EP0458922B1 - Process for producing a surface-coated component, especially a contact member for a vacuum switch, and device for implementing the process - Google Patents

Process for producing a surface-coated component, especially a contact member for a vacuum switch, and device for implementing the process Download PDF

Info

Publication number
EP0458922B1
EP0458922B1 EP91900146A EP91900146A EP0458922B1 EP 0458922 B1 EP0458922 B1 EP 0458922B1 EP 91900146 A EP91900146 A EP 91900146A EP 91900146 A EP91900146 A EP 91900146A EP 0458922 B1 EP0458922 B1 EP 0458922B1
Authority
EP
European Patent Office
Prior art keywords
substrate
additive
support
powder layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91900146A
Other languages
German (de)
French (fr)
Other versions
EP0458922A1 (en
Inventor
Ekkehard Schade
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calor Emag AG
Original Assignee
Calor Emag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calor Emag AG filed Critical Calor Emag AG
Publication of EP0458922A1 publication Critical patent/EP0458922A1/en
Application granted granted Critical
Publication of EP0458922B1 publication Critical patent/EP0458922B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Definitions

  • the invention is based on a method for producing a surface-coated component, in particular a contact piece for a vacuum switch, according to the preamble of claim 1.
  • the invention also relates to devices for carrying out this method.
  • the invention relates to a prior art, such as is described in DE-A1-3541584.
  • a method specified in this patent publication serves to produce metal composite materials from a base material with at least one metal and further active components.
  • a substrate made of the base material is melted locally in a targeted manner by means of energy radiation, and the active component is added to the melting volume.
  • This requires beams with an extremely high beam current density, such as laser beams, and special energy transmission devices with which the active components can be accelerated to high speed.
  • a device used to carry out this method has an xy feed table holding the substrate, which is moved relative to a stationary laser beam generating the energy radiation and a cannula supplying metal oxide powder as active component.
  • the invention achieves the object of specifying a method for producing a surface-coated component, in particular a contact piece for a vacuum switch, with which large-area components can also be produced with little outlay on equipment, and also devices create that are particularly suitable for performing this method.
  • the method according to the invention enables the production of highly resilient surface-coated components with little outlay on equipment.
  • Low demands are placed on the heat flow source because its beam current density can be kept low. Due to the low jet current density of the heat flow source, evaporation and spraying away of additive are largely avoided in the manufacture of the components.
  • the desired stoichiometry of the surface layer is therefore not affected.
  • Surface layers of up to several millimeters can be easily achieved. Such surface layers are particularly suitable as an arcing contact layer of the contact pieces of vacuum switches, particularly when they are designed as copper-chrome layers.
  • the devices created for carrying out the method according to the invention allow a particularly simple setting of a desired temperature in the production of the surface layers.
  • the substrate 1 is, for example, a copper disc of approximately 40 mm in diameter and approximately 8 mm in thickness, but can also any other suitable metallic body.
  • the support device 3 consists, for example, of a good heat-conducting material, such as preferably copper or silver, and has a support 5 mounted on a rotating device 4 which is cooled approximately with water. 6 denotes a heat flow source.
  • This heat flow source advantageously emits high-energy corpuscular beams, such as electron or ion beams, but can also be designed as a Hall generator or any other suitable device.
  • This heat flow source advantageously has a beam current density of a few to a few hundred kilowatts per square centimeter.
  • the heat flow source advantageously has a total output of a few hundred watts up to approx. 20 kilowatts.
  • 7 denotes an additive supply device for receiving a powdery additive 8, which is trickled down onto the surface of the substrate 1 in the direction of the arrows 9 to form a powder layer 10.
  • the additive preferably has lower thermal conductivity than the substrate 1 and can contain chromium or an alloy based on chromium and copper when producing a contact piece for a vacuum switch with a backing consisting predominantly of copper.
  • the substrate 1 which then contains predominantly copper, the additive 8 which then contains predominantly chromium powder and the heat flow source 6 which operates approximately on the basis of electron beams are in a vacuum of approx. 10 ca. mbar.
  • the support device 3 rotates about an axis 11 in such a way that an average advance of the substrate 1 relative to the heat flow source 6 of, for example, 5-10 cm / s is achieved.
  • An energy flow 12 emitted by the heat flow source 6 simultaneously falls on one Part of the substrate surface. This energy flow has an expansion of, for example, 0.25 to 1 cm2 when striking and has a current density of, for example, 20 kW / cm2 at the impact point.
  • the energy flow 12 is almost completely absorbed by the substrate 1 and therefore supplies the substrate 1 with heat.
  • the heat supplied to the substrate 1 is conducted from the impingement area of the energy flow 12 through heat conduction into the entire substrate 1. In this way and due to the rotation of the substrate 1 and any oscillation of the energy flow, overheating of the impact area is avoided.
  • the substrate 1 is preheated to a temperature which is considerably above room temperature but below its melting temperature. With the copper disc described above, this preheating temperature is approx. 700 - 1000 ° C.
  • the output power of the heat flow source 6 is reduced during the preheating of the substrate 1. After the preheating temperature has been reached, the beam 12 has a current density of only a few kW / cm 2.
  • the preheating temperature can be set at a predetermined power of the heat flow source 6 by suitable heat dissipation via the support device 3.
  • the contact surface 2 can be kept at the desired temperature by appropriately enlarging or reducing the cross section of the support 5.
  • a part 17 made of a single piece between the substrate 1 and the support 5 leading to cooling compared to the rest of the material of the support device 3 is comparatively poorly heat-conducting material, such as stainless steel.
  • the appropriate setting of the temperature can of course also be achieved by jointly using the two measures described above.
  • the support surface 2 should have a temperature of 500-600 ° C.
  • the comparatively low energy conducted into the substrate 1 by the energy flow 12 is sufficient to melt the material of the substrate in a local area 15.
  • the powder layer 10 is brought onto the surface of the substrate 1.
  • the coating formed by loose powder is typically 25-50 mg / cm 2.
  • the local area 15 is guided to and through the powder layer 10 by rotation of the support device 3. Liquid material located in the locally melted area, for example copper, wets powder located in the powder layer 10 or soaks the powder layer 10 by predominantly effective capillary forces. This effect can be increased by additional additives if necessary.
  • the support device 3 or the heat flow source 6 and the additive supply device 7 By rotating the support device 3 or the heat flow source 6 and the additive supply device 7 about the vertically extended axis 11, which is guided centrally through the support table 3, and by additionally radially, preferably oscillating, movements of the heat flow source 6 and additive supply device 7 can be achieved, that almost the entire surface of the substrate 1 is successively melted and coated.
  • the melting of the substrate 1 can, of course, also be carried out by a translational displacement in a horizontal xy plane, with the heat flow source 6 in the x and y directions between the Edges of the substrate 1 is moved back and forth, and the support surface 2 is displaced approximately in the y direction.
  • the additive feed device 7 should be moved according to its displacement with the substrate 1 rotating.
  • an approximately 50-100 ⁇ m thick surface layer 16 can be produced in this way.
  • This layer is characterized, among other things, by the fact that the substrate 1 and thus also the surface layer 16 are largely gas-free due to the comparatively slow melting over a large area.
  • the cross section of the energy flow 12 is small, an almost complete coating of the surface can be achieved in that the heat flow source 6 is additionally periodically moved back and forth transversely to and / or in the direction of displacement of the substrate 1.
  • layer thicknesses of up to several millimeters can be produced without any problems.
  • Different layer thicknesses and / or predetermined surface profiles can be produced by suitably controlling the power and the current density of the energy flow 12, the heating time of the local area 15 and / or the amount of the additive 8 supplied.
  • Vacuum switches equipped with contact pieces produced in this way have significantly improved breaking capacities compared to vacuum switches with comparable dimensions but with contact pieces manufactured according to conventional methods.
  • the surface layer 16 is briefly heated to a temperature substantially above the melting temperature of the substrate 1, at least over part of its outer surface and starting from its outer surface at least over part of its depth.

Abstract

PCT No. PCT/CH90/00285 Sec. 371 Date Aug. 14, 1991 Sec. 102(e) Date Aug. 14, 1991 PCT Filed Dec. 17, 1990 PCT Pub. No. WO91/09409 PCT Pub. Date Jun. 27, 1991.Surface-coated components, such as contact pieces for vacuum switches, are produced by means of the method by melting open the surface of a metallic substrate (1) in a local area (15) by an energy flow (12) and combining an additive (8) with the melted-open material of the local area (15). It is intended to produce components with large areas with small outlay in apparatus by means of this method. This is attained by the following steps: Prior to melting open the local area (15), the substrate (1) is pre-heated to a temperature considerably above room temperature, but below its melting temperature. After pre-heating, the local area (15) on the surface of the substrate is melted open and the additive (8) is applied to the substrate surface in the form of a loose powder layer (10). The local area (15) melted open by the energy flow (12) is guided to and through the powder layer (10) and in the course of this powder present in the powder layer (10) is wetted or the powder layer (10) is soaked with liquid material from the melted-open local area (15), because of which the powder of the powder layer (10) is bonded with the surface of the substrate (1) and the desired surface layer (16) is formed.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einem Verfahren zur Herstellung eines oberflächenbeschichteten Bauteils, insbesondere eines Kontaktstücks für einen Vakuumschalter, gemäss dem Oberbegriff von Patentanspruch 1. Die Erfindung betrifft auch Vorrichtungen zur Durchführung dieses Verfahrens.The invention is based on a method for producing a surface-coated component, in particular a contact piece for a vacuum switch, according to the preamble of claim 1. The invention also relates to devices for carrying out this method.

STAND DER TECHNIKSTATE OF THE ART

Hierbei nimmt die Erfindung auf einen Stand der Technik Bezug, wie er etwa in DE-A1-3541584 beschrieben ist. Ein in dieser Patentveröffentlichung angegebenes Verfahren dient der Herstellung von Metall-Verbundwerkstoffen aus einem Grundwerkstoff mit wenigstens einem Metall und weiteren Wirkkomponenten. Hierbei wird ein Substrat aus dem Grundwerkstoff mittels Energiestrahlung örtlich gezielt bis in vorgegebene Tiefe geschmolzen und dem Schmelzvolumen die Wirkkomponente zugeführt. Hierzu bedarf es Strahlen mit äusserst hoher Strahlstromdichte, wie etwa Laserstrahlen, und spezieller Energieübertragungvorrichtungen, mit denen die Wirkkomponenten auf hohe Geschwindigkeit beschleunigt werden können.Here, the invention relates to a prior art, such as is described in DE-A1-3541584. A method specified in this patent publication serves to produce metal composite materials from a base material with at least one metal and further active components. Here, a substrate made of the base material is melted locally in a targeted manner by means of energy radiation, and the active component is added to the melting volume. This requires beams with an extremely high beam current density, such as laser beams, and special energy transmission devices with which the active components can be accelerated to high speed.

Eine zur Durchführung dieses Verfahrens verwendete Vorrichtung weist einen das Substrat haltenden xy-Vorschubtisch auf, welcher gegenüber einem die Energiestrahlung erzeugenden ortsfesten Laserstrahl und einer Metalloxidpulver als Wirkkomponente zuführenden Kanüle bewegt wird.A device used to carry out this method has an xy feed table holding the substrate, which is moved relative to a stationary laser beam generating the energy radiation and a cannula supplying metal oxide powder as active component.

Aus CH-A5-661616 ist es bekannt, einen Chrom und Kupfer enthaltenden Sinterkörper im Vakuum oder einer Inertgasatmosphäre einem konzentrierten, etwa durch einen Lichtbogen gebildeten, Wärmestrom mit einer Strahlstromdichte von 10 - 1000 kW/cm² auszusetzen. Während der ca. 21 - 100 ms dauernden Einwirkung des Wärmestroms wird die Oberfläche des Werkstückes aufgeschmolzen. Durch anschliesendes Abkühlen des Sinterkörpers mit einer Geschwindigkeit von 10⁴ - 10⁵ °K/s wird sodann ein Kontaktstück für einen Vakuumschalter mit einer bis zu 3 mm starken Oberflächenschicht aus einem feindispersen und einen geringen Gasgehalt aufweisenden Kupfer-Chrom-Material gebildet. Solchermassen hergestellte Kontaktstücke steigern die Betriebszuverlässigkeit von Vakuumschaltern erheblich, bedingen jedoch bei der Herstellung grossflächiger Kontaktstücke einen erheblichen apparativen Aufwand.From CH-A5-661616 it is known to expose a chromium and copper-containing sintered body in a vacuum or an inert gas atmosphere to a concentrated heat flow, for example formed by an arc, with a beam current density of 10-1000 kW / cm². The surface of the workpiece is melted during the approx. 21 - 100 ms exposure to the heat flow. By subsequently cooling the sintered body at a speed of 10 von - 10⁵ ° K / s, a contact piece for a vacuum switch with a surface layer of up to 3 mm thick is then formed from a finely dispersed copper-chromium material with a low gas content. Contact pieces produced in this way considerably increase the operational reliability of vacuum switches, but they require a considerable amount of equipment in the production of large-area contact pieces.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Die Erfindung, wie sie in den Patentansprüchen definiert ist, löst die Aufgabe, ein Verfahren zur Herstellung eines oberflächenbeschichteten, Bauteils, insbesondere eines Kontaktstücks für einen Vakuumschalter, anzugeben, mit dem auch grossflächige Bauteile mit geringem apparativem Aufwand hergestellt werden können, sowie Vorrichtungen zu schaffen, die zur Durchführung dieses Verfahrens besonders geeignet sind.The invention, as defined in the claims, achieves the object of specifying a method for producing a surface-coated component, in particular a contact piece for a vacuum switch, with which large-area components can also be produced with little outlay on equipment, and also devices create that are particularly suitable for performing this method.

Das erfindungsgemässe Verfahren ermöglicht mit geringem apparativem Aufwand die Herstellung hochbelastbarer oberflächenbeschichteter Bauteile. An die Wärmestromquelle werden hierbei geringe Anforderungen gestellt, da deren Strahlstromdichte gering gehalten werden kann. Bedingt durch die geringe Strahlstromdichte der Wärmestromquelle werden bei der Herstellung der Bauteile Verdampfen und Wegspritzen von Zusatzstoff weitgehend vermieden. Die angestrebte Stöchiometrie der Oberflächenschicht wird daher nicht beeinträchtigt. Es lassen sich problemlos Oberflächenschichten bis zu mehreren Millimetern erreichen. Solche Oberflächenschichten sind insbesondere bei Ausbildung als Kupfer-Chrom-Schicht hervorragend geeignet als Lichtbogenkontaktschicht der Kontaktstücke von Vakuumschaltern.The method according to the invention enables the production of highly resilient surface-coated components with little outlay on equipment. Low demands are placed on the heat flow source because its beam current density can be kept low. Due to the low jet current density of the heat flow source, evaporation and spraying away of additive are largely avoided in the manufacture of the components. The desired stoichiometry of the surface layer is therefore not affected. Surface layers of up to several millimeters can be easily achieved. Such surface layers are particularly suitable as an arcing contact layer of the contact pieces of vacuum switches, particularly when they are designed as copper-chrome layers.

Die zur Durchführung des erfindungsgemässen Verfahrens geschaffenen Vorrichtungen ermöglichen eine besonders einfache Einstellung einer erwünschten Temperatur bei der Herstellung der Oberflächenschichten.The devices created for carrying out the method according to the invention allow a particularly simple setting of a desired temperature in the production of the surface layers.

WEG ZUR AUSFÜHRUNG DER ERFINDUNGWAY OF CARRYING OUT THE INVENTION

Nachfolgend wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Hierbei zeigt:

Fig.1
eine Vorrichtung zur Durchführung des Verfahrens nach der Erfindung,
Fig.2
eine Aufsicht auf einen senkrecht zur Zeichenebene, vertikal geführten Schnitt durch ein in der Vorrichtung gemäss Fig.1 befindliches Substrat 1 an einer Stelle, an der durch einen Energiestrom 12 ein lokal aufgeschmolzener Bereich 15 im Substrat 1 gebildet ist, und
Fig.3
eine Draufsicht auf die in Fig.2 geschnitten dargestellte Stelle des Substrates 1.
The invention is explained in more detail below on the basis of an exemplary embodiment shown in the drawing. Here shows:
Fig. 1
a device for performing the method according to the invention,
Fig. 2
a supervision of a vertical cut perpendicular to the plane of the drawing a substrate 1 located in the device according to FIG. 1 at a point at which a locally melted region 15 is formed in the substrate 1 by an energy flow 12, and
Fig. 3
a plan view of the section of the substrate 1 shown in FIG. 2.

In den Figuren befindet sich ein Substrat 1 auf einer Auflagefläche 2 einer etwa als Tisch oder aber lediglich nur als säulenförmige Abstützung ausgebildeten Auflagevorrichtung 3. Das Substrat 1 ist beispielsweise eine Kupferscheibe von ca. 40 mm Durchmesser und ca. 8 mm Dicke, kann aber auch irgendein anderer geeigneter metallischer Körper sein. Die Auflagevorrichtung 3 besteht beispielsweise aus einem gut wärmeleitenden Material, wie vorzugsweise Kupfer oder Silber, und weist eine auf einer etwa mit Wasser gekühlten Drehvorrichtung 4 gelagerte Stütze 5 auf. 6 bezeichnet eine Wärmestromquelle. Diese Wärmestromquelle sendet mit Vorteil energiereiche Korpuskularstrahlen, wie Elektronen- oder Ionenstrahlen aus, kann aber auch als Hallgenerator oder irgendeine andere geeignete Vorrichtung ausgebildet sein. Mit Vorteil weist diese Wärmestromquelle eine Strahlstromdichte von wenigen bis zu einigen hundert Kilowatt pro Quadratzentimeter auf. Mit Vorteil verfügt die Wärmestromquelle über eine Gesamtleistung von einigen hundert Watt bis zu ca. 20 Kilowatt. 7 bezeichnet eine Zusatzstoff-Zufuhrvorrichtung zur Aufnahme eines pulverförmigen Zusatzstoffes 8, welcher in Richtung der Pfeile 9 unter Bildung einer Pulverschicht 10 auf die Oberfläche des Substrates 1 herabgerieselt wird. Der Zusatzstoff hat vorzugsweise geringere Wärmeleitfähigkeit als das Substrat 1 und kann bei der Herstellung eines Kontaktstückes für einen Vakuumschalter mit einer überwiegend aus Kupfer bestehenden Rückseite Chrom oder eine Legierung auf der Basis Chrom und Kupfer enthalten.In the figures, there is a substrate 1 on a support surface 2 of a support device 3, which is designed approximately as a table or merely as a columnar support. The substrate 1 is, for example, a copper disc of approximately 40 mm in diameter and approximately 8 mm in thickness, but can also any other suitable metallic body. The support device 3 consists, for example, of a good heat-conducting material, such as preferably copper or silver, and has a support 5 mounted on a rotating device 4 which is cooled approximately with water. 6 denotes a heat flow source. This heat flow source advantageously emits high-energy corpuscular beams, such as electron or ion beams, but can also be designed as a Hall generator or any other suitable device. This heat flow source advantageously has a beam current density of a few to a few hundred kilowatts per square centimeter. The heat flow source advantageously has a total output of a few hundred watts up to approx. 20 kilowatts. 7 denotes an additive supply device for receiving a powdery additive 8, which is trickled down onto the surface of the substrate 1 in the direction of the arrows 9 to form a powder layer 10. The additive preferably has lower thermal conductivity than the substrate 1 and can contain chromium or an alloy based on chromium and copper when producing a contact piece for a vacuum switch with a backing consisting predominantly of copper.

Das erfindungsgemässe Verfahren wird nun wie folgt ausgeführt:The method according to the invention is now carried out as follows:

Soll als Bauteil beispielsweise ein Kontaktstück für einen Vakuumschalter hergestellt werden, so befinden sich das dann überwiegend Kupfer enthaltende Substrat 1, der dann überwiegend Chrompulver enthaltende Zusatzstoff 8 und die etwa auf der Basis von Elektronenstrahlen arbeitende Wärmestromquelle 6 in einem Vakuum von ca. 10⁻⁶ mbar. Die Auflagevorrichtung 3 dreht sich hierbei derart um eine Achse 11, dass ein mittlerer Vorschub des Substrates 1 gegenüber der Wärmestromquelle 6 von beispielsweise 5 - 10 cm/s erreicht wird. Ein von der Wärmestromquelle 6 emittierter Energiestrom 12 fällt gleichzeitig auf einen Teil der Substratoberfläche. Dieser Energiestrom hat beim Auftreffen eine Ausdehnung von beispielsweise 0,25 bis 1 cm² und weist an der Auftreffstelle eine Stromdichte von beispielsweise 20 kW/cm² auf.If, for example, a contact piece for a vacuum switch is to be produced as a component, then the substrate 1 which then contains predominantly copper, the additive 8 which then contains predominantly chromium powder and the heat flow source 6 which operates approximately on the basis of electron beams are in a vacuum of approx. 10 ca. mbar. The support device 3 rotates about an axis 11 in such a way that an average advance of the substrate 1 relative to the heat flow source 6 of, for example, 5-10 cm / s is achieved. An energy flow 12 emitted by the heat flow source 6 simultaneously falls on one Part of the substrate surface. This energy flow has an expansion of, for example, 0.25 to 1 cm² when striking and has a current density of, for example, 20 kW / cm² at the impact point.

Der Energiestrom 12 wird nahezu vollständig vom Substrat 1 absorbiert und führt daher dem Substrat 1 Wärme zu. Die dem Substrat 1 zugeführte Wärme wird aus dem Auftreffbereich des Energiestromes 12 durch Wärmeleitung in das gesamte Substrat 1 geführt. Hierdurch und durch die Rotation des Substrates 1 sowie durch eine etwaige Pendelung des Energiestromes wird eine Überhitzung des Auftreffbereiches vermieden. Auf diese Weise wird das Substrat 1 auf eine Temperatur vorgewärmt, welche erheblich über Raumtemperatur jedoch unter seiner Schmelztemperatur liegt. Bei der zuvor beschriebenen Kupferscheibe beträgt diese Vorwärmtemperatur ca. 700 - 1000 °C. Während des Vorwärmens des Substrates 1 wird die abgegebene Leistung der Wärmestromquelle 6 reduziert. Nach Erreichen der Vorwärmtemperatur weist der Strahl 12 eine Stromdichte von nur noch einigen kW/cm² auf.The energy flow 12 is almost completely absorbed by the substrate 1 and therefore supplies the substrate 1 with heat. The heat supplied to the substrate 1 is conducted from the impingement area of the energy flow 12 through heat conduction into the entire substrate 1. In this way and due to the rotation of the substrate 1 and any oscillation of the energy flow, overheating of the impact area is avoided. In this way, the substrate 1 is preheated to a temperature which is considerably above room temperature but below its melting temperature. With the copper disc described above, this preheating temperature is approx. 700 - 1000 ° C. The output power of the heat flow source 6 is reduced during the preheating of the substrate 1. After the preheating temperature has been reached, the beam 12 has a current density of only a few kW / cm 2.

Bedingt durch Wärmestrahlung von der Oberfläche (durch Pfeile 13 angedeutet) und Wärmeleitung in die Auflagefläche 2 (durch Pfeile 14 angedeutet) bleibt diese Vorwärmtemperatur während der nachfolgend beschriebenen Phase des erfindungsgemässen Verfahrens nahezu unverändert. Hierbei kann die Vorwärmtemperatur bei vorgegebener Leistung der Wärmestromquelle 6 durch geeignete Wärmeableitung über die Auflagevorrichtung 3 eingestellt werden. Zu diesem Zweck kann die Auflagefläche 2 durch geeignete Vergrösserung oder Verkleinerung des Querschnitts der Stütze 5 auf der erwünschte Temperatur gehalten werden. In einer weiteren Ausführungsform der Erfindung ist es zu empfehlen, die Einstellung der erwünschten Temperatur dadurch zu erreichen,dass zwischen dem Substrat 1 und der zu einer Kühlung führenden Stütze 5 ein Teil 17 aus einem gegenüber dem übrigen Material der Auflagevorrichtung 3 vergleichsweise schlecht wärmeleitendem Material, wie beispielsweise rostfreiem Stahl, angeordnet wird. Die geeignete Einstellung der Temperatur lässt sich selbstverständlich auch durch gemeinsame Anwendung beider zuvor beschriebener Massnahmen erreichen.Bei einem im wesentlichen Kupfer enthaltenden und unmittelbar auf der Auflagefläche 2 aufliegenden Substrat 1 sollte die Auflagefläche 2 eine Temperatur von 500 - 600 °C aufweisen.Due to heat radiation from the surface (indicated by arrows 13) and heat conduction into the support surface 2 (indicated by arrows 14), this preheating temperature remains virtually unchanged during the phase of the method according to the invention described below. Here, the preheating temperature can be set at a predetermined power of the heat flow source 6 by suitable heat dissipation via the support device 3. For this purpose, the contact surface 2 can be kept at the desired temperature by appropriately enlarging or reducing the cross section of the support 5. In a further embodiment of the invention, it is recommended to achieve the setting of the desired temperature in that a part 17 made of a single piece between the substrate 1 and the support 5 leading to cooling compared to the rest of the material of the support device 3 is comparatively poorly heat-conducting material, such as stainless steel. The appropriate setting of the temperature can of course also be achieved by jointly using the two measures described above. In the case of a substrate 1 which essentially contains copper and lies directly on the support surface 2, the support surface 2 should have a temperature of 500-600 ° C.

Sobald die Vorwärmtemperatur erreicht ist, reicht die vom Energiestrom 12 in das Substrat 1 geführte vergleichsweise geringe Energie aus, um das Material des Substrates in einem lokalen Bereich 15 aufzuschmelzen. Nach Aufschmelzen des lokalen Bereiches 15 wird die Pulverschicht 10 auf die Oberfläche des Substrates 1 gebracht. Bei Verwendung eines Chrompulvers mit einer mittleren Teilchengrösse von ca. 100 »m, welches aus der Zusatzstoff-Zufuhrvorrichtung 7 in Richtung der Pfeile 9 auf die Substratoberfläche gerieselt wird, beträgt die durch loses Pulver gebildete Auflage typischerweise 25 - 50 mg/cm². Der lokale Bereich 15 wird durch Rotation der Auflagevorrichtung 3 zur und durch die Pulverschicht 10 geführt. Im lokal aufgeschmolzenen Bereich befindliches flüssiges Material, beispielsweise Kupfer, benetzt hierbei in der Pulverschicht 10 befindliches Pulver bzw. tränkt durch überwiegend wirksame Kapillarkräfte die Pulverschicht 10. Diese Wirkung kann bei Bedarf durch weitere Zusatzstoffe erhöht werden.As soon as the preheating temperature has been reached, the comparatively low energy conducted into the substrate 1 by the energy flow 12 is sufficient to melt the material of the substrate in a local area 15. After the local area 15 has melted, the powder layer 10 is brought onto the surface of the substrate 1. When using a chrome powder with an average particle size of approx. 100 »m, which is sprinkled from the additive feed device 7 in the direction of the arrows 9 onto the substrate surface, the coating formed by loose powder is typically 25-50 mg / cm 2. The local area 15 is guided to and through the powder layer 10 by rotation of the support device 3. Liquid material located in the locally melted area, for example copper, wets powder located in the powder layer 10 or soaks the powder layer 10 by predominantly effective capillary forces. This effect can be increased by additional additives if necessary.

Es entsteht so eine Chrom und Kupfer enthaltende Oberflächenschicht 16, deren zuvor erläuterter Bildungsmechanismus besonders gut aus den Figuren 2 und 3 zu ersehen ist. Da der Energiestrom 12 eine vergleichsweise geringe Energiedichte aufweist, wird eine Überhitzung sowohl der im lokalen Bereich 15 befindlichen Kupferschmelze als auch des Chrompulvers vermieden. Da das Chrompulver lediglich auf der Oberfläche des Substrates 1 aufliegt, ist nämlich sein Wärmekontakt zum Substrat gering und ein intensiver Energiestrom würde daher eine extreme Überhitzung hervorrufen. Ein Verdampfen bzw. Verspritzen von Chrompulver entfällt daher weitgehend.This results in a surface layer 16 containing chromium and copper, the previously explained formation mechanism of which can be seen particularly well from FIGS. 2 and 3. Since the energy flow 12 has a comparatively low energy density, overheating both of the copper melt located in the local area 15 and of the chrome powder is avoided. Since that Chrome powder only rests on the surface of the substrate 1, namely its thermal contact with the substrate is low and an intensive energy flow would therefore cause extreme overheating. Evaporation or spraying of chrome powder is therefore largely eliminated.

Durch Rotation der Auflagevorrichtung 3 oder der Wärmestromquelle 6 und der Zusatzstoff-Zufuhrvorrichtung 7 um die zentral durch den Auflagetisch 3 geführte, vertikal erstreckte Achse 11 sowie durch zusätzlich radial, vorzugsweise pendelnd, ausgeführte Bewegungen von Wärmestromquelle 6 und Zusatzstoff-Zufuhrvorrichtung 7 kann erreicht werden, dass nahezu die gesamte Oberfläche des Substrats 1 sukzessive aufgeschmolzen und beschichtet wird.Das Aufschmelzen des Substrates 1 kann selbstverständlich auch durch eine in einer horizontalen xy-Ebene erfolgende translatorische Verschiebung ausgeführt werden, wobei beispielsweise die Wärmestromquelle 6 in x- und y-Richtung zwischen den Kanten des Substrates 1 hin- und hergeführt wird, und die Auflagefläche 2 etwa in y-Richtung verschoben wird. Hierbei sollte die Zusatzstoff-Zuführvorrichtung 7 entsprechend ihrer Verschiebung bei rotierendem Substrat 1 bewegt werden. Nach vollständigem Überfahren der freiliegenden Oberfläche des Substrates 1 kann auf diese Weise eine ca. 50 - 100 »m dicke Oberflächenschicht 16 erzeugt werden. Diese Schicht zeichnet sich unter anderem auch dadurch aus, dass wegen des vergleichsweise langsam und grossflächig erfolgenden Aufschmelzens das Substrat 1 und damit auch die Oberflächenschicht 16 weitgehend gasfrei sind.By rotating the support device 3 or the heat flow source 6 and the additive supply device 7 about the vertically extended axis 11, which is guided centrally through the support table 3, and by additionally radially, preferably oscillating, movements of the heat flow source 6 and additive supply device 7 can be achieved, that almost the entire surface of the substrate 1 is successively melted and coated. The melting of the substrate 1 can, of course, also be carried out by a translational displacement in a horizontal xy plane, with the heat flow source 6 in the x and y directions between the Edges of the substrate 1 is moved back and forth, and the support surface 2 is displaced approximately in the y direction. Here, the additive feed device 7 should be moved according to its displacement with the substrate 1 rotating. After the exposed surface of the substrate 1 has been completely covered, an approximately 50-100 μm thick surface layer 16 can be produced in this way. This layer is characterized, among other things, by the fact that the substrate 1 and thus also the surface layer 16 are largely gas-free due to the comparatively slow melting over a large area.

Ist der Querschnitt des Energiestromes 12 gering, so kann eine nahezu vollständige Beschichtung der Oberfläche dadurch erreicht werden, dass etwa die Wärmestromquelle 6 zusätzlich quer zur und/oder in Verschiebungsrichtung des Substrates 1 periodisch hin und her bewegt wird.If the cross section of the energy flow 12 is small, an almost complete coating of the surface can be achieved in that the heat flow source 6 is additionally periodically moved back and forth transversely to and / or in the direction of displacement of the substrate 1.

Durch zyklisches Wiederholen des vorstehend beschriebenen Verfahrensschrittes können so problemlos Schichtdicken bis zu mehreren Millimetern erzeugt werden. Durch geeignete Steuerung der Leistung und der Stromdichte des Energiestromes 12, der Aufheizzeit des lokalen Bereiches 15 und/oder der Menge des zugeführten Zusatzstoffes 8 können unterschiedliche Schichtdicken und/oder vorgegebene Oberflächenprofile hergestellt werden. Mit solchermassen hergestellten Kontaktstücken ausgerüstete Vakuumschalter weisen gegenüber Vakuumschaltern mit vergleichbaren Abmessungen aber mit nach herkömmlichen Verfahren hergestellten Kontaktstücken wesentlich verbesserte Abschaltleistungen auf.By cyclically repeating the process step described above, layer thicknesses of up to several millimeters can be produced without any problems. Different layer thicknesses and / or predetermined surface profiles can be produced by suitably controlling the power and the current density of the energy flow 12, the heating time of the local area 15 and / or the amount of the additive 8 supplied. Vacuum switches equipped with contact pieces produced in this way have significantly improved breaking capacities compared to vacuum switches with comparable dimensions but with contact pieces manufactured according to conventional methods.

Weitere Verbesserungen der Abschaltleistungen können gegebenenfalls noch dadurch erzielt werden, dass die Oberflächenschicht 16 wenigstens über einen Teil ihrer Aussenfläche und ausgehend von ihrer Aussenfläche zumindest über einen Teil ihrer Tiefe kurzzeitig auf eine wesentlich über der Schmelztemperatur des Substrates 1 liegende Temperatur erwärmt wird.Further improvements in the switch-off capacities can optionally be achieved in that the surface layer 16 is briefly heated to a temperature substantially above the melting temperature of the substrate 1, at least over part of its outer surface and starting from its outer surface at least over part of its depth.

Claims (13)

  1. Method for producing a surface-coated component, in particular a contact piece for a vacuum switch, composed of a metal substrate (1) and at least one additive (8) fed to the substrate (1), in which the substrate (1) is melted down at the surface in at least one local region (15) by means of a current (12) of energy and the additive (8) is brought together with melted down material of the local region (15), characterized in that before the melting-down of the local region (15) the substrate (1) is preheated to a temperature which is substantially above room temperature but below its melting temperature, in that after the preheating the local region (15) is melted down at the substrate surface and the additive (8) is applied to the substrate surface in the form of a loose powder layer (10), and in that the local region (15) melted down by the current of energy is led to and through the powder layer (10) and in the process powder located in the powder layer (10) is wetted or the powder layer (10) is saturated with liquid material from the melted down local region (15), as a result of which the powder of the powder layer (10) is bound into the surface of the substrate (1) and the targeted surface layer (16) is formed.
  2. Method according to Claim 1, characterized in that the substrate (1) is preheated by a heat flux source (6), preferably emitting electrons, having a controllable beam current density.
  3. Method according to Claim 2, characterized in that during preheating of the substrate (1) the heat flux source (6) is firstly operated at a power which is several times higher than during coating of the at least one local region (15).
  4. Method according to one of Claims 1 to 3, characterized in that the heat flux source (6), an additive feed device (7) and the substrate (1) are arranged capable of displacement relative to one another.
  5. Method according to Claim 4, characterized in that the displacement is carried out by the rotation or translation of the substrate (1).
  6. Method according to Claim 5, characterized in that the heat flux source (6) is additionally moved to and fro periodically at right angles to and/or in the displacement direction of the substrate (1).
  7. Method according to one of Claims 5 or 6, characterized in that the additive feed device (7) is additionally moved to and fro periodically at right angles to the displacement direction of the substrate (1).
  8. Method according to one of Claims 1 to 7, characterized in that after formation of the surface layer (16), for the purpose of increasing its thickness additive (8) is applied to the surface layer in the form of a further powder layer and treated in a fashion corresponding to the powder layer (10) leading to the surface layer (16).
  9. Method according to Claim 8, characterized in that the power and current density of the current (12) of energy, the heating time of the local region (15) and/or the quantity of the additive (8) applied are controlled in such a way that different thicknesses of the surface layer (16) and/or prescribed surface profiles can be produced.
  10. Method according to one of Claims 1-9, characterized in that at least over a part of its outer surface and, starting from its outer surface, at least over a part of its depth, the surface layer (16) is heated briefly to a temperature substantially above the melting temperature of the substrate (1).
  11. Device for carrying out the method according to Claim 1, having at least one heat flux source (6), at least one additive feed device (7) and at least one support device (3) for the substrate (1), in which the heat flux source (6), additive feed device (7) and substrate (1) are arranged capable of being displaced relative to one another and the support device (3) has a support surface (2) for the substrate (1), characterized in that the temperature of the support surface (2) can be set by a part (17) of the support device (3) which is a relatively poor conductor of heat and which is arranged between the substrate (1) and a support (5) of the support device (3) which leads to cooling.
  12. Device for carrying out the method according to Claim 1, having at least one heat flux source (6), at least one additive feed device (7) and at least one support device (3) for the substrate (1), in which the heat flux source (6), additive feed device (7) and substrate (1) are arranged capable of being displaced relative to one another and the support device (3) has a support surface (2) for the substrate (1), characterized in that the temperature of the support surface (2) can be set by changing the cross-section at least of a support (5) of the support device (3) which leads heat from the support surface (2) for the purpose of cooling.
  13. Device according to one of Claims 11 or 12, characterized in that the support device (3) is constructed to be capable of turning.
EP91900146A 1989-12-15 1990-12-17 Process for producing a surface-coated component, especially a contact member for a vacuum switch, and device for implementing the process Expired - Lifetime EP0458922B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH4513/89 1989-12-15
CH451389 1989-12-15
PCT/CH1990/000285 WO1991009409A1 (en) 1989-12-15 1990-12-17 Process for producing a surface-coated component, especially a contact member for a vacuum switch, and device for implementing the process

Publications (2)

Publication Number Publication Date
EP0458922A1 EP0458922A1 (en) 1991-12-04
EP0458922B1 true EP0458922B1 (en) 1995-06-07

Family

ID=4277496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91900146A Expired - Lifetime EP0458922B1 (en) 1989-12-15 1990-12-17 Process for producing a surface-coated component, especially a contact member for a vacuum switch, and device for implementing the process

Country Status (6)

Country Link
US (1) US5254185A (en)
EP (1) EP0458922B1 (en)
JP (1) JPH04503732A (en)
AT (1) ATE123587T1 (en)
DE (1) DE59009215D1 (en)
WO (1) WO1991009409A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537657A1 (en) * 1995-10-10 1997-04-17 Abb Patent Gmbh Method and device for producing a contact piece
DE19612143A1 (en) * 1996-03-27 1997-10-02 Abb Patent Gmbh Manufacturing helical contact member for vacuum switch

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632573A1 (en) * 1996-08-13 1998-02-19 Abb Patent Gmbh Producing a contact unit for a vacuum chamber and resultant contact unit
DE19650752C1 (en) * 1996-12-06 1998-03-05 Louis Renner Gmbh Sintered copper@-chromium@ vacuum contact material
US6423162B1 (en) * 1999-07-02 2002-07-23 The University Of Tennesse Research Corporation Method for producing decorative appearing bumper surfaces
DE102011006899A1 (en) * 2011-04-06 2012-10-11 Tyco Electronics Amp Gmbh Process for the production of contact elements by mechanical application of material layer with high resolution and contact element

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2175606A (en) * 1939-10-10 Method and apparatus fob alloying
DE2014638A1 (en) * 1970-03-26 1971-10-14 Siemens Ag Process for the production of a two-layer contact piece
GB2047567B (en) * 1979-03-16 1983-12-14 Dodd K H Coating with parachute material
WO1982001960A1 (en) * 1980-11-28 1982-06-10 Rodionov Valery V Method of preparation of contacts and electrodes of vacuum electric apparatuses
US4750947A (en) * 1985-02-01 1988-06-14 Nippon Steel Corporation Method for surface-alloying metal with a high-density energy beam and an alloy metal
JPS61270335A (en) * 1985-05-24 1986-11-29 Toyota Motor Corp Build-up valve for internal combustion engine
DE3541584A1 (en) * 1985-11-25 1987-05-27 Siemens Ag Process and appliance for preparing metal-composite materials, and contact pieces produced therewith for electrical switchgear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537657A1 (en) * 1995-10-10 1997-04-17 Abb Patent Gmbh Method and device for producing a contact piece
DE19612143A1 (en) * 1996-03-27 1997-10-02 Abb Patent Gmbh Manufacturing helical contact member for vacuum switch
DE19612143B4 (en) * 1996-03-27 2005-05-04 Abb Patent Gmbh Method for producing a spiral contact piece for a vacuum chamber and device for carrying out the method

Also Published As

Publication number Publication date
JPH04503732A (en) 1992-07-02
ATE123587T1 (en) 1995-06-15
US5254185A (en) 1993-10-19
DE59009215D1 (en) 1995-07-13
EP0458922A1 (en) 1991-12-04
WO1991009409A1 (en) 1991-06-27

Similar Documents

Publication Publication Date Title
DE2740569A1 (en) SURFACE ALLOY AND HEAT TREATMENT PROCESS
DE102010025967B4 (en) Method for producing a multiplicity of holes, device for this and glass interposer
DE3502902C2 (en)
DE102005048314B4 (en) Device for selective laser sintering
DE2412102A1 (en) METHOD OF ION IMPLANTATION
DE1521372B2 (en) Process for flame spraying heat softened particles and apparatus for carrying out the same
DE202012013222U1 (en) contact element
DE1185305B (en) Process for soldering, welding and removing materials by means of a charge carrier beam
EP0458922B1 (en) Process for producing a surface-coated component, especially a contact member for a vacuum switch, and device for implementing the process
DE102020204989B3 (en) Process for the additive manufacturing of a circuit carrier and circuit carrier
EP0558135B1 (en) Procedure for generating pattern in the surface of a work piece
DE2814044A1 (en) METHOD OF MAKING A HOLE IN A WORKPIECE USING LASER RADIATION
DE2113336A1 (en) Device for applying thin layers of material
CH667107A5 (en) METHOD AND DEVICE FOR EVAPORATING MATERIAL.
DE3007169C2 (en) Process for the production of micro-bores in metal parts with the aid of a power laser
DE3541584C2 (en)
EP1640108B1 (en) Method of forming a contact
DE3121555A1 (en) Method for controlled alteration of the shape of a heated part made of steel by means of laser radiation
DE4212035C2 (en) Process for remelting surfaces of workpieces with laser radiation
EP0960956B1 (en) Process for preparing ceramic evaporation boats
EP0182182B1 (en) Method and apparatus for making silver base two-layer contacts for electrical switches
DE19520149A1 (en) Building up coatings on substrate e.g saw blades or component edges
DE102023101453B3 (en) METHOD AND DEVICE FOR GENERATING SECONDARY RADIATION, IN PARTICULAR EUV RADIATION, USING AT LEAST ONE LASER
CH400403A (en) Method for joining workpieces with the aid of a charge carrier beam
DE1521174B2 (en) METHOD FOR THERMAL EVAPORATION OF A MIXTURE OF SUBSTANCES IN A VACUUM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE GB LI

17Q First examination report despatched

Effective date: 19940222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE GB LI

REF Corresponds to:

Ref document number: 123587

Country of ref document: AT

Date of ref document: 19950615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009215

Country of ref document: DE

Date of ref document: 19950713

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950904

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19961014

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19961024

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961029

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971217

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981021

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001003