EP0474711A1 - Process for determining the combustion air mass in the cylinders of an internal combustion engine. - Google Patents

Process for determining the combustion air mass in the cylinders of an internal combustion engine.

Info

Publication number
EP0474711A1
EP0474711A1 EP90908491A EP90908491A EP0474711A1 EP 0474711 A1 EP0474711 A1 EP 0474711A1 EP 90908491 A EP90908491 A EP 90908491A EP 90908491 A EP90908491 A EP 90908491A EP 0474711 A1 EP0474711 A1 EP 0474711A1
Authority
EP
European Patent Office
Prior art keywords
air mass
combustion
determined
air
combustion air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90908491A
Other languages
German (de)
French (fr)
Other versions
EP0474711B1 (en
Inventor
Siegfried Ellmann
Manfred Wier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0474711A1 publication Critical patent/EP0474711A1/en
Application granted granted Critical
Publication of EP0474711B1 publication Critical patent/EP0474711B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor

Definitions

  • the invention relates to a method for determining the combustion air mass which is available in the cylinders of an internal combustion engine for a specific combustion, according to the preamble of claim 1.
  • the air mass flowing through the intake manifold is measured using an air mass measurement, e.g.
  • the measured air mass is corrected using correction factors so that it corresponds to the combustion air mass.
  • the correction factors are determined on the engine test bench and in driving tests and are usually stored in a map.
  • the present invention is therefore based on the object of specifying a method in which the correction factors can be optimally adapted again and again during operation of the internal combustion engine.
  • the solution according to the invention is characterized in claim 1.
  • Advantageous developments of the invention can be found in the subclaims.
  • the invention is based on the consideration that the combustion air mass can be determined precisely by measuring the compression pressure curve in the cylinders. This compression pressure is therefore continuously measured by a combustion chamber pressure sensor during each compression stroke in each cylinder. Since the pressure increase during the compression stroke is a polytropic change in state, the combustion air mass can be calculated from the crank mechanism kinematics and the thermodynamic state equations. This combustion air mass is then compared with the combustion air mass determined via the air mass measurement. If there is a deviation, the usual correction is adjusted in the further determination of the air mass so that the deviation disappears.
  • the correction is only changed if deviations have occurred several times in succession. Interference that occurs for a short time is thereby filtered out.
  • FIG. 1 shows an overview circuit diagram with the relevant parts of an internal combustion engine for carrying out the method according to the invention
  • Figure 2, 3 is a flow chart for performing the method
  • FIG 4 shows the pressure curve in a cylinder during the compression stroke
  • the intake manifold 1 of an internal combustion engine is shown schematically, through which air is supplied to the individual cylinders.
  • a throttle valve 2 is provided which is operated by the driver.
  • Each cylinder with intake and exhaust valve is assigned a fuel injection valve 3, the fuel is supplied at a constant pressure from a fuel supply system, not shown.
  • An ignition plug 7 in each cylinder is controlled by an ignition system 6.
  • a microcomputer 5 with corresponding input and output interfaces controls the fuel injection and ignition. For this purpose, it receives as input variables a position signal corresponding to the position of the throttle valve 2 and the combustion chamber pressure p via a combustion chamber pressure sensor 4 for each cylinder. Other input variables are the values derived from the corresponding sensors for the speed n, the intake air temperature TAL and the crankshaft position KW.
  • the microcomputer 5 executes the method shown in FIG. 2 before each fuel injection into one of the cylinders.
  • step S1 the position ⁇ of the throttle valve and the speed n of the internal combustion engine are read.
  • An air mass mL is then determined in step S2 from a map stored in the microcomputer 5.
  • an air mass correction factor LK is determined for the air mass mL in step S3. This is stored in a map depending on the air mass mL determined in the previous step and the speed n.
  • the values for the air mass correction factor LK have been determined experimentally and take into account the following influences in particular: - The phase error due to the storage effect of the intake manifold volume of the intake manifold 1, particularly in the case of dynamic transitions;
  • the wall film influences, especially with dynamic transitions
  • the air mass correction factor LK can also be determined via a real-time calculation, which records the influences mentioned in terms of the formula.
  • step S4 the air mass correction factor LK is then subtracted from the air mass mL and the combustion air mass mLV is thus obtained.
  • step S5 the microcomputer 5 then determines an injection time ti from this combustion air mass mLV and the speed n and opens the fuel injector 3 assigned to the corresponding cylinder for this injection time ti. As a result, the fuel quantity corresponding to the combustion air mass mLV enters the cylinder via the fuel injection valve 3 supplied with constant pressure, so that an arbitrarily adjustable, e.g. B. stoichiometric, mixture is present.
  • an arbitrarily adjustable e.g. B. stoichiometric
  • steps S6 to S10 check the combustion air mass mLV determined by means of the air mass measurement with the aid of the air mass measurement
  • Combustion chamber pressure sensor 4 measured combustion chamber pressure p instead.
  • step S6 the pressure curve during the compression stroke of the cylinder is recorded via ongoing individual measurements of the combustion chamber pressure p1 to pm.
  • the crankshaft position KW determines the beginning and end of the compression stroke.
  • Step S9 calculates the combustion air mass mLVp resulting from the pressure measurement from the crank mechanism kinematics and the thermodynamic gas equations.
  • step S10 the combustion air masses determined via the air mass measurement (steps S1 to S4) and the combustion air masses determined via the pressure measurement (steps S6 to S9) now follow. If there is no discrepancy in the comparison, the program run is ended.
  • step S11 If, on the other hand, there is a deviation, it is checked in step S11 whether this exceeds a limit value G. If this is not the case, the program run is ended again, since only slight deviations in the combustion air masses determined are irrelevant. For larger deviations, the follows
  • Step S12 To rule out temporary, short-term deviations, a check is made to determine whether there have been ten deviations. If this is the case, one or both characteristic maps of steps S2 and S3 are adapted in step S13. Depending on the size and magnitude of the deviation, individual map points or entire map areas are modified so that the combustion air mass determined via the air mass measurement becomes the same as that determined via the pressure measurement. Corresponding methods for map adaptation are described, for example, in SAE PAPER 865080. The determination of the polytropic exponent x in step S8 additionally offers a simple diagnostic option for the state of the cylinder in question.

Abstract

On détermine le volume d'air de combustion en mesurant le volume d'air et la pression dans la chambre de combustion. Le volume d'air de combustion obtenu en mesurant la pression dans la chambre de combustion est comparé au volume d'air de combustion obtenu en mesurant le volume d'air et sert à corriger les résultats de la mesure.The volume of combustion air is determined by measuring the volume of air and the pressure in the combustion chamber. The volume of combustion air obtained by measuring the pressure in the combustion chamber is compared to the volume of combustion air obtained by measuring the volume of air and is used to correct the results of the measurement.

Description

Verfahren zum Bestimmen der Verbrennungsluftnasse in den Zylindern einer Brennkraftnaschine. Die Erfindung betrifft ein Verfahren zum Bestimmen der Verbrennungsluftmasse die in den Zylindern einer Brennkraftmaschine für eine bestimmte Verbrennung zur Verfügung steht, gemäß Oberbegriff von Anspruch 1.  Method for determining the combustion air mass in the cylinders of an internal combustion engine. The invention relates to a method for determining the combustion air mass which is available in the cylinders of an internal combustion engine for a specific combustion, according to the preamble of claim 1.
Um bei einer Brennkraftmaschine für jeden Verbrennungstakt die richtige Kraftstoffmenge zuweisen zu können, muß die dafür zur Verfügung stehende Verbrennungsluftmasse genau bekannt sein. In order to be able to assign the correct amount of fuel to an internal combustion engine for each combustion cycle, the combustion air mass available for this must be known exactly.
Bei modernen Brennkraftmaschinen wird dazu die durchströmende Luftmasse im Saugrohr über eine Luftmassenmessung, wie z.B. In modern internal combustion engines, the air mass flowing through the intake manifold is measured using an air mass measurement, e.g.
über den Öffnungswinkel der Drosselklappe, den Unterdruck oder über Hitzdrahtluftmassenmesser erfaßt. Diese gemessene Luftmasse entspricht aber noch nicht der Verbrennungsluftmasse. Verschiedene Gaslaufzeiten bei unterschiedlichen Drehzahlen, Totzeiten bei instationären Betriebszuständen, verschiedene Umgebungsbedingungen usw. bewirken einen zeitlichen und einen mengenmäßigen Unterschied der gemessenen Luftmasse bezüglich der für einen bestimmten Verbrennungstakt zur Verfügung stehenden Verbrennungsluftmasse. via the opening angle of the throttle valve, the negative pressure or via hot wire air mass meter. However, this measured air mass does not yet correspond to the combustion air mass. Different gas running times at different speeds, dead times under transient operating conditions, different environmental conditions etc. cause a temporal and a quantitative difference in the measured air mass with respect to the combustion air mass available for a specific combustion cycle.
Zur Kompensation dieser Einflüsse wird die gemessene Luftmasse mittels Korrekturfaktoren korrigiert, so daß sie der Verbrennungsluftmasse entspricht. Die Korrekturfaktoren werden auf dem Motorprüfstand und in Fahrversuchen ermittelt und sind üblicherweise in einem Kennfeld abgelegt. To compensate for these influences, the measured air mass is corrected using correction factors so that it corresponds to the combustion air mass. The correction factors are determined on the engine test bench and in driving tests and are usually stored in a map.
Diese gefundenen Korrekturfaktoren führen bei der neuen Brennkraftmaschine zu einer optimalen Zuordnung der gemessen Luftmasse zur Verbrennungsluftmasse. Durch auftretende Defekte oder Alterung wird diese Zuordnung jedoch mehr und mehr verfälscht. These correction factors found in the new internal combustion engine lead to an optimal allocation of the measured air mass to the combustion air mass. However, due to defects or aging, this assignment is increasingly falsified.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren anzugeben, bei dem die Korrekturfaktoren im Betrieb der Brennkraftmaschine immer wieder optimal angepaßt werden können. Die erfindungsgemäße Lösung ist im Anspruch 1 gekennzeichnet. Vorteilhafte Weiterbildungen der Erfindung finden sich in den Unteransprüchen. Bei der Erfindung wird von der Überlegung ausgegangen, daß über eine Messung des Kompressionsdruckverlaufs in den Zylindern die Verbrennungsluftmasse genau bestimmt werden kann. Dieser Kompressionsdruck wird daher über einen Brennraumdrucksensor während jedes Kompressionstakts in jedem Zylinder laufend gemessen. Da der Druckanstieg während des Kompressionstakts eine polytrope Zustandsänderung ist, kann die Verbrennungsluftmasse aus der Kurbeltriebkinematik und den thermodynamischen Zustandsgieichungen berechnet werden. Diese Verbrennungsluftmasse wird dann mit der über die Luftmassenmessung ermittelten Verbren- nungsluftmasse verglichen. Ergibt sich dabei eine Abweichung so wird bei der weiteren Luftmassenbestimmung die übliche Korrektur so angepaßt, daß die Abweichung verschwindet. The present invention is therefore based on the object of specifying a method in which the correction factors can be optimally adapted again and again during operation of the internal combustion engine. The solution according to the invention is characterized in claim 1. Advantageous developments of the invention can be found in the subclaims. The invention is based on the consideration that the combustion air mass can be determined precisely by measuring the compression pressure curve in the cylinders. This compression pressure is therefore continuously measured by a combustion chamber pressure sensor during each compression stroke in each cylinder. Since the pressure increase during the compression stroke is a polytropic change in state, the combustion air mass can be calculated from the crank mechanism kinematics and the thermodynamic state equations. This combustion air mass is then compared with the combustion air mass determined via the air mass measurement. If there is a deviation, the usual correction is adjusted in the further determination of the air mass so that the deviation disappears.
Durch die laufende Adaption der Luftmassenermittlung wird eine jedem Zylinder individuell richtige Kraftstoffmenge zugewiesen und so eine Zylindergleichstellung erreicht. Due to the ongoing adaptation of the air mass determination, an individually correct amount of fuel is assigned to each cylinder, thus achieving cylinder equality.
Gemäß einer Weiterbildung der Erfindung wird die Korrektur nur dann verändert, wenn mehrmals hintereinander Abweichungen aufgetreten sind. Dadurch werden kurzzeitig auftretende Störeinflüsse ausgefiltert. According to a development of the invention, the correction is only changed if deviations have occurred several times in succession. Interference that occurs for a short time is thereby filtered out.
Die Erfindung wird anhand der Zeichnungen näher erläutert. Dabei zeigen The invention is explained in more detail with reference to the drawings. Show
Figur 1 ein Übersichtsschaltbild mit den relevanten Teilen einer Brennkraftmaschine zur Durchführung des erfindungsgemäßen Verfahrens, FIG. 1 shows an overview circuit diagram with the relevant parts of an internal combustion engine for carrying out the method according to the invention,
Figur 2, 3 ein Flußdiagramm zur Durchführung des Verfahrens, und Figure 2, 3 is a flow chart for performing the method, and
Figur 4 den Druckverlauf im einem Zylinder während des Kompressionstakts In Figur 1 ist schematisch das Saugrohr 1 einer Brennkraftmaschine dargestellt, über das den einzelnen Zylindern Luft zugeführt wird. Zur Steuerung der Luftmasse ist eine Drosselklappe 2 vorgesehen, die vom Fahrer betätigt wird. Jedem Zylinder mit Einlaß- und Auslaßventil ist ein Kraftstoffeinspritzventil 3 zugeordnet, dem Kraftstoff mit konstantem Druck von einer nicht dargestellten Kraftstoffversorguπgsanlage zugeführt wird. Figure 4 shows the pressure curve in a cylinder during the compression stroke In Figure 1, the intake manifold 1 of an internal combustion engine is shown schematically, through which air is supplied to the individual cylinders. To control the air mass, a throttle valve 2 is provided which is operated by the driver. Each cylinder with intake and exhaust valve is assigned a fuel injection valve 3, the fuel is supplied at a constant pressure from a fuel supply system, not shown.
Eine Zündkerze 7 in jedem Zylinder wird von einem Zündsystem 6 angesteuert. An ignition plug 7 in each cylinder is controlled by an ignition system 6.
Die Steuerung von Kraftstoffeinspritzung und Zündung übernimmt ein Mikrocomputer 5 mit entsprechenden Eingangs- und Ausgangsschnittstellen. Als Eingangsgrößen erhält er dazu ein Stellungssignal entsprechend der Stellung der Drosselklappe 2 sowie den Brennraumdruck p über jeweils einen Brennraumdrucksensor 4 für jeden Zylinder. Weitere Eingangsgrößen sind die von entsprechenden Sensoren abgeleiteten Werte für die Drehzahl n, die Ansauglufttemperatur TAL und die Kurbelwellenposition KW. A microcomputer 5 with corresponding input and output interfaces controls the fuel injection and ignition. For this purpose, it receives as input variables a position signal corresponding to the position of the throttle valve 2 and the combustion chamber pressure p via a combustion chamber pressure sensor 4 for each cylinder. Other input variables are the values derived from the corresponding sensors for the speed n, the intake air temperature TAL and the crankshaft position KW.
Der Mikrocomputer 5 führt vor jeder Kraftstoffeinspitzung in einen der Zylinder das in Figur 2 dargestellte Verfahren aus. The microcomputer 5 executes the method shown in FIG. 2 before each fuel injection into one of the cylinders.
Beim Schritt S1 wird die Stellung α der Drosselklappe sowie die Drehzahl n der Brennkraftmaschine eingelesen. Aus einem im Mikrocomputer 5 abgespeicherten Kennfeld wird dann beim Schritt S2 eine Luftmasse mL bestimmt. In step S1, the position α of the throttle valve and the speed n of the internal combustion engine are read. An air mass mL is then determined in step S2 from a map stored in the microcomputer 5.
Diese Luftmasse mL entspricht nun noch nicht der Verbrennungsluftmasse mLV, die in den im Verbrennungsablauf nächstfolgenden Zylinder gelangt. Dementsprechend wird für die Luftmasse mL beim Schritt S3 ein Luftmassenkorrekturfaktor LK ermittelt. Dieser ist in einem Kennfeld abhängig von der beim vorhergehenden Schritt ermittelten Luftmasse mL und der Drehzahl n abgelegt. Die Werte für den Luftmassenkorrekturfaktor LK sind experimentell ermittelt und berücksichtigen insbesondere folgende Einflüsse: - Den Phasenfehler durch die Speicherwirkung des Saugrohrvolumens des Saugrohrs 1, insbesondere bei dynamischen Übergängen; This air mass mL does not yet correspond to the combustion air mass mLV that arrives in the next cylinder in the combustion process. Accordingly, an air mass correction factor LK is determined for the air mass mL in step S3. This is stored in a map depending on the air mass mL determined in the previous step and the speed n. The values for the air mass correction factor LK have been determined experimentally and take into account the following influences in particular: - The phase error due to the storage effect of the intake manifold volume of the intake manifold 1, particularly in the case of dynamic transitions;
- den Restgasgehalt durch interne Abgasrückführung bedingt - The residual gas content due to internal exhaust gas recirculation
durch die Ventilüberschneidungen;  due to the valve overlap;
- die Wandfilmeinflüsse, insbesondere bei dynamischen Übergängen; - The wall film influences, especially with dynamic transitions;
- die zylinderselektive Luftzumessung bedingt durch Ventilüberschneidungen; - The cylinder-selective air metering due to valve overlap;
- die Rechenzeiten des Mikrocomputers 5; - The computing times of the microcomputer 5;
Der Luftmassenkorrekturfaktor LK kann auch über eine Echtzeitberechnung bestimmt werden, die die genannten Einflüsse formelmäßig erfaßt. The air mass correction factor LK can also be determined via a real-time calculation, which records the influences mentioned in terms of the formula.
Beim Schritt S4 wird dann der Luftmassenkorrekturfaktor LK von der Luftmasse mL abgezogen und so die Verbrennungsluftmasse mLV erhalten. Beim Schritt S5 ermittelt der Mikrocomputer 5 dann aus dieser Verbrennungsluftmasse mLV und der Drehzahl n eine Einspritzzeit ti und öffnet das dem entsprechenden Zylinder zugeordnete Kraftstoffeinspritzventil 3 für diese Einspritzzeit ti. Dadurch gelangt über das mit konstantem Druck versorgte Kraftstoffeinspritzventil 3 die der Verbrennungsluftmasse mLV entsprechende Kraftstoffmenge in den Zylinder, so daß ein beliebig einstellbares, z. B. stöchiometrisches, Gemisch vorliegt. In step S4, the air mass correction factor LK is then subtracted from the air mass mL and the combustion air mass mLV is thus obtained. In step S5, the microcomputer 5 then determines an injection time ti from this combustion air mass mLV and the speed n and opens the fuel injector 3 assigned to the corresponding cylinder for this injection time ti. As a result, the fuel quantity corresponding to the combustion air mass mLV enters the cylinder via the fuel injection valve 3 supplied with constant pressure, so that an arbitrarily adjustable, e.g. B. stoichiometric, mixture is present.
Gemäß dem Flußdiagramm der Figur 3 findet bei den Schritten S6 bis S10 eine Überprüfung der über die Luftmassenmessung ermittelten Verbrennungsluftmasse mLV mit Hilfe des über den According to the flowchart in FIG. 3, steps S6 to S10 check the combustion air mass mLV determined by means of the air mass measurement with the aid of the air mass measurement
Brennraumdrucksensor 4 gemessenen Brennraumdrucks p statt. Beim Schritt S6 wird der Druckverlauf während des Kompressionstakts des Zylinders über laufende Einzelmessungen des Brennraumdrucks pl bis pm erfaßt. Anfang und Ende des Kompressionstakts bestimmt dabei die Kurbelwellenposition KW. Combustion chamber pressure sensor 4 measured combustion chamber pressure p instead. In step S6, the pressure curve during the compression stroke of the cylinder is recorded via ongoing individual measurements of the combustion chamber pressure p1 to pm. The crankshaft position KW determines the beginning and end of the compression stroke.
Dieser Vorgang ist in Figur 4 gezeigt. Darin ist der Druckverlauf in dem Zylinder während des Kompressionstakts zwischen den Kurbelwellenpositionen KWl bis KW2 gezeigt. Da der Druckverlauf während des Kompressionstakts eine polytrope Zustandsänderung ist, bleibt dabei der Polytropenexponent x konstant. Dieser wird bei den Schritten S7 und S8 bestimmt. Δ ist dabei die Summe der Druckunterschiede von jeweils zwei aufeinanderfolgenden Einzelmessungen. Der Polytropenexponent x ergibt sich aus Δ dividiert durch die Zahl der Einzelmessungen m. This process is shown in Figure 4. It shows the pressure curve in the cylinder during the compression stroke between the Crankshaft positions KWl to KW2 shown. Since the pressure curve during the compression stroke is a polytropic change of state, the polytropic exponent x remains constant. This is determined in steps S7 and S8. Δ is the sum of the pressure differences between two successive individual measurements. The polytropic exponent x results from Δ divided by the number of individual measurements m.
Mit dem Polytropenexponenten x und den bekannten Abmessungen des Zylinders wird dann beim. Schritt S9 die sich aus der Druckmessung ergebende Verbrennungsluftmasse mLVp aus der Kurbeltriebkinematik und den thermodynamischen Gasgleichungen berechnet. Beim Schritt S10 folgt nun der Vergleich der über die Luftmassenmessung (Schritte S1 bis S4) und der über die Druckmessung (Schritte S6 bis S9) ermittelten Verbrennungsluftmassen. Ergibt der Vergleich keine Abweichung, so wird der Programmlauf beendet. With the polytropic exponent x and the known dimensions of the cylinder, the. Step S9 calculates the combustion air mass mLVp resulting from the pressure measurement from the crank mechanism kinematics and the thermodynamic gas equations. At step S10, the combustion air masses determined via the air mass measurement (steps S1 to S4) and the combustion air masses determined via the pressure measurement (steps S6 to S9) now follow. If there is no discrepancy in the comparison, the program run is ended.
Ist dagegen eine Abweichung vorhanden, so wird beim Schritt S11 geprüft, ob diese einen Grenzwert G übersteigt. Ist dies nicht der Fall, so wird wiederum der Programmlauf beendet, da nur geringfügige Abweichungen der ermittelten Verbrennungsluftmassen keine Rolle spielen. Bei größeren Abweichungen folgt der If, on the other hand, there is a deviation, it is checked in step S11 whether this exceeds a limit value G. If this is not the case, the program run is ended again, since only slight deviations in the combustion air masses determined are irrelevant. For larger deviations, the follows
Schritt S12. Um vorübergehende kurzzeitige Abweichungen auszuschließen, wird dabei geprüft, ob zehnmal eine Abweichung aufgetreten ist. Ist dies der Fall, wird beim Schritt S13 eines oder beide Kennfelder der Schritte S2 und S3 adaptiert. Je nach Größe und Höhe der Abweichung werden dabei einzelne Kennfeldpunkte oder auch ganze Kennfeldbereiche so abgeändert, daß die über die Luftmassenmessung ermittelte Verbrennungsluftmasse der über die Druckmessung ermittelten gleich wird. Entsprechende Verfahren zur Kennfeldadaption sind z.B. im SAE PAPER 865080 beschrieben. Die Ermittlung des Polytropenexponenten x beim Schritt S8 bietet zusätzlich eine einfache Diagnosemöglichkeit für den Zustand des betreffenden Zylinders. Mit zunehmender Alterung tritt in den Zylindern ein Luftverlust (Blowby) auf, der durch den Verschleiß der Kolbenringe und der dadurch verursachten Verschlechterung der Abdichtung bedingt ist. Ohne diesen Luftverlust - also bei vollkommen intaktem Zylinder - hat der Polytropenexponent x einen bestimmten konstanten Wert. Zur Diagnose wird daher die Änderung der Polytropenexponenten herangezogen. Die Höhe der Änderung ist dann ein Maß für den Luftverlust und damit für den Zustand des Zylinders. Die auftretenden Änderungen werden daher abgespeichert und können bei der nächsten Motordiagnose von einem entsprechenden Diagnosegerät abgefragt werden. Ebenso können die Änderungen von einem im Fahrzeug befindlichen Diagnosesystem ausgewertet werden, wodurch z.B. der Fahrer rechtzeitig vor sich anbahnenden Defekten gewarnt werden kann. Step S12. To rule out temporary, short-term deviations, a check is made to determine whether there have been ten deviations. If this is the case, one or both characteristic maps of steps S2 and S3 are adapted in step S13. Depending on the size and magnitude of the deviation, individual map points or entire map areas are modified so that the combustion air mass determined via the air mass measurement becomes the same as that determined via the pressure measurement. Corresponding methods for map adaptation are described, for example, in SAE PAPER 865080. The determination of the polytropic exponent x in step S8 additionally offers a simple diagnostic option for the state of the cylinder in question. With increasing aging, air loss (blowby) occurs in the cylinders, which is caused by the wear of the piston rings and the resulting deterioration of the seal. Without this loss of air - i.e. with the cylinder intact - the polytropic exponent x has a certain constant value. The change in the polytropic exponent is therefore used for diagnosis. The amount of the change is then a measure of the air loss and thus of the condition of the cylinder. The changes that occur are therefore saved and can be queried by an appropriate diagnostic device during the next engine diagnosis. The changes can also be evaluated by a diagnostic system located in the vehicle, as a result of which, for example, the driver can be warned in advance of impending defects.

Claims

Patentansprüche Claims
1. Verfahren zum Bestimmen der Verbrennungsluftmasse, die in einem oder mehreren Zylindern einer Brennkraftmaschine für eine bestimmte Verbrennung zur Verfügung steht, 1. Method for determining the mass of combustion air that is available in one or more cylinders of an internal combustion engine for a specific combustion,
wobei über eine Luftmasssenmessung im Saugrohr laufend die angesaugte Luftmasse gemessen wird, the air mass drawn in is continuously measured via an air mass measurement in the intake manifold,
wobei diese gemessene Luftmasse einer Korrektur unterzogen wird, so daß sie der Verbrennungsluftmasse entspricht, this measured air mass is subjected to a correction so that it corresponds to the combustion air mass,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
daß über eine Brennraumdruckmessung der Druck in jedem Zylinder gemessen wird, that the pressure in each cylinder is measured via a combustion chamber pressure measurement,
daß aus dem Druckverlauf während eines Kompressionstakts die Verbrennungsluftmasse für jeden Zylinder bestimmt wird und daß durch eine Adaption der Korrektur der Unterschied zwischen der über die Luftmassenmessung und die Brennraumdruckmessung ermittelten Verbrennungsluftmassen kompensiert wird. that the combustion air mass for each cylinder is determined from the pressure curve during a compression stroke and that the difference between the combustion air masses determined via the air mass measurement and the combustion chamber pressure measurement is compensated for by adapting the correction.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
daß die Adaption erst durchgeführt wird, wenn mehrmals Unterschiede bei den ermittelten Verbrennungsluftmasseπ aufgetreten sind. that the adaptation is only carried out when there have been several differences in the determined combustion air massπ.
3. Verfahren nach Anspruch 1, 3. The method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
daß die Korrektur über eine Echtzeitberechnung erfolgt. that the correction takes place via a real-time calculation.
4. Verfahren nach einem der Ansprüche 1 bis 3, 4. The method according to any one of claims 1 to 3,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
daß die Korrektur über mindestens ein Kennfeld erfolgt. that the correction is made via at least one map.
5. Verfahren nach Anspruch 1, 5. The method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
daß aus dem Druckverlauf während eines Kompressionstakts der Luftverlust ("Blowby") mittels der Polytropengleichung aus den Abweichungen der ermittelten Polytropenkonstanten x gegenüber der Polytropenkonstanten x für einen intakten Zylinder bestimmt wird. that from the pressure curve during a compression stroke the air loss ("blowby") by means of the polytropic equation from the deviations of the determined polytropic constants x compared the polytropic constant x is determined for an intact cylinder.
6. Verfahren nach Anspruch 5, 6. The method according to claim 5,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
daß aus dem Ausmaß des Luftverlusts eine Information abgeleitet wird, die Aufschluß über einen Alterungseffekt oder einen Defekt der Brennkraftmaschine gibt und diese Information für ein Diagnosesystem benutzt wird. that information is derived from the extent of the air loss, which provides information about an aging effect or a defect of the internal combustion engine and this information is used for a diagnostic system.
EP90908491A 1989-06-01 1990-06-01 Process for determining the combustion air mass in the cylinders of an internal combustion engine Expired - Lifetime EP0474711B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3917908A DE3917908A1 (en) 1989-06-01 1989-06-01 METHOD FOR DETERMINING THE AIR FILLING OF THE WORKING VOLUME OF A COMBINED PISTON INTERNAL COMBUSTION ENGINE AND FOR DETERMINING THE FUEL INJECTION LEVEL
DE3917908 1989-06-01
PCT/DE1990/000422 WO1990015236A1 (en) 1989-06-01 1990-06-01 Process for determining the combustion air mass in the cylinders of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP0474711A1 true EP0474711A1 (en) 1992-03-18
EP0474711B1 EP0474711B1 (en) 1994-10-26

Family

ID=6381867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90908491A Expired - Lifetime EP0474711B1 (en) 1989-06-01 1990-06-01 Process for determining the combustion air mass in the cylinders of an internal combustion engine

Country Status (6)

Country Link
US (1) US5140850A (en)
EP (1) EP0474711B1 (en)
JP (1) JPH04506100A (en)
DE (2) DE3917908A1 (en)
ES (1) ES2063357T3 (en)
WO (1) WO1990015236A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678684B1 (en) * 1991-07-02 1995-01-06 Renault METHOD AND SYSTEM FOR CALCULATING THE FRESH AIR MASS IN AN INTERNAL COMBUSTION ENGINE CYLINDER.
DE4336174C2 (en) * 1993-10-22 2003-09-18 Ruhrgas Ag Process for the combustion-free measurement and / or regulation of the supply of heat to gas consumption devices
DE4422184C2 (en) * 1994-06-24 2003-01-30 Bayerische Motoren Werke Ag Control unit for motor vehicles with a computing unit for calculating the air mass flowing into a cylinder of the internal combustion engine
US5585553A (en) * 1995-07-28 1996-12-17 Caterpillar Inc. Apparatus and method for diagnosing an engine using a boost pressure model
DE19844085C1 (en) * 1998-09-25 2000-03-16 Siemens Ag Combustion engine control method
DE19908401C2 (en) * 1999-02-26 2001-12-06 Bosch Gmbh Robert Method and device for operating an internal combustion engine, in particular a motor vehicle, with a lean fuel / air mixture
DE10063752A1 (en) * 2000-12-21 2002-06-27 Bosch Gmbh Robert Method and device for determining the throughput of a flowing medium
CN100343499C (en) * 2001-10-15 2007-10-17 丰田自动车株式会社 Suction air volume estimating device for internal combustion engine
US6935313B2 (en) 2002-05-15 2005-08-30 Caterpillar Inc System and method for diagnosing and calibrating internal combustion engines
FR2875268B1 (en) * 2004-09-13 2006-12-08 Peugeot Citroen Automobiles Sa METHOD OF ESTIMATING THE GAS MASS IN THE CYLINDER OF AN INTERNAL COMBUSTION ENGINE
DE102004058185A1 (en) * 2004-12-02 2006-06-08 Robert Bosch Gmbh Internal combustion engine e.g. diesel engine, controlling method for motor vehicle, involves determining gas masses using gas pressures reigning in engine`s cylinders and comparing values formed from masses and formed independent of masses
EP2275946A1 (en) * 2005-03-04 2011-01-19 STMicroelectronics S.r.l. Probabilistic neural network and relative training method
US7299123B2 (en) * 2005-03-04 2007-11-20 Stmicroelectronics S.R.L. Method and device for estimating the inlet air flow in a combustion chamber of a cylinder of an internal combustion engine
JP4618009B2 (en) * 2005-06-03 2011-01-26 トヨタ自動車株式会社 Control device for internal combustion engine
DE102005039757A1 (en) * 2005-08-23 2007-03-01 Robert Bosch Gmbh Diesel-internal combustion engine operating method, involves determining drift of impact sound sensors from temporal change of value compared to another value, where values depend on pressure distribution in one of combustion chambers
DE102005054737A1 (en) * 2005-11-17 2007-05-24 Robert Bosch Gmbh Method for operating an internal combustion engine
JP4465665B2 (en) * 2005-11-29 2010-05-19 トヨタ自動車株式会社 Control device and control method for internal combustion engine
GB0601727D0 (en) * 2006-01-27 2006-03-08 Ricardo Uk Ltd A Method Of Identifying Engine Gas Composition
FR2897653B1 (en) * 2006-02-20 2011-07-15 Renault Sas METHOD FOR CONTROLLING A VEHICLE ENGINE TO DETERMINE THE GAS MASS CONFINED IN A COMBUSTION CHAMBER
KR20090077760A (en) * 2006-10-13 2009-07-15 보르그워너 인코퍼레이티드 Estimating engine system parameters based on engine cylinder pressure
ES2446191B2 (en) * 2013-12-05 2014-06-27 Universitat Polit�Cnica De Val�Ncia Method of detecting the mass trapped in a combustion cylinder
FR3054603A1 (en) * 2016-07-29 2018-02-02 Continental Automotive France METHOD FOR CORRECTING THE MEASUREMENT OF A FLOWMETER IN AN INTERNAL COMBUSTION ENGINE
CN106870189A (en) * 2017-03-24 2017-06-20 中国北方发动机研究所(天津) A kind of integrated block structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3210810C2 (en) * 1982-03-24 1984-11-08 Mataro Co. Ltd., Georgetown, Grand Cayman Islands Control system for influencing the composition of the charges to be burned in an externally ignited internal combustion engine
JPS58200032A (en) * 1982-05-18 1983-11-21 Fuji Heavy Ind Ltd Suction system for engine provided with supercharger
US4644474A (en) * 1985-01-14 1987-02-17 Ford Motor Company Hybrid airflow measurement
JPH0692770B2 (en) * 1985-06-05 1994-11-16 三菱自動車工業株式会社 Engine controller
JPS6278449A (en) * 1985-10-02 1987-04-10 Mitsubishi Electric Corp Fuel injection controller of internal combustion engine
US4873641A (en) * 1986-07-03 1989-10-10 Nissan Motor Company, Limited Induction volume sensing arrangement for an internal combustion engine or the like
DE68904437D1 (en) * 1988-01-29 1993-03-04 Hitachi Ltd ENGINE FUEL INJECTION CONTROL.
US5070846A (en) * 1990-11-26 1991-12-10 General Motors Corporation Method for estimating and correcting bias errors in a software air meter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9015236A1 *

Also Published As

Publication number Publication date
DE3917908A1 (en) 1990-12-06
WO1990015236A1 (en) 1990-12-13
EP0474711B1 (en) 1994-10-26
US5140850A (en) 1992-08-25
JPH04506100A (en) 1992-10-22
DE59007576D1 (en) 1994-12-01
ES2063357T3 (en) 1995-01-01

Similar Documents

Publication Publication Date Title
EP0474711B1 (en) Process for determining the combustion air mass in the cylinders of an internal combustion engine
EP1034416B1 (en) Method for evaluating the march of pressure in a combustion chamber
EP0434665B1 (en) Method and device for diagnosis of an internal combustion engine
DE3021333C2 (en) Method for operating a diagnostic device for turbochargers of internal combustion engines as well as diagnostic device for turbochargers of internal combustion engines
DE4337793C2 (en) Method and device for assessing the functional state of a catalytic converter
EP0210177B1 (en) Method for modifying the operation parameters of internal combustion machines
DE10355335B4 (en) Method for operating an internal combustion engine
DE4001362C2 (en)
WO2004113710A1 (en) Method for monitoring the exhaust gas recirculation of a combustion engine
DE102018202477A1 (en) Method for operating an internal combustion engine
EP0269606A2 (en) Method of and device for testing an internal-combustion engine
DE3914536A1 (en) METHOD AND DEVICE FOR DIAGNOSING THE CONTROL OF THE TANK BLEEDING VALVE IN CONNECTION WITH THE CONTROL OF AN INTERNAL COMBUSTION ENGINE
EP0399069A1 (en) Method to determine with a pressure sensor the combustion pressure in a cylinder of a combustion engine
DE102015226446A1 (en) Method for determining the composition of the fuel used to operate an internal combustion engine
DE10021639C1 (en) Diagnosis of faults in pressure sensors for internal combustion engines involves checking ambient pressure signal plausibility using modeled induction system pressure signal
DE10025846A1 (en) Method for cylinder-selective leak testing of the combustion chambers of an internal combustion engine
DE102010046491A1 (en) Method for determining emission of pollutants in combustion chamber of diesel engine of motor vehicle, involves determining oxygen concentration, pressure, temperature, air and fuel mass of chamber using statistical model of engine
DE3917905A1 (en) IC engine efficiency optimisation system - uses detected engine knock and monitored air of engine cylinder working vol to adjust ignition timing
DE19653521B4 (en) Electronic control of a multi-cylinder, in particular spark-ignited internal combustion engine
DE102017108995B3 (en) Method and device for operating an internal combustion engine with a purging charge cycle
DE4009922C2 (en) Method and arrangement for determining the actual air density of the intake air mass flow of an internal combustion engine
DE2716822B2 (en) Method and device for determining the air throughput in a gasoline-fueled internal combustion engine
DE102013011772A1 (en) Method for operating Otto combustion engine of motor car, involves determining lambda value of exhaust gas of internal combustion engine and camshaft reference position from difference between determined lambda and lambda reference value
DE10107892A1 (en) Detection of faults in the signaling wheel of a combustion engine crankshaft and determination of correction values for them so that the engine operates more efficiently
DE19853817C2 (en) Method for controlling an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19940323

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59007576

Country of ref document: DE

Date of ref document: 19941201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2063357

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950106

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950602

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970626

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970820

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050601