EP0466605B1 - Reflector for a lighting device of an automotive vehicle, and headlight and signal light incorporating such a reflector - Google Patents

Reflector for a lighting device of an automotive vehicle, and headlight and signal light incorporating such a reflector Download PDF

Info

Publication number
EP0466605B1
EP0466605B1 EP91401951A EP91401951A EP0466605B1 EP 0466605 B1 EP0466605 B1 EP 0466605B1 EP 91401951 A EP91401951 A EP 91401951A EP 91401951 A EP91401951 A EP 91401951A EP 0466605 B1 EP0466605 B1 EP 0466605B1
Authority
EP
European Patent Office
Prior art keywords
reflector
horizontal
deflection
vertical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91401951A
Other languages
German (de)
French (fr)
Other versions
EP0466605A1 (en
Inventor
Eric Blusseau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP0466605A1 publication Critical patent/EP0466605A1/en
Application granted granted Critical
Publication of EP0466605B1 publication Critical patent/EP0466605B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/30Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/334Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors
    • F21S41/335Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors with continuity at the junction between adjacent areas

Definitions

  • the present invention relates generally to automotive lighting, and more particularly to a reflector of new design usable in a headlamp and in a signaling light, as well as a headlamp and a signaling light incorporating such a reflector.
  • a reflector which comprises central and lateral zones of conventional design, and two modified intermediate zones.
  • a reflector is capable of generating a cut beam, in particular a European standard beam with a so-called "V" cut, which has a large width and which defines the two half-planes over a large extent. cut-off (see in particular page 8, lines 1-15 of this request).
  • Another object of this known type of reflector is to ensure that the light rays bypass a cache of direct light located in front of the lamp.
  • patent FR-A-2 634 003 discloses a reflector comprising, between main zones designed to give the beam a certain width, transition zones. This reflector corresponds to the preamble of claim 1. Such transition zones, or hyperbolas, do not, however, make it possible to avoid, by their own fact or by the very fact of the design of the main zones, zones of excessive concentration. of light appear at the level of the ice.
  • the present invention aims to overcome the drawbacks of the prior art and to provide a reflector which, by cooperating with a suitably positioned light source, is able to offer by itself a very wide beam, very homogeneous and defining a possible cut over a very large area, and which generates at the level of the glass a very homogeneous distribution of light, avoiding that a heating of said glass occurs at certain points thereof.
  • Another object of the invention is to propose at the same time a reflector capable of providing a lateral spreading of the beam greater than what was possible with the prior reflectors.
  • the invention firstly relates to a reflector for a lighting device of a motor vehicle as defined in claim 1.
  • a preferred aspect of the reflector is set out in claim 2.
  • the invention relates to a headlight for a motor vehicle having the features of claim 3.
  • the closing glass can be, if desired, substantially inclined relative to the vertical and / or relative to the horizontal.
  • the invention relates to a signaling light for a motor vehicle as defined in claim 5.
  • the lens comprises means for spreading the beam essentially in the vertical direction only.
  • a signaling light for a motor vehicle is proposed as defined in claim 7.
  • the lens comprises means for spreading the beam essentially in the horizontal direction only.
  • the spreading means are preferably constituted by parallel ridges oriented perpendicular to the direction of spreading.
  • the reflector designated by the reference 20, comprises at least in a central region a plurality of reflective zones which are in this case separated from each other by vertical planes parallel to an optical axis defined by the reflector and designated by Ox. The optical role of these zones will be explained later.
  • each of the zones is connected to its neighbor continuously in second order, that is to say that, on either side of the transition plane considered, the planes tangent to the reflecting surface are the same. In other words, there is no kink or break in the reflective surface.
  • y GL and y DL are the end dimensions, to the left and to the right of the center of the reflector, of a central region of the reflector produced according to the invention; at these dimensions, the reflected rays undergo a zero horizontal deviation; y G 2 and y D 2 are dimensions at which the reflected rays undergo a first maximum horizontal deviation; y G and y D are dimensions at which the reflected rays undergo zero horizontal deviation; and y GM and y DM are dimensions at which the reflected rays undergo a second maximum horizontal deviation.
  • ⁇ GF and ⁇ DF are the angles of first maximum horizontal deviation of the reflected rays, of negative signs
  • ⁇ G and ⁇ D are the angles of second maximum horizontal deviation of the reflected rays, of positive signs
  • NB is a dimensionless positive real number expressing the degree of deformation (with respect to a parabolic section) of the central region of the reflector between the dimensions y G and y GL on the one hand and the dimensions y D and y DL on the other go
  • NC is a dimensionless positive real number expressing the degree of deformation (with respect to a parabolic section) of the central region between y G and y D
  • f G and f D are basic focal distances respectively to the left and to the right of the vertex O of the reflector.
  • the equation of the reflecting surface involves yet another group of parameters, the values of which are determined from the parameters mentioned so far and vary according to the dimension according to y, denoted y0 , from the current point on the horizontal generator represented in FIG. 2 with respect to the dimensions of the various axial vertical planes mentioned above.
  • This other group of parameters includes the parameters ⁇ , ⁇ 1, ⁇ , ⁇ 1, f0, x DIF , y S , y M , y L and N.
  • the central region of the reflector in the case where it is desired that the beam obtained comprises a spot of central concentration of light intensity greater than a given threshold (imposed for example by a regulation), is extended on one side or two sides by one or two zones whose horizontal profile is parabolic (zones 204g and 204d), so that all the reflected rays propagate in vertical planes essentially parallel to the optical axis 0x as illustrated.
  • a given threshold imposed for example by a regulation
  • FIG. 3 It is also observed in FIG. 3 that the light rays at the level of the closing glass 30 are well dispersed. More precisely, it appears that the ice is not the seat of any excessive convergence or concentration of light rays.
  • FIGS. 4a and 4b have shown on this subject isolux curves measured on the ice, corresponding respectively to a reflector of conventional design (parabola associated with a standard lamp H4) and to a reflector of the present invention. For each curve is indicated the corresponding value in kilolux. The maximum light intensity obtained is 142 kilolux in the prior art, and 92 kilolux with the present invention.
  • the path of the reflected rays is such that it allows the incorporation of a direct light mask known per se, designated by the reference 11 and shown diagrammatically in dashed lines, without that none of the reflected rays is intercepted by this cache.
  • a signaling light conventionally comprises a lamp incorporating a filament 10, a reflector 20 and a closing globe 30.
  • the reflector and of the parabolic kind, and essentially spherical balls are provided on the surface of the globe for ensure proper dispersion of the beam formed in order to meet photometric regulatory requirements. More specifically, the balls provide dispersion upwards and downwards as well as laterally to the left and to the right, so that the fire appears with satisfactory light intensity when viewed at an angle to the optical axis.
  • a reflector of the type described above is used in order to spread the beam in one direction (horizontal or vertical), while using the globe to spread the beam in the 'other direction (vertical or horizontal).
  • the globe since the globe must only spread in one direction, one can use on it no longer balls, but streaks, horizontal or vertical.
  • This aspect of the invention is particularly interesting in particular from an aesthetic point of view, the current criteria increasingly requiring the use of globes of striated appearance in one direction or the other. With a lamp according to the invention, this can be obtained without requiring significant modification of the components of the lamp, therefore without significantly increasing the cost price.
  • FIG. 9 represents a light, the reflector 20 of which spreads the beam in a horizontal direction (spreading angles ⁇ H ), while the globe 30 is equipped for example on its internal surface with horizontal ridges 31, in particular cylindrical, which spread in a vertical direction according to the spreading angles ⁇ V.
  • the reflector is designed to spread the beam vertically (angles ⁇ V ) while the globe 30 has vertical streaks 31 to perform the horizontal spreading at angles ⁇ H. Such goes particularly well with a projector with vertical streaks on its lens.
  • the concepts as described above are used to make the reflector, since there is then the advantage of obtaining an extremely homogeneous distribution of light at the level of the globe.
  • these concepts apply to a rotation of 90 ° near, obtained simply by permutation of the coordinates x and y.
  • reflectors according to the present invention can be produced by machining a mold using a computer-aided manufacturing apparatus, appropriately programmed and into which the basic parameters necessary will have been introduced after having chosen them. values.

Description

La présente invention concerne d'une façon générale l'éclairage automobile, et plus particulièrement un réflecteur de conception nouvelle utilisable dans un projecteur et dans un feu de signalisation, ainsi qu'un projecteur et un feu de signalisation incorporant un tel réflecteur.The present invention relates generally to automotive lighting, and more particularly to a reflector of new design usable in a headlamp and in a signaling light, as well as a headlamp and a signaling light incorporating such a reflector.

On connaît déjà par les brevets FR-A-2 609 146 et FR-A-2 609 148 au nom de la Demanderesse un projecteur dont le réflecteur comporte deux zones latérales de configuration classique, et par exemple soit paraboliques, soit du genre capable de former par elles-mêmes un faisceau coupé d'allure déterminée, et une zone centrale dont le profil en coupe horizontale est modifié par rapport à ladite configuration classique, c'est à dire approfondi ou aplati, tout en se raccordant essentiellement sans rupture de pente avec les zones latérales. Un tel réflecteur a pour objet de créer par lui-même, c'est-à-dire sans l'intervention de la glace, un faisceau plus large qu'avec la conception classique, et également d'éviter une concentration de lumière excessive au centre de la glace, ce qui permet notamment d'utiliser une glace en matière plastique moulée.We already know from patents FR-A-2 609 146 and FR-A-2 609 148 in the name of the Applicant a headlamp whose reflector comprises two lateral zones of conventional configuration, and for example either parabolic, or of the kind capable of forming by themselves a cut beam of determined shape, and a central zone whose profile in horizontal section is modified compared to said conventional configuration, that is to say deepened or flattened, while being connected essentially without breaking the slope with the side areas. The object of such a reflector is to create by itself, that is to say without the intervention of ice, a wider beam than with the conventional design, and also to avoid excessive concentration of light at center of the glass, which in particular allows the use of molded plastic glass.

On connaît en outre par le brevet FR-A-2 639 888 également au nom de la Demanderesse un réflecteur qui comporte des zones centrale et latérales de conception classique, et deux zones intermédiaires modifiées. Un tel réflecteur est capable d'une part d'engendrer par lui-même un faisceau coupé, notamment un faisceau européen normalisé à coupure dite en "V", qui présente une grande largeur et qui définisse sur une étendue importante les deux demi-plans de coupure (cf. en particulier page 8, lignes 1-15 de cette demande). Un autre objet de ce type de réflecteur connu est de faire en sorte que les rayons lumineux contournent un cache de lumière directe situé en avant de la lampe.Also known from patent FR-A-2 639 888 also in the name of the Applicant is a reflector which comprises central and lateral zones of conventional design, and two modified intermediate zones. On the one hand, such a reflector is capable of generating a cut beam, in particular a European standard beam with a so-called "V" cut, which has a large width and which defines the two half-planes over a large extent. cut-off (see in particular page 8, lines 1-15 of this request). Another object of this known type of reflector is to ensure that the light rays bypass a cache of direct light located in front of the lamp.

Enfin on connaît par le brevet FR-A-2 634 003 un réflecteur comportant, entre des zones principales conçues pour donner au faisceau une certaine largeur, des zones de transition. Ce réflecteur correspond au préambule de la revendication 1. De telles zones de transition, ou d'hyperboles, ne permettent cependant pas d'éviter que, par leur propre fait ou du fait même de la conception des zones principales, des zones de concentration excessive de lumière apparaissent au niveau de la glace.Finally, patent FR-A-2 634 003 discloses a reflector comprising, between main zones designed to give the beam a certain width, transition zones. This reflector corresponds to the preamble of claim 1. Such transition zones, or hyperbolas, do not, however, make it possible to avoid, by their own fact or by the very fact of the design of the main zones, zones of excessive concentration. of light appear at the level of the ice.

On peut rappeler ici l'intérêt qu'il y a à ce que ce soit le réflecteur qui donne au faisceau sa grande largeur: en effet si cette largeur est donnée par des stries verticales ou analogues prévues sur la glace, et qu'en même temps la glace est inclinée pour s'adapter à un profil fortement plongeant de l'avant du véhicule, alors on assiste à un rabattement indésirable de ce faisceau vers les bords, comme expliqué notamment dans le brevet FR-A-2 542 422.We can recall here the interest that it is the reflector which gives the beam its great width: indeed if this width is given by vertical or similar streaks provided on the ice, and that at the same time the glass is inclined to adapt to a strongly plunging profile from the front of the vehicle, so there is an undesirable folding of this beam towards the edges, as explained in particular in patent FR-A-2,542,422.

Il s'est avéré cependant que tous les réflecteurs discutés ci-dessus soit offrent une répartition de lumière pouvant manquer d'homogénéité lorsqu'un étalement horizontal très important du faisceau est demandé, soit provoquent des zones de concentration excessive de lumière au niveau de la glace.It turned out, however, that all the reflectors discussed above either offer a distribution of light which may lack homogeneity when a very large horizontal spread of the beam is required, or cause zones of excessive concentration of light at the level of the ice.

La présente invention vise à pallier les inconvénients de la technique antérieure et à proposer un réflecteur qui, en coopérant avec une source lumineuse convenablement positionnée, soit à même d'offrir par lui-même un faisceau de très grande largeur, très homogène et définissant une éventuelle coupure sur une très grande étendue, et qui engendre au niveau de la glace une répartition très homogène de la lumière, en évitant qu'un échauffement de ladite glace se produise en certains points de celle-ci.The present invention aims to overcome the drawbacks of the prior art and to provide a reflector which, by cooperating with a suitably positioned light source, is able to offer by itself a very wide beam, very homogeneous and defining a possible cut over a very large area, and which generates at the level of the glass a very homogeneous distribution of light, avoiding that a heating of said glass occurs at certain points thereof.

Un autre objet de l'invention est de proposer en même temps un réflecteur capable de procurer un étalement latéral du faisceau plus important que ce qui était possible avec les réflecteurs antérieurs.Another object of the invention is to propose at the same time a reflector capable of providing a lateral spreading of the beam greater than what was possible with the prior reflectors.

Ainsi l'invention concerne tout d'abord un réflecteur pour un dispositif d'éclairage d'un véhicule automobile tel que défini dans la revendication 1.Thus the invention firstly relates to a reflector for a lighting device of a motor vehicle as defined in claim 1.

Un aspect préféré du réflecteur est exposé dans la revendication 2.A preferred aspect of the reflector is set out in claim 2.

Selon un deuxième aspect, l'invention concerne un projecteur pour véhicule automobile ayant les particularités de la revendication 3.According to a second aspect, the invention relates to a headlight for a motor vehicle having the features of claim 3.

La glace de fermeture peut être si on le souhaite sensiblement inclinée par rapport à la verticale et/ou par rapport à l'horizontale.The closing glass can be, if desired, substantially inclined relative to the vertical and / or relative to the horizontal.

Selon un autre aspect, l'invention concerne un feu de signalisation pour véhicule automobile tel que défini dans la revendication 5. Avantageusement, la glace comporte des moyens d'étalement du faisceau essentiellement en direction verticale seulement.According to another aspect, the invention relates to a signaling light for a motor vehicle as defined in claim 5. Advantageously, the lens comprises means for spreading the beam essentially in the vertical direction only.

En variante, il est proposé un feu de signalisation pour véhicule automobile tel que défini dans la revendication 7.As a variant, a signaling light for a motor vehicle is proposed as defined in claim 7.

Préférentiellement, la glace comporte des moyens d'étalement du faisceau essentiellement en direction horizontale seulement.Preferably, the lens comprises means for spreading the beam essentially in the horizontal direction only.

Dans l'un ou l'autre des feux ci-dessus, les moyens d'étalement sont préférentiellement constitués par des stries parallèles orientées perpendiculairement à la direction d'étalement.In one or other of the above lights, the spreading means are preferably constituted by parallel ridges oriented perpendicular to the direction of spreading.

D'autres aspects, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée suivante de formes de réalisation préférées de celle-ci, donnée à titre d'exemple non limitatif et faite en référence aux dessins annexés, sur lesquels:

  • la figure 1 est une vue de dos schématique permettant de comprendre la conception d'un réflecteur selon la présente invention,
  • la figure 2 est une vue en coupe horizontale axiale du réflecteur de la figure 1,
  • la figure 3 est une vue en coupe horizontale axiale d'une forme de réalisation concrète d'un réflecteur de l'invention, illustrant les trajets d'un certain nombre de rayons lumineux,
  • les figures 4a et 4b illustrent la répartition de la lumière obtenue au niveau de la glace, respectivement dans l'art antérieur et avec la présente invention,
  • les figures 5a, 5b à 8a, 8b illustrent par des courbes isolux des faisceaux obtenus, sur écran normalisé à 25 m, respectivement avec des réflecteurs de l'art antérieur et des réflecteur de la présente invention, en l'absence de glace,
  • les figures 9 et 10 illustrent deux modes de réalisation possibles d'un feu de signalisation réalisé conformément à la présente invention.
Other aspects, aims and advantages of the present invention will appear better on reading the following detailed description of preferred embodiments thereof, given by way of non-limiting example and made with reference to the accompanying drawings, in which :
  • FIG. 1 is a schematic rear view allowing the design of a reflector according to the present invention to be understood,
  • FIG. 2 is a view in axial horizontal section of the reflector of FIG. 1,
  • FIG. 3 is a view in axial horizontal section of a concrete embodiment of a reflector of the invention, illustrating the paths of a certain number of light rays,
  • FIGS. 4a and 4b illustrate the distribution of the light obtained at the level of the glass, respectively in the prior art and with the present invention,
  • FIGS. 5a, 5b to 8a, 8b illustrate by isolux curves of the beams obtained, on a screen standardized to 25 m, respectively with reflectors of the prior art and reflectors of the present invention, in the absence of ice,
  • Figures 9 and 10 illustrate two possible embodiments of a signaling light produced in accordance with the present invention.

On notera préliminairement que, d'une figure à l'autre, des éléments ou parties identiques ou similaires ont été désignés par les mêmes signes de référence.It will be noted at the outset that, from one figure to another, identical or similar elements or parts have been designated by the same reference signs.

On va maintenant décrire en détail, en termes mathématiques, un exemple préféré d'un réflecteur réalisé conformément à la présente invention.We will now describe in detail, in mathematical terms, a preferred example of a reflector produced in accordance with the present invention.

Le réflecteur, désigné par la référence 20, comporte au moins dans une région centrale une pluralité de zones réfléchissantes qui sont en l'espèce séparées les unes des autres par des plans verticaux parallèles à un axe optique défini par le réflecteur et désigné par Ox. Le rôle optique de ces zones sera expliqué plus loin.The reflector, designated by the reference 20, comprises at least in a central region a plurality of reflective zones which are in this case separated from each other by vertical planes parallel to an optical axis defined by the reflector and designated by Ox. The optical role of these zones will be explained later.

Comme on le verra en détail, chacune des zones se raccorde à sa voisine de façon continue a second ordre, c'est-à-dire que, de part et d'autre du plan de transition considéré, les plans tangents à la surface réfléchissante sont les mêmes. En d'autres termes, il n'existe aucun coude ou cassure dans la surface réfléchissante.As will be seen in detail, each of the zones is connected to its neighbor continuously in second order, that is to say that, on either side of the transition plane considered, the planes tangent to the reflecting surface are the same. In other words, there is no kink or break in the reflective surface.

On va tout d'abord définir les cotes en direction horizontale (selon l'axe horizontal transversal Oy tel qu'illustré) d'un certain nombre de plans verticaux parallèles à Ox:
   yGL et yDL sont les cotes d'extrémité, à gauche et à droite du centre du réflecteur, d'une région centrale du réflecteur réalisée selon l'invention;
   à ces cotes, les rayons réfléchis subissent une déviation horizontale nulle;
   yG 2 et yD 2 sont des cotes auxquelles les rayons réfléchis subissent une première déviation horizontale maximale;
   yG et yD sont des cotes auxquelles les rayons réfléchis subissent une déviation horizontale nulle; et
   yGM et yDM sont des cotes auxquelles les rayons réfléchis subissent une seconde deviation horizontale maximale.
We will first of all define the dimensions in the horizontal direction (along the transverse horizontal axis Oy as illustrated) of a certain number of vertical planes parallel to Ox:
y GL and y DL are the end dimensions, to the left and to the right of the center of the reflector, of a central region of the reflector produced according to the invention;
at these dimensions, the reflected rays undergo a zero horizontal deviation;
y G 2 and y D 2 are dimensions at which the reflected rays undergo a first maximum horizontal deviation;
y G and y D are dimensions at which the reflected rays undergo zero horizontal deviation; and
y GM and y DM are dimensions at which the reflected rays undergo a second maximum horizontal deviation.

Toutes les cotes ci-dessus sont exprimées par des nombres positifs.All of the above odds are expressed as positive numbers.

On va maintenant définir un certain nombre de paramètres, à choisir par le concepteur, intervenant pour la formulation mathématique du présent exemple de réalisation:
   ΘGF et ΘDF sont les angles de première déviation horizontale maximale des rayons réfléchis, de signes négatifs;
   ΘG et ΘD sont les angles de seconde déviation horizontale maximale des rayons réfléchis, de signes positifs;
   NB est un nombre réel positif sans dimension exprimant le degré de déformation (par rapport à une section parabolique) de la région centrale du réflecteur entre les cotes yG et yGL d'une part et les cotes yD et yDL d'autre part;
   NC est un nombre réel positif sans dimension exprimant le degré de déformation (par rapport à une section parabolique) de la région centrale entre yG et yD; et
   fG et fD sont des distances focales de base respectivement à gauche et à droite du sommet O du réflecteur.
We will now define a certain number of parameters, to be chosen by the designer, involved in the mathematical formulation of this example embodiment:
Θ GF and Θ DF are the angles of first maximum horizontal deviation of the reflected rays, of negative signs;
Θ G and Θ D are the angles of second maximum horizontal deviation of the reflected rays, of positive signs;
NB is a dimensionless positive real number expressing the degree of deformation (with respect to a parabolic section) of the central region of the reflector between the dimensions y G and y GL on the one hand and the dimensions y D and y DL on the other go;
NC is a dimensionless positive real number expressing the degree of deformation (with respect to a parabolic section) of the central region between y G and y D ; and
f G and f D are basic focal distances respectively to the left and to the right of the vertex O of the reflector.

On procède ensuite au calcul d'un premier groupe d'autres paramètres, comme suit: A GL = tg(Θ G )/2(y GM -y GL ) A DL = tg(Θ D )/2(y DM -y DL ) A GL1 = A GL /(y GM -y GL ) (NB-2) A DL1 = A DL /(y DM -y DL ) (NB-2) A G = -tg(Θ GF )/y G A D = -tg(Θ DF )/y G A G1 = -A G /(y G/2 ) (NC-2) A D1 = -A D /(y D/2 ) (NC-2)

Figure imgb0002
   On calcule ensuite quatre autres groupes de paramètres (en faisant intervenir, par souci de simplification, des paramètres intermédiaires AA, A, B et C à chaque fois différents):

  • a) calcul de xDECG, fGI, AGM et AGM1.
    On pose:
    Figure imgb0003
    A = 1 B = AA + f G C = AA.f G - (y GM )²/4 + (y GM ).(y GM -y G ).(NB+2)/8NB x DECG = (-B + √Δ)/2A avec Δ= B²-4AC f GI = f G + x DECG A GM = [y GM /2f G - y GM /2f GI + 2A GL .(y GM -y GL )]/2(y GM -y G ) A GM1 = A GM /(y GM -y G ) NB-2
    Figure imgb0004
  • b) calcul de xDECGI, fC, AGC et AGC1.
    On pose:
    Figure imgb0005
    A = 1 B = AA + f GI C = AA.f GI - (y G/2 )²/4 + (y G/2 )².(NC+2)/8NC x DECGI = (-B + √Δ)/2A avec Δ = B²-4AC f C = f GI - x DECGI A GC = [y G/2 /2f GI - y G 2 /2f C +2A G (y G/2 -y G )]/y G A GC1 = A GC /(y G/2 ) NC-2
    Figure imgb0006
  • c) calcul de xDECDI, fDI, ADC et ADC1.
    On pose:
    Figure imgb0007
    A = -1 B = AA - f C C = (y D/2 )²/4 - (y D 2 )².(NC+2)/8NC + AA.f C x DECDI = (-B - √ Δ)/2A avec Δ = B²-4AC f DI = f C + x DECDI A DC = y D/2 /2f DI - y D/2 /2f C + 2A D (y D/2 -y D )/y D A DC1 = A DC /(y D/2 ) NC-2
    Figure imgb0008
  • d) calcul de xDECGI, fC, AGC et AGC1.
    On pose:
    Figure imgb0009
    A = -1 B = AA - f DI C = (y DM )²/4 + AA.f DI - (y DM ).(y DM ).(y DM -y D ).(NB+2)/8NB x DECD = (-B - √Δ)/2A avec Δ = B²-4AC f D = f DI + x DECD A DM = [y DM /2f D - y DM /2f DI + 2A DL .(y DM -y DL )]/2(y DM -y D ) a DM1 = A DM /(y DM -y D ) NB-2 .
    Figure imgb0010
We then proceed to calculate a first group of other parameters, as follows: AT GL = tg (Θ G ) / 2 (y GM -y GL ) AT DL = tg (Θ D ) / 2 (y DM -y DL ) AT GL1 = A GL / (y GM -y GL ) (NB-2) AT DL1 = A DL / (y DM -y DL ) (NB-2) AT G = -tg (Θ GF ) / y G AT D = -tg (Θ DF ) / y G AT G1 = -A G / (y G / 2 ) (NC-2) AT D1 = -A D / (y D / 2 ) (NC-2)
Figure imgb0002
Four other groups of parameters are then calculated (using, for the sake of simplification, intermediate parameters AA, A, B and C each time different):
  • a) calculation of x DECG , f GI , A GM and A GM1 .
    We ask:
    Figure imgb0003
    A = 1 B = AA + f G C = AA.f G - (y GM ) ² / 4 + (y GM ). (y GM -y G ). (NB + 2) / 8NB x DECG = (-B + √Δ) / 2A with Δ = B²-4AC f GI = f G + x DECG AT GM = [y GM /2 F G - y GM /2 F GI + 2A GL (y GM -y GL )] / 2 (y GM -y G ) AT GM1 = A GM / (y GM -y G ) NB-2
    Figure imgb0004
  • b) calculation of x DECGI , f C , A GC and A GC1 .
    We ask:
    Figure imgb0005
    A = 1 B = AA + f GI C = AA.f GI - (y G / 2 ) ² / 4 + (y G / 2 ) ². (NC + 2) / 8NC x DECGI = (-B + √Δ) / 2A with Δ = B²-4AC f VS = f GI - x DECGI AT GC = [y G / 2 /2 F GI - y G 2 /2 F VS + 2A G (y G / 2 -y G )] / y G AT GC1 = A GC / (y G / 2 ) NC-2
    Figure imgb0006
  • c) calculation of x DECDI , f DI , A DC and A DC1 .
    We ask:
    Figure imgb0007
    A = -1 B = AA - f VS C = (y D / 2 ) ² / 4 - (y D 2 ) ². (NC + 2) / 8NC + AA.f VS x DECDI = (-B - √ Δ) / 2A with Δ = B²-4AC f DI = f VS + x DECDI AT DC = y D / 2 /2 F DI - y D / 2 /2 F VS + 2A D (y D / 2 -y D ) / y D AT DC1 = A DC / (y D / 2 ) NC-2
    Figure imgb0008
  • d) calculation of x DECGI , f C , A GC and A GC1 .
    We ask:
    Figure imgb0009
    A = -1 B = AA - f DI C = (y DM ) ² / 4 + AA.f DI - (y DM ). (y DM ). (y DM -y D ). (NB + 2) / 8NB x DECD = (-B - √Δ) / 2A with Δ = B²-4AC f D = f DI + x DECD AT DM = [y DM /2 F D - y DM /2 F DI + 2A DL (y DM -y DL )] / 2 (y DM -y D ) at DM1 = A DM / (y DM -y D ) NB-2 .
    Figure imgb0010

Quel que soit le type de faisceau à obtenir, l'équation de la surface réfléchissante fait intervenir un autre groupe encore de paramètres, dont les valeurs sont déterminées à partir des paramètres évoqués jusqu'à présent et varient selon la cote selon y, notée y₀, du point courant sur la génératrice horizontale représentée sur la figure 2 par rapport aux cotes des divers plans verticaux axiaux mentionnées plus haut. Cet autre groupe de paramètres comprend les paramètres α, α₁, β, β₁, f₀, xDIF, yS, yM, yL et N.Whatever type of beam to obtain, the equation of the reflecting surface involves yet another group of parameters, the values of which are determined from the parameters mentioned so far and vary according to the dimension according to y, denoted y₀ , from the current point on the horizontal generator represented in FIG. 2 with respect to the dimensions of the various axial vertical planes mentioned above. This other group of parameters includes the parameters α, α₁, β, β₁, f₀, x DIF , y S , y M , y L and N.

Les valeurs de ces paramètres en fonction de la cote y₀ du point courant sur la génératrice sont exprimées ci-dessous:

  • a) si |y₀| ≧ yGL α = 0   β = 0 α₁ = 0   β₁ = 0 f₀ = f G    y S = y G y M = y GM y L = y GL x DIF = 0 N = NB
    Figure imgb0011
  • b) si yGM ≦ |y₀| ≦ yGL α = A GL    β = 0 α₁ = A GL1    β₁ = 0 f₀ = f G    y S = y G y M = y GM y L = y GL x DIF = 0 N = NB
    Figure imgb0012
  • c) si yG ≦ |y₀| ≦ yGM α = 0   β = A GM α₁ = 0   β₁ = A GM1 f₀ = f GI    y S = y G y M = y GM y L = y GL x DIF = -x DECG N = NB
    Figure imgb0013
  • d) si yG/2 ≦ |y₀| ≦ yG α = A G    β = 0 α₁ = A G1    β₁ = 0 f₀ = f GI    y S = 0 y M = y G/2 y L = y G x DIF = -x DECG N = NC>
    Figure imgb0014
  • e) si |y₀| ≦ yG/2 α = 0   β = A GC α₁ = 0   β₁ = A GC1 f₀ = f C    y S = 0 y M = y G/2 y L = y G x DIF = -x DECG - x DECGI N = NC
    Figure imgb0015
  • f) si |y₀| ≧ yDL α = 0   β = 0 α₁ = 0   β₁ = 0 f₀ = f D    y S = y D y M = y DM y L = y DL x DIF = -x DECG - x DECGI - x DECD - x DECDI N = NB
    Figure imgb0016
  • g) si yDM ≦ |y₀| ≦ yDL α = A DL    β = 0 α₁ = A DL1    β₁ = 0 f₀ = f D    y S = y D y M = y DM y L = y DL x DIF = -x DECG - x DECGI - x DECD - x DECDI N = NB
    Figure imgb0017
  • h) si yD ≦ |y₀| ≦ yDM α = 0   β = A DM α₁ = 0   β₁ = A DM1 f₀ = f DI    y S = y D y M = y DM y L = y DL x DIF = -x DECG - x DECGI - x DECDI N = NB
    Figure imgb0018
  • i) si yD/2 ≦ |y₀| ≦ yD α = A D    β = 0 α₁ = A D1    β₁ = 0 f₀ = f DI    y S = 0 y M = y D/2 y L = y D x DIF = -x DECG - x DECGI - x DECDI N = NC
    Figure imgb0019
  • j) si |y₀| ≦ yD/2 α = 0   β = A DC α₁ = 0   β₁ = A DC1 f₀ = f C    y S = 0 y M = y D/2 y L = y D x DIF = -x DECG - x DECGI N = NC
    Figure imgb0020
   On va tout d'abord indiquer ci-dessous l'équation donnant la coordonnée x₀ du point courant en fonction de sa coordonnée y₀, c'est-à-dire l'équation de la génératrice dans le plan x0y d'un réflecteur selon cet exemple de réalisation: x₀ = y₀²/4f₀ + α₁.(|y₀|-y L ) N /N + α.(|y₀|-y L )²/2 + β.(|y₀|-y s )²/2 + β₁.(|y₀|-y s ) N /N + x DIF
Figure imgb0021
   On va maintenant donner les équations de différentes surfaces réfléchissantes selon l'invention, qui ont pour caractéristique d'être toutes basées sur la même génératrice horizontale de correspondre à différents faisceaux formés. Plus précisément, en gardant la même génératrice horizontale, on conserve les propriétés (détaillées plus loin) de répartition en largeur du faisceau, tandis qu'un profil- différent du réflecteur dans des plans verticaux va permettre de donner des faisceaux correspondant à différentes photométries requises (notamment faisceau de croisement européen ou américain, faisceau anti-brouillard ou encore faisceau de route).The values of these parameters as a function of the dimension y₀ of the current point on the generator are expressed below:
  • a) if | y₀ | ≧ y GL α = 0 β = 0 α₁ = 0 β₁ = 0 f₀ = f G y S = y G y M = y GM y L = y GL x DIF = 0 N = NB
    Figure imgb0011
  • b) if y GM ≦ | y₀ | ≦ y GL α = A GL β = 0 α₁ = A GL1 β₁ = 0 f₀ = f G y S = y G y M = y GM y L = y GL x DIF = 0 N = NB
    Figure imgb0012
  • c) if y G ≦ | y₀ | ≦ y GM α = 0 β = A GM α₁ = 0 β₁ = A GM1 f₀ = f GI y S = y G y M = y GM y L = y GL x DIF = -x DECG N = NB
    Figure imgb0013
  • d) if y G / 2 ≦ | y₀ | ≦ y G α = A G β = 0 α₁ = A G1 β₁ = 0 f₀ = f GI y S = 0 y M = y G / 2 y L = y G x DIF = -x DECG N = NC>
    Figure imgb0014
  • e) if | y₀ | ≦ y G / 2 α = 0 β = A GC α₁ = 0 β₁ = A GC1 f₀ = f VS y S = 0 y M = y G / 2 y L = y G x DIF = -x DECG - x DECGI N = NC
    Figure imgb0015
  • f) if | y₀ | ≧ y DL α = 0 β = 0 α₁ = 0 β₁ = 0 f₀ = f D y S = y D y M = y DM y L = y DL x DIF = -x DECG - x DECGI - x DECD - x DECDI N = NB
    Figure imgb0016
  • g) if y DM ≦ | y₀ | ≦ y DL α = A DL β = 0 α₁ = A DL1 β₁ = 0 f₀ = f D y S = y D y M = y DM y L = y DL x DIF = -x DECG - x DECGI - x DECD - x DECDI N = NB
    Figure imgb0017
  • h) if y D ≦ | y₀ | ≦ y DM α = 0 β = A DM α₁ = 0 β₁ = A DM1 f₀ = f DI y S = y D y M = y DM y L = y DL x DIF = -x DECG - x DECGI - x DECDI N = NB
    Figure imgb0018
  • i) if y D / 2 ≦ | y₀ | ≦ y D α = A D β = 0 α₁ = A D1 β₁ = 0 f₀ = f DI y S = 0 y M = y D / 2 y L = y D x DIF = -x DECG - x DECGI - x DECDI N = NC
    Figure imgb0019
  • j) if | y₀ | ≦ y D / 2 α = 0 β = A DC α₁ = 0 β₁ = A DC1 f₀ = f VS y S = 0 y M = y D / 2 y L = y D x DIF = -x DECG - x DECGI N = NC
    Figure imgb0020
We will first indicate below the equation giving the x₀ coordinate of the current point as a function of its y₀ coordinate, i.e. the equation of the generator in the x0y plane of a reflector according to this example of realization: x₀ = y₀² / 4f₀ + α₁. (| y₀ | -y L ) NOT / N + α. (| Y₀ | -y L ) ² / 2 + β. (| Y₀ | -y s ) ² / 2 + β₁. (| Y₀ | -y s ) NOT / N + x DIF
Figure imgb0021
We will now give the equations of different reflective surfaces according to the invention, which have the characteristic of being all based on the same horizontal generator to correspond to different beams formed. More precisely, by keeping the same horizontal generator, the beam width distribution properties are preserved (detailed below), while a profile different from the reflector in vertical planes will make it possible to give beams corresponding to different photometries required. (including European or American passing beam, anti-fog beam or high beam).

L'équation donnée ci-dessous est celle d'un réflécteur destiné à former une coupure horizontale plate, notamment pour un faisceau anti-brouillard, en coopération avec un filament axial décalé vers le haut par rapport à l'axe optique, tout en étant essentiellement tangent audit axe:

Figure imgb0022

S = α₁ (|y|-y L ) N /N + α (|y|-y L )²/2 + β₁(|y|-y s ) N /N + β (|y|-y S )²/2 + x DIF T = (|y|/y).[α₁(|y|-y L ) N-1 + α(|y|-y L ) + β₁(|y|-y S ) N-1 + β(|y|-y S ) ε Z = |z|/z ℓ = demi-longueur du filament 10.
Figure imgb0023
The equation given below is that of a reflector intended to form a flat horizontal cut, in particular for an anti-fog beam, in cooperation with an axial filament offset upward relative to the optical axis, while being essentially tangent to said axis:
Figure imgb0022

or S = α₁ (| y | -y L ) NOT / N + α (| y | -y L ) ² / 2 + β₁ (| y | -y s ) NOT / N + β (| y | -y S ) ² / 2 + x DIF T = (| y | / y). [Α₁ (| y | -y L ) N-1 + α (| y | -y L ) + β₁ (| y | -y S ) N-1 + β (| y | -y S ) ε Z = | z | / z ℓ = half-length of the filament 10.
Figure imgb0023

Il est à noter qu'à partir de l'équation ci-dessus, l'homme de l'art saura concevoir un réflecteur destiné par exemple à former un faisceau de croisement aux normes européennes. On se réfèrera en particulier aux brevets FR-A-2 536 502 et FR-A-2 599 121 au nom de la Demanderesse, dont les contenus respectifs sont incorporés à la présente description par référence, et qui indiquent la manière de combiner des surfaces de base auto-génératrices d'une coupure droite et des surfaces de type paraboloïdal pour former la coupure dite en "V".It should be noted that from the above equation, those skilled in the art will know how to design a reflector intended for example to form a passing beam according to European standards. Reference will be made in particular to patents FR-A-2 536 502 and FR-A-2 599 121 in the name of the Applicant, the respective contents of which are incorporated into the present description by reference, and which indicate the manner of combining surfaces basic self-generating of a straight cut and paraboloidal surfaces to form the cut called "V".

On peut noter par ailleurs qu'une équation convenant pour une lampe normalisée de type H4 s'obtient en posant simplement ℓ = 0 dans l'équation (2) ci-dessus.It can also be noted that an equation suitable for a standard H4 type lamp is obtained by simply setting ℓ = 0 in equation (2) above.

On va maintenant indiquer l'équation d'une surface réfléchissante destinée à être associée à un filament orienté transversalement (comme décrit notamment dans FR-A-2 602 305) pour former un faisceau délimité par une coupure essentiellement droite:

Figure imgb0024


S, T et ℓ sont comme défini ci-dessus, et ε YZ = |yz|/yz
Figure imgb0025
   Un tel réflecteur peut être utilisé avantageusement pour réaliser un projecteur antibrouillard à filament transversal, ou encore un projecteur code/route à filament transversal conforme aux règlementations américaines. D'autres détails de tels projecteurs sont décrits dans FR-A-2 602 305 et FR-A-2 602 306 au nom de la Demanderesse.We will now indicate the equation of a reflecting surface intended to be associated with a transversely oriented filament (as described in particular in FR-A-2 602 305) to form a beam delimited by an essentially straight cut:
Figure imgb0024

or
S, T and ℓ are as defined above, and ε YZ = | yz | / yz
Figure imgb0025
Such a reflector can advantageously be used to produce a fog light with a transverse filament, or even a code / road projector with a transverse filament in accordance with American regulations. Other details of such projectors are described in FR-A-2 602 305 and FR-A-2 602 306 in the name of the Applicant.

On a illustré sur la figure 3, en coupe horizontale axiale un exemple concret de réalisation d'un réflecteur de l'invention, ainsi que la projection verticale, dans le plan horizontal xOy, des trajets d'un certain nomhre de rayons lumineux issus des différentes zones du réflecteur. On peut observer le rôle joué par les différentes zones de la région centrale du réflecteur, et en particulier, de part et d'autre de l'axe central 0x et en s'éloignant de celui-ci:

  • les zones 201g et 201d, situées respectivement dans les intervalles [0,yG/2] et [0, yD/2], dont les rayons réfléchis passent progressivement d'une déviation horizontale nulle (fond du réflecteur) et une première déviation horizontale maximale divergente (respectivement ΘGF et ΘDF) à la cote respective yG/2, yD/2;
  • les zones 202g et 202d (intervalles respectifs [yG/2, yGM] et [yD/2, yDM]), dont les rayons réfléchis passent progressivement de ladite première déviation horizontale maximale à une seconde déviation horizontale maximale convergente, respectivement ΘG et ΘD, en passant par une déviation nulle aux cotes respectives yG et yD; et
  • les zones 203g et 203d (intervalles respectifs [yGM, yGL] et [yDM, yDL], dont les rayons réfléchis passent progressivement de ladite seconde déviation horizontale maximale à une déviation nulle.
Illustrated in Figure 3, in axial horizontal section a concrete embodiment of a reflector of the invention, as well as the vertical projection, in the horizontal plane xOy, paths of a certain number of light rays from different areas of the reflector. We can observe the role played by the different zones of the central region of the reflector, and in particular, on either side of the central axis 0x and moving away from it:
  • zones 201g and 201d, located respectively in the intervals [0, y G / 2 ] and [0, y D / 2 ], whose reflected rays progressively pass from a zero horizontal deviation (bottom of the reflector) and a first deviation divergent maximum horizontal (respectively Θ GF and Θ DF ) at the respective dimension y G / 2 , y D / 2 ;
  • zones 202g and 202d (respective intervals [y G / 2 , y GM ] and [y D / 2 , y DM ]), the reflected rays of which pass progressively from said first maximum horizontal deviation to a second maximum converging horizontal deviation, respectively Θ G and Θ D , passing through a zero deviation at the respective dimensions y G and y D ; and
  • the areas 203g and 203d (respective intervals [y GM , y GL ] and [y DM , y DL ], the reflected rays of which pass progressively from said second maximum horizontal deviation to zero deviation.

On peut démontrer aisément par calcul que les différentes zones mentionnées se raccordent entre elles avec continuité (dans le présent exemple une continuité au second ordre), ce qui facilite la réalisation d'un réflecteur moulé et minimise les anomalies optiques.It can be easily demonstrated by calculation that the different areas mentioned connect with each other with continuity (in this example a second order continuity), which facilitates the production of a molded reflector and minimizes optical anomalies.

On observe sur ces figures qu'aux cotes 0, yG, yD, yGL et yDL, les déviations sont bien nulles; par ailleurs, les déviations évoluent continûment entre ces valeurs nulles et les extréma ΘG, ΘF, ΘGF et ΘDF.We observe in these figures that at the dimensions 0, y G , y D , y GL and y DL , the deviations are very zero; moreover, the deviations evolve continuously between these zero values and the extremes Θ G , Θ F , Θ GF and Θ DF .

La région centrale du réflecteur, dans le cas où l'on souhaite que le faisceau obtenu comporte une tache de concentration centrale d'intensité lumineuse supérieure à un seuil donné (imposé par exemple par un règlement), est prolongée d'un côté ou des deux côtés par une ou deux zones dont le profil horizontal est parabolique (zones 204g et 204d), de manière à ce que tous les rayons réfléchis se propagent dans des plans verticaux essentiellement parallèles à l'axe optique 0x comme illustré. De telles zones latérales 204g, 204d sont dans la pratique utiles pour un réflecteur de projecteur, tandis qu'elles peuvent être omises pour les feux de signalisation, dans lesquels une forte concentration ponctuelle dans l'axe n'est en général pas nécessaire.The central region of the reflector, in the case where it is desired that the beam obtained comprises a spot of central concentration of light intensity greater than a given threshold (imposed for example by a regulation), is extended on one side or two sides by one or two zones whose horizontal profile is parabolic (zones 204g and 204d), so that all the reflected rays propagate in vertical planes essentially parallel to the optical axis 0x as illustrated. Such lateral zones 204g, 204d are in practice useful for a headlamp reflector, while they can be omitted for signaling lights, in which a high point concentration in the axis is generally not necessary.

On observe également sur la figure 3 que les rayons lumineux au niveau de la glace de fermeture 30 sont bien dispersés. Plus précisément, il apparaît que la glace n'est le siège d'aucune convergence ou concentration excessive de rayons lumineux. On a représenté sur les figures 4a et 4b à ce sujet des courbes isolux mesurées sur la glace, correspondant respectivement à un réflecteur de conception classique (parabole associée à une lampe normalisée H4) et à un réflecteur de la présente invention. Pour chaque courbe est indiquée la valeur correspondante en kilolux. L'intensité lumineuse maximale obtenue est de 142 kilolux dans l'art antérieur, et de 92 kilolux avec la présente invention.It is also observed in FIG. 3 that the light rays at the level of the closing glass 30 are well dispersed. More precisely, it appears that the ice is not the seat of any excessive convergence or concentration of light rays. FIGS. 4a and 4b have shown on this subject isolux curves measured on the ice, corresponding respectively to a reflector of conventional design (parabola associated with a standard lamp H4) and to a reflector of the present invention. For each curve is indicated the corresponding value in kilolux. The maximum light intensity obtained is 142 kilolux in the prior art, and 92 kilolux with the present invention.

Une telle réduction significative de l'intensité du pic central de lumière diminue également l'échauffement de la glace à cet endroit, et permet d'utiliser des glaces en matière plastique moulée, quine risqueront pas de s'échauffer et de se déformer.Such a significant reduction in the intensity of the central peak of light also decreases the heating of the ice at this location, and allows the use of molded plastic glass, which will not risk heating up and deforming.

De retour à la figure 3, on observe également que le trajet des rayons réfléchis est tel pou'il permet l'incorporation d'un cache de lumière directe connu en soi, désigné par la référence 11 et représenté schématiquement en tiretés, sans qu'aucun des rayons réfléchis ne soit intercepté par ce cache.Returning to FIG. 3, it is also observed that the path of the reflected rays is such that it allows the incorporation of a direct light mask known per se, designated by the reference 11 and shown diagrammatically in dashed lines, without that none of the reflected rays is intercepted by this cache.

Enfin on notera que l'on a défini des jeux de paramètres différents (avec indices respectivement. "G" et "D" pour les parties gauche et droite du réflecteur; ceci permet de concevoir un réflecteur asymétrique si nécessaire; mais dans une forme de réalisation particulière, les paramètres à gauche et à droite peuvent être identiques.Finally, it will be noted that we have defined sets of different parameters (with indices respectively. "G" and "D" for the left and right parts of the reflector; this makes it possible to design an asymmetrical reflector if necessary; but in a form of particular implementation, the parameters on the left and on the right can be identical.

Pour illustrer les avantages de la présente invention en matière de largeur et d'homogénéité de faisceau, on a représenté sur les dessins, par des courbes isolux, divers types de faisceaux tels qu'ils se présentent en l'absence de la glace de fermeture:

  • la figure 5b illustre un faisceau de croisement obtenu avec un réflecteur selon l'invention et le filament de croisement occulté d'une lampe normalisée H4, tandis qu'à titre de comparaison, la figure 5a illustre le faisceau obtenu avec le même filament et un réflecteur parabolique de l'art antérieur;
  • la figure 6b montre un faisceau de route obtenu avec le même réflecteur que pour la figure 5b et le filament de route de la lampe H4, tandis que la figure 6a montre le faisceau de route obtenu avec le réflecteur paraboliqe conventionnel;
  • la figure 7b représente un faisceau anti-brouillard obtenu avec un filament axial et le réflecteur de l'invention, la figure 7a montrant quant à elle le faisceau obtenu avec le même filament et le réflecteur conventionnel décrit dans FR-A-2 536 503 de la Demanderesse;
  • la figure 8b représente le faisceau obtenu avec un filament transversal et un réflecteur selon l'invention, tandis que la figure 8a représente le faisceau correspondant, convenant pour un projecteur antibrouillard ou un projecteur de croisement aux normes américaines, avec un ensemble réflecteur/lampe décrit dans FR-A-2 602 305 ou FR-A-2 602 306.
To illustrate the advantages of the present invention in terms of beam width and homogeneity, the drawings show, by isolux curves, various types of beams as they appear in the absence of the closing glass. :
  • FIG. 5b illustrates a passing beam obtained with a reflector according to the invention and the passing filament obscured by a standard lamp H4, while for comparison, FIG. 5a illustrates the beam obtained with the same filament and a parabolic reflector of the prior art;
  • FIG. 6b shows a driving beam obtained with the same reflector as for FIG. 5b and the driving filament of the lamp H4, while FIG. 6a shows the driving beam obtained with the conventional parabolic reflector;
  • FIG. 7b represents an anti-fog beam obtained with an axial filament and the reflector of the invention, FIG. 7a showing the beam obtained with the same filament and the conventional reflector described in FR-A-2 536 503 of the Applicant;
  • FIG. 8b represents the beam obtained with a transverse filament and a reflector according to the invention, while FIG. 8a represents the corresponding beam, suitable for a fog light or a dipped beam projector according to American standards, with a reflector / lamp assembly described in FR-A-2 602 305 or FR-A-2 602 306.

Les tracés des diverses courbes isolux sont à considérer comme incluses dans la présente description.The plots of the various isolux curves are to be considered as included in the present description.

On observe pour chacun des faisceaux obtenus avec des réflecteurs de l'invention une bonne homogénéité et une largeur très importante. Comme déjà expliqué plus haut, le travail à effectuer par la glace en largeur est donc réduit, voire inexistant, si bien que l'emploi d'une glace même fortement inclinée (45° ou davantage) n'induit aucun rabattement indésirable du faisceau vers ses bords.For each of the beams obtained with reflectors of the invention, good homogeneity and a very large width are observed. As already explained above, the work to be carried out by the glass in width is therefore reduced, or even nonexistent, so that the use of a glass even strongly inclined (45 ° or more) does not induce any undesirable bending of the beam towards its edges.

Maintenant en référence aux figures 9 et 10, on va décrire des feux de signalisation pouvant utiliser les principes de la présente invention.Now with reference to FIGS. 9 and 10, a description will be given of signaling lights which can use the principles of the present invention.

Un feu de signalisation comprend classiquement une lampe incorporant un filament 10, un réflecteur 20 et un globe de fermeture 30. Dans ce genre de feu connu, le réflecteur et du genre parabolique, et des billes essentiellement sphériques sont prévues sur la surface du globe pour assurer une dispersion convenable du faisceau formé afin de satisfaire à des exigences photométriques d'ordre règlementaire. Plus précisément, les billes assurent une dispersion vers le haut et vers le bas ainsi que latéralement vers la gauche et vers la droite, pour que le feu apparaisse avec me intensité lumineuse satisfaisante lorsqu'il est observé en biais par rapport à l'axe optique xx.A signaling light conventionally comprises a lamp incorporating a filament 10, a reflector 20 and a closing globe 30. In this kind of known light, the reflector and of the parabolic kind, and essentially spherical balls are provided on the surface of the globe for ensure proper dispersion of the beam formed in order to meet photometric regulatory requirements. More specifically, the balls provide dispersion upwards and downwards as well as laterally to the left and to the right, so that the fire appears with satisfactory light intensity when viewed at an angle to the optical axis. xx.

Selon l'invention, on utilise par exemple un réflecteur du type décrit plus haut afin de réaliser l'étalement du faisceau dans une direction (horizontale ou verticale), tandis que l'on utilise le globe pour effectuer l'étalement du faisceau dans l'autre direction (verticale ou horizontale).According to the invention, for example a reflector of the type described above is used in order to spread the beam in one direction (horizontal or vertical), while using the globe to spread the beam in the 'other direction (vertical or horizontal).

Ainsi, grâce à cet aspect de l'invention, puisque le globe ne doit effectuer un étalement que dans une direction, on peut utiliser sur celui-ci non plus des billes, mais des stries, horizontales ou verticales. Cet aspect de l'invention est particulièrement intéressant notamment sur le plan esthétique, les critères actuels imposant de façon croissante l'utilisation de globes d'aspect strié dans un sens ou dans l'autre. Avec un feu selon l'invention, ceci peut être obtenu sans nécessiter de modification importante des composants du feu, donc sans en accroître sensiblement le prix de revient.Thus, thanks to this aspect of the invention, since the globe must only spread in one direction, one can use on it no longer balls, but streaks, horizontal or vertical. This aspect of the invention is particularly interesting in particular from an aesthetic point of view, the current criteria increasingly requiring the use of globes of striated appearance in one direction or the other. With a lamp according to the invention, this can be obtained without requiring significant modification of the components of the lamp, therefore without significantly increasing the cost price.

Ainsi la figure 9 représente un feu dont le réflecteur 20 assure un étalement du faisceau en direction horizontale (angles d'étalement ΘH), tandis que le globe 30 est équipé par exemple sur sa surface intérieure de stries horizontales 31, notamment cylindriques, qui assurent l'étalement en direction verticale selon les angles d'étalement ΘV.Thus, FIG. 9 represents a light, the reflector 20 of which spreads the beam in a horizontal direction (spreading angles Θ H ), while the globe 30 is equipped for example on its internal surface with horizontal ridges 31, in particular cylindrical, which spread in a vertical direction according to the spreading angles Θ V.

Sur la figure 10, le réflecteur est conçu pour étaler le faisceau verticalement (angles ΘV) tandis que le globe 30 comporte des stries verticales 31 pour effectuer l'étalement horizontal selon les angles ΘH. Un tel se marie particulièrement bien avec un projecteur comportant sur sa glace des stries verticales.In Figure 10, the reflector is designed to spread the beam vertically (angles Θ V ) while the globe 30 has vertical streaks 31 to perform the horizontal spreading at angles Θ H. Such goes particularly well with a projector with vertical streaks on its lens.

De préférence, mais non exclusivement, on utilise pour réaliser le réflecteur les concepts tels que décrits plus haut, car on a alors l'avantage d'obtenir une répartition de la lumière extrêmement homogène au niveau du globe. Dans le cas de la figure 10, ces concepts s'appliquent à rune rotation de 90° près, obtenue simplement par permutation des coordonnées x et y.Preferably, but not exclusively, the concepts as described above are used to make the reflector, since there is then the advantage of obtaining an extremely homogeneous distribution of light at the level of the globe. In the case of figure 10, these concepts apply to a rotation of 90 ° near, obtained simply by permutation of the coordinates x and y.

Cela étant, d'autres réflecteurs capables d'offrir un étalement dans une direction et d'éclairer le globe de façon relativement homogène peuvent bien entendu être utilisés sans sortir du cadre de l'invention.However, other reflectors capable of offering a spread in one direction and of illuminating the globe relatively homogeneously can of course be used without departing from the scope of the invention.

Concrètement, des réflecteurs selon la présente invention peuvent être réalisés par usinage d'un moule à l'aide d'un appareil de fabrication assistée par ordinateur, programmé de façon appropriée et dans lequel on aura introduit les paramètres de base nécessaires après en avoir choisi les valeurs.Concretely, reflectors according to the present invention can be produced by machining a mold using a computer-aided manufacturing apparatus, appropriately programmed and into which the basic parameters necessary will have been introduced after having chosen them. values.

Bien entendu, la présente invention n'est nullement limitée à la forme de réalisation décrite ci-dessus et représentée sur les dessins, mais l'homme de l'art saura y apporter toute variante ou modification comprise dans le cadre des revendications.Of course, the present invention is in no way limited to the embodiment described above and shown in the drawings, but those skilled in the art will be able to make any variant or modification included within the scope of the claims.

Claims (9)

  1. A reflector (20) for a motor vehicle lighting device designed to be associated with a light source (10) to form a beam of given configuration, the reflector comprising a plurality of zones that are separated from one another by planes that are essentially vertical and parallel to an optical axis defined by said reflector, and that join one another without discontinuity, said zones comprising, on either side of a central vertical plane (x0z) and going away therefrom:
       a first zone (201g, 201d) in which the reflected rays pass progressively with increasing distance from said central vertical plane, from zero horizontal deflection to a first maximum horizontal deflection (ϑGF, ϑDF);
       a second zone (202g, 202d) in which the reflected rays pass progressively, with increasing distance from said central vertical plane, from said first maximum horizontal deflection to a converging second maximum horizontal deflection (ϑG, ϑD), passing locally through zero horizontal deflection; and
       a third zone (203g, 203d) in which the reflected rays pass progressively, with increasing distance from said central vertical plane, from said second maximum horizontal deflection to zero horizontal deflection,
       the reflector being characterized in that said first maximum horizontal deflection (ϑGF, ϑGD) is diverging deflection.
  2. A reflector according to claim 1, characterized in that it further comprises, on at least one side of said central vertical plane, a fourth zone (204g, 204d) that does not deflect light rays significantly in a horizontal direction.
  3. A motor vehicle headlight characterized in that it comprises a light source (10), a reflector (20) according to claim 2, and a closure glass (30) that deflects light little or not at all in a horizontal direction, the reflector also being suitable for deflecting light rays in a vertical direction so as to bring them beneath a cutoff.
  4. A motor vehicle headlight according to claim 3, characterized in that the closure glass (30) is significantly inclined relative to the vertical and/or relative to the horizontal.
  5. A motor vehicle signalling light of the type comprising a light source (10), a reflector (20), and a closure glass (30), characterized in that the reflector is implemented according to claim 1 or 2.
  6. A signalling light according to claim 5, characterized in that the glass includes spreading means (31) for spreading the beam essentially in a vertical direction only.
  7. A motor vehicle signalling light of the type comprising a light source (10), a reflector (20), and a closure globe (30), characterized in that the reflector includes a plurality of zones that are separated from one another by planes that are essentially horizontal and parallel to an optical axis defined by said reflector, and that join one another without discontinuity, and in that said zones comprise, on either side of a central horizontal plane and going away therefrom:
       a first zone in which the reflected rays pass progressively with increasing distance from said horizontal plane, from zero vertical deflection to a diverging first maximum vertical deflection;
       a second zone in which the reflected rays pass progressively, with increasing distance from said central horizontal plane, from said first maximum vertical deflection to a converging second maximum vertical deflection, passing locally through zero vertical deflection; and
       a third zone in which the reflected rays pass progressively with increasing distance from said central horizontal plane, from said second maximum vertical deflection to zero vertical deflection.
  8. A signalling light according to claim 7, characterized in that the glass includes spreading means (31) for spreading the beam essentially in a horizontal direction only.
  9. A signalling light according to claim 6 or 8, characterized in that the spreading means are constituted by parallel stripes (31) extending perpendicularly to the spreading direction.
EP91401951A 1990-07-13 1991-07-12 Reflector for a lighting device of an automotive vehicle, and headlight and signal light incorporating such a reflector Expired - Lifetime EP0466605B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9008964 1990-07-13
FR9008964A FR2664677A1 (en) 1990-07-13 1990-07-13 REFLECTOR FOR A LIGHTING DEVICE OF A MOTOR VEHICLE, AND PROJECTOR AND SIGNALING LIGHT INCORPORATING SUCH A REFLECTOR.

Publications (2)

Publication Number Publication Date
EP0466605A1 EP0466605A1 (en) 1992-01-15
EP0466605B1 true EP0466605B1 (en) 1995-08-23

Family

ID=9398699

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91401951A Expired - Lifetime EP0466605B1 (en) 1990-07-13 1991-07-12 Reflector for a lighting device of an automotive vehicle, and headlight and signal light incorporating such a reflector

Country Status (4)

Country Link
EP (1) EP0466605B1 (en)
DE (1) DE69112312T2 (en)
ES (1) ES2079599T3 (en)
FR (1) FR2664677A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240594C2 (en) * 1992-03-02 2002-10-24 Bosch Gmbh Robert Motor vehicle headlights, in particular fog lights, with horizontal light intensity distribution
US5584573A (en) * 1992-03-02 1996-12-17 Robert Bosch Gmbh Method of producing headlight for vehicle and headlight produced thereby
DE29519938U1 (en) * 1995-12-15 1996-02-15 Zizala Lichtsysteme Gmbh Double reflector headlights
FR2751051B1 (en) * 1996-07-11 1998-11-06 Valeo Vision MOTOR VEHICLE PROJECTOR COMPRISING A DIRECT LIGHT COVER WITH VERTICAL SUPPORT ARM AND AN ADAPTED MIRROR
FR2755748B1 (en) * 1996-11-08 1999-01-29 Valeo Vision MOTOR VEHICLE PROJECTOR COMPRISING A DISCHARGE LAMP WITH BUSHES AND A MULTI-ZONE REFLECTOR
EP0847894B1 (en) 1996-12-16 2003-05-02 Valeo Vision Vehicle headlight with reflector control device
FR2760067B1 (en) * 1997-02-21 1999-05-14 Valeo Vision MOTOR VEHICLE HEADLIGHT WITH MIRROR WITH LATERALLY JUXTAPOSED ZONES, AND METHOD FOR MANUFACTURING SUCH A MIRROR
FR2760068B1 (en) * 1997-02-21 1999-05-14 Valeo Vision MOTOR VEHICLE PROJECTOR WITH MIRROR WITH SIDE-BY-SIDE ZONES, AND METHOD FOR MANUFACTURING SUCH A MIRROR
FR2760070B1 (en) * 1997-02-21 1999-05-28 Valeo Vision PROJECTOR COMPRISING A TWO-FILAMENT LAMP FOR GENERATING A CUT BEAM AND AN UNCUT BEAM
FR2763666B1 (en) * 1997-05-23 1999-08-13 Valeo Vision MOTOR VEHICLE PROJECTOR WITH WIDE BEAM GENERATOR AND WINDOW GLASS
FR2776366B1 (en) 1998-03-19 2000-06-30 Valeo Vision TURNING PROJECTOR FOR A MOTOR VEHICLE, CAPABLE OF EMITTING DIFFERENT BEAMS
FR2767904B1 (en) * 1997-09-03 1999-11-26 Valeo Vision MOTOR VEHICLE HEADLIGHT MIRROR FOR BENDS, AND HEADLIGHT INCORPORATING THE SAME
FR2769687B1 (en) 1997-10-13 2000-03-03 Valeo Vision LEFT AND RIGHT MOTOR VEHICLE ASSEMBLY WITH IMPROVED PHOTOMETRIC PROPERTIES
FR2774150B1 (en) 1998-01-28 2000-04-14 Valeo Vision CROSS-SOURCE PROJECTOR FOR A MOTOR VEHICLE, LIKELY TO TRANSMIT A BEAM WITH A CLEAR CUT
FR2774149B1 (en) 1998-01-28 2000-04-14 Valeo Vision MOTOR VEHICLE HEADLIGHT, INCLUDING A CROSS-SECTIONAL SOURCE, AND CAPABLE OF GENERATING A BEAM WITH NON-RECTILLINE CUT
FR2774151B1 (en) 1998-01-28 2000-04-14 Valeo Vision MOTOR VEHICLE PROJECTOR WITH VIRTUAL LIGHT SOURCE
FR2777976B1 (en) 1998-04-23 2000-06-09 Valeo Vision VARIABLE BEAM PROJECTOR, PARTICULARLY FOR VEHICLES, AND ASSEMBLY OF PROJECTORS OF THIS TYPE
FR2794845B1 (en) 1999-06-08 2001-08-17 Valeo Vision PROJECTOR EQUIPPED WITH A DOUBLE SOURCE LAMP, IN PARTICULAR ROAD CROSSING PROJECTOR FOR A MOTOR VEHICLE
JP4031600B2 (en) * 1999-10-01 2008-01-09 株式会社小糸製作所 Method for determining reflecting surface of reflector for vehicle lamp
FR2803014B1 (en) * 1999-12-23 2002-05-24 Valeo Vision MOTOR VEHICLE SIGNAL LIGHT, PARTICULARLY FOG LIGHT, WITH IMPROVED COMPACITY AND LIGHTING RANGE
FR2803566B1 (en) 2000-01-07 2002-05-24 Valeo Vision SIGNAL LIGHT CAPABLE OF GENERATING AN INCLINED FLOW, FOR A MOTOR VEHICLE
FR2818210B1 (en) 2000-12-20 2003-04-11 Valeo Vision ROTATING PROJECTOR FOR A MOTOR VEHICLE COMPRISING A TWO-SOURCE LAMP
JP2002245814A (en) * 2001-02-20 2002-08-30 Koito Mfg Co Ltd Method of determining reflective face of reflecting mirror of luminaire for vehicle and luminaire for vehicle
FR2837908B1 (en) 2002-03-28 2004-06-11 Valeo Vision LIGHTING PROJECTOR EQUIPPED WITH A SWIVEL ELLIPTICAL REFLECTOR AND A FIXED LENS FOR THE REALIZATION OF A TURNING BEAM

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2609148B1 (en) * 1986-12-30 1991-07-12 Cibie Projecteurs MOTOR VEHICLE PROJECTOR COMPRISING A REFLEXER WITH A MODIFIED BOTTOM COMPLEX SURFACE
DE68917198T2 (en) * 1988-05-09 1994-11-17 Ichikoh Industries Ltd Headlights for motor vehicles.
FR2634003B1 (en) * 1988-07-05 1991-05-24 Cibie Projecteurs MOTOR VEHICLE PROJECTOR WITH MULTI-ZONE REFLECTOR AND METHOD FOR SMOOTHING SUCH A REFLECTOR
JPH0810561B2 (en) * 1988-11-30 1996-01-31 市光工業株式会社 Headlight optics

Also Published As

Publication number Publication date
FR2664677A1 (en) 1992-01-17
FR2664677B1 (en) 1994-04-22
ES2079599T3 (en) 1996-01-16
DE69112312D1 (en) 1995-09-28
EP0466605A1 (en) 1992-01-15
DE69112312T2 (en) 1996-01-18

Similar Documents

Publication Publication Date Title
EP0466605B1 (en) Reflector for a lighting device of an automotive vehicle, and headlight and signal light incorporating such a reflector
EP1762776B1 (en) Method for the manufacturing of a module or a vehicle headlamp
EP0373065B1 (en) Motor vehicle headlight comprising a reflector with a complex surface including modified intermediary zones
EP3147557B1 (en) Primary optical element for lighting module of a vehicle
EP2871406B1 (en) Primary optical element, lighting module and headlight for motor vehicle
EP0250284B1 (en) Dipped headlamp without a cap and having an offset concentration
EP0312442B1 (en) Low profile main-beam headlamp for motor vehicles with a large recuperation of light
EP0250313B1 (en) Additional headlamp to a dipped headlamp for a motor vehicle
EP0256930B1 (en) Fog lamp with transverse filament for motor vehicles
EP1870633A1 (en) Headlight module with light-emitting diode
FR2609148A1 (en) Motor vehicle lamp comprising a reflector with complex surface and modified base
EP0628765B1 (en) Vehicle headlamp with ellipsoidal type light reflector
EP0645578B1 (en) Projector with smooth cover lens, particularly for vehicles, and manufacturing process for the reflector of same
FR2609146A1 (en) Motor vehicle headlamp comprising a parabolic reflector with modified base
FR2760070A1 (en) PROJECTOR COMPRISING A TWO-FILAMENT LAMP FOR GENERATING A CUT BEAM AND AN UNCUT BEAM
FR2583139A1 (en) CROSSING PROJECTOR FOR MOTOR VEHICLE
FR2602306A1 (en) CROSS-ROAD PROJECTOR WITH TWO TRANSVERSAL FILAMENTS FOR MOTOR VEHICLE
FR2634003A1 (en) Motor vehicle headlamp with multizone reflector and method for smoothing such a reflector
FR2773604A1 (en) ELLIPTICAL PROJECTOR FOR A MOTOR VEHICLE
EP0933586B1 (en) Vehicle headlight comprising a transversal source and able to generate a V-shaped cut-off
EP0736726B1 (en) Motor vehicle headlamp producing a light pattern delimited by two parallel cut-off lines offset in the height
EP1400748A1 (en) Vehicle headlamp having a mirror and an associated deflection element capable of producing a beam with a non-horizontal cut-off
FR2614247A1 (en) Signalling light with wide illumination plane and high performance, for a motor vehicle
WO2023006673A1 (en) Light module for vehicle headlight
FR2782149A1 (en) Dipped and full beam headlamp assembly includes dual filament lamp with multiple zone mirror offering cut-off beam and full axial beam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19920309

17Q First examination report despatched

Effective date: 19931008

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VALEO VISION

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 69112312

Country of ref document: DE

Date of ref document: 19950928

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079599

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070711

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070717

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070710

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070719

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080712

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080714