EP0464094B1 - Trägheitsschalter - Google Patents

Trägheitsschalter Download PDF

Info

Publication number
EP0464094B1
EP0464094B1 EP90905177A EP90905177A EP0464094B1 EP 0464094 B1 EP0464094 B1 EP 0464094B1 EP 90905177 A EP90905177 A EP 90905177A EP 90905177 A EP90905177 A EP 90905177A EP 0464094 B1 EP0464094 B1 EP 0464094B1
Authority
EP
European Patent Office
Prior art keywords
diaphragm
chamber
inertia switch
switch
switch structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90905177A
Other languages
English (en)
French (fr)
Other versions
EP0464094A1 (de
Inventor
John Edward Cook
Kerry Drew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Canada Ltd
Original Assignee
Siemens Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/326,825 external-priority patent/US4902861A/en
Priority claimed from US07/482,715 external-priority patent/US4973804A/en
Application filed by Siemens Automotive Ltd filed Critical Siemens Automotive Ltd
Publication of EP0464094A1 publication Critical patent/EP0464094A1/de
Application granted granted Critical
Publication of EP0464094B1 publication Critical patent/EP0464094B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/14Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch
    • H01H35/141Details
    • H01H35/142Damping means to avoid unwanted response
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/14Switches operated by change of acceleration, e.g. by shock or vibration, inertia switch

Definitions

  • This invention relates to an inertia switch.
  • Supplemental inflatable restraint devices that are used in automobiles are activated by inertia switches. These switches sense predetermined deceleration characteristics and provide switch closure signals to the devices when such predetermined characteristics are sensed.
  • the predetermined deceleration characteristic that creates switch closure is a function of both the magnitude of deceleration and its duration.
  • the ability of a switch to sense a predetermined deceleration characteristic is determined by the switch design. In order to embody this design in production switches, manufacturing tolerances must be closely controlled.
  • An inertia switch of this type is described in U.S. 4,329,549.
  • the predetermined deceleration characteristic that will activate the switch is a function of several parameters. One of these parameters is the closeness of the fit of the sphere within the tube. Controlling the accuracy of this fit in production switches is a significant portion of the switch cost.
  • inertia switch Another known type of inertia switch is described in EP-A-0 145 186. It suggests the possibility of using an orifice to control the response of the inertial mass, such orifice being used to control the flow of air into a variable volume space that is attempted to be expanded in response to a deceleration force applied to the switch.
  • the variable volume space is cooperatively defined by two parts whose peripheries are unconstrained and separate when the deceleration is sufficiently great to call for switch actuation.
  • the present invention relates to an inertia switch which does not utilize the tube and sphere construction and for that reason offers the potential for reducing costs associated with the production of inertia switches for supplemental inflatable restraints while still attaining a specified degree of accuracy in such switches.
  • the inventive inertia switch is distinguished from that of EP-A-0 145 186 in that it comprises a diaphragm whose peripheral margin is captured on the casing so that the diaphragm divides the casing into two chambers that are communicated by a control orifice.
  • the central region of the diaphragm is displaced in response to deceleration with the flow between the two chambers being controlled by the control orifice to damp the motion.
  • one embodiment of a switch embodying principles of the invention comprises a casing containing a diaphragm-that divides the casing into two chambers.
  • the diaphragm can move axially within the casing.
  • An electrical contact is carried by the face of the diaphragm that bounds one chamber. Terminals are disposed in that chamber in the path of travel of the electrical contact as the diaphragm moves toward that chamber.
  • the face of the diaphragm that is toward the other chamber carries a mass since the electrical contact may be insufficient by itself to provide enough mass for the diaphragm.
  • the diaphragm is constructed such that the electrical contact is biased out of contact with the terminals, and this represents the off condition of the switch.
  • the electrical contact In response to an axial force urging the mass, diaphragm, and electrical contact toward the terminals, the electrical contact will be forced to make contact with the terminals provided that a predetermined deceleration characteristic is exceeded. This represents the closed condition of the switch, whereby the switch provides a signal to an associated supplemental inflatable restraint system.
  • the predetermined deceleration characteristic that causes switch closure is a function not just of the diaphragm and the mass that it carries, but also of a control orifice.
  • the control orifice is provided in an orifice structure passing through the electrical contact, the diaphragm, and the mass, and serving to communicate each chamber to the other.
  • the casing is constructed and arranged such that air must be forced through the control orifice as the diaphragm, the mass, and the electrical contact move toward the terminals, and accordingly, the control orifice performs a timing function that forms a part of the predetermined deceleration characteristic to which the switch is responsive.
  • control orifice is in the electrical contact.
  • the orifice can be formed quite accurately in the electrical contact by known methods, and in this way the timing function can be economically incorporated in production switches with the required degree of accuracy.
  • Another embodiment that is provided by the present invention is that one that is endowed with a low profile, thereby making it more compact, yet without detracting from functional and calibration capabilities.
  • a further improvement is that an electromagnetic coil for performing a testing function can be incorporated into the inertia switch in an efficient manner.
  • a still further improvement is that means can be incorporated to provide for the switched vacuum testing of the switch.
  • Yet another feature is the diaphragm construction.
  • Fig. 1 is a cross-sectional view through an inertia switch embodying principles of the invention.
  • Fig. 2 is a fragmentary view looking in the direction of arrows 2-2 in Fig. 1.
  • Fig. 3 is a fragmentary view looking in the direction of arrows 3-3 in Fig. 1.
  • Fig. 4 is a cross-sectional view through another embodiment of inertia switch.
  • Fig. 5 is a cross-sectional view through a further embodiment of inertia switch.
  • Fig. 6 is a plan view of an alternate form of diaphragm.
  • Fig. 7 is a plan view illustrating a component part of the diaphragm of Fig. 6 by itself.
  • Fig. 8 is an axial cross sectional view through another inertia switch embodying principles of the invention.
  • Fig. 9 is a fragmentary sectional view taken along line 9-9 in Fig. 8.
  • An inertia switch 10 comprises the following parts: a plastic base 12; a metal cover 14; a metal diaphragm 16; a metal mass 18; an electrical contact 20; a pair of electrical terminals 22, 24; an electromagnetic coil 26; and an adjustment screw 28.
  • the axis is designated by the numeral 30.
  • Base 12 is fabricated by molding plastic material around the body of coil 26 and intermediate portions of terminals 22, 24. Lead wires (not shown) from the body of coil 26 are connected to addition electrical terminals (not shown) so that the coil can be selectively energized from an external source for testing the inertia switch in a manner to be more fully explained in the ensuing description.
  • Base 12 has a circular opening which is closed by cover 14.
  • the peripheral margins of cover 14 and diaphragm 16 are also circular with the three parts 12, 14, and 16 being shaped such that in assembly the entire margin of diaphragm 16 is captured between cover 14 and base 12 in a sealed manner. This creates two internal chambers 32 and 34 on opposite sides of diaphragm 16.
  • Diaphragm 16 has a central hole 36 which passes a very short neck 38 of mass 18.
  • the diaphragm and mass are united in a sealed manner so that gas cannot pass between chambers 32 and 34 via the fitting of neck 38 to hole 36.
  • the bulk of mass 18 lies within chamber 34.
  • Diaphragm 16 is inherently biased to have a concave-convex shape that is convex toward chamber 32.
  • Cover 14 has a similar shape that is concave toward chamber 32. Together they cooperatively define a thin concave-convex shape for chamber 32 thereby endowing the inertia switch with a low axial profile.
  • Mass 18 is securely joined to diaphragm 16 in any suitable manner so that the two form a unit.
  • electrical contact 20 is securely affixed to the face of mass 18 that is opposite diaphragm 16 so that the exposed face of the contact is toward terminals 22, 24. It may be desirable for the exposed contact face to contain a thin gold plating 40 for making contact with terminals 22, 24 when the switch is actuated.
  • the diaphragm, mass, and electrical contact are constructed to have coaxial symmetry about axis 30.
  • Orifice means 42 is provided to establish fluid communication between chamber 32 and 34.
  • Orifice means 42 is coaxial with axis 30 and takes the form of a control orifice 44 through contact 20 and a larger orifice 46 through mass 18.
  • the latter orifice has a circular segment extending from the former and a frusto-conical segment extending from the circular segment.
  • the frusto-conical segment forms a seat for the rounded distal end of calibration screw 28 that is threaded into a central circular sleeve 50 that is formed integrally with cover 14.
  • the diaphragm is constructed so as to be inherently biased away from terminals 22, 24 and toward cover 14, theoretical seating contact between screw 48 and the frusto-conical section of orifice 46 would occur on a circular line of contact that is concentric with axis 30.
  • the distal end of screw 28 contains a diametrical slot 52 such that when the screw is seated, the slot interrupts the circular line of contact between the screw and seat. The axial position of screw 28 establishes an axial distance between contact 20 and terminals 22, 24 for calibrating the switch.
  • the inertia switch operates in the following manner. When subjected to a certain deceleration force characteristic along axis 30, the diaphragm, mass, and contact will be displaced from the position illustrated in Fig. 1 to a position where contact 20 bridges terminals 22, 24 to create electrical circuit continuity between them. The requirement that the gas (air, for example) in the ensealed chamber 34 pass through the control orifice as the volume of chamber 34 contracts, imparts damping to the motion. The switch therefore gives a switch signal via terminals 22, 24.
  • Base 12 includes a stop 54 that limits the overtravel so that excessive flexing of terminals 22, 24 is avoided.
  • Mass 18 is a ferromagnetic material so that it, along with the diaphragm and contact, will be displaced to the signal-giving position when coil 26 is suitably energized. This is a useful test feature.
  • the switch of Fig. 4 is similar to that of Fig. 1 and therefore, like reference numerals will be used to designate corresponding parts but a detailed description will be omitted in the interest of conciseness.
  • the switch of Fig. 4 also includes a nipple 60 that provides communication to chamber space 34.
  • a tubular hose (not shown) is fitted over the exposed exterior end of nipple 60.
  • the opposite end of the hose leads to a switched vacuum source.
  • vacuum is not communicated to chamber space 34.
  • the vacuum switch is opened to communicate vacuum to chamber space 34.
  • the pressure differential acting across the diaphragm causes the diaphragm to be displaced downwardly from the positions shown in Fig. 4 in a sufficient amount that contacts 22 and 24 are bridged by the conductive layer 40 on mass 18.
  • the capability for testing the inertia switch via switched vacuum can be additional to the electromagnetic test capability afforded by coil 26 or it can be in substitution of the electromagnetic test capability.
  • a further difference between the inertia switch of Fig. 4 and that of Fig. 1 is that cover 14 contains no provision for acceptance of screw 28. Proper calibration is attained by means of a diametrically precise control orifice 44 that passes completely through the mass communicating chamber spaces 32 and 34. Such a precise aperture could provide a less costly construction for the inertia switch. Technology exists for creating precision holes and an appropriate form of such technology may be employed.
  • inertia switch illustrated in Fig. 5 differs from that of Fig. 4 in that the vacuum test feature provided by nipple 60 is omitted.
  • This embodiment includes a coil spring for biasing the diaphragm in any situation where the diaphragm does not have an inherent bias or else whatever inherent bias it has, is less than desired.
  • the spring is shown to act between mass 18 and an internal shoulder of base 12.
  • Figs. 6 and 7 illustrate an alternate embodiment of diaphragm that comprises a two-part construction.
  • the diaphragm comprises a webbed support member 64 that is either press-fitted or insert-molded with respect to a rubber element 66.
  • Bias for the diaphragm may be obtained either inherently by the diaphragm construction, or alternately by inclusion of a coil spring such as the coil spring 62 of Fig. 6. Where the diaphragm has an inherent bias, such inherent bias may be imparted by the webbed support, the material being steel by way of example.
  • Figs. 8 and 9 show an inertia switch 110 that comprises a casing 112 containing a diaphragm 114 that divides the casing into two chambers 116, 118.
  • the face of diaphragm 114 that is toward chamber 118 carries an electrical contact 120 which is centrally disposed on that face of the diaphragm.
  • the opposite face of the diaphragm carries a mass 122.
  • Diaphragm 114 is constructed of a metal, such as stainless steel, and designed to bias the diaphragm toward chamber 116 where mass 122 is in abutment with a stop 124.
  • electrical contact 120 will be displaced axially by the diaphragm and into bridging contact with a pair of electrical terminals 126, 128 having interior ends disposed within chamber 118.
  • Contact 120 is an electrically conductive metal, and preferably includes a thin coating 130 of a material such as gold across the face that makes contact with terminals 126, 128.
  • a pair of posts 132, 134 project axially from the inside of the end wall of casing 112 to form stops that abut contact 120 to arrest the displacement of the diaphragm after terminals 126, 128 have been bridged by contact 120.
  • the two chambers 116, 118 are communicated by orifice means 136.
  • the orifice means passes from chamber 118 centrally through electrical contact 120, through diaphragm 114 and through mass 122.
  • holes 138 are provided in stop 124 as shown.
  • the orifice means 136 includes a control orifice 140 formed in electrical contact 120.
  • the two chambers are constructed and arranged such that when the switch is subjected to axial deceleration force that displaces the diaphragm, mass, and contact toward the terminals, a pressure differential is created between the two chambers causing air to be forced through the orifice means, including the control orifice.
  • control orifice creates a means for controlling the timing of the switch closure, in other words the amount of dampening the diaphragm motion.
  • the predetermined deceleration characteristic that will be effective to operate the switch to the closed condition is a function not only of the diaphragm, the mass, and the electrical contact but also of the control orifice.
  • control orifice will be quite small but can be formed into the electrical contact by conventional procedures that are used to create small, but very accurate holes. These procedures can be economically conducted.
  • the switch parts can be fabricated by conventional manufacturing processes, and the switch itself is not especially complicated. Therefore, a worthwhile improvement on manufacturing costs can be obtained without sacrificing performance characteristics of an inertia switch.
  • the stop 124 can be made axially adjustable as shown, to provide a certain degree of calibration. It is also contemplated that the diaphragm can be constructed with an over-center effect, such as occurs in a conical washer, to impart the desired bias.
  • switch closure depends both upon the magnitude of force applied to the switch and also the duration of force application, and that will be true for the switch of the present invention.

Landscapes

  • Switches Operated By Changes In Physical Conditions (AREA)

Claims (13)

  1. Trägheitsschalter mit einem Gehäuse (12,14; 112), einer das Gehäuse in zwei Kammern (32, 34; 116, 118) derart unterteilenden Membran (16; 114), daß ein Umfangsrand der Membran am Gehäuse gehalten und ein Zentralbereich der Membran im Gehäuse axial verschiebbar ist, mit Öffnungsmitteln (42; 120) für den Durchtritt von Gas aus der einen in die andere Kammer, elektrischen Kontaktanschlüssen (22, 24, 126, 128) in einer Kammer im axialen Verschiebungsweg der Zentralbereichs der Membran, wobei die beiden Kammern, die Membran und die Anschlüsse derart angeordnet sind, daß beim Auftreten einer axialen Kraft bestimmter Größe und Dauer am Trägheitsschalter der Zentralbereich der Membran axial im Gehäuse in eine Kammer hinein und in Kontakt mit den Anschlüssen verschoben wird, um ein das Auftreten der axialen Kraft darstellendes Signal an den Anschlüssen bereitzustellen und wobei die Öffnungsmittel (42; 120) eine Steueröffnung (44; 140) aufweisen, durch die Gas aus der einen Kammer herausgetrieben wird, wenn der Zentralbereich der Membran in die eine Kammer hineinverschoben wird und wobei die Steueröffnung (44,140) die Bewegung des Zentralbereichs der Membran zu den Anschlüssen dämpft.
  2. Trägheitsschalter nach Anspruch 1, bei dem die Membran (16;114) derart aufgebaut ist, daß ihr Zentralbereich in axialer Richtung weg von den Anschlüssen von Natur aus vorgespannt ist.
  3. Trägheitsschalter nach Anspruch 2, bei dem die Membran eine Masse (18; 122) aufweist, die vom Zentralbereich der Membran auf der der anderen Kammer zugekehrten Seite getragen ist, wobei die Öffnungsmittel die Masse durchsetzen.
  4. Trägheitsschalter nach Anspruch 3, mit einem Anschlag (28; 124) für die Anlage der Masse zur Begrenzung des Hubes für den Zentralbereich der Membran weg von den Anschlüssen.
  5. Trägheitsschalter nach Anspruch 3, mit Mitteln (28, 124) zwischen dem Gehäuse und der Membran zum Ausbilden eines Anschlags, der den bestand begrenzt, um den der Zentralbereich der Membran von den Anschlüssen weg vorgespannt ist.
  6. Trägheitsschalter nach Anspruch 1, bei dem die Öffnungsmittel (42;120) zur Verbindung der einen Kammer mit der anderen Kammer derart vorgesehen sind, daß Gas aus der einen Kammer durch die Öffnungsmittel in die andere Kammer getrieben wird, wenn der Zentralbereich der Membran auf die Anschlüsse zu axial verlagert wird.
  7. Trägheitsschalter nach Anspruch 1, bei dem die Öffnungsmittel die Membran durchsetzen.
  8. Trägheitsschalter nach Anspruch 7, wobei die Steueröffnungsmittel in einem elektrischen Kontaktstückbereich der Membran liegen.
  9. Trägheitsschalter nach Anspruch 1, bei dem das Gehäuse von einer Kunststoffbasis mit einem offenen kreisförmigen Ende und einem das Ende verschließenden kreisförmigen Deckel gebildet ist, die Membran einen kreisförmigen Umfangsrand hat, der Deckel und die Basis zusammen den gesamten Umfangsrand der Membran fassen und halten, mindestens der größere Teil einer an der Membran angebrachten Masse in deren Zentralbereich insgesamt in der einen Kammer angeordnet ist und der kreisförmige Deckel eine Wandung aufweist, die gegenüber der anderen Kammer konkav ist und bei dem die Membran eine Wandung aufweist, die gegenüber der anderen Kammer konvex ist, wobei der Deckel und die Membran zueinander so angeordnet sind, daß die andere Kammer für den nah beabstandeten nebeneinanderliegenden konkaven und konvexen Wänden gebildet ist, um einen schmalen konkav-konvexen Querschnitt zu erhalten, wenn der Trägheitsschalter keine Axialkraft erfährt.
  10. Trägheitsschalter nach Anspruch 9, mit einem Anschlag zum Einstellen einer Begrenzung für den Abstand der weg von den Anschlüssen vorgespannten Membran, wobei der Anschlag am Deckel einstellbar angeordnet ist, um einen Teil der Masse zu erfassen, die über eine Öffnung in der Membran dem Anschlag zugekehrt ist, wobei der Teil der Masse einen Sitz aufweist, an dem ein distaler Teil des Anschlags aufsitzt und mit Öffnungsmittel in dem distalen Teil des Anschlags, der einen Teil der Öffnungsmittel bildet, wenn der distale Teil des Anschlags auf dem Sitz aufsitzt.
  11. Trägheitsschalter nach Anspruch 9, mit einer vollständig in der Kunststoffbasis eingebetteten elektromagnetischen Spule (26), die im erregten Zustand die Masse anzieht und zum elektrischen Testen des Schalters die Anschlußmittel betätigt.
  12. Trägheitsschalter nach Anspruch 1, mit Anschlußmitteln (60) zur Verbindung der einen Kammer mit einer geschalteten Unterdruckquelle zum Erzeugen eines Druckunterschieds an der Membran derart, daß die elektrischen Anschlußmittel betätigt werden, wenn die Unterdruckquelle in der einen Kammer einen Unterdruck erzeugt und damit zum Testen des Trägheitsschalters verwendet wird.
  13. Trägheitsschalter nach Anspruch 1, wobei die Membran aus einer mit Stegen versehenen Stütze (64) besteht, die von einem gasundurchlässigen Material in der einen Kammer abgedeckt ist.
EP90905177A 1989-03-20 1990-03-19 Trägheitsschalter Expired - Lifetime EP0464094B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US07/326,825 US4902861A (en) 1989-03-20 1989-03-20 Inertia switch
US326825 1989-03-20
US07/482,715 US4973804A (en) 1990-02-26 1990-02-26 Low profile inertia switch
US482715 1995-06-07

Publications (2)

Publication Number Publication Date
EP0464094A1 EP0464094A1 (de) 1992-01-08
EP0464094B1 true EP0464094B1 (de) 1993-08-25

Family

ID=26985588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90905177A Expired - Lifetime EP0464094B1 (de) 1989-03-20 1990-03-19 Trägheitsschalter

Country Status (6)

Country Link
EP (1) EP0464094B1 (de)
JP (1) JPH04504186A (de)
KR (1) KR920700463A (de)
CA (1) CA2049062A1 (de)
DE (1) DE69002944T2 (de)
WO (1) WO1990011607A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104061A (ja) * 1990-08-23 1992-04-06 Takata Kk 加速度センサ
US5118908A (en) * 1990-11-06 1992-06-02 Trw Technar Inc. Gas damped deceleration switch
US5109143A (en) * 1990-11-21 1992-04-28 Trw Technar Inc. Gas damping control assembly for deceleration switch

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB727034A (en) * 1952-03-19 1955-03-30 Pyrene Co Ltd Improvements in devices responsive to rates of change of acceleration
GB1064060A (en) * 1964-09-02 1967-04-05 Ensor Alexander Bryant Improved deceleration and stop light signalling equipment for motor vehicles
US4536629A (en) * 1983-11-03 1985-08-20 Technar, Incorporated Gas damped acceleration switch

Also Published As

Publication number Publication date
WO1990011607A1 (en) 1990-10-04
JPH04504186A (ja) 1992-07-23
DE69002944D1 (de) 1993-09-30
EP0464094A1 (de) 1992-01-08
KR920700463A (ko) 1992-02-19
CA2049062A1 (en) 1990-09-21
DE69002944T2 (de) 1994-03-17

Similar Documents

Publication Publication Date Title
US4816627A (en) Fluid damped acceleration sensor
CA1232592A (en) Proportional solenoid valve
US4368366A (en) Pneumatically operated device with valve and switch mechanisms
US4875499A (en) Proportional solenoid valve
US4715396A (en) Proportional solenoid valve
US4691185A (en) Solid state magnetic microswitch
US5608270A (en) Vehicle safety restraint system with linear output impact sensor
US4813647A (en) Electromagnetic actuator for controlling fluid flow
US4902861A (en) Inertia switch
EP0464094B1 (de) Trägheitsschalter
WO1981000274A1 (en) Contactless pressure sensitive switch
US4973804A (en) Low profile inertia switch
US5770792A (en) Shock sensors
JPH0416333Y2 (de)
US4947887A (en) Proportional solenoid valve
US4342894A (en) Electrical switch construction diaphragm seal therefor and methods of making the same
JP3478997B2 (ja) 比例制御弁
US4238651A (en) Snap action fluid pressure switch
US3717734A (en) Pressure rate change responsive diaphragm switch with relatively hard rebound prevention member on diaphragm
US4191870A (en) Pressure responsive switch having protection from overpressure of source
JPH097477A (ja) 圧力スイッチ
US4604793A (en) Method of making a control device
US4941254A (en) Method for producing a motion transmitting and amplifying device
US5574266A (en) Device for enhancing contact closure time of a deceleration sensor switch for use in a vehicle occupant restraint system
JPH0355225Y2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19920929

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69002944

Country of ref document: DE

Date of ref document: 19930930

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940319

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST