EP0476726A1 - Protease-containing liquid detergent compositions - Google Patents
Protease-containing liquid detergent compositions Download PDFInfo
- Publication number
- EP0476726A1 EP0476726A1 EP19910201816 EP91201816A EP0476726A1 EP 0476726 A1 EP0476726 A1 EP 0476726A1 EP 19910201816 EP19910201816 EP 19910201816 EP 91201816 A EP91201816 A EP 91201816A EP 0476726 A1 EP0476726 A1 EP 0476726A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- enzyme
- compositions
- composition
- liquid
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38663—Stabilised liquid enzyme compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/40—Products in which the composition is not well defined
Definitions
- This invention relates to the stabilization of proteases in liquid detergent compositions, more in particular built, anionic-rich aqueous detergent compositions.
- HDLS heavy duty liquid detergent formulations
- Denaturation of proteases may be minimized by selection of formulation components (i.e. actives, builders, pH etc.) so that acceptable enzyme stability can be achieved.
- Self-digestion of proteases may be minimized by inclusion of a protease inhibitor. The inhibitor is released from the enzyme upon dilution in the wash.
- protease inhibitors are known in the art.
- US-A-4 261 868 (Unilever) teaches the use of borax as a protease inhibitor and both US-A-4 243 546 (Drackett) and GB-A-1 354 761 (Henkel) teach the use of carboxylic acids as protease inhibitors.
- US-A-4 305 837 (Procter & Gamble), for example, teaches the combination of carboxylic acids and simple alcohols and US-A-4 404 115 (Unilever) teaches the combination of borax and polyols as protease inhibitors.
- US-A-4 537 707 (Procter & Gamble) teaches the combination of borax and carboxylates as protease inhibitors.
- US-A-4 243 546 (Drackett) teaches aqueous enzyme compositions wherein the enzyme stabilizer is selected from the group consisting of mono and diacids having from 1 to 18 carbon atoms. Acetic acid is said to be preferred. Compositions of the invention are also unbuilt. The patent seems to be primarily directed to compositions having a pH below 8 (most of the examples have a pH of 7.5) and the one example which has a pH of 9.5 appears to require the presence of alcohol (ethanol). In addition, the composition not only are not anionic rich, but appear to comprise no anionics at all.
- GB-A-1 354 761 (Henkel) teaches compositions which may contain 2 to 8 carbon carboxylic acids. All the examples show use of acetic acid and the detergent compositions of the invention are also unbuilt.
- carboxylic acid stabilizers are used in the prior art, there is a preference for 1 or 2 carbon carboxylic acids (acetate and formate).
- carboxylic acid stabilizers there is a preference for 1 or 2 carbon carboxylic acids (acetate and formate).
- acetate and formate When compositions of high pH (i.e. greater than 8.5) are used in the prior art, either the use of formate is dictated (as in US-A-4 318 818) or the carboxylic acid is used in combination with an alcohol or in an environment which is not anionic rich.
- formate is dictated (as in US-A-4 318 818) or the carboxylic acid is used in combination with an alcohol or in an environment which is not anionic rich.
- the compositions of the prior art are also unbuilt and there appears to be no recognition of the importance of using anionic rich compositions with specific stabilizers.
- aqueous enzymatic liquid laundry detergents are commonly formulated using as additive a stabilized aqueous liquid enzyme concentrate.
- G. Jensen describes the difficulty of formulating built liquid detergent compositions comprising proteolytic enzymes. Such products are said to require a special type of enzyme in order to obtain a satisfactory storage stability.
- the normal liquid enzymes i.e. aqueous concentrates and non-aqueous slurries
- silicone slurries An example is given of a liquid detergent product comprising a phosphate-builder and a proteolytic enzyme in the form of a slurry, which indeed shows a poor enzyme stability.
- the detergent composition is a built, preferably anionic rich composition having a pH greater than 7.0, preferably greater than 8.5 and more preferably 9.0 and above, enzyme stability is enhanced relative to other carboxylic acid stabilizers (i.e. acetate or formate) by the use of propionate rather than acetate or formate.
