EP0477102A1 - Directional network with adjacent radiator elements for radio communication system and unit with such a directional network - Google Patents

Directional network with adjacent radiator elements for radio communication system and unit with such a directional network Download PDF

Info

Publication number
EP0477102A1
EP0477102A1 EP91402498A EP91402498A EP0477102A1 EP 0477102 A1 EP0477102 A1 EP 0477102A1 EP 91402498 A EP91402498 A EP 91402498A EP 91402498 A EP91402498 A EP 91402498A EP 0477102 A1 EP0477102 A1 EP 0477102A1
Authority
EP
European Patent Office
Prior art keywords
line
network
radiating
slot
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91402498A
Other languages
German (de)
French (fr)
Other versions
EP0477102B1 (en
Inventor
Mostafa Jelloul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNIQUE D'APPLICATION ET DE RECHERCHE ELECTRONIQUE Ste
Original Assignee
TECHNIQUE D'APPLICATION ET DE RECHERCHE ELECTRONIQUE Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNIQUE D'APPLICATION ET DE RECHERCHE ELECTRONIQUE Ste filed Critical TECHNIQUE D'APPLICATION ET DE RECHERCHE ELECTRONIQUE Ste
Publication of EP0477102A1 publication Critical patent/EP0477102A1/en
Application granted granted Critical
Publication of EP0477102B1 publication Critical patent/EP0477102B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates to a directional network for radiocommunications, consisting of a plurality of N adjacent radiating elements, connected in series by a main line and spaced apart by a wavelength in said main line. It also relates to a set of such directive networks.
  • the invention finds a particularly advantageous application in the field of radiocommunication antennas in the UHF band and even in the X band, when high directivity in the network plane and low directivity in the perpendicular plane are sought.
  • the plane of strong directivity will be the site plan
  • the perpendicular plane of weak directivity will be the azimuth plane.
  • a directive network for radiocommunications is known from the state of the art in accordance with the preamble, in which the adjacent radiating elements are four collinear half-wave dipoles supplied in series by a main line of impedance Zc.
  • ZT is the impedance seen at the input of the secondary lines connecting the main line to the dipoles
  • the main line can only be two-wire, because of the series supply. However, these lines have more power losses and above all radiate a large parasitic field. This is one of the drawbacks of this known directional network, another being linked to the difficulty of making the junction or transition between the high impedance two-wire main line and the low impedance coaxial secondary lines.
  • the dipoles can be supplied directly two by two by dividers by two, or one by one by a single divider by four.
  • This conventional solution has the advantage of simplicity in terms of design and can give satisfactory radio performance.
  • it has a high manufacturing cost (suitable and symmetrical dipoles with interface for attachment to a reflective mast for example) and supply of components (numerous cables and connectors, power dividers).
  • the technical problem to be solved by the object of the present invention is to propose a directive network for radiocommunications conforming to the preamble which would make it possible to obtain, in a simple and inexpensive manner, good radioelectric characteristics, free in particular of power losses. and stray radiation.
  • said directional network consists of an insulating substrate on a first face of which are disposed, along a first direction, adjacent radiating elements produced in thin metallic layers, each radiating element comprising a radiating slit which, from a short-circuited secondary line with slit of axis perpendicular to said first direction and parallel to a second direction, called main direction of propagation, widens linearly on both sides other of said axis, in that each radiating element is isolated from an adjacent element by a line with a quarter-wave slit short-circuited for decoupling, and in that said main line is a coaxial cable substantially perpendicular to each secondary line slot and provided with a central core and an external conductive sheath, the sheath of said coaxial cable being stripped at the level of each secondary line over a length substantially equal to the width of said secondary line and connected to two points of attack of said secondary line for the first N-1 radiating elements, and the
  • each radiating element comprises a capacitor constituted by a thin metallic layer deposited on a second face of the substrate, opposite to said first face.
  • This arrangement makes it possible to group the ZT impedance of a radiating element around the value 50 / N.
  • two adaptation lines are arranged on either side of said radiating slot.
  • the radiating elements are spaced apart by a wavelength in the main line, the radiating elements emit, or receive, in phase.
  • the main direction of propagation is then perpendicular to the first direction defined by the alignment of the elements along the network. It is nevertheless possible, using the directional network according to the invention, to transmit, or receive, a signal in any direction in the site map.
  • a phase shift is applied to each radiating element so as to define in the plane of said first and second directions a secondary direction of propagation different from said main direction.
  • Figure 1 is a side view of a directional network with adjacent radiating elements, according to the invention.
  • FIG. 2 is a side view of a current radiating element constituting the directional network of FIG. 1.
  • FIG. 3a is a front view of the radiating element of FIG. 2.
  • Figure 3b is a front view of the last radiating element.
  • FIG. 4 is an equivalent electrical diagram of the directive network of FIG. 1.
  • Figures 5 and 6 show diagrams taken in the horizontal plane, at the central frequency of the band, corresponding respectively to the main and cross polarizations.
  • Figures 7 and 8 show diagrams taken in the vertical plane, at the central frequency of the band, corresponding respectively to the main and cross polarizations.
  • Figure 9 is a perspective view of a set of directional networks according to the invention.
  • FIG. 1 shows, in side view, a directive network 10 for radiocommunications, fixed for example to a cylindrical or square mast 100 serving as a support and possibly a reflector for the network so as to conform the directivity in the horizontal plane to the intended application.
  • the radiating elements 200 i are spaced by a wavelength ⁇ g in the main line 300, also called guided wavelength.
  • the guided wavelength ⁇ g for a cable with teflon dielectric is approximately 0.7 ⁇ or 224 mm.
  • FIGS 1, 2 and 3 show that said directional network consists of an insulating substrate 400, made of epoxy glass for example, on a first face of which are arranged, along a first direction D1, the radiating elements 200 i produced in thin metal layers, using printed circuit technology.
  • Each radiating element 200 i comprises a radiating slot 210 i which, from a short-circuited secondary line 220 i with slot of axis d 2i perpendicular to the first direction D1 and parallel to a second direction D2, called main direction of propagation, flares linearly on both sides of said axis d 2i .
  • each element 200 i has at least one line 230 i with quarter-wave slot short-circuited for decoupling.
  • the thin film technology used as well as the configuration chosen for the radiant slit 210 i and the secondary line 220 i with short-circuited slit make it possible to obtain a relatively low slit impedance Zf which makes it possible to use a semi coaxial cable.
  • -rigid classic as secondary line 300 said coaxial cable being provided with a central core 320 and an outer conductive sheath 310.
  • each radiating element 220 i comprises a capacitor 240 i constituted by a thin metallic layer disposed on a second face of the insulating substrate 400, opposite said first face, at the location of the attack points A, B of the secondary line 220 i .
  • This capacitor with a few picofarads of capacitance, has an impedance Z1, in parallel with the slit impedance Zf, as indicated by the equivalent diagram in FIG. 4.
  • stubs of adaptation 251 i and 252 i on either side of the radiating slot 210 i .
  • these two adaptation stubs have a length equal to or slightly greater than ⁇ / 4.
  • the adaptation lines 251 i and 252 i can be folded symmetrically so as to avoid the creation of a parasitic cross field.
  • the Z2 impedance produced by the adaptation stubs helps to adapt the ZT impedance seen at the input of the secondary lines.
  • a quarter-wave transformer 500 of adequate ratio, preferably low, is placed at the end of the main line 300.
  • the directional network according to the invention takes on the appearance of a metallized substrate plate of very small thickness, the height of which is of the order of N ⁇ g and the width of which is substantially greater than or equal to ⁇ g / 4.
  • the transition between the coaxial cable and the slotted secondary line 220 i is obtained, as shown in FIG. 3a, by stripping the sheath 310 of the cable at each secondary line over a length substantially equal to the width. of said secondary line and by welding, for example, said sheath in two points of attack A, B of said secondary line for the first N-1 radiating elements.
  • FIG. 3b shows that the sheath 310 and the central core 320 are respectively connected to the points of attack A and B so as to produce a short circuit at the end of the line and thus electrically close the circuit.
  • Figures 5 and 6 show the diagrams noted by the Applicant in the horizontal plane at the central frequency Fo of the band for respectively main and cross polarizations.
  • the directivity of the main diagrams is low, the attenuation to ⁇ 90 ° of the main direction of radiation being only of the order of 5 dB, which is for example very favorable to the omnidirectionality of the horizontal diagrams in a circular network association of several (2, 4 or 8) directional networks according to the invention.
  • Figures 7 and 8 show, similarly, the diagrams recorded at the central frequency Fo in the vertical plane D1, D2 containing the network, for respectively main and cross polarizations. It should be noted that the cross polarization is dilated by 10 dB compared to the corresponding main polarization. Examination of these vertical diagrams shows that the 3 dB opening of the beam is close to 17 °, which corresponds to the well known approximate formula: ⁇ 3db # 51 ⁇ L L being the total length of the directional network.
  • a deviation of the beam from the horizon is foreseeable due to the very principle of the series connection of the radiating elements.
  • Fo the depointing is zero because all the slits are in phase and the wavefront is vertical.
  • the network according to the invention is not a traveling wave but rather a standing wave and the inclination of the wavefront is less, depending in fact on the individual impedances of the slots, the couplings between the slots and others. diffraction phenomena.
  • the main direction of propagation D2 is perpendicular to the direction D1 of the network.
  • D1 the direction of propagation in the plane D1, D2 (vertical plane)
  • Figure 9 shows a set of P directional networks 10 j with j varying from 1 to P arranged in a parallel and equidistant from each other.
  • a phase shift is applied to each main line 300 j .
  • An azimuth scan is obtained by electronically varying this phase shift.
  • the isotropic gain of a directional array according to the invention was measured by comparison with a standard antenna.
  • the gain value is very close to 10 dBi. This is explained simply by the fact that four aligned radiating elements, each having approximately 2 dBi of gain, and forming a linear network arranged at a quarter wave distance in front of a reflective mast providing an additional gain close to 3dBi, provide a gain 11 dBi. If one takes into account the technological losses and losses by reflection at the entrance of the network and, on the other hand, that the reflective mast is not infinite, one justifies the measured value.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

Directional network (10) for radio communications, consisting of a plurality of N adjacent radiating elements (200i) connected in series by a main line (300) and spaced one wavelength (g) apart in the said main line, characterised in that the said directional network consists of an insulating substrate (400) on one face of which are arranged adjacent radiating elements (200i) produced as thin layers, each radiating element comprising a radiating slot (210i) which, from a secondary short-circuited slot line (220i) flares linearly, in that each radiating element (200i) is insulated from an adjacent element by a short-circuited quarter-wave slot line (230i) for decoupling, and in that the said main line (300) is a coaxial cable substantially perpendicular to each secondary slot line (220i) and provided with a central core (320) and with an external conducting sheath (310), the sheath of the said coaxial cable being stripped in the region of each secondary line over a length substantially equal to the width of the said secondary line and connected to two feed points (A, B) of the said secondary line (220i). <??>Application to radio communications antennas. <IMAGE>

Description

La présente invention concerne un réseau directif pour radiocommunications, constitué par une pluralité de N éléments rayonnants adjacents, reliés en série par une ligne principale et espacés d'une longueur d'onde dans ladite ligne principale. Elle concerne également un ensemble de tels réseaux directifs.The present invention relates to a directional network for radiocommunications, consisting of a plurality of N adjacent radiating elements, connected in series by a main line and spaced apart by a wavelength in said main line. It also relates to a set of such directive networks.

L'invention trouve une application particulièrement avantageuse dans le domaine des antennes de radiocommunications dans la bande UHF et jusque dans la bande X, lorsqu'une forte directivité dans le plan du réseau et une faible directivité dans le plan perpendiculaire sont recherchées. A titre d'exemple, si le réseau est placé verticalement, le plan de forte directivité sera le plan de site, et le plan perpendiculaire de faible directivité le plan d'azimut.The invention finds a particularly advantageous application in the field of radiocommunication antennas in the UHF band and even in the X band, when high directivity in the network plane and low directivity in the perpendicular plane are sought. For example, if the network is placed vertically, the plane of strong directivity will be the site plan, and the perpendicular plane of weak directivity will be the azimuth plane.

On connaît de l'état de la technique un réseau directif pour radiocommunications conforme au préambule, dans lequel les éléments rayonnants adjacents sont quatre dipôles demi-onde colinéaires alimentés en série par une ligne principale d'impédance Zc. Si ZT est l'impédance vue à l'entrée des lignes secondaires reliant la ligne principale aux dipôles, la condition d'adaptation d'impédances à l'entrée du réseau est : Zc = 4ZT

Figure imgb0001
ce qui donne Zc = 200 Ω avec ZT = 50 Ω , valeur caractéristique pour une ligne coaxiale. La ligne principale ne peut être dans ce cas que bifilaire, en raison de l'alimentation en série. Or ces lignes présentent davantage de pertes de puissance et surtout rayonnent un champ parasite important. C'est l'un des inconvénients de ce réseau directif connu, un autre étant lié à la difficulté de réaliser la jonction ou transition entre la ligne principale bifilaire haute impédance et les lignes secondaires coaxiales de faible impédance.A directive network for radiocommunications is known from the state of the art in accordance with the preamble, in which the adjacent radiating elements are four collinear half-wave dipoles supplied in series by a main line of impedance Zc. If ZT is the impedance seen at the input of the secondary lines connecting the main line to the dipoles, the condition for adapting impedances at the input of the network is: Zc = 4ZT
Figure imgb0001
which gives Zc = 200 Ω with ZT = 50 Ω, characteristic value for a coaxial line. In this case, the main line can only be two-wire, because of the series supply. However, these lines have more power losses and above all radiate a large parasitic field. This is one of the drawbacks of this known directional network, another being linked to the difficulty of making the junction or transition between the high impedance two-wire main line and the low impedance coaxial secondary lines.

Pour remédier à ces inconvénients, on peut alimenter directement les dipôles deux à deux par des diviseurs par deux, ou un à un par un seul diviseur par quatre. Cette solution classique présente l'avantage de la simplicité sur le plan de la conception et peut donner des performances radioélectriques satisfaisantes. Toutefois, elle présente un coût élevé de fabrication (dipôles adaptés et symétrisés avec interface de fixation sur un mât réflecteur par exemple) et d'approvisionnement en composants (nombreux câbles et connecteurs, diviseurs de puissance).To overcome these drawbacks, the dipoles can be supplied directly two by two by dividers by two, or one by one by a single divider by four. This conventional solution has the advantage of simplicity in terms of design and can give satisfactory radio performance. However, it has a high manufacturing cost (suitable and symmetrical dipoles with interface for attachment to a reflective mast for example) and supply of components (numerous cables and connectors, power dividers).

Aussi, le problème technique à résoudre par l'objet de la présente invention est de proposer un réseau directif pour radiocommunications conforme au préambule qui permettrait d'obtenir, de manière simple et peu coûteuse, de bonnes caractéristiques radioélectriques, exemptes notamment de pertes de puissance et de rayonnement parasite.Also, the technical problem to be solved by the object of the present invention is to propose a directive network for radiocommunications conforming to the preamble which would make it possible to obtain, in a simple and inexpensive manner, good radioelectric characteristics, free in particular of power losses. and stray radiation.

La solution au problème technique posé consiste, selon la présente invention en ce que ledit réseau directif est constitué par un substrat isolant sur une première face duquel sont disposés, le long d'une première direction, des éléments rayonnants adjacents réalisés en couches métalliques minces, chaque élément rayonnant comprenant une fente rayonnante qui, à partir d'une ligne secondaire court-circuitée à fente d'axe perpendiculaire à ladite première direction et parallèle à une deuxième direction, dite direction principale de propagation, s'évase linéairement de part et d'autre dudit axe, en ce que chaque élément rayonnant est isolé d'un élément adjacent par une ligne à fente quart d'onde court-circuitée de découplage, et en ce que ladite ligne principale est un câble coaxial sensiblement perpendiculaire à chaque ligne secondaire à fente et muni d'une âme centrale et d'une gaine conductrice extérieure, la gaine dudit câble coaxial étant dénudée an niveau de chaque ligne secondaire sur une longueur sensiblement égale à la largeur de ladite ligne secondaire et connectée à deux points d'attaque de ladite ligne secondaire pour les N-1 premiers éléments rayonnants, et la gaine et l'âme centrale du câble coaxial étant respectivement connectées à l'un et l'autre desdits points d'attaque pour le Nième et dernier élément rayonnant.The solution to the technical problem posed consists, according to the present invention, in that said directional network consists of an insulating substrate on a first face of which are disposed, along a first direction, adjacent radiating elements produced in thin metallic layers, each radiating element comprising a radiating slit which, from a short-circuited secondary line with slit of axis perpendicular to said first direction and parallel to a second direction, called main direction of propagation, widens linearly on both sides other of said axis, in that each radiating element is isolated from an adjacent element by a line with a quarter-wave slit short-circuited for decoupling, and in that said main line is a coaxial cable substantially perpendicular to each secondary line slot and provided with a central core and an external conductive sheath, the sheath of said coaxial cable being stripped at the level of each secondary line over a length substantially equal to the width of said secondary line and connected to two points of attack of said secondary line for the first N-1 radiating elements, and the sheath and the central core of the cable coaxial being respectively connected to one and the other of said points of attack for the Nth and last radiating element.

Ainsi, par un dimensionnement approprié de la fente rayonnante et de la ligne secondaire, il est possible de ramener l'impédance ZT de chaque élément rayonnant à une valeur proche de 50/N Ω, où N est le nombre total d'éléments rayonnants, ce qui permet d'utiliser comme ligne principale un câble coaxial d'impédance caractéristique de 50 Ω avec l'avantage d'une faible dissipation d'énergie et d'un champ parasite pratiquement nul.Thus, by an appropriate dimensioning of the radiating slit and of the secondary line, it is possible to reduce the impedance ZT of each radiating element to a value close to 50 / N Ω, where N is the total number of radiating elements, which allows the use of a coaxial cable with a characteristic impedance of 50 Ω as the main line, with the advantage of low energy dissipation and virtually no interference field.

Si, à cause de contraintes d'encombrement par exemple, l'adaptation d'impédances ne peut être parfaitement réalisée, l'invention prévoit, afin d'achever l'adaptation, que ledit câble coaxial est terminé par un transformateur quart d'onde. De manière à réduire le rapport dudit transformateur, il y a avantage, conformément à l'invention, à ce que chaque élément rayonnant comporte un condensateur constitué par une couche métallique mince déposée sur une deuxième face du substrat, opposée à ladite première face. Cette disposition permet en effet de regrouper l'impédance ZT d'un élément rayonnant autour de la valeur 50/N. Un résultat analogue peut être obtenu lorsque, selon l'invention, deux lignes d'adaptation sont disposées de part et d'autre de ladite fente rayonnante.If, for example due to space constraints, the adaptation of impedances cannot be perfectly carried out, the invention provides, in order to complete the adaptation, that said coaxial cable is terminated by a quarter wave transformer. In order to reduce the ratio of said transformer, it is advantageous, in accordance with the invention, for each radiating element to comprise a capacitor constituted by a thin metallic layer deposited on a second face of the substrate, opposite to said first face. This arrangement makes it possible to group the ZT impedance of a radiating element around the value 50 / N. A similar result can be obtained when, according to the invention, two adaptation lines are arranged on either side of said radiating slot.

Du fait que les éléments rayonnants sont espacés d'une longueur d'onde dans la ligne principale, les éléments rayonnants émettent, ou reçoivent, en phase. La direction principale de propagation est alors perpendiculaire à la première direction définie par l'alignement des éléments le long du réseau. Il est néanmoins possible, à l'aide du réseau directif selon l'invention, d'émettre, ou de recevoir, un signal dans une direction quelconque dans le plan de site. Dans ce but, un déphasage est appliqué à chaque élément rayonnant de façon à définir dans le plan desdites première et deuxième directions une direction secondaire de propagation différente de ladite direction principale.Because the radiating elements are spaced apart by a wavelength in the main line, the radiating elements emit, or receive, in phase. The main direction of propagation is then perpendicular to the first direction defined by the alignment of the elements along the network. It is nevertheless possible, using the directional network according to the invention, to transmit, or receive, a signal in any direction in the site map. For this purpose, a phase shift is applied to each radiating element so as to define in the plane of said first and second directions a secondary direction of propagation different from said main direction.

Enfin, dans le but, par exemple, d'obtenir un balayage azimutal dans le plan horizontal, on prévoit de réaliser un ensemble de réseaux directifs selon l'invention, caractérisé en ce que lesdits réseaux directifs sont disposés de manière parallèle et équidistante les uns des autres, et en ce qu'un déphasage est appliqué à chaque ligne principale de façon à définir une direction de propagation dans le plan perpendiculaire audit ensemble.Finally, with the aim, for example, of obtaining an azimuth scan in the horizontal plane, provision is made for producing a set of directional networks according to the invention, characterized in that said directive networks are arranged in parallel and equidistant from each other. of the others, and in that a phase shift is applied to each main line so as to define a direction of propagation in the plane perpendicular to said assembly.

La description qui va suivre, en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.The description which follows, with reference to the appended drawings, given by way of nonlimiting examples, will make it clear what the invention consists of and how it can be implemented.

La figure 1 est une vue de côté d'un réseau directif à éléments rayonnants adjacents, selon l'invention.Figure 1 is a side view of a directional network with adjacent radiating elements, according to the invention.

La figure 2 est une vue de côté d'un élément rayonnant courant constituant le réseau directif de la figure 1.FIG. 2 is a side view of a current radiating element constituting the directional network of FIG. 1.

La figure 3a est une vue de face de l'élément rayonnant de la figure 2.FIG. 3a is a front view of the radiating element of FIG. 2.

La figure 3b est une vue de face du dernier élément rayonnant.Figure 3b is a front view of the last radiating element.

La figure 4 est un schéma électrique équivalent du réseau directif de la figure 1.FIG. 4 is an equivalent electrical diagram of the directive network of FIG. 1.

Les figures 5 et 6 montrent des diagrammes relevés dans le plan horizontal, à la fréquence centrale de la bande, correspondant respectivement aux polarisations principale et croisée.Figures 5 and 6 show diagrams taken in the horizontal plane, at the central frequency of the band, corresponding respectively to the main and cross polarizations.

Les figures 7 et 8 montrent des diagrammes relevés dans le plan vertical, à la fréquence centrale de la bande, correspondant respectivement aux polarisations principale et croisée.Figures 7 and 8 show diagrams taken in the vertical plane, at the central frequency of the band, corresponding respectively to the main and cross polarizations.

La figure 9 est une vue en perspective d'un ensemble de réseaux directifs selon l'invention.Figure 9 is a perspective view of a set of directional networks according to the invention.

La figure 1 montre, en vue de côté, un réseau directif 10 pour radiocommunications, fixé par exemple à un mât 100 cylindrique ou carré servant de support et éventuellement de réflecteur pour le réseau de façon à conformer la directivité dans le plan horizontal à l'application envisagée. Ce réseau comprend une pluralité de N = 4 éléments rayonnants 200i (i = 1, ..., N) reliés en série par une ligne principale 300 qui est soit une ligne d'alimentation lorsque le réseau fonctionne en émission, soit une ligne de collection lorsque le réseau fonctionne en réception. Comme l'indique la figure 1, les éléments rayonnants 200i sont espacés d'une longueur d'onde λ g dans la ligne principale 300, appelée aussi longueur d'onde guidée. A titre d'exemple, avec une fréquence centrale Fo de 925 MHz et une longueur d'onde dans le vide λ de 320 mm, la longueur d'onde guidée λg pour un câble à diélectrique téflon vaut environ 0,7λsoit 224 mm.FIG. 1 shows, in side view, a directive network 10 for radiocommunications, fixed for example to a cylindrical or square mast 100 serving as a support and possibly a reflector for the network so as to conform the directivity in the horizontal plane to the intended application. This network includes a plurality of N = 4 radiating elements 200 i (i = 1, ..., N) connected in series by a main line 300 which is either a supply line when the network is operating in transmission, or a line of collection when the network operates in reception. As shown in Figure 1, the radiating elements 200 i are spaced by a wavelength λ g in the main line 300, also called guided wavelength. For example, with a central frequency Fo of 925 MHz and a wavelength in a vacuum λ of 320 mm, the guided wavelength λg for a cable with teflon dielectric is approximately 0.7λ or 224 mm.

Les figures 1, 2 et 3 montrent que ledit réseau directif est constitué par un substrat isolant 400, en verre époxy par exemple, sur une première face duquel sont disposés, le long d'une première direction D₁, les éléments rayonnants 200i réalisés en couches métalliques minces, selon la technologie des circuits imprimés. Chaque élément rayonnant 200i comprend une fente rayonnante 210i qui, à partir d'une ligne secondaire court-circuitée 220i à fente d'axe d2i perpendiculaire à la première direction D₁ et parallèle à une deuxième direction D₂, dite direction principale de propagation, s'évase linéairement de part et d'autre dudit axe d2i. De façon à isoler les éléments rayonnants les uns des autres, chaque élément 200i présente au moins une ligne 230i à fente quart d'onde court-circuitée de découplage.Figures 1, 2 and 3 show that said directional network consists of an insulating substrate 400, made of epoxy glass for example, on a first face of which are arranged, along a first direction D₁, the radiating elements 200 i produced in thin metal layers, using printed circuit technology. Each radiating element 200 i comprises a radiating slot 210 i which, from a short-circuited secondary line 220 i with slot of axis d 2i perpendicular to the first direction D₁ and parallel to a second direction D₂, called main direction of propagation, flares linearly on both sides of said axis d 2i . In order to isolate the radiating elements from each other, each element 200 i has at least one line 230 i with quarter-wave slot short-circuited for decoupling.

La technologie couches minces employée ainsi que la configuration choisie pour la fente rayonnante 210i et la ligne secondaire 220i à fente court-circuitée permettent d'obtenir une impédance de fente Zf relativement faible qui rend possible l'utilisation d'un câble coaxial semi-rigide classique comme ligne secondaire 300, ledit câble coaxial étant muni d'une âme centrale 320 et d'une gaine extérieure conductrice 310. Cette ligne présente alors une impédance caractéristique Zc de 50 Ω. C'est pourquoi, pour réaliser une adaptation parfaite, l'impédance de fente Zf doit être égale à 50/N = 12,5 Ω dans le cas de N = 4 éléments rayonnants. S'il n'est pas possible d'atteindre cette valeur idéale, plusieurs moyens peuvent être mis en oeuvre pour obtenir néanmoins une bonne adaptation d'impédances, notamment en faisant varier la distance entre le câble coaxial et le court-circuit de la ligne secondaire 220i, l'impédance diminuant quand le câble s'approche dudit court-circuit. On prévoit également que chaque élément rayonnant 220i comporte un condensateur 240i constitué par une couche métallique mince disposée sur une deuxième face du substrat isolant 400, opposée à ladite première face, à l'endroit des points d'attaque A, B de la ligne secondaire 220i. Ce condensateur, de quelques picofarads de capacité, présente une impédance Z1, en parallèle sur l'impédance de fente Zf, comme l'indique le schéma équivalent de la figure 4. On peut également graver deux lignes, ou stubs, d'adaptation 251i et 252i de part et d'autre de la fente rayonnante 210i. De préférence, ces deux stubs d'adaptation ont une longueur égale ou légèrement supérieure à λ/4. Cependant, si la largeur du substrat dans la direction d2i n'est pas suffisante, les lignes d'adaptation 251i et 252i pourront être repliées symétriquement de façon à éviter la création d'un champ croisé parasite. L'impédance Z2 produite par les stubs d'adaptation contribue à adapter l'impédance ZT vue à l'entrée des lignes secondaires. Enfin, pour achever définitivement l'adaptation de l'impédance du réseau, un transformateur 500 quart d'onde de rapport adéquat, faible de préférence, est placé en bout de la ligne principale 300.The thin film technology used as well as the configuration chosen for the radiant slit 210 i and the secondary line 220 i with short-circuited slit make it possible to obtain a relatively low slit impedance Zf which makes it possible to use a semi coaxial cable. -rigid classic as secondary line 300, said coaxial cable being provided with a central core 320 and an outer conductive sheath 310. This line then has a characteristic impedance Zc of 50 Ω. This is why, to achieve a perfect adaptation, the slit impedance Zf must be equal to 50 / N = 12.5 Ω in the case of N = 4 radiating elements. If it is not possible to reach this ideal value, several means can be used to nevertheless obtain a good adaptation of impedances, in particular by varying the distance between the coaxial cable and the short-circuit of the line. secondary 220 i , the impedance decreasing when the cable approaches said short-circuit. Provision is also made for each radiating element 220 i to comprise a capacitor 240 i constituted by a thin metallic layer disposed on a second face of the insulating substrate 400, opposite said first face, at the location of the attack points A, B of the secondary line 220 i . This capacitor, with a few picofarads of capacitance, has an impedance Z1, in parallel with the slit impedance Zf, as indicated by the equivalent diagram in FIG. 4. We can also burn two lines, or stubs, of adaptation 251 i and 252 i on either side of the radiating slot 210 i . Preferably, these two adaptation stubs have a length equal to or slightly greater than λ / 4. However, if the width of the substrate in the direction d 2i is not sufficient, the adaptation lines 251 i and 252 i can be folded symmetrically so as to avoid the creation of a parasitic cross field. The Z2 impedance produced by the adaptation stubs helps to adapt the ZT impedance seen at the input of the secondary lines. Finally, to definitively complete the adaptation of the network impedance, a quarter-wave transformer 500 of adequate ratio, preferably low, is placed at the end of the main line 300.

Ainsi, le réseau directif selon l'invention revêt l'aspect d'une plaque de substrat métallisé de très faible épaisseur, dont la hauteur est de l'ordre de N λ g et dont la largeur est sensiblement supérieure ou égale à λ g/4.Thus, the directional network according to the invention takes on the appearance of a metallized substrate plate of very small thickness, the height of which is of the order of N λ g and the width of which is substantially greater than or equal to λ g / 4.

La Demanderesse a réalisé un réseau directif dont l'impédance ZT de ligne secondaire était égale à 18 Ω. Pour ramener l'impédance à l'entrée du câble 300 à 50Ω, il a fallu donner au transformateur 500 une impédance Z′c de Z′c = 50 x 4 x 18 = 60 Ω.

Figure imgb0002
The Applicant has produced a directional network whose secondary line ZT impedance was 18 Ω. To reduce the impedance at the input of cable 300 to 50Ω, it was necessary to give transformer 500 an impedance Z′c of Z′c = 50 x 4 x 18 = 60 Ω.
Figure imgb0002

De façon pratique, la transition entre le câble coaxial et la ligne secondaire 220i à fente est obtenue, comme l'indique la figure 3a, en dénudant la gaine 310 du câble au niveau de chaque ligne secondaire sur une longueur sensiblement égale à la largeur de ladite ligne secondaire et en connectant par soudure, par exemple, ladite gaine en deux points d'attaque A, B de ladite ligne secondaire pour les N-1 premiers éléments rayonnants. Pour le Nième et dernier élément rayonnant, la figure 3b montre que la gaine 310 et l'âme centrale 320 sont respectivement connectées aux points d'attaque A et B de façon à réaliser un court-circuit en bout de ligne et fermer ainsi électriquement le circuit.In practice, the transition between the coaxial cable and the slotted secondary line 220 i is obtained, as shown in FIG. 3a, by stripping the sheath 310 of the cable at each secondary line over a length substantially equal to the width. of said secondary line and by welding, for example, said sheath in two points of attack A, B of said secondary line for the first N-1 radiating elements. For the Nth and last radiating element, FIG. 3b shows that the sheath 310 and the central core 320 are respectively connected to the points of attack A and B so as to produce a short circuit at the end of the line and thus electrically close the circuit.

Les figures 5 et 6 montrent les diagrammes relevés par la Demanderesse dans le plan horizontal à la fréquence centrale Fo de la bande pour des polarisations respectivement principale et croisée. On observera un faible niveau de polarisation croisée, puisqu'il est de plus de 22 dB inférieur à la polarisation principale. D'autre part, la directivité des diagrammes principaux est faible, l'atténuation à ± 90° de la direction principale de rayonnement n'étant que de l'ordre de 5 dB, ce qui est par exemple très favorable à l'omnidirectionalité des diagrammes horizontaux dans une association en réseau circulaire de plusieurs (2, 4 ou 8) réseaux directifs conformes à l'invention.Figures 5 and 6 show the diagrams noted by the Applicant in the horizontal plane at the central frequency Fo of the band for respectively main and cross polarizations. We will observe a low level of cross polarization, since it is more than 22 dB lower than the main polarization. On the other hand, the directivity of the main diagrams is low, the attenuation to ± 90 ° of the main direction of radiation being only of the order of 5 dB, which is for example very favorable to the omnidirectionality of the horizontal diagrams in a circular network association of several (2, 4 or 8) directional networks according to the invention.

Les figures 7 et 8 montrent, de même, les diagrammes relevés à la fréquence centrale Fo dans le plan vertical D₁, D₂ contenant le réseau, pour des polarisations respectivement principale et croisée. Il faut noter que la polarisation croisée est dilatée de 10 dB par rapport à la polarisation principale correspondante. L'examen de ces diagrammes verticaux montre que l'ouverture à 3 dB du faisceau est voisine de 17°, ce qui correspond à la formule approchée bien connue : ϑ 3db # 51 λ L

Figure imgb0003
L étant la longueur totale du réseau directif.Figures 7 and 8 show, similarly, the diagrams recorded at the central frequency Fo in the vertical plane D₁, D₂ containing the network, for respectively main and cross polarizations. It should be noted that the cross polarization is dilated by 10 dB compared to the corresponding main polarization. Examination of these vertical diagrams shows that the 3 dB opening of the beam is close to 17 °, which corresponds to the well known approximate formula: ϑ 3db # 51 λ L
Figure imgb0003
L being the total length of the directional network.

Un dépointage du faisceau par rapport à l'horizon est prévisible du fait du principe même de la connexion en série des éléments rayonnants. A la fréquence centrale Fo le dépointage est nul car toutes les fentes sont en phase et le front d'onde est vertical. A la fréquence Fo+ΔF et pour un réseau linéaire à ondes progressives, l'inclinaison du front d'onde serait α = Arcsin λ d Δ F Fo

Figure imgb0004
où d = λ g est la distance entre deux fentes successives du réseau. Cette formule donnerait un dépointage de l'ordre de ± 3° dans une bande de 8 %. Cependant, le réseau selon l'invention n'est pas à ondes progressives mais plutôt à ondes stationnaires et l'inclinaison du front d'onde est moindre, dépendant en fait des impédances individuelles des fentes, des couplages entre les fentes et d'autres phénomènes de diffraction.A deviation of the beam from the horizon is foreseeable due to the very principle of the series connection of the radiating elements. At the central frequency Fo the depointing is zero because all the slits are in phase and the wavefront is vertical. At the frequency Fo + ΔF and for a linear traveling wave network, the inclination of the wavefront would be α = Arcsin λ d Δ F Fo
Figure imgb0004
where d = λ g is the distance between two successive slots in the network. This formula would give a deviation of the order of ± 3 ° in an 8% band. However, the network according to the invention is not a traveling wave but rather a standing wave and the inclination of the wavefront is less, depending in fact on the individual impedances of the slots, the couplings between the slots and others. diffraction phenomena.

Les lobes latéraux, dits secondaires, ont un niveau inférieur de plus de 15 dB en dessous du maximum du lobe principal, et, dans une bande de 8 %, le niveau des lobes secondaires reste encore de plus de 12 dB inférieur audit maximum. En théorie simplifiée, ce niveau serait de 11,5 dB puisque le facteur de réseau normalisé est ici de : F4 (ϑ) = 1 4 sin [4 πd λ cos ϑ] sin [ πd λ cos ϑ]

Figure imgb0005
où ϑ est l'angle polaire compté à partir du zénith. La pondération introduite par le diagramme individuel d'une fente, et la non-uniformité stricte de l'excitation des fentes expliquent les bas niveaux des lobes secondaires, ce qui est évidemment très favorable à une bonne concentration de l'énergie rayonnée dans le faisceau.The side lobes, called secondary, have a level more than 15 dB below the maximum of the main lobe, and, in an 8% band, the level of the side lobes is still more than 12 dB below said maximum. In simplified theory, this level would be 11.5 dB since the normalized network factor here is: F4 (ϑ) = 1 4 sin [4 πd λ cos ϑ] sin [ πd λ cos ϑ]
Figure imgb0005
where ϑ is the polar angle counted from the zenith. The weighting introduced by the individual slit diagram, and the strict non-uniformity of the excitation of the slits explain the low levels of the secondary lobes, which is obviously very favorable for a good concentration of the radiated energy in the beam. .

Enfin, le niveau de polarisation croisée dans le plan vertical est extrêmement faible, ceci grâce à la conception spécifique du réseau conforme à l'invention.Finally, the level of cross polarization in the vertical plane is extremely low, thanks to the specific design of the network according to the invention.

Avec des éléments rayonnants en phase, la direction principale de propagation D₂ est perpendiculaire à la direction D₁ du réseau. Pour obtenir, une direction de propagation quelconque dans le plan D₁, D₂ (plan vertical), il faut appliquer un déphasage à chaque élément rayonnant successif, ce qui offre la possibilité du balayage électronique du faisceau.With radiating elements in phase, the main direction of propagation D₂ is perpendicular to the direction D₁ of the network. To obtain any direction of propagation in the plane D₁, D₂ (vertical plane), it is necessary to apply a phase shift to each successive radiating element, which offers the possibility of electronic scanning of the beam.

La figure 9 montre un ensemble de P réseaux directifs 10j avec j variant de 1 à P disposés de manière parallèle et équidistante les uns des autres. Afin de définir dans un plan horizontal P, perpendiculaire audit ensemble, une direction de propagation azimutale, un déphasage est appliqué à chaque ligne principale 300j. Un balayage azimutal est obtenu en faisant varier électroniquement ce déphasage.Figure 9 shows a set of P directional networks 10 j with j varying from 1 to P arranged in a parallel and equidistant from each other. In order to define in an horizontal plane P, perpendicular to said set, an azimuthal propagation direction, a phase shift is applied to each main line 300 j . An azimuth scan is obtained by electronically varying this phase shift.

Le gain isotropique d'un réseau directif selon l'invention a été mesuré par comparaison à une antenne étalon. La valeur du gain est très voisine de 10 dBi. Ceci s'explique simplement par le fait que quatre éléments rayonnants alignés, ayant chacun 2 dBi de gain environ, et formant un réseau linéaire disposé à une distance quart d'onde devant un mât réflecteur apportant un gain supplémentaire voisin de 3dBi, procurent un gain de 11 dBi. Si l'on tient compte des pertes technologiques et des pertes par réflexion à l'entrée du réseau et, d'autre part, de ce que le mât réflecteur n'est pas infini, on justifie de la valeur mesurée.The isotropic gain of a directional array according to the invention was measured by comparison with a standard antenna. The gain value is very close to 10 dBi. This is explained simply by the fact that four aligned radiating elements, each having approximately 2 dBi of gain, and forming a linear network arranged at a quarter wave distance in front of a reflective mast providing an additional gain close to 3dBi, provide a gain 11 dBi. If one takes into account the technological losses and losses by reflection at the entrance of the network and, on the other hand, that the reflective mast is not infinite, one justifies the measured value.

Claims (6)

Réseau directif (10) pour radiocommunications, constitué par une pluralité de N éléments rayonnants adjacents (200i), reliés en série par une ligne principale (300) et espacés d'une longueur d'onde (λ g) dans ladite ligne principale, caractérisé en ce que ledit réseau directif est constitué par un substrat isolant (400) sur une première face duquel sont disposés, le long d'une première direction (D₁), des éléments rayonnants adjacents (200i) réalisés en couches métalliques minces, chaque élément rayonnant comprenant une fente rayonnante (210i) qui, à partir d'une ligne secondaire (220i) court-circuitée à fente d'axe (d2i) perpendiculaire à ladite première direction (D₁) et parallèle à une deuxième direction (D₂), dite direction principale de propagation, s'évase linéairement de part et d'autre dudit axe (d2i), en ce que chaque élément rayonnant (200) est isolé d'un élément adjacent par une ligne à fente quart d'onde (230i) court-circuitée de découplage, et en ce que ladite ligne principale (100) est un câble coaxial sensiblement perpendiculaire à chaque ligne secondaire (220i) à fente et muni d'une âme centrale (320) et d'une gaine conductrice extérieure (310), la gaine dudit câble coaxial étant dénudée au niveau de chaque ligne secondaire sur une longueur sensiblement égale à la largeur de ladite ligne secondaire et connectée à deux points d'attaque (A, B) de ladite ligne secondaire (220i) pour les N-1 premiers éléments rayonnants, et la gaine (310) et l'âme centrale (320) du câble coaxial étant respectivement connectées à l'un et l'autre desdits points d'attaque pour le Nième et dernier élément rayonnant.Directive network (10) for radiocommunications, consisting of a plurality of N adjacent radiating elements (200 i ), connected in series by a main line (300) and spaced apart by a wavelength (λ g) in said main line, characterized in that said directional network consists of an insulating substrate (400) on a first face of which are disposed, along a first direction (D₁), adjacent radiating elements (200 i ) made of thin metallic layers, each radiating element comprising a radiating slot (210 i ) which, from a short line (220 i ) short-circuited with an axis slot (d 2i ) perpendicular to said first direction (D₁) and parallel to a second direction ( D₂), said main direction of propagation, flares linearly on either side of said axis (d 2i ), in that each radiating element (200) is isolated from an adjacent element by a line with a quarter slit wave (230 i ) courtyard t-decoupling circuit, and in that said main line (100) is a coaxial cable substantially perpendicular to each secondary line (220 i ) with a slot and provided with a central core (320) and an external conductive sheath ( 310), the sheath of said coaxial cable being stripped at each secondary line over a length substantially equal to the width of said secondary line and connected to two points of attack (A, B) of said secondary line (220 i ) for the first N-1 radiating elements, and the sheath (310) and the central core (320) of the coaxial cable being respectively connected to one and the other of said points of attack for the Nth and last radiating element. Réseau directif pour radiocommunications selon la revendication 1, caractérisé en ce que ledit câble coaxial (300) est terminé par un transformateur quart d'onde (500), à l'endroit des points d'attaque (A, B) de la ligne secondaire (220i).Directive network for radiocommunications according to Claim 1, characterized in that the said coaxial cable (300) is terminated by a quarter-wave transformer (500), at the location of the attack points (A, B) of the secondary line (220 i ). Réseau directif pour radiocommunications selon l'une des revendications 1 ou 2, caractérisé en ce que chaque élément rayonnant (200i) comporte un condensateur (240i) constitué par une couche métallique mince déposée sur une deuxième face du substrat, opposée à ladite première face.Directive network for radiocommunications according to one of claims 1 or 2, characterized in that each radiating element (200 i ) comprises a capacitor (240 i ) constituted by a thin metallic layer deposited on a second face of the substrate, opposite said first face. Réseau directif pour radiocommunications selon l'une quelconque des revendications 1 à 3, caractérisé en ce que deux lignes d'adaptation (251i, 252i) sont disposées de part et d'autre de ladite fente rayonnante (210i).Directive network for radiocommunications according to one any one of claims 1 to 3, characterized in that two adaptation lines (251 i , 252 i ) are arranged on either side of said radiating slot (210 i ). Réseau directif pour radiocommunications selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'un déphasage est appliqué à chaque élément rayonnant (200i) de façon à définir dans le plan desdites première (D₁) et deuxième (D₂) directions, une direction secondaire de propagation différente de ladite direction principale (D₂).Directive network for radiocommunications according to any one of Claims 1 to 4, characterized in that a phase shift is applied to each radiating element (200 i ) so as to define in the plane of said first (D₁) and second (D₂) directions , a secondary direction of propagation different from said main direction (D₂). Ensemble de P réseaux directifs selon l'une quelconque des revendications 1 à 5, caractérisé en ce que lesdits réseaux directifs (10j) sont disposés de manière parallèle et équidistante les uns des autres, et en ce qu'un déphasage est appliqué à chaque ligne principale (300j) de manière à définir une direction de propagation dans un plan perpendiculaire (P) audit ensemble.Set of P directional networks according to any one of Claims 1 to 5, characterized in that said directive networks (10 d ) are arranged in parallel and equidistant from each other, and in that a phase shift is applied to each main line (300 j ) so as to define a direction of propagation in a plane perpendicular (P) to said assembly.
EP91402498A 1990-09-21 1991-09-19 Directional network with adjacent radiator elements for radio communication system and unit with such a directional network Expired - Lifetime EP0477102B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9011672 1990-09-21
FR9011672A FR2667198B1 (en) 1990-09-21 1990-09-21 DIRECTIVE NETWORK FOR RADIOCOMMUNICATIONS, WITH ADJACENT RADIANT ELEMENTS AND SET OF SUCH DIRECTIVE NETWORKS.

Publications (2)

Publication Number Publication Date
EP0477102A1 true EP0477102A1 (en) 1992-03-25
EP0477102B1 EP0477102B1 (en) 1995-03-15

Family

ID=9400522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91402498A Expired - Lifetime EP0477102B1 (en) 1990-09-21 1991-09-19 Directional network with adjacent radiator elements for radio communication system and unit with such a directional network

Country Status (4)

Country Link
US (1) US5202698A (en)
EP (1) EP0477102B1 (en)
DE (1) DE69108155T2 (en)
FR (1) FR2667198B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU738482B2 (en) * 1997-07-29 2001-09-20 Alcatel An arrangement for the transmission, radiation and reception of radio frequency signals

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309165A (en) * 1992-05-09 1994-05-03 Westinghouse Electric Corp. Positioner with corner contacts for cross notch array and improved radiator elements
US7683847B2 (en) * 2005-11-23 2010-03-23 Selex Sensors And Airborne Systems Limited Antennas
US7719385B2 (en) * 2006-09-28 2010-05-18 Sunwoo Communication Co., Ltd Method and divider for dividing power for array antenna and antenna device using the divider
US9155531B2 (en) 2013-03-15 2015-10-13 Smith & Nephew, Inc. Miniaturized dual drive open architecture suture anchor
TWM568509U (en) * 2018-07-12 2018-10-11 明泰科技股份有限公司 Antenna module with low profile and high dual band insulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1565266A1 (en) * 1965-06-18 1970-02-05 Fried. Krupp Gmbh, 4300 Essen Transverse reflector
US4353072A (en) * 1980-11-24 1982-10-05 Raytheon Company Circularly polarized radio frequency antenna
EP0257881A2 (en) * 1986-08-29 1988-03-02 Decca Limited Slotted waveguide antenna and array
EP0349069A1 (en) * 1988-06-29 1990-01-03 Philips Electronics Uk Limited Dual polarised phased array antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2490026A1 (en) * 1980-09-09 1982-03-12 Thomson Csf NON-DISPERSIVE NETWORK ANTENNA AND ITS APPLICATION TO THE PRODUCTION OF AN ELECTRONIC SCANNING ANTENNA
US4843403A (en) * 1987-07-29 1989-06-27 Ball Corporation Broadband notch antenna
US5023623A (en) * 1989-12-21 1991-06-11 Hughes Aircraft Company Dual mode antenna apparatus having slotted waveguide and broadband arrays

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1565266A1 (en) * 1965-06-18 1970-02-05 Fried. Krupp Gmbh, 4300 Essen Transverse reflector
US4353072A (en) * 1980-11-24 1982-10-05 Raytheon Company Circularly polarized radio frequency antenna
EP0257881A2 (en) * 1986-08-29 1988-03-02 Decca Limited Slotted waveguide antenna and array
EP0349069A1 (en) * 1988-06-29 1990-01-03 Philips Electronics Uk Limited Dual polarised phased array antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU738482B2 (en) * 1997-07-29 2001-09-20 Alcatel An arrangement for the transmission, radiation and reception of radio frequency signals

Also Published As

Publication number Publication date
FR2667198B1 (en) 1993-08-13
US5202698A (en) 1993-04-13
DE69108155D1 (en) 1995-04-20
DE69108155T2 (en) 1995-09-21
EP0477102B1 (en) 1995-03-15
FR2667198A1 (en) 1992-03-27

Similar Documents

Publication Publication Date Title
EP0205212B1 (en) Modular microwave antenna units and antenna composed of such units
EP0064313B1 (en) Circularly polarised microwave radiating element and flat microwave antenna using an array of such elements
EP0213646B1 (en) Modular microwave antenna units and antenna comprising such units
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP0481417B1 (en) Device for feeding an antenna element radiating two orthogonal polarisations
EP0243289B1 (en) Plate antenna with two crossed polarizations
EP0315141B1 (en) Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide
FR2669776A1 (en) SLOTTED MICROWAVE ANTENNA WITH LOW THICKNESS STRUCTURE.
FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
FR2583226A1 (en) OMNIDIRECTIONAL CYLINDRICAL ANTENNA
EP0667984B1 (en) Monopolar wire-plate antenna
FR2772517A1 (en) MULTI-FREQUENCY ANTENNA MADE ACCORDING TO MICRO-TAPE TECHNIQUE AND DEVICE INCLUDING THIS ANTENNA
FR2779022A1 (en) Internal wall/ceiling mounted mobile phone repeater station
WO2002031920A1 (en) Improvements to transmission/reception sources of electromagnetic waves for multireflector antenna
FR2751471A1 (en) WIDE-BAND RADIATION DEVICE WHICH MAY BE MULTIPLE POLARIZATION
FR2578105A1 (en) MICROWAVE PLANE ANTENNA
EP3180816A1 (en) Multiband source with coaxial horn having monopulse tracking systems for a reflector antenna
EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
EP1305846B1 (en) Active dual-polarization microwave reflector, in particular for electronically scanning antenna
EP0377155B1 (en) Dual frequency radiating device
EP0520908B1 (en) Linear antenna array
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
FR2552273A1 (en) Omnidirectional microwave antenna
EP0585250B1 (en) Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas
FR2560448A1 (en) RADIANT ELEMENT OF ELECTROMAGNETIC WAVES AND ITS APPLICATION TO AN ELECTRONIC SCANNING ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19920713

17Q First examination report despatched

Effective date: 19940517

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69108155

Country of ref document: DE

Date of ref document: 19950420

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000919

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000928

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001014

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010919

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST