ondes de sortie.
  • De toute façon, les caractéristiques de l'invention apparaîtront mieux à la lumière de la description qui va suivre. Cette description se rapporte à des exemples de réalisation donnés à titre explicatif et non limitatif. Elle se réfère à des dessins annexée sur lesquels :
    • la figure 1, déjà décrite, représente un gyrotron selon l'art antérieur,
    • la figure 2 représente, en coupe, un collecteur auquel peut s'appliquer l'invention, dans une variante adaptée au gyrotron,
    • la figure 3 montre les variations du courant d'alimentation d'un enroulement,
    • La figure 4 montre un collecteur auquel peut s'appliquer l'invention, dans une variante adaptée à un klystron à faisceau non modulé,
    • la figure 5 montre un collecteur auquel peut s'appliquer l'invention, dans une variante adaptée à un klystron à faisceau modulé,
    • la figure 6 illustre une variante à deux bobines,
    • la figure 7 est un exemple de circuit d'alimentation d'un dispositif à plusieurs bobines.
  • Le collecteur représenté sur la figure 2 est disposé à l'extrémité d'un gyrotron dont on ne voit que l'enroulement principal 32. Le collecteur comprend une paroi conductrice 34, de forme légèrement évasée. Le guide ainsi constitué est fermé par une fenêtre 35 transparente à l'onde engendrée. Selon l'invention, cette paroi est disposée dans une bobine 36 qui, dans l'exemple illustré, est unique et présente la forme d'un tronc de cône. Cette bobine crée un champ magnétique légèrement décroissant lorsqu'on s'éloigne du tube (c'est-à-dire vers la droite sur la figure 2). Les lignes d'induction 37 sont donc légèrement divergentes vers la droite. Vers la gauche, elles se raccordent aux lignes d'induction de l'enroulement principal 32.
  • Dans ces conditions, les électrons du faisceau 38 vont s'enrouler autour de ces lignes ; le faisceau va s'évaser faiblement et venir frapper la paroi 23 de manière quasi tangentielle. La zone d'impact 40 se trouve alors allongée et la densité de puissance dissipée diminuée.
  • Si le courant I circulant dans l'enroulement 36 présente une composante continue Io et une composante variable périodique I1, comme représenté sur la figure 3, on obtiendra, en outre, un balayage de la zone d'impact, au rythme de la composante périodique. Ainsi, une grande partie (voire la totalité) de la face intérieure de la paroi 23 collectera les électrons, ce qui réduit encore la densité moyenne de puissance dissipée.
  • Sur la figure 3, la composante I1 présente la forme d'un signal triangulaire de période T. Mais d'autres formes sont naturellement possibles (en dents de scie ou en sinusoïde).
  • Le temps de pénétration ou de sortie du champ magnétique dans un collecteur d'épaisseur d est de l'ordre de 1/140 √d secondes ou d est exprimé en cm. De même, pour la chaleur, le temps de traversée est de l'ordre de √d secondes.
  • Pour un collecteur de 1 cm d'épaisseur, on pourra prendre T=0,1 seconde, ce qui correspond à une fréquence de balayage de 10 Hz. Pendant cette durée T, le champ magnétique pourra entrer et sortir du collecteur, tandis que la paroi sera refroidie de manière à peu près constante dans le temps.
  • Dans le collecteur d'un tube du genre klystron, le faisceau diverge plus brutalement que dans un gyrotron. Mais le problème reste le même, en ce sens qu'à certains endroits, les densités de puissance peuvent être très importantes et dépasser 1 kW/cm² en continu ou en moyenne. Cette situation risque de limiter la durée de vie du tube (grossissement des cristaux, dégazages, fusion, ...) en supposant un refroidissement raisonnablement efficace (eau avec une vitesse de plusieurs mètres par seconde, hypervapotron avec une vitesse de l'ordre du mètre par seconde, etc.).
  • Sur beaucoup de tubes hyperfréquences, cette densité et, donc, ce risque, sont réduits par l'accroissement du diamètre du collecteur. Mais, bien entendu, sur des klystrons de grande dimension on se heurte vite à des contraintes d'encombrement.
  • L'adjonction de l'enroulement permet, d'étaler le faisceau sur une plus grande surface de collecteur et donc de réduire la densité de puissance ou de chaleur. C'est ce qui est représenté sur les figures 4 et 5.
  • La figure 4 représente, de manière schématique, un collecteur 34 adapté à un klystron (partie a) avec des faisceaux d'électrons référencés F1, F2 et la densité de puissance dissipée P, exprimée par exemple en kW/cm², le long du collecteur (partie b).
  • Les pointes Z1 et Z2 qui apparaissent sur la courbe en trait pointillé de la partie b correspondent au cas où les faisceaux ne sont pas étalés. Elles disparaissent ou sont fortement estompées en cas d'étalement des faisceaux pour laisser place à des zones Z′1 et Z′2 représentées en trait continu.
  • La figure 4 correspond au cas où le faisceau n'est pas modulé par la haute fréquence ; en d'autres termes le klystron fonctionne en "diode", cavité d'entrée non excitée. Ce peut être le cas lors de la mise en route d'une installation, à certains moments du cycle d'une machine scientifique (synchrotron, plasma, ...), d'un émetteur de télécommunications travaillant à faible régime (faible nombre des communications...). Si, au contraire, le faisceau d'électrons est modulé, la zone d'impact balaye déjà au rythme de la fréquence de modulation, une surface plus ou moins importante du collecteur. L'invention permet d'aller encore plus loin, comme illustré sur la figure 5 et d'étaler encore les zones Z1 et Z2 (en pointillé), en zones larges Z′1 et Z′2 (en train continu). Il est alors possible de réaliser des tubes très puissants, en évitant les problèmes évoqués plus haut ou de réaliser des tubes de puissance plus modeste mais avec des collecteurs de faibles dimensions.
  • La figure 6 illustre un exemple apte à la réalisation d'un collecteur selon l'invention, dans le cas d'un klystron. Ce dernier comprend une cavité de sortie 50 avec deux tubes de glissement 52, 54, un iris de sortie 56 et un guide d'onde de sortie 58. Le collecteur 60 est séparé du klystron par une plaque 61. Il comprend une paroi conductrice 62 entourée de deux bobines 66 et 68 dont la forme est apte à créer un champ divergent. Ces bobines sont alimentées en phase ou de manière déphasée. Des moyens de refroidissement comprennent une entrée de liquide réfrigérant 72, de l'eau par exemple, une enceinte étanche 73 en forme de chicane, et une sortie 74.
  • Un circuit d'alimentation électrique possible pour alimenter un dispositif à plusieurs bobines est représenté sur la figure 7. Un secteur mono- ou triphasé 80 alimente un redresseur 82 et un générateur de synchronisation et de commande 84. Des ondulateurs monophasés 86-1, 86-2, ..., 86-n reçoivent une tension continue d'alimentation provenant du redresseur 82 et un signal de synchronisation provenant du générateur 84. Ils délivrent des tensions V1, V2, ..., Vn comprenant une composante alternative déphasée d'un ondulateur au suivant. Ces tensions sont appliquées aux n bobines d'un collecteur selon l'invention.

Claims (6)

  1. Collecteur d'électrons pour tube électronique, ce collecteur comprenant une paroi conductrice (23) apte à recevoir sur sa face intérieure un faisceau d'électrons (22) issu du tube (10, 12, 14) sur une zone d'impact en forme d'anneau (24) d'une hauteur faible le long d'un axe du collecteur en comparaison de la longueur du collecteur le long de son axe, ce collecteur étant caractérisé par le fait qu'il comprend en outre, autour de la paroi (23), au moins une enroulement (36) coaxial à l'axe du collecteur et un circuit d'alimentation pour appliquer à cet enroulement un courant comportant une composante continue et une composante variable périodique dans le temps, cet enroulement étant apte à créer un champ magnétique (37) axial d'amplitude variable périodique dans le temps, faiblement divergent dans le sens de déplacement du faisceau d'électrons.
  2. Collecteur selon la revendication 1, caractérisé par le fait que l'enroulement (36) comprend un nombre de tours par unité de longueur qui décroît le long du collecteur dans le sens de déplacement des électrons.
  3. Collecteur selon la revendication 2, caractérisé par le fait que l'enroulement (36) est de forme tronconique.
  4. Collecteur selon la revendication 1, caractérisé par le fait que la composante variable (11) a la forme d'un signal triangulaire.
  5. Collecteur selon la revendication 1, caractérisé par le fait que l'enroulement est constitué par un jeu de plusieurs bobines (66, 68) juxtaposées.
  6. Collecteur selon la revendication 5, caractérisé par le fait que ladite composante variable périodique est déphasée d'une bobine à la suivante.
EP89400031A 1988-01-13 1989-01-05 Collecteur d'électrons pour tube électronique Expired - Lifetime EP0324667B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8800299A FR2625836B1 (fr) 1988-01-13 1988-01-13 Collecteur d'electrons pour tube electronique
FR8800299 1988-01-13

Publications (2)

Publication Number Publication Date
EP0324667A1 EP0324667A1 (fr) 1989-07-19
EP0324667B1 true EP0324667B1 (fr) 1994-09-21

