EP0464165A1 - Höchstdruckplungerpumpe. - Google Patents
Höchstdruckplungerpumpe.Info
- Publication number
- EP0464165A1 EP0464165A1 EP91901687A EP91901687A EP0464165A1 EP 0464165 A1 EP0464165 A1 EP 0464165A1 EP 91901687 A EP91901687 A EP 91901687A EP 91901687 A EP91901687 A EP 91901687A EP 0464165 A1 EP0464165 A1 EP 0464165A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sleeve
- pressure plunger
- insert body
- plunger pump
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007789 sealing Methods 0.000 claims abstract description 17
- 238000000926 separation method Methods 0.000 claims description 2
- 210000001503 joint Anatomy 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 4
- 238000004140 cleaning Methods 0.000 abstract 1
- 239000003317 industrial substance Substances 0.000 abstract 1
- 230000000284 resting effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 230000007704 transition Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
- F04B53/162—Adaptations of cylinders
- F04B53/166—Cylinder liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0436—Iron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0448—Steel
Definitions
- the invention relates to an ultra-high pressure plunger pump, each with a pressure and suction valve arranged coaxially to the cylinder axis and with a floating bearing on the plunger and at its end facing the pump head on a sleeve supporting a valve seat surface for the suction valve body and with suction channels , wherein the sleeve is equipped with a sliding bush and the suction valve is designed as a plate valve, the suction valve body of which is designed as a ring is spring-loaded and is supported on the valve seat surface from which the suction channels originate, of the insert body fixed in the pump head.
- a high-pressure plunger pump of this type is known (US Pat. No. 4,174,194), in which the sleeve tapers conically on the inside at the end facing the pump head and the sliding bushing for the plunger extends only over the cylindrical part of the sleeve.
- This version can be used up to working pressures of approx. 1,000 bar. At higher working pressures, the hydraulic force acting on the end face of the slide bushing is so great that it overcomes the adhesive force between the slide bushing and the sleeve and displaces them against one another, which leads to malfunctions.
- Press medium can also get between the sliding bush and the sleeve, so that the sliding bush is pressed onto the plunger, which likewise leads to failures.
- the invention is based on the object of designing a high-pressure plunger pump of the type mentioned at the outset such that it operates at the highest working pressures in the pressure range from 2,000 to 4,000 bar in the transition region from the sleeve to the insert body with a relatively low load on the material of the Sleeve and the insert body works.
- the slide bushing for the plunger extends to the end of the sleeve facing the pump head, rests with its end face against the insert body and in the flow channel delimited by the slide bushing and the insert body, the abutment surface between the Insert body and the sleeve overlapping sealing sleeve is arranged.
- the arrangement of the sealing sleeve means that the surface pressure in the area of the abutting surface between the insert body and the sleeve surrounding the plunger is very low, since the pressure of the conveying medium acts only on a small annular surface of the sliding bush in the direction of the abutting surface. If this sealing sleeve is not available, the strength limits of the materials are quickly reached even when using the highest quality steels at the high working pressures mentioned, since a very high surface pressure is required for sealing on the butt surface.
- the sealing sleeve also ensures that no pressure medium can escape through the joint between the front end of the sleeve surrounding the plunger and the insert body, so that the wear of the above-mentioned components delimiting the stop joint is prevented by escaping pressure medium.
- FIG. 1 shows a maximum pressure plunger pump in longitudinal section and FIG. 2 shows a partial enlargement from FIG. 1.
- the high-pressure plunger pump shown in FIG. 1 essentially consists of a pump housing 1, a pump head 2 connected to the pump housing, a suction valve 4 and pressure valve 5 arranged coaxially to the cylinder axis 3, and a sleeve 7 floating on the plunger 6, a sliding bushing g is arranged in the cylindrical bore 8 thereof. The plunger 6 moves back and forth in this sliding bush.
- the sliding bush 9 extends over the entire length of the sleeve 7.
- the sliding bush In the range of movement of the plunger 6, the sliding bush has an inner diameter D, while the inner diameter of the sliding bush in the region of the sleeve end facing the pump head is d.
- the area ratio of the corresponding diameters of D and d is approximately 1: 0.9.
- At the transition of the sliding bush from the inner diameter D to the inner diameter d there is a hydraulically effective surface 10 on which the working pressure of the conveying medium is loaded during the delivery stroke, so that the sliding bush 9 is pressed onto the abutment surface 11 of an insert body 12 with a force thereby achieved.
- This abutting surface 11 delimits an abutting joint with the end surface 13 of the sliding bush 9 and the end surface 14 of the sleeve 7, which is overlapped by a sealing sleeve 15 inserted into the flow channel delimited by the sliding bush 9 and the insert body 12.
- the sealing sleeve 15 has conical end faces 16, 17.
- the part of the sealing sleeve 15 projecting into the insert body 12 is received by a recess extending from the abutment surface 11, which tapers conically on the side facing away from the sleeve 7 to form a through-flow channel 18 of smaller diameter.
- the angles in the insert body 12 and the sealing sleeve 15 are designed such that the first annular contact between the sealing sleeve 15 and the insert body 12 takes place at position 19. Furthermore, the diameters of the sliding bush 9 and the sealing sleeve 15 are designed such that an annular seal takes place at position 20.
