EP0463566B1 - Method and device for estimating the shots on a target - Google Patents

Method and device for estimating the shots on a target Download PDF

Info

Publication number
EP0463566B1
EP0463566B1 EP91110143A EP91110143A EP0463566B1 EP 0463566 B1 EP0463566 B1 EP 0463566B1 EP 91110143 A EP91110143 A EP 91110143A EP 91110143 A EP91110143 A EP 91110143A EP 0463566 B1 EP0463566 B1 EP 0463566B1
Authority
EP
European Patent Office
Prior art keywords
target
hole
shot
shot hole
scanner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91110143A
Other languages
German (de)
French (fr)
Other versions
EP0463566A1 (en
EP0463566B2 (en
Inventor
Sepp Albrecht
Rolf Giesel
Rudolf Wiedemann
Georg Huscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DISAG INTERNATIONAL JUERGEN SPILLER
Original Assignee
DISAG INTERNATIONAL JUERGEN SPILLER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6409286&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0463566(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DISAG INTERNATIONAL JUERGEN SPILLER filed Critical DISAG INTERNATIONAL JUERGEN SPILLER
Priority to DE9116709U priority Critical patent/DE9116709U1/en
Publication of EP0463566A1 publication Critical patent/EP0463566A1/en
Application granted granted Critical
Publication of EP0463566B1 publication Critical patent/EP0463566B1/en
Publication of EP0463566B2 publication Critical patent/EP0463566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/02Photo-electric hit-detector systems

Definitions

  • the invention relates to a method and a device for evaluating hits from shooting targets, according to the preamble features of claims 1 and 10, and to the use of an optical system.
  • the shooting target or the target target belt is transported through a first stationary optical system in which a photocell detects the light-dark transitions of the mirror of the target target and from this the target center coordinate in the target transport direction is calculated.
  • the hole position is also determined in the direction of transport of the pane, in such a way that the shot hole is located exactly above a light transmission line, which is made possible by comparing the light reception values of two light receiver lines arranged on the other side of the window.
  • the center coordinate of the shot hole in the target transport direction is determined.
  • the center coordinates of the target and the shot hole must be determined transversely to the target transport direction.
  • the second optical system is arranged on a transversely movable carriage.
  • the transport path of the target and that of the carriage, measured between the center of the hole and the center of the target, are then offset to form the shot result.
  • the result is displayed and can also be printed on the pane.
  • the known evaluation method and the device operating according to it have proven themselves in practice, but some disadvantages are unmistakable.
  • the optical scanning system works with an LED line and photo transistors.
  • these optical elements must have the same electrical, optical and mechanical values in the entire operating temperature range. Fringes at the edge of the shot hole can lead to evaluation errors.
  • the mechanical guidance of the second optical system on the transversely movable carriage is complex. There are comparatively long transport routes that go into the measuring process. The percentage slip affects the measurement result. For large shooting targets, such as those required for small-caliber shooting, sufficient accuracy can only be achieved with very great technical effort.
  • the documents DE-A-30 27 775, DE-A-30 13 244, WO-A-86 04 676 and WO-A-89 01 147 describe scanner systems for the detection of defects in continuous textile webs and the like
  • Shooting targets made in which basically two different positions have to be detected, namely first the target rings to determine the center of the target as a reference and the other the edge points to determine the center of the hole. Only in this way is it possible to determine the relative position from the center of the hole to the center of the disc and to then evaluate the results in the form of a specific ring value.
  • a shooting range is also known in which a television camera is used to display the shot image.
  • the ring value is not evaluated here either, as would be required for a ring reading machine for the exact evaluation of the rings shot.
  • the object of the invention is to simplify the evaluation method and the evaluation device operating according to it, to accelerate the method of operation and, nevertheless, to increase the accuracy of the shooting target evaluation.
  • This object is achieved in a method for evaluating hits from shooting targets according to the preamble of claim 1 by means of its identification features.
  • a preferred embodiment forms the subject of claim 2.
  • the invention has significant advantages.
  • the method is suitable for the evaluation of all common disc bands and individual discs. Inaccuracies in the transport of the disks due to slippage have little or no effect on the measurement result.
  • the evaluation process is significantly accelerated since only the shot hole area needs to be recorded.
  • a single scanner for example in the form of a high-resolution scanner, significantly reduces manufacturing costs.
  • the center of the shot hole is no longer on the center of the pane, but on the closest and preferably referring to the inner disc ring, as is also done manually with the usual "shot hole tester". Thanks to the invention, large-area shooting targets can also be evaluated.
  • the shot holes do not have to be sharply contoured, but can be frayed to a certain extent and so-called double shots can also be evaluated, that is to say two overlapping shot holes.
  • the invention also relates to the use of a single optical system according to the features of claim 14.
  • the use of an optical system for scanning a target is known from EP-A-86803.
  • a scanner according to claim 14 represents a particularly advantageous hardware implementation of the method according to the invention.
  • Such scanners are commercially available.
  • a scanner version with normal resolution is sufficient, e.g. at 200 DPI (dots per inch), which means that the sampling point spacing is about 0.12 mm.
  • the width of the scan line is the same size. It is within the scope of the invention to first detect the edge points of the hole and then the points of the adjacent arc piece of the disk.
  • the subjects of claims 4 and 5 form a more advantageous alternative since they increase the evaluation speed and the accuracy.
  • a half line feed of approximately 0.06 mm e.g. two opposing edge points of the hole are detected due to the transmitted light hitting the scanner.
  • the transmitted light is switched off or covered, so that two points can now be detected by means of reflected incident light on the disk ring adjacent to the shot hole.
  • image points of the edge of the hole and the disk ring are determined alternately.
  • One or two comparatively short elbows of the corresponding disc ring are sufficient for the mathematical determination of the center of the disc.
  • a circumferentially closed polygon is also not required for the hole edge; rather, e.g. the hole center can already be calculated from a half polygon. Therefore, double shots can also be evaluated with the method according to the invention. Any fringes do not affect the measurement result, since their signals fall out of the hole contour so strongly that they can be electronically eliminated.
  • the transmitted light for the perforated edge detection does not necessarily have to be switched off periodically, even if this is readily possible so as not to disturb the ring detection, rather a detection system can be used which reflects the transmitted light from the reflected light Incident light differs and only takes the transmitted light into account when determining the edge of the hole and only the reflected incident light is taken into account for ring detection.
  • the light sources can be in different frequency bands, and it is also possible to design the light transmission line for the transmitted light with a light intensity that is substantially greater than that of the incident light.
  • the mandrel is held in a neutral position and, after the transversely movable carriage has moved into the rough position determined by the optical system, is lowered into the hole, where it is centered automatically with respect to the circumference of the hole, and undergoes a deflection, the components of which in the disk transport direction and transversely thereto recorded and offset with the coordinates of the rough hole determination.
  • the detection of the mandrel deflection can easily be determined inductively or optically.
  • a particularly precise and advantageous solution consists in that the centering mandrel is gimbally and axially movably suspended in a pendulum ball bearing in its central region and carries a light-emitting diode at its end opposite the mandrel tip, the light of which falls on a four-quadrant photodiode system.
  • the sum of all four individual levels remains constant.
  • the four quadrants receive the same level.
  • the ultrasound scanning system that can be used instead of in addition to the mechanical secondary scanning system uses an ultrasound barrier with a transmitter on one side of the pane and a receiver on the other side.
  • the ultrasound barrier is moved into the shot hole position roughly determined by the optical system in the transverse direction for the pane transport. Then the pane transport and the carriage transport carry out correction paths until the formwork performance measured by the receiver reaches its maximum. The two correction paths are in turn offset against the coordinates of the roughly determined hole position.
  • the mechanical solution of the secondary scanning system has the advantage that double shots can be evaluated very precisely, while the secondary scanning system working on the basis of ultrasound is used advantageously when the shot holes are very frayed, because it has surprisingly been found that such fringes hardly have one when subjected to ultrasound Have an effect on the measurement result.
  • the invention further relates to a device for the evaluation of hits from shooting targets with a housing in which a motor-driven transport device for the shooting target or the -disc belt is arranged, with a light transmission line arranged on one side of the transport path for the target and aligned transversely to the direction of transport parallel light reception line on the other side of the transport path, the light transmission line and the light reception line being arranged in or symmetrically to a transverse plane crossing the disc transport path at right angles.
  • a device for the evaluation of hits from shooting targets with a housing in which a motor-driven transport device for the shooting target or the -disc belt is arranged, with a light transmission line arranged on one side of the transport path for the target and aligned transversely to the direction of transport parallel light reception line on the other side of the transport path, the light transmission line and the light reception line being arranged in or symmetrically to a transverse plane crossing the disc transport path at right angles.
  • Such a device is known from the aforementioned EP-PS 86 803.
  • the novelty of the invention according to claim 10 consists in the fact that the light receiving line is designed as a scanner or surface image sensor equipped with a full-length incident light illumination unit as the only light receiving element for the penetrating transmitted light and the reflected light reflected from the target.
  • a line-wise scanner is preferred for the invention, since it takes up little space in the housing and is inexpensive.
  • the disk For the shot hole edge detection and for the detection of the adjacent disk ring, the disk must be moved a small distance in the order of the shot hole diameter. In many cases, however, the scanning of a partial area of the shot hole is sufficient, so that a transport distance of the disk of half the diameter of the shot hole is sufficient for the scanning.
  • a housing 10 Arranged in a housing 10 are two pairs of transport rollers 12, 14, which are synchronized with one another, for transporting a shooting disk belt 16 and which are driven by a motor 18 which can be driven in both directions.
  • a fork light barrier 20 detects the presence of a shooting target 16 and puts the motor 18 into operation at high speed.
  • a scanner 22 is arranged above the disk transport path and extends over the usable width of the housing.
  • the shooting disk band 16 does not take up the full usable width of the housing 10. With one edge, the shooting disc band 16 rests against a fixed angle stop 24 and with the other edge against a manually movable stop bar 26, which can be adjusted to the dashed position 26 '.
  • a light transmission line 28 is arranged below the disk belt 16, which also extends over the entire useful width of the housing 10 and whose upward light strikes the underside of the shooting disk belt 16 almost perpendicularly via a cylindrical lens 30.
  • the motor 18 is reduced to operating speed, which is synchronized with the scanning speed of the scanner 22.
  • a scanner of normal, ie not particularly high, resolution is able to capture eight pixels per millimeter.
  • the pixel distance is thus 0.12 mm.
  • This is also the line width.
  • the scanner 22 receives transmitted light from the light transmission line 28 and thus generally detects two opposite edge points of the hole which are fed to a computer memory.
  • the light transmission line 28 is then switched off by the next half line width during the feed.
  • the scanner now only receives the reflected incident light from one in the scanner 22 built-in incident light line 32.
  • the scanner generally detects two points which lie on the ring of the shooting disk 16 adjacent to the shot hole.
  • the two lighting lines 28, 32 can be switched on and off alternately.
  • the incident light 32 can also be in continuous operation, since the electronics downstream of the scanner 22 can distinguish the two light sources.
  • the alternate reading of hole edge points and ring points takes place in a period of about 0.5 s and is fed to a computer which calculates a hole edge polygon from the plurality of hole edge points. Scanning half the circumference of a shot hole is generally sufficient for this.
  • This actual polygon is compared with a regular reference polygon or reference circle, i.e. aligned with the polygon in such a way that the sum of all squares of deviation from the actual polygon is minimal.
  • the center of the hole is then calculated from this reference polygon.
  • a ring arch piece or two ring arch pieces is calculated from the number of ring points detected and the center point of the ring and thus the disk is determined therefrom.
  • the distance from the center of the hole to the center of the pane is calculated, which is proportional to the result of the shot, which is shown on a display (not shown) and printed on an edge area 36 of the disc band 16 by means of a printer 34.
  • the computing time is 0.2 s to 0.6 s, so that the overall evaluation is of the order of 1 second.
  • the computer determines that the reference polygon superimposed on the actual polygon of the edge points of the shot hole has deviations that are too large, which e.g. indicates a very frayed shot hole
  • the optical scanning of the shot hole is only detected as a rough determination of its position and the shooting disk 16 is transported at high speed until the shot hole reaches a transverse plane 38, where a secondary scanning takes place.
  • a carriage 40 is guided on guides over the entire usable housing width and is connected to a drive belt 42 which is driven by a reversible stepper motor 44.
  • the carriage 40 carries a mechanical scanner 46, which is shown in detail in FIG. 3 is illustrated.
  • a lifting platform 50 is guided in a vertically movable manner on the carriage 40 by means of guide pins 48. It is pressed by compression springs 52, which surround the guide pins 48, into an upper position, which is determined by the position of an eccentric disk 54 of a geared motor 56.
  • a centering mandrel 58 is cardanic by means of a self-aligning ball bearing 60, i.e. Can be swung out sideways in all directions.
  • the centering pin 58 is axially displaceably mounted in the inner ring of the bearing 60 without play.
  • a helical spring that surrounds the centering mandrel 58 supports it.
  • the lifting platform 50 In the rest position of this secondary scanning device 46, the lifting platform 50 is in its upper position, in which the rear conical surface of the mandrel tip is locked in the receptacle of the carriage 40.
  • the stepper motor 18 transports the disc belt 16 by the fixed distance between the optical system and the central transverse plane of the carriage 40.
  • the stepper motor 44 moves it into the optically roughly determined transverse position of the shot hole. The two movements are offset against the roughly determined shot hole position.
  • the shot hole is then in the detection area of the centering mandrel 58.
  • the gear motor 56 is actuated, which rotates the eccentric disk 54 by half a turn into the position shown in FIG. 3 position shown brings.
  • the lifting platform 50 then has its lower working position and the centering mandrel 58 penetrates into the shot hole. It is pivoted in the self-aligning ball bearing 60.
  • a light-emitting diode 62 is provided at the upper end of the centering mandrel 58, which illuminates a four-quadrant photodiode system 64, which is arranged on a mounting bracket of the lifting platform 50 such that the levels of all four quadrants of the diode system 64 are the same when the centering mandrel 58 is in its neutral position.
  • the helical spring supporting the centering pin 58 ensures that the shot hole is only loaded by the weight of the centering pin 58, so that the permissible load on the shot hole is not exceeded.
  • an axial relative movement of the centering mandrel 58 begins at the moment when it is placed on the edge of the shot hole. Because of the greater proximity to the four-quadrant photodiode system 64, its level sum decreases. This reduction is a measure of the mechanical concentric hole loading.
  • the control of the correction values by the secondary scanning device 46 can also be carried out in such a way that, after the centering mandrel 58 has been put in place, the disk 16 in the transport direction or counter to the transport direction and the carriage 40 are adjusted transversely to the transport direction until all level differences of the four-quadrant photodiode system 64 Are zero. From the additional travel paths and the Rough position of the shot hole is then the exact shot hole position can be calculated.
  • the mechanical secondary scanning device 46 also enables one-sided probing of so-called fork shots or double shots with defined hole edge loading.
  • the hole edge loading vector can be determined by vectorial addition of the level differences.
  • the required angular position of the centering mandrel 58 can be set in the angular position of the hole edge region to be probed, which is known from the optical rough evaluation.
  • FIG. 1 also shows the lower part of an ultrasound barrier which can be used as an alternative to the mechanical secondary scanning system 46.
  • An ultrasound transmitter with the radiation axis directed downward is then arranged on the carriage 40 in the transverse plane 38.
  • a further carriage 66 is likewise arranged displaceably on transverse guides beneath the disk belt 16 and is fastened to a belt 68 corresponding to the drive toothed belt 42.
  • the two belts 42, 68 are synchronized via deflection pinions.
  • the carriage 66 carries an ultrasound receiver. The method of operation corresponds to that described with reference to the mechanical secondary scanner 46.
  • the ultrasound barrier is adjusted to the transverse position of the shot hole roughly determined by the optical system by displacing the two carriages 40, 66, after which the pane transport and the carriage transport are changed until the ultrasound reception reaches its maximum.
  • the correction paths of the two motors 18, 44 are then offset against the rough position in the computer.

Abstract

A scanner (22) is assigned a reflected-light line (32) above a target-disc transport path and a transmitted-light transmission line (28) below this transport path. When a shot hole comes into the detection range of the scanner (22), the disc band is sensed by this in lines and a plurality of hole edge points are determined, these being combined arithmetically to form a polygon from which the shot- hole centre is calculated. Simultaneously with the entry of the hole- edge points, the same scanner (22) detects a number of points of the target-disc ring adjacent to the shot hole. An arc segment of the disc ring is calculated arithmetically from these ring points and its centre point is determined. The shot result is calculated from the distance between the shot-hole centre and the disc centre. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Trefferauswertung von Schießscheiben, gemäß den oberbegrifflichen Merkmalen des Anspruches 1 bzw. 10 sowie eine Verwendung eines optischen Systems.The invention relates to a method and a device for evaluating hits from shooting targets, according to the preamble features of claims 1 and 10, and to the use of an optical system.

Nach dem Verfahren gemäß der EP-PS 86 803 wird die Schießscheibe bzw. das Schießscheibenband durch ein erstes stationäres optisches System transportiert, in dem eine Fotozelle die Hell-Dunkelübergänge des Spiegels der Schießscheibe feststellt und daraus die Scheibenmittenkoordinate in Scheibentransportrichtung errechnet. Mittels Durchlicht wird die Lochposition ebenfalls in Scheibentransportrichtung bestimmt, und zwar so, daß das Schußloch sich genau über einer Lichtsendezeile befindet, was durch Vergleich der Lichtempfangswerte von zwei auf der anderen Seite der Scheibe angeordneten Lichtempfängerzeilen ermöglicht wird. Auf diese Weise wird die Mittenkoordinate des Schußloches in Scheibentransportrichtung ermittelt. Anschließend müssen auf gleiche Weise die Mittenkoordinaten von Scheibe und Schußloch quer zur Scheibentransportrichtung bestimmt werden. Dazu ist es erforderlich, das zweite optische System auf einem quer verfahrbaren Wagen anzuordnen. Der Transportweg der Scheibe und derjenige des Wagens jeweils zwischen Lochmitte und Scheibenmitte gemessen, werden dann zur Bildung des Schußergebnisses verrechnet. Das Ergebnis wird angezeigt und kann auch auf die Scheibe aufgedruckt werden.According to the process according to EP-PS 86 803, the shooting target or the target target belt is transported through a first stationary optical system in which a photocell detects the light-dark transitions of the mirror of the target target and from this the target center coordinate in the target transport direction is calculated. By means of transmitted light, the hole position is also determined in the direction of transport of the pane, in such a way that the shot hole is located exactly above a light transmission line, which is made possible by comparing the light reception values of two light receiver lines arranged on the other side of the window. In this way, the center coordinate of the shot hole in the target transport direction is determined. Then, in the same way, the center coordinates of the target and the shot hole must be determined transversely to the target transport direction. To do this, it is necessary to arrange the second optical system on a transversely movable carriage. The transport path of the target and that of the carriage, measured between the center of the hole and the center of the target, are then offset to form the shot result. The result is displayed and can also be printed on the pane.

Das bekannte Auswerteverfahren und die danach arbeitende Vorrichtung hat sich in der Praxis bewährt, jedoch sind einige Nachteile unverkennbar. Das optische Abtastsystem arbeitet mit einer LED-Zeile und Fototransistoren. Für eine genaue Auswertung müssen diese optischen Elemente die gleichen elektrischen, optischen und mechanischen Werte im gesamten Betriebstemperaturbereich haben. Fransen am Schußlochrand können zu Auswertefehlern führen. Die mechanische Führung des zweiten optischen Systems am quer verfahrbaren Wagen ist aufwendig. Es ergeben sich vergleichsweise lange Transportwege, die in das Meßverfahren eingehen. Der prozentuale Schlupf wirkt sich auf das Meßergebnis aus. Für große Schießscheiben, wie sie beim Kleinkaliber-Schießen benötigt werden, ist eine ausreichende Genauigkeit nur mit einem sehr großen technischen Aufwand zu erreichen.The known evaluation method and the device operating according to it have proven themselves in practice, but some disadvantages are unmistakable. The optical scanning system works with an LED line and photo transistors. For an exact evaluation, these optical elements must have the same electrical, optical and mechanical values in the entire operating temperature range. Fringes at the edge of the shot hole can lead to evaluation errors. The mechanical guidance of the second optical system on the transversely movable carriage is complex. There are comparatively long transport routes that go into the measuring process. The percentage slip affects the measurement result. For large shooting targets, such as those required for small-caliber shooting, sufficient accuracy can only be achieved with very great technical effort.

Die Druckschriften DE-A-30 27 775, DE-A-30 13 244, WO-A-86 04 676 und WO-A-89 01 147 beschreiben Scannersysteme zur Fehlstellendetektion bei durchlaufenden Textilbahnen und dgl.. Hierbei wird jedoch keine Trefferauswertung von Schießscheiben vorgenommen, bei der grundsätzlich zwei verschiedene Positionen erfaßtwerden müssen, nämlich einmal die Scheibenringe zur Bestimmung der Scheibenmitte als Bezugsbasis und zum anderen die Lochrandpunkte zur Feststellung der Lochmitte. Erst hierdurch ist eine Bestimmung der Relativlage von Lochmitte zu Scheibenmitte und eine sich daran anschließende Trefferauswertung in Form einer Feststellung eines bestimmten Ringwertes möglich. Eine solche Auswertung fehlt jedoch vollständig, ebenso die Bestimmung einer Scheibenmitte als Bezugsbasis, wie dies im wesentlichen bei der EP-A-86803 (= WO 83/00920) durch zwei für die Längs- und Querbewegung getrennte optische Systeme erfolgt. Zudem erfolgt bei dieser Schrift die Feststellung der Lochmitte einerseits und andererseits der Scheibenmitte wiederum durch zwei getrennte Teilsysteme, nämlich einer Lichtsende-/Empfangszeile einerseits und mehreren knopfförmigen Reflektionslichtschranken andererseits. Hierdurch wird diese Vorrichtung zur Trefferauswertung von Schießscheiben äußerst bauaufwendig, wie eingangs dargestellt.The documents DE-A-30 27 775, DE-A-30 13 244, WO-A-86 04 676 and WO-A-89 01 147 describe scanner systems for the detection of defects in continuous textile webs and the like Shooting targets made, in which basically two different positions have to be detected, namely first the target rings to determine the center of the target as a reference and the other the edge points to determine the center of the hole. Only in this way is it possible to determine the relative position from the center of the hole to the center of the disc and to then evaluate the results in the form of a specific ring value. However, such an evaluation is completely absent, as is the determination of a center of the pane as a reference, as is essentially done in EP-A-86803 (= WO 83/00920) by two optical systems separated for the longitudinal and transverse movement. In addition, in this document, the center of the hole on the one hand and the center of the pane on the other hand are determined by two separate subsystems, namely a light transmission / reception line on the one hand and several button-shaped reflective light barriers on the other hand. As a result, this device for evaluating hits from shooting targets is extremely complex, as illustrated at the beginning.

Aus der DE-A-26 25 500 ist weiterhin ein Schießstand bekannt, bei dem eine Fernsehkamera zur Darstellung des Schußbildes verwendet wird. Auch hierbei erfolgt keine Auswertung des Ringwertes, wie es für eine Ringlesemaschine zur exakten Auswertung der geschossenen Ringe erforderlich wäre.From DE-A-26 25 500 a shooting range is also known in which a television camera is used to display the shot image. The ring value is not evaluated here either, as would be required for a ring reading machine for the exact evaluation of the rings shot.

Schließlich ist aus der DE-A-23 64 386 ein Verfahren zum Zählen von Schrotkugeleinschlägen auf einer Prüfscheibe bekannt, wobei eine Fernsehkamera zum Auszählen dieser Einschläge auf einer Prüfscheibe benutzt wird. Auch hier erfolgt keine Zuordnung von Lochmitte zu Scheibenmitte, wie dies füreine exakte, schnelle und genaue Schießscheibenauswertung erforderlich wäre.Finally, from DE-A-23 64 386 a method for counting shot hits on a test disk is known, a television camera being used to count these hits on a test disk. Here, too, there is no assignment from the center of the hole to the center of the target, as would be necessary for an exact, quick and accurate evaluation of the target.

Aufgabe der Erfindung ist es, das Auswerteverfahren und die danach arbeitende Auswertevorrichtung zu vereinfachen, die Arbeitsweise zu beschleunigen und gleichwohl die Genauigkeit der Schießscheibenauswertung zu erhöhen.The object of the invention is to simplify the evaluation method and the evaluation device operating according to it, to accelerate the method of operation and, nevertheless, to increase the accuracy of the shooting target evaluation.

Diese Aufgabe wird bei einem Verfahren zur Trefferauswertung von Schießscheiben gemäß Oberbegriff von Patentanspruch 1 durch dessen Kennzeichnungsmerkmale gelöst.This object is achieved in a method for evaluating hits from shooting targets according to the preamble of claim 1 by means of its identification features.

Eine bevorzugte Ausgestaltung bildet den Gegenstand von Anspruch 2.A preferred embodiment forms the subject of claim 2.

Die Erfindung bringt erhebliche Vorteile. Das Verfahren eignet sich für die Auswertung aller gängigen Scheibenbänder und Einzelscheiben. Ungenauigkeiten des Scheibentransportes bedingt durch Schlupfwirken sich nicht oder wesentlich weniger auf das Meßergebnis aus. Das Auswerteverfahren wird wesentlich beschleunigt, da nur der Schußlochbereich erfaßt zu werden braucht. Eine einzige Abtasteinrichtung z.B. in Form eines hoch auflösenden Scanners verringert die Herstellungskosten maßgeblich. Im Gegensatz zum Stand der Technik wird die Schußlochmitte nicht mehr auf die Scheibenmitte, sondern auf den nächst liegenden und zwar vorzugsweise inneren Scheibenring bezogen, wie dies auch manuell mit dem üblichen "Schußlochprüfer" durchgeführt wird. Dank der Erfindung können auch großflächige Schießscheiben ausgewertet werden. Die Schußlöcher müssen nicht scharf konturiert sein, sondern können in gewissem Umfang ausgefranst sein und es können auch sogenannte Doppelschüsse ausgewertet werden, also zwei überlappende Schußlöcher.The invention has significant advantages. The method is suitable for the evaluation of all common disc bands and individual discs. Inaccuracies in the transport of the disks due to slippage have little or no effect on the measurement result. The evaluation process is significantly accelerated since only the shot hole area needs to be recorded. A single scanner, for example in the form of a high-resolution scanner, significantly reduces manufacturing costs. In contrast to the prior art, the center of the shot hole is no longer on the center of the pane, but on the closest and preferably referring to the inner disc ring, as is also done manually with the usual "shot hole tester". Thanks to the invention, large-area shooting targets can also be evaluated. The shot holes do not have to be sharply contoured, but can be frayed to a certain extent and so-called double shots can also be evaluated, that is to say two overlapping shot holes.

Die Erfindung betrifft auch die Verwendung eines einzigen optischen Systems gemäß den Merkmalen des Anspruchs 14. Die Verwendung eines optischen Systems zum Abstasten einer Zielscheibe ist aus EP-A-86803 bekannt.The invention also relates to the use of a single optical system according to the features of claim 14. The use of an optical system for scanning a target is known from EP-A-86803.

Die Verwendung eines Scanners gemäß Anspruch 14 stellt eine besonders vorteilhafte hardwaremäßige Realisierung des erfindungsgemäßen Verfahrens dar. Solche Scanner sind handelsüblich. Für die Erfindung genügt eine Scannerausführung mit normaler Auflösung, also z.B. mit 200 DPI (dots per inch), was bedeutet, daß derAbstand der Abtastpunkte etwa 0,12 mm beträgt. Die Breite der Abtastzeile hat dieselbe Größe. Dabei liegt es im Rahmen der Erfindung, zuerst die Lochrandpunkte und anschließend die Punkte des benachbarten Ringbogenstückes der Scheibe zu erfassen. Die Gegenstände der Ansprüche 4 und 5 bilden demgegenüber eine vorteilhaftere Alternative, da sie die Auswertegeschwindigkeit und die Genauigkeit erhöhen. Während eines halben Zeilenvorschubes von etwa 0,06 mm werden z.B. zwei gegenüberliegende Lochrandpunkte aufgrund des auf den Scanner auftreffenden Durchlichtes erfaßt. Während des nächsten Halbzeilenvorschubes wird das Durchlicht abgeschaltet oder abgedeckt, sodaß nun mittels reflektierten Auflichtes zwei Punkte dem des Schußloch benachbarten Scheibenringes erfaßt werden können. Auf diese Weise werden abwechselnd Bildpunkte des Lochrandes und des Scheibenringes ermittelt. Ein bzw. zwei vergleichsweise kurze Bogenstücke des entsprechenden Scheibenringes reichen zur rechnerischen Bestimmung der Scheibenmitte aus. Auch für den Lochrand benötigt man nicht etwa ein umfangsgeschlossenes Polygon, vielmehr kann z.B. schon aus einem Halbpolygon die Lochmitte errechnet werden. Daher lassen sich mit dem erfindungsgemäßen Verfahren auch Doppelschüsse auswerten. Etwaige Fransen beeinflussen das Meßergebnis nicht, da ihre Signale so stark aus der erfaßten Lochkontur herausfallen, daß sie elektronisch eliminiert werden können.The use of a scanner according to claim 14 represents a particularly advantageous hardware implementation of the method according to the invention. Such scanners are commercially available. For the invention, a scanner version with normal resolution is sufficient, e.g. at 200 DPI (dots per inch), which means that the sampling point spacing is about 0.12 mm. The width of the scan line is the same size. It is within the scope of the invention to first detect the edge points of the hole and then the points of the adjacent arc piece of the disk. In contrast, the subjects of claims 4 and 5 form a more advantageous alternative since they increase the evaluation speed and the accuracy. During a half line feed of approximately 0.06 mm e.g. two opposing edge points of the hole are detected due to the transmitted light hitting the scanner. During the next half-line feed, the transmitted light is switched off or covered, so that two points can now be detected by means of reflected incident light on the disk ring adjacent to the shot hole. In this way, image points of the edge of the hole and the disk ring are determined alternately. One or two comparatively short elbows of the corresponding disc ring are sufficient for the mathematical determination of the center of the disc. A circumferentially closed polygon is also not required for the hole edge; rather, e.g. the hole center can already be calculated from a half polygon. Therefore, double shots can also be evaluated with the method according to the invention. Any fringes do not affect the measurement result, since their signals fall out of the hole contour so strongly that they can be electronically eliminated.

Um vom Scanner abwechselnd Lochrandsignale und Ringbogensignale ermitteln zu können, muß das Durchlicht für die Lochranderkennung nicht notwenigerweise periodisch abgeschaltet werden, auch wenn dies ohne weiteres möglich ist, um die Ringerkennung nicht zu stören, vielmehr läßt sich ein Erkennungssystem verwenden, das das Durchlicht vom reflektierten Auflicht unterscheidet und bei der Lochrandbestimmung nur das Durchlicht und bei der Ringerkennung nurdas reflektierte Auflicht berücksichtigt. Zu diesem Zweck können die Lichtquellen in unterschiedlichen Frequenzbändern liegen, wie es auch möglich ist, die Lichtsendezeile für das Durchlicht mit gegenüber dem Auflicht wesentlich größerer Lichtstärke auszubilden.In order to be able to alternately determine perforated edge signals and ring arch signals, the transmitted light for the perforated edge detection does not necessarily have to be switched off periodically, even if this is readily possible so as not to disturb the ring detection, rather a detection system can be used which reflects the transmitted light from the reflected light Incident light differs and only takes the transmitted light into account when determining the edge of the hole and only the reflected incident light is taken into account for ring detection. For this purpose, the light sources can be in different frequency bands, and it is also possible to design the light transmission line for the transmitted light with a light intensity that is substantially greater than that of the incident light.

Eine wichtige Weiterbildung der Erfindung bildet den Gegenstand von Anspruch 7. Hier wird bei Überschreiten einer festgelegten Abweichungsgröße des Lochrandpolygons vom Bezugsvieleck der optischen Lochabtastung ein mechanisches oder mit Ultraschall arbeitendes Hilfabtastverfahren nachgeschaltet. Stellt nämlich diese Erkennungseinheit fest, daß der Lochrand nicht so sicher erfaßt worden ist, daß eine eindeutige Lochmittenbestimmung möglich ist, so wird dieses optische Meßergebnis als Grobmessung benutzt, der eine Feinmessung nachgeschaltet wird. Für diese Feinmessung wird ein sekundäres Abtastsystem system verwendet, das mechanisch oder mit Ultraschall arbeitet und im vorgegebenen Abstand vom optischen System quer zur Scheibentransportrichtung bewegt wird. Die optische Grobbestimmung des Loches dient dann dazu, das sekundäre Abtastsystem auf dem quer verfahrbaren Wagen in die grob abgetastete Position zu bringen, sodaß das Schußloch in den Erfassungsbereich dieses sekundären Abtastsystems gelangt. Dieses wird nun auf das Schußloch einjustiert, indem die Scheibe in Förderrichtung einen zum sekundären Abtastsystem hin relativen Korrekturweg und das sekundäre Abtastsystem rechtwinklig dazu einen eigenen Korrekturweg ausführt und indem die Transportstrecke der Scheibe zwischen beiden Abtastsystemen und die Querbewegungsstrecke des sekundären Abtastsystems mit den beiden Korrekturwegen zur Lochmittenbestimmung verrechnet werden. Ein solches sekundäres Abtastsystem stellt zwar einen erhöhten Bauaufwand dar, ermöglicht aber auch eine automatische Auswertung von optisch nicht eindeutigen Schußlöchern und sogar von "zugefallenen " Schußlöchern. Das mechanische sekundäre Abtastsystem verwendet einen kardanisch aufgehängten Dorn, der ein axiales Bewegungsspiel hat. Der Dorn wird in einer Neutralstellung gehalten und nachdem der quer verfahrbare Wagen in die vom optischen System bestimmte Grobposition gefahren ist, in das Loch abgesenkt, wobei er sich bezüglich des Lochumfanges selbsttätig zentriert, wobei er eine Auslenkung erfährt, deren Komponenten in Scheibentransportrichtung und quer dazu erfaßt und mit den Koordinaten der Lochgrobbestimmung verrechnet werden. Die Erfassung der Dornauslenkung kann induktiv oder optisch leicht bestimmt werden. Eine besonders genaue und vorteilhafte Lösung besteht darin, daß der Zentrierdorn in seinem Mittelbereich in einem Pendelkugellager kardanisch und axial beweglich aufgehängt ist und an seinem, der Dornspitze gegenüberliegenden Ende eine Leuchtdiode trägt, deren Licht auf ein Vierquadranten-Fotodiodensystem fällt. Die Summe aller vier Einzelpegel bleibt konstant. In der Neutralstellung des Zentrierdorns empfangen die vier Quadranten dieselben Pegel. Bei Auslenkung des Dorns ergeben sich Pegeldifferenzen, die zur Bestimmung der Auslenkungskoordinaten herangezogen werden.An important further development of the invention forms the subject of claim 7. Here, when a defined deviation of the hole edge polygon from the reference polygon of the optical hole scanning is followed by a mechanical or ultrasonic auxiliary scanning method. If this detection unit determines that the edge of the hole has not been detected so reliably that a clear hole center determination is possible, this optical measurement result is used as a rough measurement, which is followed by a fine measurement. For this fine measurement, a secondary scanning system is used, which works mechanically or with ultrasound and is moved at a predetermined distance from the optical system transversely to the disk transport direction. The optical rough determination of the hole then serves to bring the secondary scanning system on the transversely movable carriage into the roughly scanned position so that the shot hole reaches the detection area of this secondary scanning system. This is now adjusted to the shot hole, in that the disk carries out a correction path relative to the secondary scanning system in the conveying direction and the secondary scanning system carries out its own correction path at right angles thereto, and by the transport path of the target between the two scanning systems and the transverse movement path of the secondary scanning system with the two correction paths Hole center determination can be offset. Such a secondary scanning system represents an increased construction outlay, but also enables an automatic evaluation of optically ambiguous shot holes and even of "closed" shot holes. The mechanical secondary scanning system uses a gimbal-mounted mandrel that has an axial play. The mandrel is held in a neutral position and, after the transversely movable carriage has moved into the rough position determined by the optical system, is lowered into the hole, where it is centered automatically with respect to the circumference of the hole, and undergoes a deflection, the components of which in the disk transport direction and transversely thereto recorded and offset with the coordinates of the rough hole determination. The detection of the mandrel deflection can easily be determined inductively or optically. A particularly precise and advantageous solution consists in that the centering mandrel is gimbally and axially movably suspended in a pendulum ball bearing in its central region and carries a light-emitting diode at its end opposite the mandrel tip, the light of which falls on a four-quadrant photodiode system. The sum of all four individual levels remains constant. In the neutral position of the centering mandrel, the four quadrants receive the same level. When the mandrel is deflected, there are level differences that lead to the determination determination of the deflection coordinates.

Das anstelle aber auch zusätzlich zum mechanischen sekundären Abtastsystem verwendbare Ultraschall-Abtastsystem verwendet eine Ultraschallschranke mit einem Sender auf einer Seite der Scheibe und einem Empfänger auf der anderen Seite. Die Ultraschallschranke wird genau wie die vorstehend beschriebene mechanische Variante in die vom optischen System grob ermittelte Schußlochposition in Querrichtung zum Scheibentransport verfahren. Dann führen der Scheibentransport und der Wagentransport Korrekturwege aus, bis die vom Empfänger gemessene Schalleistung ihr Maximum erreicht.Die beiden Korrekturwege werden wiederum mit den Koordinaten der grobbestimmten Lochposition verrechnet. Die mechanische Lösung des sekundären Abtastsystems hat den Vorteil, daß Doppelschüsse sehr genau ausgewertet können, während das auf Ultraschallbasis arbeitende sekundäre Abtastsystem dann vorteilhaft eingesetzt wird, wenn die Schußlöcher stark ausgefranst sind, denn es hat sich überraschend gezeigt, daß solche Fransen bei Ultraschallbeaufschlagung kaum eine Auswirkung auf das Meßergebnis haben.The ultrasound scanning system that can be used instead of in addition to the mechanical secondary scanning system uses an ultrasound barrier with a transmitter on one side of the pane and a receiver on the other side. Just like the mechanical variant described above, the ultrasound barrier is moved into the shot hole position roughly determined by the optical system in the transverse direction for the pane transport. Then the pane transport and the carriage transport carry out correction paths until the formwork performance measured by the receiver reaches its maximum. The two correction paths are in turn offset against the coordinates of the roughly determined hole position. The mechanical solution of the secondary scanning system has the advantage that double shots can be evaluated very precisely, while the secondary scanning system working on the basis of ultrasound is used advantageously when the shot holes are very frayed, because it has surprisingly been found that such fringes hardly have one when subjected to ultrasound Have an effect on the measurement result.

Die Erfindung betrifft weiterhin eine Vorrichtung zur Trefferauswertung von Schießscheiben mit einem Gehäuse, in dem eine motorisch angetriebene Transporteinrichtung für die Schießscheibe bzw. das -scheibenband angeordnet ist, mit einem auf einer Seite der Transportbahn für die Scheibe angeordneten, quer zur Transportrichtung ausgerichteten Lichtsendezeile und einer dazu parallelen Lichtempfangszeile auf der anderen Seite der Transportbahn, wobei die Lichtsendezeile und die Lichtempfangszeile in bzw. symmetrisch zu einer die Scheibentransportbahn rechtwinklig kreuzenden Querebene angeordnet sind. Eine derartige Vorrichtung ist aus der genannten EP-PS 86 803 bekannt. Das Neue der Erfindung gemäß Anspruch 10 besteht nun darin, daß die Lichtempfangszeile als mit einer über die ganze Zeilenlänge reichenden Auflichtbeleuchtungseinheit ausgestatteten Scanner oder Flächenbildaufnehmer als einziges Lichtempfangsorgan für das Schußloch durchdringendes Durchlicht und das von der Scheibe reflektierte Auflicht ausgebildet ist. Für die Erfindung vorgezogen wird ein zeilenweise arbeitender Scanner, da er im Gehäuse wenig Raum beansprucht und kostengünstig ist. Zur Schußlochranderfassung und zur Erfassung des benachbarten Scheibenringes muß die Scheibe eine geringe Strecke in der Größenordnung des Schußlochdurchmessers bewegt werden. In vielen Fällen reicht aber schon die Abtastung eines Teilbereiches des Schußloches aus, sodaß eine Transportstrecke der Scheibe von der Hälfte des Schußlochdurchmessers für die Abtastung genügt. Wird statt des Zeilenscanners eine Flächenkamera verwendet, die sich prinzipiell aus einer Vielzahl hintereinandergesetzter Scanner zusammensetzt, so kann die Auswertung des Schußlochrandes und des Ringbogens momentan erfolgen. Die Scheibe bleibt während der Abtastunng in Ruhe. Die Auswertungsgeschwindigkeit steigt, jedoch ist der Bauaufwand größer.The invention further relates to a device for the evaluation of hits from shooting targets with a housing in which a motor-driven transport device for the shooting target or the -disc belt is arranged, with a light transmission line arranged on one side of the transport path for the target and aligned transversely to the direction of transport parallel light reception line on the other side of the transport path, the light transmission line and the light reception line being arranged in or symmetrically to a transverse plane crossing the disc transport path at right angles. Such a device is known from the aforementioned EP-PS 86 803. The novelty of the invention according to claim 10 consists in the fact that the light receiving line is designed as a scanner or surface image sensor equipped with a full-length incident light illumination unit as the only light receiving element for the penetrating transmitted light and the reflected light reflected from the target. A line-wise scanner is preferred for the invention, since it takes up little space in the housing and is inexpensive. For the shot hole edge detection and for the detection of the adjacent disk ring, the disk must be moved a small distance in the order of the shot hole diameter. In many cases, however, the scanning of a partial area of the shot hole is sufficient, so that a transport distance of the disk of half the diameter of the shot hole is sufficient for the scanning. If an area scan camera is used instead of the line scanner, which is basically composed of a large number of scanners placed one behind the other, then the edge of the shot hole and the ring arch can be evaluated at the moment. The disc remains at rest during the scanning. The evaluation speed increases, but the construction effort is greater.

Anhand der Zeichnung wird die Erfindung beispielshaft näher erläutert.The invention is explained in more detail by way of example with reference to the drawing.

Es zeigt

  • FIG. 1 eine schematische vertikale Schnittansicht durch eine Ausführungsform der Auswertevorrichtung,
  • FIG. 2 eine Draufsicht auf die Auswertevorrichtung nach Wegnahme des Gehäuseoberteils, und
  • FIG. 3 eine perspektivische Ansicht einer sekundären Abtasteinrichtung, die bei der Vorrichtung gemäß Figuren 1 und 2 Verwendung findet.
It shows
  • FIG. 1 shows a schematic vertical sectional view through an embodiment of the evaluation device,
  • FIG. 2 shows a plan view of the evaluation device after removal of the upper housing part, and
  • FIG. 3 shows a perspective view of a secondary scanning device which is used in the device according to FIGS. 1 and 2.

In einem Gehäuse 10 sind zwei miteinander synchronisierte Transportwalzenpaare 12, 14 zum Transport eines Schießscheibenbandes 16 angeordnet, die von einem in beiden Richtungen antreibbaren Motor 18 angetrieben werden. Eine Gabellichtschranke 20 stellt die Anwesenheit einer Schießscheibe 16 fest und setzt den Motor 18 im Schnellgang in Betrieb. Unmittelbar hinter dem ersten Antriebswalzenpaar 12 ist oberhalb der Scheibentransportbahn ein Scanner 22 angeordnet, der sich über die nutzbare Breite des Gehäuses erstreckt. Im Ausführungsbeispiel nimmt das Schießscheibenband 16 nicht die volle nutzbare Breite des Gehäuses 10 ein. Mit einem Rand liegt das Schießscheibenband 16 an einem festen Winkelanschlag 24 und mit dem anderen Rand an einer manuell beweglichen Anschlagleiste 26 an, die bis in die gestrichelte Position 26' verstellbar ist.Arranged in a housing 10 are two pairs of transport rollers 12, 14, which are synchronized with one another, for transporting a shooting disk belt 16 and which are driven by a motor 18 which can be driven in both directions. A fork light barrier 20 detects the presence of a shooting target 16 and puts the motor 18 into operation at high speed. Immediately behind the first pair of drive rollers 12, a scanner 22 is arranged above the disk transport path and extends over the usable width of the housing. In the exemplary embodiment, the shooting disk band 16 does not take up the full usable width of the housing 10. With one edge, the shooting disc band 16 rests against a fixed angle stop 24 and with the other edge against a manually movable stop bar 26, which can be adjusted to the dashed position 26 '.

In der vertikalen Querebene des Scanners 22 ist unterhalb des Scheibenbandes 16 eine Lichtsendezeile 28 angeordnet, die sich ebenfalls über die ganze Nutzbreite des Gehäuses 10 erstreckt und deren nach oben gerichtetes Licht über eine Zylinderlinse 30 nahezu senkrecht auf die Unterseite des Schießscheibenbandes 16 auftrifft.In the vertical transverse plane of the scanner 22, a light transmission line 28 is arranged below the disk belt 16, which also extends over the entire useful width of the housing 10 and whose upward light strikes the underside of the shooting disk belt 16 almost perpendicularly via a cylindrical lens 30.

Sobald der Scanner 22 Licht durch ein Schußloch von der Sendezeile 28 empfängt, wird der Motor 18 auf Betriebsgeschwindigkeit reduziert, die mit der Abtastgeschwindigkeit des Scanners 22 synchronisiert ist.Once the scanner 22 receives light through a shot hole from the transmit line 28, the motor 18 is reduced to operating speed, which is synchronized with the scanning speed of the scanner 22.

Ein Scanner von normaler, d.h. nicht besonders hoher Auflösung ist in der Lage acht Bildpunkte pro Millimeter zu erfassen. Der Bildpunktabstand beträgt somit 0,12 mm. Dies ist auch die Zeilenbreite. Während des Vorschubes des Scheibenbandes 16 um eine halbe Zeilenbreite empfängt der Scanner 22 Durchlicht von der Lichtsendezeile 28 und erfaßt somit im allgemeinen zwei gegenüberliegende Lochrandpunkte, die einem Rechenspeicher zugeführt werden. Die Lichtsendezeile 28 wird dann während des Vorschubes um die nächste Halbzeilenbreite abgeschaltet. Der Scanner empfängt nun nur noch das reflektierte Auflicht einer im Scanner 22 eingebauten Auflichtzeile 32. Durch diese Beleuchtung werden vom Scanner im allgemeinen zwei Punkte erfaßt, die auf dem schußlochbenachbarten Ring der Schießscheibe 16 liegen. Die beiden Beleuchtungszeilen 28, 32 können abwechselnd ein- und ausgeschaltet werden. Die Auflichtbeleuchtung 32 kann aber auch im Dauerbetrieb sein, da die dem Scanner 22 nachgeschaltete Elektronik die beiden Lichtquellen unterscheiden kann.A scanner of normal, ie not particularly high, resolution is able to capture eight pixels per millimeter. The pixel distance is thus 0.12 mm. This is also the line width. During the advancement of the disc band 16 by half a line width, the scanner 22 receives transmitted light from the light transmission line 28 and thus generally detects two opposite edge points of the hole which are fed to a computer memory. The light transmission line 28 is then switched off by the next half line width during the feed. The scanner now only receives the reflected incident light from one in the scanner 22 built-in incident light line 32. By means of this illumination, the scanner generally detects two points which lie on the ring of the shooting disk 16 adjacent to the shot hole. The two lighting lines 28, 32 can be switched on and off alternately. The incident light 32 can also be in continuous operation, since the electronics downstream of the scanner 22 can distinguish the two light sources.

In einem Zeitraum von etwa 0,5 s findet nun das abwechselnde Einlesen von Lochrandpunkten und Ringpunkten statt, die einem Rechner zugeführt werden, der aus der Vielzahl von Lochrandpunkten ein Lochrandpolygon errechnet. Die Abtastung des halben Umfanges eines Schußloches reicht dafür im allgemeinen aus. Dieses Istpolygon wird rechnerisch mit einem regelmäßigen Bezugsvieleck oder Bezugskreis verglichen, d.h. mit dem Polygon so zur Deckung gebracht, daß die Summe aiier Abweichungsquadrate vom Istpolygon minimal ist. Aus diesem Bezugsvieleck wird dann die Lochmitte errechnet. In gleicher Weise wird aus der Anzahl erfaßter Ringpunkte ein Ringbogenstück oder zwei Ringbogenstücke errechnet und daraus der Mittelpunkt des Ringes und damit der Scheibe bestimmt. Schließlich wird der Abstand von Lochmitte zur Scheibenmitte errechnet, der dem Schußergebnis proportional ist, welches auf einem nicht dargestellten Display angezeigt und mittels eines Druckers 34 auf einem Randfeld 36 des Scheibenbandes 16 aufgedruckt wird. Je nach eingesetztem Rechner beträgt die Rechenzeit 0,2 s bis 0,6 s, sodaß die Auswertung insgesamt in der Größenordnung von 1 Sekunde liegt.The alternate reading of hole edge points and ring points takes place in a period of about 0.5 s and is fed to a computer which calculates a hole edge polygon from the plurality of hole edge points. Scanning half the circumference of a shot hole is generally sufficient for this. This actual polygon is compared with a regular reference polygon or reference circle, i.e. aligned with the polygon in such a way that the sum of all squares of deviation from the actual polygon is minimal. The center of the hole is then calculated from this reference polygon. In the same way, a ring arch piece or two ring arch pieces is calculated from the number of ring points detected and the center point of the ring and thus the disk is determined therefrom. Finally, the distance from the center of the hole to the center of the pane is calculated, which is proportional to the result of the shot, which is shown on a display (not shown) and printed on an edge area 36 of the disc band 16 by means of a printer 34. Depending on the computer used, the computing time is 0.2 s to 0.6 s, so that the overall evaluation is of the order of 1 second.

Stellt der Rechner fest, daß das dem Istpolygon der Randpunkte des Schußloches überlagerte Bezugsvieleck zu große Abweichungen aufweist, was z.B. auf ein stark ausgefranstes Schußloch hinweist, so wird die optische Abtastung des Schußloches nur als Grobbestimmung seiner Position erfaßt und die Schießscheibe 16 im Schnellgang weitertransportiert, bis das Schußloch in eine Querebene 38 gelangt, wo eine sekundäre Abtastung erfolgt. In dieser Querebene 38 ist ein Wagen 40 an Führungen über die ganze nutzbare Gehäusebreite verschiebbar geführt und mit einem Antriebsriemen 42 verbunden, der von einem umsteuerbaren Schrittmotor 44 angetrieben wird. Der Wagen 40 trägt eine mechanische Abtasteinrichtung 46, die im einzelnen in FIG. 3 veranschaulicht ist. Auf dem Wagen 40 ist mittels Führungsstiften 48 eine Hebebühne 50 vertikal beweglich geführt. Sie wird von Druckfedern 52, die die Führungsstifte 48 umgeben in eine obere Stellung gedrückt, die von der Stellung einer Exzenterscheibe 54 eines Getriebemotors 56 bestimmt wird. In der Hebebühne 50 ist ein Zentrierdorn 58 mittels eines Pendelkugellagers 60 kardanisch, d.h. nach allen Richtungen seitlich ausschwenkbar gelagert. Der Zentrierdorn 58 ist im Innenring des Lagers 60 spielfrei axial verschiebbar gelagert. Eine Schraubenfeder, die den Zentrierdorn 58 umgibt, trägt diesen. In der Ruhestellung dieser sekundären Abtasteinrichtung 46 befindet sich die Hebebühne 50 in ihrer oberen Stellung, in welcher die rückwärtige Konusfläche der Dornspitze in der Aufnahme des Wagens 40 arretiert ist.If the computer determines that the reference polygon superimposed on the actual polygon of the edge points of the shot hole has deviations that are too large, which e.g. indicates a very frayed shot hole, the optical scanning of the shot hole is only detected as a rough determination of its position and the shooting disk 16 is transported at high speed until the shot hole reaches a transverse plane 38, where a secondary scanning takes place. In this transverse plane 38, a carriage 40 is guided on guides over the entire usable housing width and is connected to a drive belt 42 which is driven by a reversible stepper motor 44. The carriage 40 carries a mechanical scanner 46, which is shown in detail in FIG. 3 is illustrated. A lifting platform 50 is guided in a vertically movable manner on the carriage 40 by means of guide pins 48. It is pressed by compression springs 52, which surround the guide pins 48, into an upper position, which is determined by the position of an eccentric disk 54 of a geared motor 56. In the lifting platform 50, a centering mandrel 58 is cardanic by means of a self-aligning ball bearing 60, i.e. Can be swung out sideways in all directions. The centering pin 58 is axially displaceably mounted in the inner ring of the bearing 60 without play. A helical spring that surrounds the centering mandrel 58 supports it. In the rest position of this secondary scanning device 46, the lifting platform 50 is in its upper position, in which the rear conical surface of the mandrel tip is locked in the receptacle of the carriage 40.

Nachdem die optische Abtastung des Schußloches ergeben hat, daß eine sekundäre Abtastung notwendig ist, transportiert der Schrittmotor 18 das Scheibenband 16 um die festliegende Distanz zwischen dem optischen System und der mittleren Querebene des Wagens 40. Gleichzeitig wird dieser vom Schrittmotor 44 in die optisch grobermittelte Querposition des Schußloches verfahren. Die beiden Bewegungen werden mit der grobbestimmten Schußlochposition verrechnet. Das Schußloch befindet sich dann im Erfassungsbereich des Zentrierdornes 58. Nunmehr wird der Getriebemotor 56 betätigt, der die Exzenterscheibe 54 um eine Halbdrehung in die in FIG. 3 dargestellte Stellung bringt. Die Hebebühne 50 hat dann Ihre untere Arbeitsposition und der Zentrierdorn 58 dringt in das Schußloch ein. Dabei wird er in dem Pendelkugellager 60 verschwenkt. Der Schwenkwinkel und die Schwenkrichtung wird optisch erfaßt. Dafür ist am oberen Ende des Zentrierdornes 58 eine Leuchtdiode 62 vorgesehen, die ein Vierquadranten-Fotodiodensystem 64 beleuchtet, welches an einem Haltewinkel der Hebebühne 50 so angeordnet ist, daß die Pegel aller vier Quadranten des Diodensystems 64 gleich sind, wenn sich der Zentrierdorn 58 in seiner Neutralstellung befindet. Da der Zentrierdorn 58 beim Aufsetzen auf den Lochrand verschwenkt, ändern sich die Pegeldifferenzen der vier Quadranten des Fotodiodensystem 64 und diese Pegeldifferenzen sind ein Maß für zwei orthogonale Korrekturwege und zwar in Scheibenförderrichtung und quer dazu. Um diese Korrekturwege wird die grobbestimmte Lochposition verfeinert.After the optical scanning of the shot hole has shown that a secondary scanning is necessary, the stepper motor 18 transports the disc belt 16 by the fixed distance between the optical system and the central transverse plane of the carriage 40. At the same time, the stepper motor 44 moves it into the optically roughly determined transverse position of the shot hole. The two movements are offset against the roughly determined shot hole position. The shot hole is then in the detection area of the centering mandrel 58. Now the gear motor 56 is actuated, which rotates the eccentric disk 54 by half a turn into the position shown in FIG. 3 position shown brings. The lifting platform 50 then has its lower working position and the centering mandrel 58 penetrates into the shot hole. It is pivoted in the self-aligning ball bearing 60. The swivel angle and the swivel direction are optically recorded. For this purpose, a light-emitting diode 62 is provided at the upper end of the centering mandrel 58, which illuminates a four-quadrant photodiode system 64, which is arranged on a mounting bracket of the lifting platform 50 such that the levels of all four quadrants of the diode system 64 are the same when the centering mandrel 58 is in its neutral position. Since the centering mandrel 58 pivots when it is placed on the edge of the hole, the level differences of the four quadrants of the photodiode system 64 change, and these level differences are a measure of two orthogonal correction paths, namely in the disk conveying direction and transversely thereto. The roughly determined hole position is refined around these correction paths.

Die den Zentrierdorn 58 abstützende Schraubenfeder gewährleistet, daß das Schußloch nur durch das Eigengewicht des Zentrierdornes 58 belastetwird, sodaß die zulässige Belastung des Schußloches nicht überschritten wird. Beim Absenken des Zentrierdornes beginnt in dem Moment des Aufsetzens auf den Schußlochrand eine axiale Relativbewegung des Zentrierdornes 58. Aufgrund der größeren Nähe zum Vierquadranten-Fotodiodensystem 64 verkleinert sich dessen Pegelsumme. Diese Verkleinerung ist ein Maß für die mechanische konzentrische Lochbelastung.The helical spring supporting the centering pin 58 ensures that the shot hole is only loaded by the weight of the centering pin 58, so that the permissible load on the shot hole is not exceeded. When the centering mandrel is lowered, an axial relative movement of the centering mandrel 58 begins at the moment when it is placed on the edge of the shot hole. Because of the greater proximity to the four-quadrant photodiode system 64, its level sum decreases. This reduction is a measure of the mechanical concentric hole loading.

Die Steuerung der Korrekturwerte durch die sekundäre Abtasteinrichtung 46 kann auch so vorgenommen werden, daß nach dem Aufsetzen des Zentrierdornes 58 die Scheibe 16 in Transportrichtung oder entgegen der Transportrichtung und der Wagen 40 quer zur Transportrichtung solange verstellt werden, bis alle Pegeldifferenzen des Vierquadranten-Fotodiodensystems 64 Null sind. Aus den zusätzlichen Verfahrwegen und der Grobposition des Schußloches ist dann die genaue Schußlochposition berechenbar.The control of the correction values by the secondary scanning device 46 can also be carried out in such a way that, after the centering mandrel 58 has been put in place, the disk 16 in the transport direction or counter to the transport direction and the carriage 40 are adjusted transversely to the transport direction until all level differences of the four-quadrant photodiode system 64 Are zero. From the additional travel paths and the Rough position of the shot hole is then the exact shot hole position can be calculated.

Die mechanische sekundäre Abtasteinrichtung 46 ermöglicht auch eine einseitige Antastung von sogenannten Gabelschüssen bzw. von Doppelschüssen mit definierter Lochrandbelastung. Durch vektorielle Addition der Pegeldifferenzen ist der Lochrand-Belastungsvektor erfaßbar. Umgekehrt ist bei aus der optischen Grobauswertung bekannten Winkellage des anzutastenden Lochrandbereiches die erforderliche Winkelstellung des Zentrierdornes 58 einstellbar.The mechanical secondary scanning device 46 also enables one-sided probing of so-called fork shots or double shots with defined hole edge loading. The hole edge loading vector can be determined by vectorial addition of the level differences. Conversely, the required angular position of the centering mandrel 58 can be set in the angular position of the hole edge region to be probed, which is known from the optical rough evaluation.

In FIG. 1 ist weiterhin der untere Teil einer Ultraschallschranke dargestellt, die alternativ zum mechanischen sekundären Abtastsystem 46 eingesetzt werden kann. An dem Wagen 40 ist dann ein Ultraschallsender mit abwärts gerichteter Strahlungsachse in der Querebene 38 angeordnet. Unterhalb des Scheibenbandes 16 ist ein weiterer Wagen 66 ebenfalls an Querführungen verschiebbar angeordnet, der an einem dem Antriebszahnriemen 42 entsprechenden Riemen 68 befestigt ist. Die beiden Riemen 42, 68 sind über Umlenkritzel synchronisiert. Der Wagen 66 trägt einen Ultraschallempfänger. Die Arbeitsweise entspricht der mit Bezug auf die mechanische sekundäre Abtasteinrichtung 46 beschriebenen. Die Ultraschallschranke wird auf die vom optischen System grobermittelte Querposition des Schußloches durch Verschiebung der beiden Wagen 40,66 eingestellt, wonach der Scheibentransport und der Wagentransport solange verändert werden, bis der Ultraschallempfang sein Maximum erreicht. Die Korrekturwege der beiden Motoren 18, 44 werden dann mit der Grobposition im Rechner verrechnet.In FIG. 1 also shows the lower part of an ultrasound barrier which can be used as an alternative to the mechanical secondary scanning system 46. An ultrasound transmitter with the radiation axis directed downward is then arranged on the carriage 40 in the transverse plane 38. A further carriage 66 is likewise arranged displaceably on transverse guides beneath the disk belt 16 and is fastened to a belt 68 corresponding to the drive toothed belt 42. The two belts 42, 68 are synchronized via deflection pinions. The carriage 66 carries an ultrasound receiver. The method of operation corresponds to that described with reference to the mechanical secondary scanner 46. The ultrasound barrier is adjusted to the transverse position of the shot hole roughly determined by the optical system by displacing the two carriages 40, 66, after which the pane transport and the carriage transport are changed until the ultrasound reception reaches its maximum. The correction paths of the two motors 18, 44 are then offset against the rough position in the computer.

Claims (14)

1. A method of evaluating hits on a target, in which the target or a target band (16) passes through an optical system (22), in which edge regions of the shot hole and image points of the target are detected and the distance of the centre of the shot hole from the centre of the target is computed and displayed as the result of the shot, characterized in that the shot hole is sensed by lines, the positions of the shot hole edge points for each line sensing are determined and stored, at least a part of a hole edge polygon is computed from the plurality of hole edge points and brought by minimising deviations into register with at least a part of a regular reference polygon or circle, whose centre point coordinates defining the shot hole centre are computed, and in that a ring on the target (16) adjoining the shot hole is sensed by lines and the coordinates of the centre point of the associated circular arc or two spaced circular arcs are computed from a plurality of closely adjacent ring points of this sensed target ring or reflective edge.
2. A method according to claim 1, characterized in that a single optical system (22) is used to sense the shot hole and an adjacent part of an arc of a target ring and comprises a line scanner or a surface camera, which responds both to the transmitted light passing through the shot hole and the incident light reflected from the target (16).
3. A method according to claim 1 or 2, characterized in that the coordinates of the centre of the hole and the distance of the centre of the hole from an adjacent target ring are determined by the line scanner (22) while the target (16) is moved continuously or in fine steps relative to the line scanner (22) through a path of the order of magnitude of at least a part of the shot hole diameter.
4. A method according to claim 3, characterized in that the optical system (22) receives signals from the hole edge and the target ring alternately.
5. A method according to claim 4, characterized in that during the advance of the target by half a line width the hole edge signal is detected and during the following advance by next half line width the ring signal is detected.
6. A method according to any of claims 1 to 5, characterized in that the light beam passing through the shot hole is interrupted during the ring sensing.
7. A method according to any of claims 1 to 6, characterized in that an auxiliary sensing procedure operating mechanically or ultrasonically is switched in after the optical hole sensing on overstepping a predetermined magnitude of deviation of the hole edge polygon from the reference polygon, in which procedure a secondary mechanical or ultrasonic sensing system (46) moves a predetermined distance from the optical system (22) transverse to the target transport direction and the target (16) is transported so far that the shot hole comes into the range of detection of the secondary sensing system (46) and this is adjusted on to the shot hole, in that the target (16) executes a correcting movement relative to the sensing system (46) in the transport direction and the secondary sensing system (46) executes its own correcting movement at right angles thereto, and in that the transport path of the target (16) between the two sensing systems (22, 46) and the transverse path of movement of the secondary sensing system (46) is computed in with the two correcting movements for determining the centre of the hole.
8. A method according to claim 7, characterized in that the mechanical secondary sensing system (46) comprises a prong which can be lowered into the shot hole, the prong being suspended universally and being self-centring in the shot hole, and the deflection of the prong from the neutral position in two orthogonal directions is detected as correcting movements.
9. Amethod according to claim 7, characterized in thatthe ultrasonic sensing system comprises an ultrasonic beam device with a transmitter on one side of the target and a receiver on the other side, in that the ultrasonic beam device is adjusted in the transverse direction relative to the target transport and the target is adjusted in or opposite to the transport direction until the receiver receives the maximum sound power and in that the two orthogonal adjusting movements are computed in as correcting movements for determination of the centre of the hole.
10. A device for evaluating hits on targets (16), with a housing (10), in which is arranged a motorised transport device (12, 14) for the target of the target band (16), with an optical system (22) arranged transverse to the transport direction on one side of the transport path for the target (16) and comprising a light-emitting row (28, 32) and a light receiving row parallel thereto on the other side of the transport path, which is arranged in or symmetrically relative to a transverse plane crossing the target transport path at right angles, characterized in that the light receiving row is in the form of a high resolution scanner (22) equipped with an incident light illuminating unit (32) extending over the whole line length, or a surface image receptor, acting as a single light receiving member for the transmitted light passing through the shot hole and the reflected incident light from the target (16), and an electronic recognition unit which distinguishes the electrical signals of the scanner (22) or surface image receptor generated from transmitted light from the signals generated by the reflected incident light and the signals for determination of the hole edge and for determination of the circular arc are evaluated separately.
11. A device according to claim 10, characterized in that the light emitting row (28) is switched off or dimmed during reception from the target ring.
12. Apparatus according to claim 10 or 11, characterized in that a secondary mechanical sensing system (46) is associated with the optical sensing system (scanner 22) and is mounted on a carriage (4) movable at right angles to the target transport and comprises a prong (58) adapted to be inserted in the shot hole and suspended universally from a rising platform (50) with axial play and with which a position sensor is associated, which detects the deflections in the transport direction and transverse thereto occurring on insertion of the prong (58) in the shot hole.
13. Apparatus according to claim 10 or 11, characterized in that a secondary sonar beam unit is associated with the optical sensing system (scanner 22) and is mounted on a carriage (40, 66) movable at right angles to the target transport and comprises an ultrasonic transmitter an ultrasonic receiver aligned at right angles to the target transport path on opposite sides of the target transport path, in that the sonar beam unit can be moved into the position of the shot hole coarsely determined by the optical sensing system (scanner 22) and from thence the transport device for the target (16) and the carriage (40, 66) execute correcting movements until the ultrasonic receiver receives maximum sound power and these correcting movements are computed in with the corresponding optically detected orthogonal positions of the shot hole.
14. Use of a single optical system (22) for sensing a band provided with targets, wherein this single optical system (22) has a line scanner or a surface camera for sensing a shot hole and a part of an arc of a target ring of a target adjoining this shot hole, which scanner or camera responds to the light passing through the shot hole and also to the incident light reflected from the target (16).
EP91110143A 1990-06-29 1991-06-20 Method and device for estimating the shots on a target Expired - Lifetime EP0463566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE9116709U DE9116709U1 (en) 1990-06-29 1991-06-20 Device for evaluating hits from shooting targets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4020658 1990-06-29
DE4020658A DE4020658A1 (en) 1990-06-29 1990-06-29 METHOD AND DEVICE FOR EVALUATING SHOTPARTS

Publications (3)

Publication Number Publication Date
EP0463566A1 EP0463566A1 (en) 1992-01-02
EP0463566B1 true EP0463566B1 (en) 1995-05-17
EP0463566B2 EP0463566B2 (en) 1999-03-17

Family

ID=6409286

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91110143A Expired - Lifetime EP0463566B2 (en) 1990-06-29 1991-06-20 Method and device for estimating the shots on a target

Country Status (3)

Country Link
EP (1) EP0463566B2 (en)
AT (1) ATE122781T1 (en)
DE (2) DE4020658A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4207933C2 (en) * 1992-03-12 1997-03-20 Spieth Ernst K Gmbh Arrangement for displaying and evaluating hits on shooting targets
DE4327500C2 (en) * 1993-08-16 1996-05-09 Knestel Elektronik Gmbh Device for evaluating hits from shooting targets
DE29512828U1 (en) * 1995-08-09 1995-10-19 Knestel Elektronik Gmbh Target stand for sport shooters
WO2011022845A1 (en) 2009-08-25 2011-03-03 Hansruedi Walti-Herter Arrangement for determining in a photoelectric manner the shooting position of a shooting target
DE102015005059A1 (en) 2015-04-20 2016-10-20 Andreas Obrebski Mobile device for non-contact evaluation of targets

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH611011A5 (en) * 1976-01-12 1979-05-15 Gennaro Filippini Device for detecting at a distance hits present on a target
DE2625500A1 (en) * 1976-06-05 1977-12-15 Ramke Fa Hans Miniature gun target practice appts. - has illuminated target roll in front of TV camera and remote monitoring screen
DE2625550A1 (en) * 1976-06-05 1977-12-15 Goetzewerke ELASTIC SHAFT COUPLING
DE7703277U1 (en) * 1977-02-04 1977-05-18 Keil, Karl, 8860 Noerdlingen MEASURING DEVICE FOR BULLETED TARGETS
SE7904508L (en) * 1978-05-26 1979-11-27 Australasian Training Aids Pty GRINDING DEVICE
DE3134561C2 (en) * 1981-09-01 1983-09-15 Kempf, Alfons, Dipl.-Ing. (FH), 8950 Kaufbeuren Method and device for scoring hits from shooting targets
DE3700836A1 (en) * 1987-01-14 1988-07-28 Immendorf Karl Martin Dipl Ing Precision firing point
DE3729613A1 (en) * 1987-09-04 1989-03-23 Rudolf Dipl Ing Pura Firing range
DE3806644A1 (en) * 1988-03-02 1989-09-14 Werner Langhans Firing range

Also Published As

Publication number Publication date
EP0463566A1 (en) 1992-01-02
DE4020658A1 (en) 1992-01-02
EP0463566B2 (en) 1999-03-17
ATE122781T1 (en) 1995-06-15
DE59105493D1 (en) 1995-06-22

Similar Documents

Publication Publication Date Title
EP0596330B1 (en) Arrangement for measuring crane load oscillations
DE3515194C2 (en)
EP0212052B1 (en) Device for measurement of wheels of wheel sets integrated in the vehicle
DE69832839T2 (en) Testing the sealing surface of a container
DE3007233C2 (en) Method and device for the determination of defects in surfaces
EP0415154B2 (en) Method for inspecting objects from different viewing angles
DE3822303C2 (en)
EP0311014B1 (en) Arrangement for the optical inspection of surfaces
DE3219389C2 (en)
DE4128571A1 (en) EYEWEAR SCANNER
DE3309584A1 (en) OPTICAL INSPECTION SYSTEM
EP0650911B1 (en) Apparatus and method for detection of overlapping flexible and flat objects
DE3541142C2 (en) Control and correction device for the transverse dimensions of rod-shaped products, in particular for confectioning machines for tobacco products
DE2626275A1 (en) DEVICE FOR AUTOMATIC CHECKING OF AXIS-SYMMETRIC WORKPIECE PROFILES
DE2200094B2 (en) SCANNING DEVICE FOR OPTICALLY RECOGNIZABLE CHARACTERS
EP0463566B1 (en) Method and device for estimating the shots on a target
DE69935034T2 (en) READING PROCESS AND DEVICE FOR RELIEF MARKINGS IN A TRANSMITTED OR INDICATIVE CONTAINER
EP0528197B1 (en) Method and device for the inspection of tablets
EP0270062B1 (en) Image pick-up device
EP1251347B1 (en) Apparatus to optically monitor a web strip and method of adjustment thereof
WO2002023124A1 (en) Method and device for measuring the curvature of a reflective surface
EP1859227B1 (en) Sensor assembly for optically detecting the edges of a product and width-measurement method
DE2718086C2 (en) Device for the detection of surface defects in steel parts
DE2200095A1 (en) Reading device for optically recognizable characters
DE19616708A1 (en) Device for measuring and sorting workpieces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB LI

17P Request for examination filed

Effective date: 19911218

17Q First examination report despatched

Effective date: 19930901

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950517

Ref country code: FR

Effective date: 19950517

Ref country code: GB

Effective date: 19950517

REF Corresponds to:

Ref document number: 122781

Country of ref document: AT

Date of ref document: 19950615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59105493

Country of ref document: DE

Date of ref document: 19950622

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950517

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: KNESTEL ELEKTRONIK GMBH

Effective date: 19960214

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19990317

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT CH DE ES FR GB LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

EN Fr: translation not filed
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080519

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100628

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59105493

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59105493

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110621