Family

ID=9362249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89400031A Expired - Lifetime EP0324667B1 (fr) 1988-01-13 1989-01-05 Collecteur d'électrons pour tube électronique

Country Status (5)

Country Link
US (1) US4933594A (fr)
EP (1) EP0324667B1 (fr)
JP (1) JP2895083B2 (fr)
DE (2) DE68918295T4 (fr)
FR (1) FR2625836B1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9005245D0 (en) * 1990-03-08 1990-05-02 Eev Ltd High frequency amplifying apparatus
FR2672730B1 (fr) * 1991-02-12 1993-04-23 Thomson Tubes Electroniques Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfrequence et tube hyperfrequence comprenant un tel dispositif.
US5420478A (en) * 1993-02-12 1995-05-30 Litton Systems, Inc. Depressed collector for sorting radial energy level of a gyrating electron beam
FR2737340B1 (fr) * 1995-07-28 1997-08-22 Thomson Tubes Electroniques Tube electronique multifaisceau a couplage cavite/faisceau ameliore
US5780970A (en) * 1996-10-28 1998-07-14 University Of Maryland Multi-stage depressed collector for small orbit gyrotrons
FR2756970B1 (fr) * 1996-12-10 2003-03-07 Thomson Tubes Electroniques Tube hyperfrequence a interaction longitudinale a cavite a sortie au dela du collecteur
FR2764730B1 (fr) * 1997-06-13 1999-09-17 Thomson Tubes Electroniques Canon electronique pour tube electronique multifaisceau et tube electronique multifaisceau equipe de ce canon
FR2780809B1 (fr) 1998-07-03 2003-11-07 Thomson Tubes Electroniques Tube electronique multifaisceau avec champ magnetique de correction de trajectoire des faisceaux
FR2803454B1 (fr) * 1999-12-30 2003-05-16 Thomson Tubes Electroniques Generateur d'impulsions hyperfrequences integrant un compresseur d'impulsions
JP3590039B2 (ja) * 2002-07-24 2004-11-17 沖電気工業株式会社 半導体装置及びその製造方法
FR2877139B1 (fr) * 2004-10-27 2007-01-26 Thales Sa Tube hyperfrequence de forte puissance avec etalement du faisceau dans le collecteur
US7368874B2 (en) 2005-02-18 2008-05-06 Communications and Power Industries, Inc., Satcom Division Dynamic depressed collector
WO2008135064A1 (fr) * 2007-05-04 2008-11-13 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Procédé et appareil de commande de balayage de collecteur d'un faisceau d'électrons
RU2576391C1 (ru) * 2014-11-18 2016-03-10 Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН) Электронный свч прибор
RU2630251C1 (ru) * 2016-04-05 2017-09-06 Федеральное государственное бюджетное научное учреждение "Федеральный исследовательский центр Институт прикладной физики Российской академии наук" (ИПФ РАН) Электронный СВЧ прибор

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR491127A (fr) * 1918-07-24 1919-05-22 Walter Reginald Hume Machines à mouler et moules pour la fabrication de tuyaux en ciment et béton
FR991127A (fr) * 1944-03-31 1951-10-01 Csf Perfectionnements aux tubes à vide utilisant des faisceaux electroniques intenses
FR1105382A (fr) * 1953-07-23 1955-11-30 Dispositif variateur de flux magnétique
US2869018A (en) * 1955-05-02 1959-01-13 Hughes Aircraft Co Traveling wave tube
NL222475A (fr) * 1957-01-29
FR1404711A (fr) * 1964-06-13 1965-07-02 Varian Associates Appareil à décharge électronique de grande puissance
US3538366A (en) * 1967-11-28 1970-11-03 Siemens Ag Fluid cooled electromagnetic structure for traveling wave tubes
FR2363185A1 (fr) * 1976-08-27 1978-03-24 Thomson Csf Dispositif de couplage pour tube hyperfrequence et tube hyperfrequence comportant un tel dispositif
FR2445611A1 (fr) * 1978-12-29 1980-07-25 Thomson Csf Generateur d'ondes radioelectriques pour hyperfrequence
FR2491256A1 (fr) * 1980-09-26 1982-04-02 Thomson Csf Accelerateur d'electrons et generateur d'ondes millimetriques et infra-millimetriques comportant un tel accelerateur
US4668894A (en) * 1981-04-27 1987-05-26 The United States Of America As Represented By The Secretary Of The Navy Waveguide coupler using three or more wave modes
FR2520552A2 (fr) * 1982-01-22 1983-07-29 Thomson Csf Generateur d'ondes radioelectriques pour hyperfrequence
FR2542504B1 (fr) * 1983-03-11 1986-02-21 Thomson Csf Cavite resonnante pour hyperfrequences, en particulier pour generateurs d'energie electromagnetique
FR2542928B1 (fr) * 1983-03-18 1985-10-04 Thomson Csf Transformateur de modes de propagation hyperfrequence
FR2544128B1 (fr) * 1983-04-06 1985-06-14 Thomson Csf Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences
FR2544129B1 (fr) * 1983-04-06 1986-01-17 Thomson Csf Generateur d'ondes radioelectriques pour hyperfrequences
FR2544127B1 (fr) * 1983-04-06 1985-12-13 Thomson Csf Canon a electrons pour generateurs d'ondes radioelectriques pour hyperfrequences
FR2545646B1 (fr) * 1983-05-03 1985-12-27 Thomson Csf Klystron amplificateur de puissance apte a alimenter une charge variable
US4621219A (en) * 1984-07-17 1986-11-04 Varian Associates, Inc. Electron beam scrambler
FR2596199B1 (fr) * 1986-03-19 1994-03-18 Thomson Csf Circuit de sortie pour klystron et klystron comportant un tel circuit de sortie
JPS62278732A (ja) * 1986-05-27 1987-12-03 Toshiba Corp ジヤイロトロン
FR2599565B1 (fr) * 1986-05-30 1989-01-13 Thomson Csf Lasertron a faisceaux multiples.
FR2599554A1 (fr) * 1986-05-30 1987-12-04 Thomson Csf Klystron a faisceaux multiples fonctionnant au mode tm02

Also Published As

Publication number Publication date
EP0324667A1 (fr) 1989-07-19
DE68918295T2 (de) 1995-02-02
JP2895083B2 (ja) 1999-05-24
US4933594A (en) 1990-06-12
FR2625836B1 (fr) 1996-01-26
DE68918295T4 (de) 1995-10-19
FR2625836A1 (fr) 1989-07-13
JPH01294330A (ja) 1989-11-28
DE68918295D1 (de) 1994-10-27

Similar Documents

Publication Publication Date Title
EP0324667B1 (fr) Collecteur d'électrons pour tube électronique
CA1306075C (fr) Accelerateur d'electrons a cavite coaxiale
FR2487628A1 (fr) Accelerateur de particules a cavites couplees
FR2487627A1 (fr) Accelerateur de particules comportant plusieurs cavites resonnantes
FR2691602A1 (fr) Accélérateur linéaire de protons à focalisation améliorée et impédance shunt élevée.
FR2671931A1 (fr) Dispositif de repartition d'une energie micro-onde pour l'excitation d'un plasma.
FR2547456A1 (fr) Tube a faisceau d'electrons module en densite avec un gain accru
FR2492158A1 (fr) Tube a electrons pour gyrotron
JP5102874B2 (ja) 電子ビームコレクタの掃引を制御する方法及び装置
FR2479558A1 (fr) Tube a ondes progressives a cavites couplees et focalisation par aimants permanents alternes, et ensemble amplificateur comprenant un tel tube
BE1004879A3 (fr) Accelerateur d'electrons perfectionne a cavite coaxiale.
FR2568057A1 (fr) Tube a hyperfrequences
FR2490872A1 (fr) Ligne a retard a cavites couplees pour tube a ondes progressives et tube a ondes progressives comportant une telle ligne
EP0499514B1 (fr) Dispositif convertisseur de modes et diviseur de puissance pour tube hyperfréquence, et tube hyperfréquence comprenant un tel dispositif
FR2496337A1 (fr) Structure d'aimants permanents pour tubes electroniques a faisceau lineaire
CH497073A (fr) Installation comprenant un générateur de haute tension
EP0407558B1 (fr) Dispositif amplificateur ou oscillateur fonctionnant en hyperfrequence
FR2613534A1 (fr) Gyrotron
WO1986003881A1 (fr) Aimant solenoidal sans fer
FR2691012A1 (fr) Canon de pierce à électrode d'échelonnement.
EP0221921B1 (fr) Aimant solenoidal sans fer
FR2606937A1 (fr) Ligne a retard a couplage par cavites pour tube a onde progressive
FR2767015A1 (fr) Four a micro-onde equipe d'un dispositif pour produire une energie hyperfrequence
FR2767016A1 (fr) Dispositif de production d'energie hyperfrequence comprenant un moyen de conversion de tension
FR2518802A1 (fr) Ligne a retard pour tube a onde progressive

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890826

17Q First examination report despatched

Effective date: 19910813

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 68918295

Country of ref document: DE

Date of ref document: 19941027

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041231

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050105

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050110

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060105

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070105