- carboxylic acid stabilizers i.e. acetate or formate
- the present invention provides a stable, aqueous enzymatic detergent composition comprising:
- the invention also provides a process for preparing such aqueous liquid enzymatic detergent compositions, wherein the proteolytic enzyme is preferably added in the form of a slurry of the enzyme in liquid nonionic surfactant.
- compositions of the invention comprise from about 5% to about 65% by weight of (a) anionic surfactant or (b) anionic surfactant and one or more detergent actives wherein the ratio of anionic to non-anionic by weight is greater than 1:1.
- the detergent active material other than anionic surfactant may be an alkali metal or alkanolamine soap or a 10 to 24 carbon atom fatty acid, including polymerized fatty acids, or a nonionic, cationic, zwitterionic or amphoteric synthetic detergent material, or mixtures of any of these.
- anionic synthetic detergents are salts (including sodium, potassium, ammonium and substituted ammonium salts such as mono-, di- and triethanolamine salts of 9 to 20 carbon alkylbenzenesul- phonates, 8 to 22 carbon primary or secondary alkanesulphonates, 8 to 24 carbon olefinsulphonates, sulphonated polycarboxylic acids prepared by sulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in GB-A-1 082 179, 8 to 22 carbon alkylsulphates, 8 to 24 carbon alkylpolyglycolether-sulphates, -carboxylates and -phosphates (containing up to 10 moles of ethylene oxide); further examples are described in "Surface Active Agents and Detergents" (Vol. I and II) by Schwartz, Perry and Berch. Any suitable anionic may be used and the examples are not intended to be limiting in any way.
- nonionic synthetic detergents which may be used with the invention are the condensation products of ethylene oxide, propylene oxide and/or butylene oxide with 8 to 18 carbon alkylphenols, 8 to 18 carbon primary or secondary aliphatic alcohols, 8 to 18 carbon fatty acid amides; further examples of nonionics include tertiary amine oxides with one 8 to 18 carbon alkyl chain and two 1 to 3 carbon alkyl chains.
- nonionics include tertiary amine oxides with one 8 to 18 carbon alkyl chain and two 1 to 3 carbon alkyl chains. The above reference also describes further examples of nonionics.
- the average number of moles of ethylene oxide and/or propylene oxide present in the above nonionics varies from 1-30; mixtures of various nonionics, including mixtures of nonionics with a lower and a higher degree of alkoxylation, may also be used.
- Preferred are ethoxylated C12-C15 fatty alcohols having 3-9 EO-groups, 5-7 EO-groups being especially preferred.
- cationic detergents are the quaternary ammonium compounds such as alkyldimethylam- monium halogenides.
- amphoteric or zwitterionic detergents which may be used with the invention are N-alkylamino acids, sulphobetaines, condensation products of fatty acids with protein hydrolysates; but owing to their relatively high costs they are usually used in combination with an anionic or a nonionic detergent. Mixtures of the various types of active detergents may also be used, and preference is given to mixtures of an anionic and a nonionic detergent active. Soaps (in the form of their sodium, potassium and substituted ammonium salts) of fatty acids may also be used, preferably in conjunction with an anionic and/or nonionic synthetic detergent.
- compositions of the present invention are aqueous liquid detergents having for example a homogeneous physical character, e.g. they can consist of a micellar solution of surfactants in a continuous aqueous phase, so-called isotropic liquids.
- they can have a heterogeneous physical phase and they can be structured, for example they can consist of a dispersion of lamellar droplets in a continuous aqueous phase, for example comprising a deflocculating polymer having a hydrophilic backbone and at least one hydrophobic side chain, as described in EP-A-346 995 (Unilever) (incorporated herein by reference).
- These latter liquids are heterogeneous and may contain suspended solid particles such as particles of builder materials e.g. of the kinds mentioned below.
- Builders which can be used according to this invention include conventional alkaline detergency builders, inorganic or organic, which can be used at levels from about 0.5% to about 50% by weight of the composition, preferably from 3% to about 35% by weight. More particularly, when non-structured compositions are used, preferred amounts of builder are 3 to 10% and when structured compositions are used, preferred amounts of builder are 5%-35% by weight.
- structured liquid composition is meant a composition in which at least some of the detergent active forms a structured phase.
- a structured phase is capable of suspending a solid particulate material.
- the composition requires sufficient electrolyte to cause the formation of a lamellar phase by the surfactant to endow solid suspending capability.
- the selection of the particular type(s) and amount of electrolyte to bring this into being for a given choice of surfactant is effected using methodology very well known to those skilled in the art. It utilizes the particular techniques described in a wide variety of references. One such technique entails conductivity measurements. The detection of the presence of such a lamellar phase is also very well known and may be effected by, for example, optical and electron microscopy or X-ray diffraction, supported by conductivity measurement.
- the term electrolyte means any water-soluble salt.
- the amount of electrolyte should be sufficient to cause formation of a lamellar phase by the surfactant to endow solid suspending capability.
- the composition comprises at least 1.0% by weight, more preferably at least 5.0% by weight, most preferably at least 17.0% by weight of electrolyte.
- the electrolyte may also be a detergency builder, such as the inorganic builder sodium tripolyphosphate, or it may be a non-functional electrolyte such as sodium sulphate or chloride.
- the inorganic builder comprises all or part of the electrolyte.
- Such structured compositions are capable of suspending particulate solids, although particularly preferred are those systems where such solids are actually in suspension.
- the solids may be undissolved electrolyte, the same as or different from the electrolyte in solution, the latter being saturated in electrolyte. Additionally, or alternatively, they may be materials which are substantially insoluble in water alone. Examples of such substantially insoluble materials are aluminosilicate builders and particles of calcite abrasive.
- inorganic alkaline detergency builders which may be used (in structured or unstructured compositions) are water-soluble alkalimetal phosphates, polyphosphates, borates, silicates and also carbonates.
- specific examples of such salts are sodium and potassium triphosphates, pyrophosphates, orthophosphates, hexametaphosphates, tetraborates, silicates and carbonates.
- suitable organic alkaline detergency builder salts are: (1) water-soluble amino polycarboxylates, e.g., sodium and potassium ethylenediaminetetraacetates, nitrilotriacetates and N-(2 hydroxyethyl)-nitrilodiacetates; (2) water-soluble salts of phytic acid, e.g., sodium and potassium phytates (see US-A-2 379 942); (3) water-soluble polyphosphonates, including specifically, sodium, potassium and lithium salts of ethane-l-hydroxy-1,1-diphosphonic acid; sodium, potassium and lithium salts of methylene diphosphonic acid; sodium, potassium and lithium salts of ethylene diphosphonic acid; and sodium, potassium and lithium salts of ethane-1,1,2-triphosphonic acid.
- water-soluble amino polycarboxylates e.g., sodium and potassium ethylenediaminetetraacetates, nitrilotriacetates and N-(2
- polycarboxylate builders can be used satisfactorily, including water-soluble salts of mellitic acid, citric acid, and carboxymethyloxysuccinic acid and salts of polymers of itaconic acid and maleic acid.
- zeolites or aluminosilicates can be used.
- One such aluminosilicate which is useful in the compositions of the invention is an amorphous water-insoluble hydrated compound, said amorphous material being characterized by a Mg + + exchange capacity of from about 50 mg eq. CaC0 3 /g and a particle diameter of from about 0.01 micron to about 5 microns.
- This ion-exchange builder is more fully described in GB-A-1 470 250.
- a second water-insoluble synthetic aluminosilicate ion exchange material useful herein is crystalline in nature and has the formula Na z[ (AI0 2 )y.(Si0 2 )].xH 2 0, wherein z and y are integers of at least 6; the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264; said aluminosilicate ion exchange material having a particle size diameter from about 0.1 micron to about 100 microns; a calcium ion exchange capacity on an anhydrous basis of at least about 200 milligrams equivalent of CaC0 3 hardness per gram; and a calcium exchange rate on an anhydrous basis of at least about 2 grains/gallon/minute/ gram.
- These synthetic aluminosilicates are more fully described in GB-A-1 429 143.
- the proteolytic enzyme used in the present invention can be of vegetable, animal or microorganism origin. Preferably, it is of the latter origin, which includes yeasts, fungi, moulds and bacteria. Particularly preferred are bacterial subtilisin type proteases, obtained from e.g. particular strains of B. subtilis and B. licheniformis. Examples of suitable commercially available proteases are Alcalase, Savinase, Esperase, all of NOVO Industri A/S; Maxatase and Maxacal of Gist-Brocades; Kazusase of Showa Denko; Subtilisin BPN' and Subtilisin BPN'-derived proteases and so on.
- EP-A-130 756 (Genentech), EP-A-214 435 (Henkel), WO 87/04461 (Amgen), WO 87/05050 (Genex), EP-A-405 901 (Unilever) and EP-A-303 761 (Genentech) describe useful modified subtilisin proteases.
- the amount of proteolytic enzyme included in the composition ranges from 0.01 to 200,000 GU/g, preferably from 1 to 100,000 GU/g, most preferably from 1000 to 50,000 GU/g, based on the final composition. Naturally, mixtures of different proteolytic enzymes may be used.
- a GU is a glycine unit, which is the amount of proteolytic enzyme which under standard incubation conditions produces an amount of terminal NH 2 -groups equivalent to 1 microgramme/ml of glycine.
- proteolytic enzymes are usually added in the form of concentrated aqueous solutions.
- aqueous liquid detergent concentrates of the invention when the enzyme is added to the formulation as a slurry of the enzyme in a nonionic detergent which is normally liquid.
- the enzyme slurry contains the enzyme in the dispersed form of e.g. powder or particles suspended in a non-aqueous (nonionic) liquid surfactant, especially one which is substantially anhydrous.
- the enzyme particles may for example be spray-dried or lyophilized, and can for example be milled after spray-drying and before dispersion in (e.g. anhydrous) nonionic liquid detergent. Alternatively, they may be milled after dispersing the enzyme in the nonionic detergent.
- the enzyme level in the slurry can be from about 0.5 to about 50% by weight, e.g. from about 1 to about 20% by weight.
- the enzyme slurry which is used in the manufacture of the compositions of the present invention is substantially anhydrous, with water content less than about 10%, preferably less than about 5% w/w, sometimes less than about 1%.
- Using this slurry technique it is possible to use a practically anhydrous liquid nonionic surfactant as the continuous phase of the slurry.
- the liquid state of the slurry enables a thorough mixing of the enzyme in the final liquid detergent, and allows easy liberation of the enzyme after dilution of the liquid detergent in the wash liquor.
- compositions of the invention may also contain other enzymes in addition to the proteases of the invention such as lipases, amylases and cellulases.
- the enzymes may be used in an amount from 0.001% to 5% of the compositions.
- the stabilizer used according to the subject invention is a propionic acid added neat or propionic acid added as salt at a level of about 0.1 to about 15% of the composition.
- an enzyme-stabilizing system e.g. selected from (a) an enzyme-stabilizing system comprising calcium and formate or acetate, and (b) a polyol-and- borate-containing enzyme-stabilizing system.
- Polyol at 2-25% w/w e.g. glycerol or propylene glycol or other polyol, with sodium borate or borax at 2-15% w/w, may be used e.g. in compositions formulated according to EP-A-080 223 (Unilever) (incorporated herein by reference).
- low-molecular weight mono carboxylates in salt or acid form
- enzyme accessible calcium ions 0.1-1 mmole/kg
- lower alcohols e.g. ethanol or propylene glycol (up to 20%)
- EP-A-028 865 Procter & Gamble
- compositions of the invention may also comprise a calcium salt which is used to provide free calcium ions to the solution.
- the calcium ions impart stabilization to the enzyme either alone or in combination with the propionate.
- Examples of calcium salts which may provide free calcium ions to the system include calcium chloride dihydrate and calcium sulphate.
- the calcium salt may comprise from 0.01 to 1% of the composition, preferably 0.01 to 0.2%, most preferably 0.03 to 0.1%.
- compositions herein frequently contain a series of optional ingredients which are used for the known functionality in conventional levels. While the inventive compositions are premised on aqueous enzyme-containing detergent compositions, it is frequently desirable to use a phase regulant. This component together with water constitutes then the solvent matrix for the claimed liquid compositions.
- phase regulants are well-known in liquid detergent technology and, for example, can be represented by hydrotropes such as salts of alkyl arylsulphonates having up to 3 carbon atoms in the alkylgroup, e.g., sodium, potassium, ammonium and ethanolamine salts of xylene-, toluene-, ethylbenzene-, cumene-, and isopropylbenzene sulphonic acids. Alcohols may also be used as phase regulants. This phase regulant is frequently used in an amount from about 0.5% to about 20%, the sum of phase regulant and water is normally in the range from 35% to 65%.
- hydrotropes such as salts of alkyl arylsulphonates having up to 3 carbon atoms in the alkylgroup, e.g., sodium, potassium, ammonium and ethanolamine salts of xylene-, toluene-, ethylbenzene-, cumene
- compositions herein can contain a series of further optional ingredients which are mostly used in additive levels, usually below about 5%.
- additives include: polyacids, suds regulants, opacifiers, antioxidants, bactericides, dyes, perfumes, brighteners and the like.
- the beneficial utilization of the claimed compositions under various usage conditions can require the utilization of a suds regulant. While generally all detergent suds regulants can be utilized, preferred for use herein are alkylated polysiloxanes such as dimethylpolysiloxane also frequently termed silicones. The silicones are frequently used in a level not exceeding 0.5%, most preferably between 0.01 % and 0.2%.
- opacifiers can also be desirable to utilize opacifiers inasmuch as they contribute to create a uniform appearance of the concentrated liquid detergent compositions.
- suitable opacifiers include: polystyrene commercially known as LYTRON 621 manufactured by MONSANTO CHEMICAL CORPORATION. The opacifiers are frequently used in an amount from 0.3% to 1.5%.
- compositions herein can also contain known antioxidants for their known utility, frequently radical scavengers in the art established levels, i.e. 0.001% to 0.25% (by reference to total composition). These antioxidants are frequently introduced in conjunction with fatty acids.
- a deflocculating polymer comprises a hydrophobic backbone and one or more hydrophobic side chains, as described in EP-A-346 995 (Unilever) (incorporated herein by reference). They allow, if desired, the incorporation of greater amounts of surfactants and/or electrolytes than would otherwise be compatible with the need for a stable, low-viscosity product as well as the incorporation, if desired, of greater amounts of other ingredients to which lamellar dispersions are highly stability-sensitive.
- the deflocculating polymer generally will comprise, when used, from about 0.1 to about 5% of the composition, preferably 0.1 to about 2% and most preferably, about 0.5 to about 1.5%.
- the pH of the liquid detergent compositions of the invention can be chosen at will from a wide range, e.g. from about pH 7 to about pH 12, e.g. a milder alkaline range from about pH 7.5 to about pH 9.5 or a stronger alkaline range from about pH 8.5 to about pH 11.5, preferably from above 8.5 to 11, and most preferably from 9 to 10.5.
- compositions of the invention are as follows:
- Composition A (Isotropic Non-Structured Composition)
- Composition B (Structured, Built Composition)
- Composition C (Structured, Built Composition)
- liquid preparations were prepared according to the technique disclosed in EP-A-346 995 and the deflocculating polymer corresponds to polymer A11 of that specification.
- compositions D and E structured liquids, containing a deflocculating polymer
- liquid preparations were prepared according to the technique disclosed in EP-A-346 995 and the deflocculating polymer corresponds to polymer A11 of that specification.
- compositions F, G and H structured liquids, containing a deflocculating polymer
- liquid preparations were prepared according to the technique disclosed in EP-A-346 995 and the deflocculating polymer corresponds to polymer A11 of that specification.
- compositions K and L structured liquids, containing a deflocculating polymer
- liquid preparations were prepared according to the technique disclosed in EP-A-346 995 and the deflocculating polymer corresponds to polymer A11 of that specification.
- Composition M (structured, built liquid)
- COMPOSITION N structured, phosphate-built liquid
- the pH of the composition was adjusted to 9.0.
- the composition was prepared in accordance with EP-A-266 199 (Unilever).
- the stability of the protease was determined by measuring protease activity (spectophotometric techniques using tetrapeptide substrate) as a function of storage time at 37 C. Half-lives were determined by plotting Ao/At versus time and performing non-linear regression analysis.
- Composition B at pH 8.6
- Composition B at pH 9.0
- Stability of Savinase is determined in compositions D and E.
- KNPU kilo NOVO Protease Units
- Stability of Savinase is determined in composition F, G and H.
- KNPU kilo NOVO Protease Units
- Stability of Savinase is determined in composition K and M.
- KNPU kilo NOVO Protease Units
- Stability of Savinase is determined in compositions F, G and H.
- KNPU kilo NOVO Protease Units
- Stability of Savinase is determined in composition N.
- Savinase (ex NOVO-Nordisk) is added either as liquid concentrate or as a liquid nonionic-slurry; both preparations have 16 KNPU/g proteolytic activity.
- the stability is expressed as half-life of deactivation (in days) at 37 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55922290A | 1990-07-27 | 1990-07-27 | |
US559222 | 1990-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0476726A1 true EP0476726A1 (en) | 1992-03-25 |
Family
ID=24232781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19910201816 Ceased EP0476726A1 (en) | 1990-07-27 | 1991-07-11 | Protease-containing liquid detergent compositions |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0476726A1 (tr) |
JP (1) | JPH04234000A (tr) |
KR (1) | KR920002763A (tr) |
AU (1) | AU642276B2 (tr) |
BR (1) | BR9103184A (tr) |
CA (1) | CA2047532A1 (tr) |
TR (1) | TR27610A (tr) |
TW (1) | TW222015B (tr) |
ZA (1) | ZA915889B (tr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0471410A2 (en) * | 1990-08-15 | 1992-02-19 | Unilever N.V. | Structured liquid detergent compositions containing subtilisin mutants |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169897A (ja) * | 1998-12-04 | 2000-06-20 | Kao Corp | 液体洗浄剤組成物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0028865A1 (en) * | 1979-11-09 | 1981-05-20 | THE PROCTER & GAMBLE COMPANY | Homogeneous enzyme-containing liquid detergent compositions containing saturated fatty acids |
US4497897A (en) * | 1982-12-09 | 1985-02-05 | Novo Industri A/S | Liquid proteinase concentrate and method for preparation |
GB2178054A (en) * | 1985-07-26 | 1987-02-04 | Colgate Palmolive Co | Stabilized built liquid detergent composition containing enzymes |
EP0324568A2 (en) * | 1988-01-11 | 1989-07-19 | Rohm And Haas Company | Water soluble polymers for detergent compositions |
EP0378261A2 (en) * | 1989-01-10 | 1990-07-18 | The Procter & Gamble Company | Liquid detergent composition containing enzyme and enzyme stabilization system |
WO1991009102A1 (en) * | 1989-12-12 | 1991-06-27 | Unilever N.V. | Enzymatic liquid detergent compositions and their use |
-
1991
- 1991-07-11 EP EP19910201816 patent/EP0476726A1/en not_active Ceased
- 1991-07-22 CA CA002047532A patent/CA2047532A1/en not_active Abandoned
- 1991-07-24 AU AU81274/91A patent/AU642276B2/en not_active Ceased
- 1991-07-25 BR BR919103184A patent/BR9103184A/pt not_active Application Discontinuation
- 1991-07-26 JP JP3187773A patent/JPH04234000A/ja active Pending
- 1991-07-26 TR TR00755/91A patent/TR27610A/tr unknown
- 1991-07-26 ZA ZA915889A patent/ZA915889B/xx unknown
- 1991-07-27 KR KR1019910012957A patent/KR920002763A/ko not_active Application Discontinuation
- 1991-09-18 TW TW080107397A patent/TW222015B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0028865A1 (en) * | 1979-11-09 | 1981-05-20 | THE PROCTER & GAMBLE COMPANY | Homogeneous enzyme-containing liquid detergent compositions containing saturated fatty acids |
US4497897A (en) * | 1982-12-09 | 1985-02-05 | Novo Industri A/S | Liquid proteinase concentrate and method for preparation |
GB2178054A (en) * | 1985-07-26 | 1987-02-04 | Colgate Palmolive Co | Stabilized built liquid detergent composition containing enzymes |
EP0324568A2 (en) * | 1988-01-11 | 1989-07-19 | Rohm And Haas Company | Water soluble polymers for detergent compositions |
EP0378261A2 (en) * | 1989-01-10 | 1990-07-18 | The Procter & Gamble Company | Liquid detergent composition containing enzyme and enzyme stabilization system |
WO1991009102A1 (en) * | 1989-12-12 | 1991-06-27 | Unilever N.V. | Enzymatic liquid detergent compositions and their use |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0471410A2 (en) * | 1990-08-15 | 1992-02-19 | Unilever N.V. | Structured liquid detergent compositions containing subtilisin mutants |
EP0471410A3 (en) * | 1990-08-15 | 1992-07-01 | Unilever Nv | Structured liquid detergent compositions containing subtilisin mutants |
Also Published As
Publication number | Publication date |
---|---|
AU642276B2 (en) | 1993-10-14 |
BR9103184A (pt) | 1992-05-05 |
JPH04234000A (ja) | 1992-08-21 |
ZA915889B (en) | 1993-03-31 |
KR920002763A (ko) | 1992-02-28 |
CA2047532A1 (en) | 1992-01-28 |
TW222015B (tr) | 1994-04-01 |
AU8127491A (en) | 1992-01-30 |
TR27610A (tr) | 1995-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4842758A (en) | Stabilized enzyme system for use in aqueous liquid built detergent compositions | |
US4287082A (en) | Homogeneous enzyme-containing liquid detergent compositions containing saturated acids | |
US5039446A (en) | Liquid detergent with stabilized enzyme | |
US4305837A (en) | Stabilized aqueous enzyme composition | |
CA1133407A (en) | Liquid detergent compositions | |
US3790482A (en) | Enzyme-containing detergent compositions | |
EP0200263B1 (en) | Homogeneous concentrated liquid detergent compositions containing ternary surfactant system | |
JPS6116796B2 (tr) | ||
IE57605B1 (en) | Stable liquid detergent compositions | |
EP0080748A1 (en) | Enzymatic liquid cleaning composition | |
US5156761A (en) | Method of stabilizing an enzymatic liquid detergent composition | |
EP0028865B2 (en) | Homogeneous enzyme-containing liquid detergent compositions containing saturated fatty acids | |
US4714565A (en) | Homogeneous concentrated liquid detergent compositions containing a monoester of a dicarboxylic acid | |
EP0348183A2 (en) | Enzyme-containing liquid detergents | |
US5071586A (en) | Protease-containing compositions stabilized by propionic acid or salt thereof | |
US5501820A (en) | Aqueous enzymatic detergent compositions | |
US4842769A (en) | Stabilized fabric softening built detergent composition containing enzymes | |
CA1297440C (en) | Fabric softening liquid detergent | |
JPH0241398A (ja) | 安定化酵素液体洗剤組成物 | |
CA1297442C (en) | Heavy duty built aqueous liquid detergent composition containing stabilized enzymes | |
JPH0757877B2 (ja) | 液体酵素洗剤組成物の製造方法 | |
US3658727A (en) | Enzyme-containing detergent compositions for neutral washing | |
US5877141A (en) | Stabilization of enzymes in laundry detergent compositions | |
EP0028866A1 (en) | Stabilised aqueous enzyme composition containing formate and calcium ions | |
GB2178054A (en) | Stabilized built liquid detergent composition containing enzymes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19920304 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UNILEVER PLC Owner name: UNILEVER N.V. |
|
17Q | First examination report despatched |
Effective date: 19950428 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19980215 |