EP0456379B1 - Analoger Phasenschieber - Google Patents

Analoger Phasenschieber Download PDF

Info

Publication number
EP0456379B1
EP0456379B1 EP91303707A EP91303707A EP0456379B1 EP 0456379 B1 EP0456379 B1 EP 0456379B1 EP 91303707 A EP91303707 A EP 91303707A EP 91303707 A EP91303707 A EP 91303707A EP 0456379 B1 EP0456379 B1 EP 0456379B1
Authority
EP
European Patent Office
Prior art keywords
inductors
phase shifter
varactor
junction
interposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91303707A
Other languages
English (en)
French (fr)
Other versions
EP0456379A1 (de
Inventor
Timothy E. Daughters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Corp filed Critical AT&T Corp
Publication of EP0456379A1 publication Critical patent/EP0456379A1/de
Application granted granted Critical
Publication of EP0456379B1 publication Critical patent/EP0456379B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/185Phase-shifters using a diode or a gas filled discharge tube
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/18Networks for phase shifting
    • H03H7/20Two-port phase shifters providing an adjustable phase shift

Definitions

  • This invention relates to phase shifters.
  • an analog voltage-controlled phase shifter is to align the phase of a narrow-band signal such as a recovered clock signal with the incoming data stream such that decisions are made at the proper times. Another use is to phase modulate a carrier signal. There are many other uses and applications for analog phase shifters as they can be used at many different frequencies.
  • phase shifter currently in use in lightwave regenerators requires a branch-line quadrature hybrid in combination with gallium arsenide hyperabrupt varactor diodes to obtain the required range of phase shift.
  • These diodes have the disadvantages that they are expensive, they are subject to large variations in center capacitance and capacitance slope Vs. voltage, and proper operation of the phase shifter relies on well-matched diodes.
  • GB patent no. 1506156 discloses a phase shifter comprising first, second, third and fourth inductors coupled together in series relationship to form a ring, said first inductor being interposed between a first port and a second port, a first capacitor interposed between the junction of said first and second inductors and a ground terminal, a second capacitor interposed between the junction of said first and fourth inductors and a ground terminal, a third capacitor interposed between the junction of said second and third inductors and a ground terminal, a fourth capacitor interposed between the junction of said third and fourth inductors and a ground terminal, a first varactor interposed between a ground terminal and the junction of said second and third inductors, a second varactor interposed between a ground terminal and the junction of said third and fourth inductors, and control means coupled to selectively control the capacitance of said first and second varactors.
  • phase shifter as claimed in claim 1.
  • An analog voltage-controlled phase shifter which is small in size and provides a larger phase shift for a smaller change of capacitance than presently available voltage controlled phase shifters.
  • FIG. 1 there is illustrated prior art structure for realizing a quadrature hybrid which, when coupled to identical variable reactances such as, for example, varactor diodes at ports 2 and 3 forms an analog phase shifter.
  • the quadrature hybrid can be realized by using four quarter-wavelength transmission lines.
  • the scattering matrix of the quadrature hybrid when referenced to Z o (the input and output impedance) is: where a n represents the amplitudes of the waves incident on ports 1, 2, 3 and 4 and b n represents the amplitudes of the waves emerging from ports 1, 2, 3 and 4. If ports 2 and 3 are terminated with reactances having reflection coefficients of ⁇ 2 and ⁇ 3 then
  • b 2 1 2 (-j)
  • b 3 1 2 (-1)
  • b 4 will become the transmission coefficient of the resulting 2 port.
  • phase shifter requires a variable reactance with a large tuning range to obtain a large phase shift.
  • a typical abrupt junction varactor can give a tuning ratio of about 2.5 to 1 from minimum capacitance to maximum capacitance. This also corresponds to a 2.5 to 1 ratio in the resulting capacitive reactance. Referring to FIG. 5, it can be seen that a 2.5 to 1 ratio of capacitive reactance alone could give at most, a range of about 50° in a prior art phase shifter. It is well known that adding a fixed inductance in series with the varactor can significantly increase this range. Consider for instance, a varactor whose reactance (normalized to Z 0 ) can be varied from -1.4 to -3.5. Add to this a fixed inductor having a normalized reactance of +2.45.
  • the range of normalized reactance for the resulting network is from +1.05 to -1.05.
  • FIG. 5 shows that this network has a phase shift range of about 180°.
  • a varactor whose normalized reactance could be tuned over a range from -3.2 to -8 in series with a fixed inductor with normalized reactance of +5.6 could be tuned over a range from +2.4 to -2.4 giving a phase shift range of 270°.
  • the inventive design can give a large phase shift without the need for large inductors.
  • FIG. 6 it can be seen that a varactor whose reactance can be tuned from -0.3 to -0.75 will give a tuning range of 180° without the need for a series inductor.
  • a 270° design comparable to the prior art design above requires X cn to vary from -0.5 to -1.25 with X ln fixed at 0.42.
  • the inventive design can use much smaller inductors in series with the varactors for a given range. In some cases the inductors can be eliminated entirely.
  • the required capacitance for the varactors is larger (smaller reactance) which results in a more practical design.
  • phase shifters having a reasonably linear phase shift with applied control voltage can, also, be obtained.
  • inventive circuit results in more practical element values.
  • FIG. 2 there is illustrated a lumped element quadrature-hybrid as described in the paper by R.K. Gupta and W.T. Getsinger entitled "Quasilumped element 3- and 4-port Networks for MIC and MMIC Applications" published in 1984 IEEE MTT-S International Microwave Symposium Digest, pp. 409-411,.
  • FIG. 2 can be obtained by substituting the ⁇ network illustrated in FIG. 3 for the quarter-wavelength transmission lines of FIG. 1.
  • the quadrature hybrid networks of FIG. 1 and FIG. 2 are electrically indistinguishable.
  • L T Z o / 2 2 ⁇ f o
  • L C Z o 2 ⁇ f o
  • C 1 Z o 2 ⁇ f o + 1 Z o 2 2 ⁇ f o
  • FIG. 4 there is illustrated a schematic diagram of structure embodying the invention.
  • FIG. 4 comprises a quadrature-hybrid network having lumped elements such as is illustrated in FIG. 3 in combination with variable reactances coupled to ports 2 and 3 of the quadrature-hybrid network to provide a phase shifter.
  • the parallel capacitances which are normally coupled to ports 2 and 3 of the quadrature-hybrid network can be included, fully or partially, as a part of the capacitance of the variable reactances. The result is that a larger phase shift can be realized with a smaller range of varactor capacitance (C max /C min) as illustrated in FIG. 6.
  • the new improved analog phase shifter illustrated in FIG. 4 comprises four inductors 53, 54, 55 and 56 connected in series to form a ring.
  • a first port 1 is coupled to one end of inductor 53 and a second port 2 is coupled to the other end of inductor 53.
  • a first corner capacitor 57 is coupled between a ground terminal and the junction of inductor 53 with inductor 54; and, a second corner capacitor 58 is coupled between the ground terminal and the junction of inductor 53 with inductor 56.
  • the junction of inductors 54 and 55 is coupled to a ground terminal through a varactor 59 in series with an inductor 60; and, the junction of inductors 55 and 56 is coupled to a ground terminal through a varactor 61 in series with an inductor 62.
  • a control potential is applied to the phase shifter through a decoupling network 63 to control the capacitance of said varactors 59 and 61.
  • phase shift angle between ports 1 and 2 is where X vn is the normalized reactance of the varactor network. This function is illustrated in FIG. 5.
  • the phase shift then, will be given by the expression
  • FIG. 6 shows this expression as a function of X vn . It is readily seen that a much larger phase shift is achieved for a small change in X vn .
  • the advantages of the lumped element phase shifter here disclosed are as follows:
  • the traditional prior art phase shifter requires quarter-wavelength transmission lines.
  • the phase shifter here disclosed can use lumped elements which results in a smaller size. This is most dramatic at frequencies below 2GHz.
  • the phase shift range for a given change in variable reactance is substantially greater. While this improvement requires close matching of the two variable reactances, it will often allow the use of a less expensive abrupt junction varactor in place of an expensive hyper abrupt.
  • the new phase shifter provides flexibility.
  • phase shifter 4 can be added back to provide a linear phase shift with voltage and/or to increase the tolerance to diode mismatch. This may, however, result in a reduction of range.
  • the new phase shifter here disclosed permits the use of more realizable element values.
  • the table below compares the values of elements required for a prior art phase shifter and three typical phase shifters for 180° linear range using abrupt junction diodes (1.7GHz). Varactor Capacitance at 4V Bias (pF) Series Inductance (nH) Parallel Fixed Capacitance added at varactor node (pF) Phase Shift Prior Art Device 1.5 10.8 N/A Phase Shift Invention 9.8 0 0 4.4 1.4 1.9 2.7 3.7 2.8
  • the new phase shifter here disclosed provides a large degree of flexibility.
  • the series inductance of 10.8nH in the prior art design may be difficult to realize at 1.7GHz due to parasitic capacitance.
  • the higher capacitance varactors in the inventive design makes the network less sensitive to parasitic capacitance in the diode package.
  • the new phase shifter offers many alternatives.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Networks Using Active Elements (AREA)

Claims (8)

  1. Phasenschieber mit folgenden Merkmalen:
    - einem ersten (53), zweiten (54), dritten (55) und vierten (56) induktiven Bauelement, die in einer Reihenbeziehung zusammengeschaltet sind, um einen Ring zu bilden, wobei das erste induktive Bauelement zwischen einem ersten Anschluß (1) und einem zweiten Anschluß (4) angeordnet ist,
    - einem ersten Kondensator (57), der zwischen der Verbindungsstelle des ersten und zweiten induktiven Bauelements und einem Masseanschluß geschaltet ist,
    - einem zweiten Kondensator (58), der zwischen der Verbindungsstelle des ersten und vierten induktiven Bauelements und einem Masseanschluß geschaltet ist,
    - einem dritten Kondensator, der zwischen der Verbindungsstelle des zweiten und dritten induktiven Bauelements und einem Masseanschluß geschaltet ist,
    - einem vierten Kondensator, der zwischen der Verbindungsstelle des dritten und vierten induktiven Bauelements und einem Masseanschluß geschaltet ist,
    - einem ersten Varaktor (59), der zwischen einem Masseanschluß und der Verbindungsstelle des zweiten und dritten induktiven Bauelements geschaltet ist,
    - einem zweiten Varaktor (61), der zwischen einem Masseanschluß und der Verbindungsstelle des dritten und vierten induktiven Bauelements angeschaltet ist, und
    - einer Steuereinrichtung, die wahlweise die Kapazität des ersten und zweiten Varaktors steuert,
    dadurch gekennzeichnet, daß das erste und dritte induktive Bauelement im wesentlichen den gleichen Wert haben und der dritte und vierte Kondensator einen Wert haben, der sich vom Wert des ersten und zweiten Kondensators unterscheidet.
  2. Phasenschieber nach Anspruch 1,
    dadurch gekennzeichnet, daß der dritte und vierte Kondensator einen Wert von im wesentlichen Null haben.
  3. Phasenschieber nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß die Steuereinrichtung eine Einrichtung zum steuerbaren Anlegen eines Potentials an den ersten und zweiten Varaktor aufweist.
  4. Phasenschieber nach Anspruch 3,
    gekennzeichnet durch ein fünftes induktives Bauelement (60), das in Reihe mit dem ersten Varaktor geschaltet ist und durch ein sechstes induktives Bauelement (62), das in Reihe mit dem zweiten Varaktor geschaltet ist.
  5. Phasenschieber nach Anspruch 3 oder 4,
    dadurch gekennzeichnet, daß das zweite und vierte induktive Bauelement ähnliche Werte haben.
  6. Phasenschieber nach Anspruch 5,
    dadurch gekennzeichnet, daß der erste und zweite Kondensator ähnliche Werte haben.
  7. Phasenschieber nach Anspruch 6,
    dadurch gekennzeichnet, daß die Kapazitätsänderung des ersten Varaktors bezüglich des Potentials im wesentlichen gleich der Kapazitätsänderung des zweiten Varaktors bezüglich des Potentials ist.
  8. Phasenschieber nach Anspruch 7,
    dadurch gekennzeichnet, daß das erste und dritte induktive Bauelement jeweils einen Wert von Z o / 2 f o ;
    Figure imgb0024
    das zweite und vierte induktive Bauelement jeweils einen Wert von Z o f o ;
    Figure imgb0025
    und der erste und zweite Kondensator jeweils einen Wert von 1 Z o f o + 1 Z o 2 f o
    Figure imgb0026
    haben, wobei Z0 die Eingangs- und Ausgangsimpedanz und f0 die Mittenfrequenz sind.
EP91303707A 1990-04-30 1991-04-24 Analoger Phasenschieber Expired - Lifetime EP0456379B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/516,391 US5028892A (en) 1990-04-30 1990-04-30 Analog phase shifter
US516391 1990-04-30

Publications (2)

Publication Number Publication Date
EP0456379A1 EP0456379A1 (de) 1991-11-13
EP0456379B1 true EP0456379B1 (de) 1997-08-06

Family

ID=24055370

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91303707A Expired - Lifetime EP0456379B1 (de) 1990-04-30 1991-04-24 Analoger Phasenschieber

Country Status (4)

Country Link
US (1) US5028892A (de)
EP (1) EP0456379B1 (de)
CA (1) CA2036099C (de)
DE (1) DE69127128T2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191891B2 (ja) * 1993-04-21 2001-07-23 三菱電機株式会社 90°移相器
US7205866B2 (en) * 2001-01-31 2007-04-17 Ipr Licensing, Inc. Electronic phase reflector with enhanced phase shift performance
US6710679B2 (en) 2001-08-16 2004-03-23 Paratek Microwave, Inc. Analog rat-race phase shifters tuned by dielectric varactors
CN102055049B (zh) * 2010-10-19 2013-07-17 电子科技大学 一种集总元件360度射频模拟电调移相器
DE102011012811B4 (de) 2011-03-02 2019-12-24 Heinz Lindenmeier Elektronisch gesteuerter Hochfrequenz-Phasenschieber mit analog einstellbarer Phase
US8446200B2 (en) 2011-05-10 2013-05-21 Samsung Electro-Mechanics Systems and methods for a continuous, linear, 360-degree analog phase shifter
US20160315595A1 (en) * 2015-04-22 2016-10-27 Alcatel Lucent High power phase shifter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506156A (en) * 1975-05-14 1978-04-05 Marconi Co Ltd Phase shifting circuits
US4638269A (en) * 1985-05-28 1987-01-20 Westinghouse Electric Corp. Wide band microwave analog phase shifter
JPH0232802B2 (ja) * 1985-12-19 1990-07-24 Fujitsu Ltd Maikurohataiisoki
US4859972A (en) * 1988-11-01 1989-08-22 The Board Of Trustees Of The University Of Illinois Continuous phase shifter for a phased array hyperthermia system

Also Published As

Publication number Publication date
DE69127128D1 (de) 1997-09-11
DE69127128T2 (de) 1998-02-26
EP0456379A1 (de) 1991-11-13
US5028892A (en) 1991-07-02
CA2036099A1 (en) 1991-10-31
CA2036099C (en) 1994-10-18

Similar Documents

Publication Publication Date Title
US4694266A (en) Notch filter
US5469129A (en) Impedance transforming three-port power divider/combiner using lumped elements
US5304961A (en) Impedance transforming directional coupler
US5119050A (en) Low loss 360 degree x-band analog phase shifter
US6111477A (en) Microwave phase shifter including a reflective phase shift stage and a frequency multiplication stage
US5886591A (en) Device including a passive coupler circuit phase shifting through 180°
US4992761A (en) Passive 180 degree broadband MMIC hybrid
US7164902B2 (en) Filter-integrated even-harmonic mixer and hi-frequency radio communication device using the same
EP0456379B1 (de) Analoger Phasenschieber
US4893098A (en) 90 Degree broadband MMIC hybrid
US5148128A (en) RF digital phase shift modulators
US5339462A (en) Broadband mixer circuit and method
US4288763A (en) Analog phase shifter
US3705366A (en) Two-terminal reactive hybrid microcircuit having capacitive diode termination
US4654887A (en) Radio frequency mixer
CA2026846A1 (en) Balancing loop
US6008694A (en) Distributed amplifier and method therefor
US4580114A (en) Active element microwave power coupler
US5233317A (en) Discrete step microwave attenuator
US3479615A (en) Varactor continuous phase modulator having a resistance in parallel with the varactor
US6522221B1 (en) Phase shifter, attenuator, and nonlinear signal generator
Lucyszyn et al. Decade bandwidth MMIC analogue phase shifter
US6060962A (en) Phase angle modulator for microwaves
JPH0746001A (ja) マイクロ波半導体回路
KR100366299B1 (ko) 초고주파 아날로그 위상 변위기

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR NL

17P Request for examination filed

Effective date: 19920501

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AT&T CORP.

17Q First examination report despatched

Effective date: 19941208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR NL

REF Corresponds to:

Ref document number: 69127128

Country of ref document: DE

Date of ref document: 19970911

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010322

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010327

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090422

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103