- the pump head 2 consists of the parts 21 and 22 which are interconnected by screws 23 and the housing 1. Between the parts 21 and 22 there is a separation plane 24 extending at right angles to the cylinder axis 3.
- the part 22 of the pump head 2 facing the housing 1 has a bearing surface 25 for an annular flange 26 of the insert body 12.
- the insert body 12 is provided with suction channels 27 which extend from a valve seat surface 28 of the plate-shaped infant body 29 to extend to the lower boundary surface of the ring flange 26 and open into a ring channel 30 delimited by the insert body 12 and the part 22 of the pump head 2 facing the housing 1.
- At least one leakage channel 31 extends from the support surface 25 of the part 22 to the suction chamber 32.
- a negative pressure is generated in the cylindrical working chamber 8 of the pump, so that the conveyed medium can flow from the suction chamber 32 through the suction channels 27 into the working chamber of the pump when the suction valve body 29 is lifted off.
- the suction valve body closes the suction channels 27 under spring action.
- the pumped medium flows through the channel 18 to the pressure valve 5, lifts the valve body 33 from the valve seat and reaches the channel 34 leading to the consumer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Reciprocating Pumps (AREA)
- Electromagnetic Pumps, Or The Like (AREA)
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4001335A DE4001335C1 (en) | 1990-01-18 | 1990-01-18 | High-pressure plunger pump - incorporates adjustable sleeve and disc-types inlet valve |
| DE4001335 | 1990-01-18 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0464165A1 true EP0464165A1 (de) | 1992-01-08 |
| EP0464165B1 EP0464165B1 (de) | 1993-07-28 |
Family
ID=6398313
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP91901687A Expired - Lifetime EP0464165B1 (de) | 1990-01-18 | 1991-01-11 | Höchstdruckplungerpumpe |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US5147189A (de) |
| EP (1) | EP0464165B1 (de) |
| JP (1) | JPH04504455A (de) |
| DE (2) | DE4001335C1 (de) |
| WO (1) | WO1991010830A1 (de) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0692631A1 (de) * | 1994-07-12 | 1996-01-17 | Hammelmann Maschinenfabrik GmbH | Auf dem Plunger einer Hochdruckplungerpumpe schwimmend gelagerte Hülse |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4200536A1 (de) * | 1992-01-11 | 1993-07-15 | Paul Hammelmann | Hochdruckplungerpumpe, vorzugsweise fuer arbeitsdruecke oberhalb 2.000 bar |
| US5733108A (en) * | 1996-05-28 | 1998-03-31 | White Consolidated Industries, Inc. | Hermetic refrigeration compressor |
| US20030172972A1 (en) * | 2002-03-06 | 2003-09-18 | Ingersoll-Rand Company | Replaceable check valve seats |
| RU2247262C2 (ru) * | 2003-05-19 | 2005-02-27 | Федеральное государственное унитарное предприятие Российский Федеральный Ядерный Центр-Всероссийский Научно-исследовательский институт технической физики им. акад. Е.И. Забабахина (РФЯЦ- ВНИИТФ) | Плунжерный насос сверхвысокого давления |
| US8287256B2 (en) * | 2007-11-01 | 2012-10-16 | Caterpillar Inc. | Valve assembly |
| US20150211641A1 (en) | 2014-01-24 | 2015-07-30 | Gardner Denver Water Jetting Systems, Inc. | Valve cartridge assembly with a suction valve in line with a discharge valve and a suction valve seat circumscribing an inlet which the suction valve covers |
| DE102016106376A1 (de) * | 2016-04-07 | 2017-10-12 | Hammelmann GmbH | Hochdruck-Rotordüse |
| CH714354A2 (de) * | 2017-11-17 | 2019-05-31 | Mvt Micro Verschleiss Technik Ag | Düsenvorrichtung für ein Fluid, Verfahren zur Herstellung einer Düsenvorrichtung sowie Kit, umfassend einen Rotor und eine Hohlnadel für eine Düsenvorrichtung. |
| US12188458B2 (en) * | 2019-11-18 | 2025-01-07 | Kerr Machine Co. | Fluid end assembly |
| US12403621B2 (en) | 2019-12-20 | 2025-09-02 | Hypertherm, Inc. | Motorized systems and associated methods for controlling an adjustable dump orifice on a liquid jet cutting system |
| US11867171B2 (en) * | 2021-02-04 | 2024-01-09 | Yantai Jereh Petroleum Equipment & Technologies Co., Ltd. | Fluid splitter in a fluid end or plunger pump |
| US20250122866A1 (en) * | 2023-10-12 | 2025-04-17 | Gd Energy Products, Llc | Counterflow guide for fluid end |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE471279C (de) * | 1927-03-22 | 1929-02-09 | Sulzer Akt Ges Geb | Mehrstufiger Kolbenkompressor |
| US3114326A (en) * | 1961-09-07 | 1963-12-17 | Aldrich Pump Company | Plunger type pump especially for high pressure |
| DK114873B (da) * | 1967-08-10 | 1969-08-11 | Burmeister & Wains Mot Mask | Brændselsindsprøjtningspumpe til forbrændingsmotorer. |
| US3526246A (en) * | 1968-02-26 | 1970-09-01 | Burckhardt Ag Maschf | Concentric suction and delivery valve for high pressure compressors and pumps |
| US3659967A (en) * | 1970-05-27 | 1972-05-02 | Kobe Inc | Hydraulic intensifier |
| US3801234A (en) * | 1973-05-14 | 1974-04-02 | Exxon Production Research Co | Fluid end for a plunger pump |
| US3891356A (en) * | 1973-11-21 | 1975-06-24 | Armco Steel Corp | Fluid guide plunger system |
| DE2631217C3 (de) * | 1976-07-12 | 1980-07-10 | Paul 4740 Oelde Hammelmann | Hochdruckplungerpumpe |
| DE3523387A1 (de) * | 1985-06-29 | 1987-01-08 | Paul Hammelmann | Hochdruckplungerpumpe |
-
1990
- 1990-01-18 DE DE4001335A patent/DE4001335C1/de not_active Expired - Fee Related
-
1991
- 1991-01-11 DE DE9191901687T patent/DE59100224D1/de not_active Expired - Fee Related
- 1991-01-11 EP EP91901687A patent/EP0464165B1/de not_active Expired - Lifetime
- 1991-01-11 WO PCT/DE1991/000020 patent/WO1991010830A1/de not_active Ceased
- 1991-01-11 US US07/743,286 patent/US5147189A/en not_active Expired - Fee Related
- 1991-01-11 JP JP3502025A patent/JPH04504455A/ja active Pending
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9110830A1 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0692631A1 (de) * | 1994-07-12 | 1996-01-17 | Hammelmann Maschinenfabrik GmbH | Auf dem Plunger einer Hochdruckplungerpumpe schwimmend gelagerte Hülse |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH04504455A (ja) | 1992-08-06 |
| EP0464165B1 (de) | 1993-07-28 |
| US5147189A (en) | 1992-09-15 |
| DE59100224D1 (de) | 1993-09-02 |
| WO1991010830A1 (de) | 1991-07-25 |
| DE4001335C1 (en) | 1991-01-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0188730B1 (de) | Membranpumpe mit hydraulisch angetriebener Rollmembran | |
| EP0057288B1 (de) | Zweizylinder-Dickstoffpumpe, vorzugsweise Betonpumpe mit einem von einer zylinderseitigen Brillenplatte abwechselnd schwenkenden Schaltorgan | |
| EP2049794B1 (de) | Dicht- und führungseinrichtung für einen kolben einer kolbenpumpe | |
| DE69512302T2 (de) | Erosionsbeständiges Hochdruckentlastungsventil | |
| EP0464165A1 (de) | Höchstdruckplungerpumpe. | |
| DE2219445C2 (de) | Hochdruckventil | |
| DE69814111T2 (de) | Anordnung von kolbendichtungen für eine hochdruckpumpe | |
| AT400973B (de) | Einrichtung zum abdichten von oszillierend bewegten plungern bzw. kolben von hochdruckpumpen oder rotierenden wellen von hochdruckapparaturen | |
| EP1179149B1 (de) | Dichtungsvorrichtung für einen mit druckmittel beaufschlagten kolben in einem arbeitszylinder | |
| DE102021111688A1 (de) | Multimedientaugliche Drehdurchführung | |
| DE3319821C2 (de) | ||
| DE2204162B2 (de) | Spaltdichtung für die Abdichtung hin- und hergehender Maschinenteile | |
| EP1319878B1 (de) | Rückschlagventil | |
| EP0505352B1 (de) | Anordnung zum Abdichten von beweglichen Teilen von Hochdruckeinrichtungen | |
| DE69832505T2 (de) | Kupplung für eine hochdruckpumpe | |
| DE3004798A1 (de) | Hydraulische bremsanlage | |
| EP4334621A1 (de) | Multimedientaugliche drehdurchführung und verfahren zum betreiben einer solchen | |
| EP0425567B1 (de) | Rohrweiche einer zweizylinder-dickstoffpumpe | |
| EP0551590A1 (de) | Hochdruckplungerpumpe, vorzugsweise für Arbeitsdrücke oberhalb 2000 bar | |
| DE9006558U1 (de) | Höchstdruckplungerpumpe | |
| DE8717850U1 (de) | Hochdruckplungerpumpe | |
| DE2460344A1 (de) | Hydraulischer druckerzeuger | |
| DE1503390A1 (de) | Hydraulische Membranpumpe | |
| DE3040800A1 (de) | Hydroventil | |
| DE3225131A1 (de) | Kraftstoffeinspritzduese |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19910716 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
| 17Q | First examination report despatched |
Effective date: 19930108 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB LI NL |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI NL |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930803 |
|
| REF | Corresponds to: |
Ref document number: 59100224 Country of ref document: DE Date of ref document: 19930902 |
|
| ET | Fr: translation filed | ||
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19971224 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980109 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19980122 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980129 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19980130 Year of fee payment: 8 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990111 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990131 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990801 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19990111 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991103 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |