EP0451648B1 - Drehrohrofen mit gegeneinander gerichteten Flammen - Google Patents

Drehrohrofen mit gegeneinander gerichteten Flammen Download PDF

Info

Publication number
EP0451648B1
EP0451648B1 EP91105063A EP91105063A EP0451648B1 EP 0451648 B1 EP0451648 B1 EP 0451648B1 EP 91105063 A EP91105063 A EP 91105063A EP 91105063 A EP91105063 A EP 91105063A EP 0451648 B1 EP0451648 B1 EP 0451648B1
Authority
EP
European Patent Office
Prior art keywords
oxidant
cylindrical body
rotatable cylindrical
flue
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91105063A
Other languages
English (en)
French (fr)
Other versions
EP0451648A2 (de
EP0451648A3 (en
Inventor
Min-Da Ho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of EP0451648A2 publication Critical patent/EP0451648A2/de
Publication of EP0451648A3 publication Critical patent/EP0451648A3/en
Application granted granted Critical
Publication of EP0451648B1 publication Critical patent/EP0451648B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/20Incineration of waste; Incinerator constructions; Details, accessories or control therefor having rotating or oscillating drums
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/12Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating using gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/34Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame

Definitions

  • This invention relates generally to rotary kilns and is particularly useful with mobile rotary kilns.
  • a rotary kiln is a refractory-lined cylindrical vessel commonly used, for example, in the incineration of waste, in the calcining of cement, coke or other materials, in the firing of ceramic, and in many other uses.
  • the waste is provided into the kiln and is combusted while passing through the kiln by the combustion fuel and oxidant which is injected into the rotary kiln at one end of the kiln.
  • the injection of the fuel and oxidant into the kiln may be either concurrent with the flow of waste or other material through the kiln, or it may be countercurrent to the flow of waste or other material through the kiln.
  • Gases from within the kiln are removed through a flue located at one end of the kiln. After the waste has passed through the kiln, ash from the combusted waste is removed from the kiln.
  • the throughput of material, such as waste, through the kiln is limited by the quantity of furnace gases generated within the kiln by the injected fuel and oxidant, and by the combusting volatiles if volatiles are present, and also by the rate at which heat can be transferred to wet material or to other heat sinks by the furnace gases.
  • a rotary kiln comprising:
  • Another aspect of this invention comprises: A method for operating a rotary kiln comprising:
  • cylindrical means tubular, generally but not necessarily having a circular radial cross-section.
  • waste means any material intended for partial or total combustion within a combustion zone.
  • burner means a device through which both oxidant and combustible matter are provided into a combustion zone either separately or as a mixture.
  • the term "lance” means a device through which either oxidant or combustible matter but not both is provided into a combustion zone.
  • recirculation ratio means the ratio of the mass flowrate of material recirculated back toward the periphery of a jet to the mass flowrate of the total fluid injected into a combustion zone.
  • combustion means a substance that will burn under combustion zone conditions.
  • incombustible means a substance that will not burn under combustion zone conditions.
  • volatile means a material which will pass into the vapor state under combustion zone conditions such as, for example, the vapor materials resulting from drying, or from the decomposition or thermal dissociation of solid or liquid materials.
  • equivalent diameter means that diameter of a single circular orifice which would provide the same total area as the sum of the areas of a multi-orifice injection means.
  • Figure 1 is a schematic representation of one embodiment of the invention carried out in conjunction with waste incineration within a countercurrent kiln.
  • Figure 2 is a schematic representation of another embodiment of the invention carried out in conjunction with waste incineration within a concurrent kiln.
  • Figure 3 is a schematic representation of another embodiment of the invention illustrating the invention carried out with a plug flow zone.
  • Figure 4 is an illustration of a single orifice oxidant injection means for injecting oxidant with a high momentum into a kiln at the flue end.
  • Figure 5 is an illustration of a multi-orifice oxidant injection means for injecting oxidant with a high momentum into a kiln at the flue end.
  • Figure 7 is an illustration of a means to react fuel and oxidant in a recessed cavity prior to injection into the kiln.
  • the invention enables a significant increase in rotary kiln throughput by maintaining a desirable temperature profile throughout the kiln. This reduces large temperature gradients through the kiln reducing the need for a high temperature in one part of the kiln in order to provide heat to another part of the kiln. In addition the need for auxiliary fuel combustion to provide heat to a drying zone within the kiln is reduced. Thus throughput limitations caused by localized hot temperatures or flue gas flowrates are relaxed.
  • rotary kiln 1 having a rotatable cylindrical body 2, and nonrotatable walls 3 and 4 at each axial end of the rotatable cylindrical body to define a combustion zone 5.
  • the kiln has a length to diameter ratio exceeding 4 but less than 8.
  • Flue 6 is positioned at one axial end of rotatable cylindrical body 2. Although shown in Figure 1 as having a horizontal orientation, the flue may have a vertical or any other suitable orientation.
  • a first oxidant injection means such as first burner 7 is positioned within nonrotatable wall 4 opposite the end having flue 6. First burner 7 is oriented to inject fuel and oxidant into combustion zone 5 within rotatable cylindrical body 2 in a direction toward the flue end.
  • Second oxidant injection means such as second burner 8 is positioned within nonrotatable wall 3 at the flue end and is oriented to inject fuel and oxidant into combustion zone 5 in a direction toward the end opposite the flue end.
  • either or both of the first and second oxidant injection means may be a lance, such as lance 12. In such a case only oxidant is provided into the combustion zone from a lance.
  • the second oxidant injection means which injects oxidant into the kiln in the direction away from the flue end is adapted to inject the oxidant with a momentum sufficient to pass through the kiln a length equal to at least two times the internal diameter of, and preferably at least 50 percent of the length of, the rotatable cylindrical body.
  • One means of accomplishing this high momentum is by the injection of the oxidant through a restricted orifice having a diameter, or multiple orifices having an equivalent diameter, not exceeding 1/30 of the kiln internal diameter and preferably not exceeding 1/100 of the kiln internal diameter.
  • the restricted orifice imparts a high velocity to the oxidant as defined by Bernoulli's equation, and the high velocity causes the momentum to increase since momentum is the product of mass and velocity.
  • Another means of accomplishing high momentum is by increasing the mass of the second oxidant. However, this is not preferable because this simultaneously increases the mass and the momentum of the gas flowing toward the flue end.
  • Figures 4, 5 and 6 illustrate such second oxidant injection means.
  • a single orifice nozzle having a restricted diameter for the injection of oxidant there is illustrated a single orifice nozzle having a restricted diameter for the injection of oxidant.
  • Figure 5 illustrates a multiple orifice nozzle having an equivalent diameter of the defined restriction to enable the attainment of the required high momentum.
  • Figure 6 illustrates a burner wherein oxidant and fuel may be injected through concentric tubes to produce oxidizing gas. Oxidant may be fed through the center tube and fuel may be fed through the outer annular passage or vice versa.
  • the center tube may be fitted with a single or a multiple orifice nozzle.
  • oxidant and some fuel can react and expand within a cavity recessed within the kiln wall.
  • the cavity provides a restriction so that the hot combustion products at near the adiabatic flame temperature of the mixture leave the cavity at a high velocity.
  • the cavity would have a diameter at the point of communication with the kiln of less than 1/10 of the kiln internal diameter.
  • feed such as waste 9, comprising volatile material is provided into combustion zone 5, such as through ram feeder 10, to form a bed which flows through the combustion zone.
  • Other feeds which be used with this invention include cement, coke, ceramic and other materials which include a volatile component such as water.
  • the method of this invention will be described in detail with waste as the feed which may include volatile combustible and volatile incombustible matter.
  • Waste may be liquid and/or solid waste such as is defined in the Resource Conservation Recovery Act (RCRA) or the Toxic Substances Control Act (TSCA).
  • the waste passes sequentially through a drying zone 13 wherein it is dried of volatile incombustible matter such as water and some of the lighter volatile combustible matter, a pyrolysis zone 14 wherein additional combustible matter is volatized out, and a char burnout zone 15 wherein the residual solids are combusted.
  • Resulting ash is removed from combustion zone 5 through ash removal door 11.
  • ash removal door 11 As is appreciated by one skilled in the art, there is not a clear demarcation between these zones.
  • the arrows indicate the volatization of incombustible and combustible matter in zones 13 and 14 respectively.
  • Fuel and oxidant are injected through burner 7 into combustion zone 5 wherein they are combusted to provide heat to the combustion zone to carry out the drying, pyrolyzing and burning of the waste discussed above.
  • the oxidant may be air, technically pure oxygen having an oxygen concentration greater than 99.5 percent, or oxygen-enriched air having an oxygen concentration of at least 25 percent and preferably greater than 30 percent.
  • the fuel may be any suitable fluid fuel such as natural gas, propane, fuel oil, or liquid waste.
  • Fuel and oxidant are injected into combustion zone 5 through second burner 8 and can be defined the same as the fuel and oxidant injected through first burner 7.
  • the fuel and oxidant injected through burner 8 is injected having a momentum at least equal to, and preferably greater than 200 percent of, the momentum of the gas flowing toward the flue end.
  • the gas flowing toward the flue end may include fuel and oxidant injected through the first burner and the combustion products thereof, water vapor, combustion products from the material injected through the second burner, and combustion products from the combustion of volatized combustible material.
  • momentum is equal to the mass times the velocity of the fluid.
  • the combustion reaction stream injected through burner 8 penetrates a significant distance into combustion zone 5, preferably at least two kiln diameters. Heat released from the combustion of the fuel and oxidant injected into combustion zone 5 through burner 8 serves to provide heat for the aforedescribed drying, pyrolyzing and burning of the waste.
  • the arrangement of the invention wherein burners fire opposed to one another causes the temperature within the combustion zone to be much more uniform than with conventional rotary kiln arrangements because the two injected combustion streams tend to cause each other to recirculate through the combustion zone as indicated by the reversing flow arrows 16 in Figure 1, although only the recirculation of the gas flowing from the flue end is necessary for the successful operation of the invention.
  • the high momentum of the flue end combustion stream causes enhanced recirculation as shown by arrows 17. In this way temperature gradients within the kiln are better controlled so throughput limitations based on heat transfer rate considerations or flue gas flowrate considerations are relaxed.
  • the high momentum flame may be manipulated to enhance local radiative and convective heat transfer to the load when desired.
  • either or both of the oxidant streams injected through oxidant injection means 7 and 8 are injected at a high velocity so as to provide a recirculation of gases within the combustion zone, preferably to provide a recirculation ratio exceeding 4.
  • the oxidant stream velocity exceeds 150 feet per second. In this way the temperature uniformity within combustion zone 5 is enhanced. This is particularly the case for the oxidant stream injected through first burner 7 so that, as illustrated in Figure 1, the gases do not merely pass through combustion zone 5, but rather recirculate one or more times within combustion zone 5 so as to enhance mixing and combustion efficiency within combustion zone 5 and thus further enhance temperature uniformity within each of the two recirculation zones at the two parts of the combustion zone.
  • the injection end of the second oxidant injection means located at the flue end protrudes a distance into the combustion zone as illustrated in Figure 3 rather than having its injection end flush with the wall within which it is positioned as is illustrated in Figures 1 and 2.
  • the numerals in Figure 3 correspond to those of Figure 1 for the common elements.
  • a plug flow zone is establish immediately before the flue.
  • the gas velocity is reduced due to the lack of recirculation flow. Therefore, air-borne particulates have the opportunity to settle down from the gas stream. Also the gas is allowed to cool down somewhat, resulting in reduced gas velocity.
  • the protrusion can be as long as practical and typically is about one kiln diameter.
  • a countercurrent kiln it may be desirable to inject additional oxidant, such as technically pure oxygen, into the combustion zone at the flue end in order to carry out further combustion in the drying zone.
  • additional oxidant such as technically pure oxygen
  • the additional oxidant may be injected through burner 8 or through lance 12 depending on which is used as the second oxidant injection means.
  • the invention enables the kiln operator to operate the combustion zone of the rotary kiln with two separate combustion control zones at each end of the kiln.
  • the combustion control zone at each end of the kiln may be operated with pyrolytic (fuel-rich) or oxidating (oxygen-rich) conditions thus adding flexibility to the kiln design and to the combustion process control.
  • the combustion control zone at the flue end of a countercurrent rotary kiln can be run in the pyrolytic mode so that combustible gases released from the waste are recirculated and entrained into the high momentum stream from the flue end burner thus consuming the oxidant.
  • Residue char in the combustion control zone at the other end of the kiln can be exposed to oxidating conditions to complete the burnout.
  • the use of oxygen enrichment serves to decrease the momentum of the gases flowing toward the flue thus enabling easier flue end injection into the kiln, and also serves to decrease the volumetric flowrate of gases flowing through the flue thus increasing throughput. Accordingly the lower the percentage of inert nitrogen introduced into the combustion zone with the oxidant, the more advantageous will be the operation of the method of this invention. Thus, to achieve maximum throughput, the most preferred oxidant is technically pure oxygen, air inleakage notwithstanding.
  • Figure 2 illustrates the rotary kiln and operating method of this invention carried out with the incineration of waste in a concurrent kiln.
  • flue 20 is located at the end opposite the end at which waste is provided into the kiln.
  • First oxidant injection means such as a lance or burner 21 is positioned within nonrotatable wall 3 at the end opposite the flue end and second oxidant injection means such as a lance or burner 22 is positioned within nonrotatable wall 4 at the flue end.
  • Oxidant injection means 21 and 22 inject oxidant toward the wall opposite from where they are positioned.
  • the invention enables the operation of a rotary kiln with improved control by enabling independent or separate adjustment of the oxidant and fluid fuel injected at the flue end and at the end opposite the flue end. This is particularly advantageous when these two oxidants have differing oxygen concentrations, e.g. air and technically pure oxygen.
  • determine means any way of arriving at a value including measuring, calculating or estimating the value.
  • the flowrate may then be compared with a predetermined desired flowrate and the flowrate ratio of the oxidants may then be adjusted, i.e. changed, so that the determined flowrate changes in the direction toward the desired flowrate. Because of the high momentum of the oxidant injected at the flue end which passes significant gas flow away from the flue into the kiln, as opposed to prior art processes, changes in flue gas flowrate can be accomplished with changes in the flowrate ratio of the injected oxidants while being able to maintain a desirable temperature profile and furnace atmosphere.
  • any operating parameter may be determined, compared with a predetermined desired value for that parameter, and the total flowrate and the flowrate ratio of the oxidants may be adjusted so that the determined value of the parameter changes in the direction toward the desired value for that parameter.
  • this advantageous control based on changing the total flowrate and the ratio of the oxidants is due to the high momentum of the flue end injected oxidant which doesn't merely affect the proximity of the flue end as in conventional processes, but rather has a marked effect on the gas flow pattern within the kiln.
  • a significant advantage of the invention is the ability to independently control temperature or heat release and atmosphere at each end of the kiln while simultaneously controlling gas flowrate or pressure in the kiln.
  • a scaled-down cold flow model of a rotary kiln similar to that illustrated in Figure 3 was employed.
  • the kiln model had a length of 3.5 feet and an L/D ratio of 7.
  • the momentum of the flow from the burner ranged between 100 to 500 percent of the momentum of the gases flowing toward the flue.
  • the flow from the flue end jet penetrated up to 63.3 percent of the length of the kiln. Recirculation gas flow within the kiln flue end was vigorous.
  • a countercurrent rotary kiln similar to that illustrated in Figure 3 is employed having a length of 45 feet and an internal diameter of 6.5 feet.
  • Oxygen at a flowrate of 4092 lb/hr and natural gas at a flowrate of 1066 lb/hr, having a heat value of 22,991 BTU/lb, are injected at a high momentum into the kiln at the flue end through a burner extending 5 feet into the kiln.
  • Air at a flowrate of 11,000 lb/hr and natural gas at a flowrate of 613 lb/hr are injected into the kiln through a burner at the end opposite the flue end.
  • the kiln is operated at negative pressure and ambient air leaks into the kiln at a flowrate of 5500 lb/hr.
  • Soil comprising hazardous waste and having a water content of 15 percent but no heating value is passed into the kiln at the flue end at the rate of 25 tons per hour.
  • Ash is removed from the kiln at a temperature of 900°F at a flowrate of 42,494 lb/hr and gas is passed out of the kiln through the flue at the rate of 29,777 lb/hr (30,630 actual cubic feed per minute) at a temperature of 1600°F and having an oxygen concentration of 3.1 percent.
  • the maximum soil processing rate is only 16 tons per hour while meeting the required ash temperature of 900°F.
  • the flame is shortened and the combustion gas temperature gradient is significantly increased so that, at an increased throughput, the soil does not undergo sufficient residence time at the elevated temperature to undergo a detoxification reaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Soy Sauces And Products Related Thereto (AREA)
  • Treatment Of Fiber Materials (AREA)

Claims (40)

  1. Verfahren zum Betreiben eines Drehrohrofens, bei dem:
    (A) flüchtiges Material enthaltende Beschickung in einen drehbaren zylindrischen Körper eingebracht wird;
    (B) Gas aus dem drehbaren zylindrischen Körper über einen Rauchzug am einen Ende des drehbaren zylindrischen Körpers abgeführt wird;
    (C) Oxidationsmittel in den drehbaren zylindrischen Körper an dem dem Rauchzugende gegenüberliegenden Ende in Richtung des Rauchzugendes eingeblasen wird, um einen Gasstrom auf das Rauchzugende hin auszubilden;
    (D) Oxidationsmittel in den drehbaren zylindrischen Körper an dem Rauchzugende in Richtung auf das dem Rauchzugende gegenüberliegende Ende eingeblasen wird, wobei dieses Oxidationsmittel eine Bewegungsenergie hat, die mindestens gleich derjenigen des in Richtung auf das Rauchzugende strömenden Gases ist; und
    (E) Material von der Beschickung innerhalb des drehbaren zylindrischen Körpers abgedampft wird.
  2. Verfahren nach Anspruch 1, wobei Beschickung in den drehbaren zylindrischen Körper an dem gleichen Ende wie dem Ende, an dem Gas über den Rauchzug abgeführt wird, eingebracht wird.
  3. Verfahren nach Anspruch 1, wobei Beschickung in den drehbaren zylindrischen Körper an dem Ende eingebracht wird, das dem Ende gegenüberliegt, an dem Gas über den Rauchzug abgeführt wird.
  4. Verfahren nach Anspruch 1, wobei das im Verfahrensschritt (D) eingeblasene Oxidationsmittel in den drehbaren zylindrischen Körper über eine Strecke eindringt, die mindestens gleich dem zweifachen des Durchmessers des drehbaren zylindrischen Körpers ist.
  5. Verfahren nach Anspruch 1, wobei die Beschickung aus Abfallstoff besteht, der brennbares Material aufweist.
  6. Verfahren nach Anspruch 5, bei dem zusätzlich von dem Abfallstoff abgedampftes brennbares Material innerhalb des drehbaren zylindrischen Körpers verbrannt wird.
  7. Verfahren nach Anspruch 5, bei dem die Beschickung Wasser als ein flüchtiges Material aufweist.
  8. Verfahren nach Anspruch 1, bei dem mindestens eines der Oxidationsmittel, die in den Verfahrensschritten (C) und (D) in den drehbaren zylindrischen Körper eingeblasen werden, technisch reiner Sauerstoff ist.
  9. Verfahren nach Anspruch 1, bei dem mindestens eines der Oxidationsmittel, die in den Verfahrensschritten (C) und (D) in den drehbaren zylindrischen Körper eingeblasen werden, mit Sauerstoff angereicherte Lufte ist, die eine Sauerstoffkonzentration von mindestens 25 % hat.
  10. Verfahren nach Anspruch 1, bei dem das im Verfahrensschritt (C) in den drehbaren zylindrischen Körper eingeblasene Oxidationsmittel Luft ist und das im Verfahrensschritt (D) in den drehbaren zylindrischen Körper eingeblasene Oxidationsmittel technisch reiner Sauerstoff ist.
  11. Verfahren nach Anspruch 1, bei dem das im Verfahrensschritt (D) in den drehbaren zylindrischen Körper eingeblasene Oxidationsmittel fluchtend mit einer Wand an dem betreffenden Ende eingeblasen wird.
  12. Verfahren nach Anspruch 1, bei dem das im Verfahrensschritt (D) in den drehbaren zylindrischen Körper eingeblasene Oxidationsmittel an einer Stelle eingeblasen wird, die von einer Wand an dem betreffenden Ende vorspringt.
  13. Verfahren nach Anspruch 1, bei dem Brennstoff zusammen mit dem Oxidationsmittel im Verfahrensschritt (C) eingeblasen wird.
  14. Verfahren nach Anspruch 1, bei dem Brennstoff zusammen mit dem Oxidationsmittel im Verfahrensschritt (D) eingeblasen wird.
  15. Verfahren nach Anspruch 1, bei dem eine Verbrennung an dem Rauchzugende und/oder an dem dem Rauchzugende gegenüberliegenden Ende unter pyrolytischen Bedingungen durchgeführt wird.
  16. Verfahren nach Anspruch 1, bei dem eine Verbrennung an dem Rauchzugende und/oder an dem dem Rauchzugende gegenüberliegenden Ende unter oxidierenden Bedingungen durchgeführt wird.
  17. Verfahren nach Anspruch 1, bei dem eine Verbrennung an dem Rauchzugende unter pyrolytischen Bedingungen durchgeführt wird und eine Verbrennung an dem dem Rauchzugende gegenüberliegenden Ende unter oxidierenden Bedingungen durchgeführt wird.
  18. Verfahren nach Anspruch 1, bei dem ferner die volumetrische Durchflußmenge des über den Rauchzug abgeführten Gases ermittelt wird, die ermittelte Durchflußmenge mit einer vorbestimmten Soll-Durchflußmenge verglichen wird und das volumetrische Durchflußmengenverhältnis des im Verfahrensschritt (C) eingeblasenen Oxidationsmittels und des im Verfahrensschritt (D) eingeblasenen Oxidationsmittels so eingestellt wird, daß sich die volumetrische Durchflußmenge des Rauchgases in Richtung auf die Soll-Durchflußmenge ändert.
  19. Verfahren nach Anspruch 1, bei dem ferner der Druck innerhalb des drehbaren zylindrischen Körpers ermittelt wird, der ermittelte Druck mit einem vorbestimmten Solldruck verglichen wird und das volumetrische Durchflußmengenverhältnis des im Verfahrensschritt (C) eingeblasenen Oxidationsmittels und des im Verfahrensschritt (D) eingeblasenen Oxidationsmittels so eingestellt wird, daß der Druck innerhalb des drehbaren zylindrischen Körpers sich in Richtung auf den Solldruck ändert.
  20. Verfahren nach Anspruch 1, bei dem der Wärmebedarf an dem Rauchzugende und auch an dem dem Rauchzugende gegenüberliegenden Ende ermittelt wird und der Strom des im Verfahrensschritt (C) und/oder im Verfahrensschritt (D) eingeblasenen Oxidationsmittels so eingestellt wird, daß die ermittelten Wärmebedarfswerte erfüllt werden.
  21. Verfahren nach Anspruch 1, bei dem das im Verfahrensschritt (C) eingeblasene Oxidationsmittel und das im Verfahrensschritt (D) eingeblasene Oxidationsmittel unterschiedliche Sauerstoffkonzentrationen haben.
  22. Verfahren nach Anspruch 1, bei dem ferner der Wert eines Betriebsparameters ermittelt wird, der ermittelte Wert mit einem vorbestimmten Sollwert für den betreffenden Parameter verglichen wird und das volumetrische Durchflußmengenverhältnis des im Verfahrensschritt (C) eingeblasenen Oxidationsmittels und des im Verfahrensschritt (D) eingeblasenen Oxidationsmittels so eingestellt wird, daß sich der ermittelte Wert in Richtung auf den Sollwert ändert.
  23. Verfahren nach Anspruch 1, bei dem ferner die Temperatur und die Atmosphäre an jedem Ende des drehbaren zylindrischen Körpers unabhängig gesteuert oder geregelt werden, während gleichzeitig die Durchflußmenge des in den drehbaren zylindrischen Körper einströmenden Gases gesteuert oder geregelt wird.
  24. Verfahren nach Anspruch 1, bei dem das im Verfahrensschritt (D) in den drehbaren zylindrischen Körper eingeblasene Oxidationsmittel in einen Hohlraum eingeleitet wird, der an der Wand an dem betreffenen Ende ausgespart ist, und dieses Oxidationsmittel danach von dem Hohlraum in den drehbaren zylindrischen Körper geleitet wird.
  25. Verfahren nach Anspruch 24, bei dem etwas Oxidationsmittel innerhalb des Hohlraums mit Brennstoff verbrannt wird.
  26. Verfahren nach Anspruch 1, bei dem das im Verfahrensschritt (D) eingeblasene Oxidationsmittel ein von einem Brenner erzeugtes oxidierendes Gas ist.
  27. Verfahren nach Anspruch 1, bei dem ferner Wasser in den drehbaren zylindrischen Körper eingespritzt wird.
  28. Drehrohrofen mit:
    (A) einem einen Innendurchmesser aufweisenden drehbaren zylindrischen Körper;
    (B) einer nicht drehbaren Wand an jedem Ende des drehbaren zylindrischen Körpers;
    (C) einer Rauchzuganordnung an einem Ende des drehbaren zylindrischen Körpers;
    (D) einer ersten Oxidationsmittel-Einblasvorrichtung, die in der nicht drehbaren Wand an dem dem Rauchzugende gegenüberliegenden Ende angeordnet und so ausgerichtet ist, daß sie Oxidationsmittel in Richtung auf das Rauchzugende in den drehbaren zylindrischen Körper einbläst; und
    (E) einer zweiten Oxidationsmittel-Einblasvorrichtung, die in der nicht drehbaren Wand an dem Rauchzugende angeordnet und so ausgerichtet ist, daß sie Oxidationsmittel in Richtung auf das dem Rauchzugende gegenüberliegende Ende in den drehbaren zylindrischen Körper einbläst, und die das Oxidationsmittel mit einer Bewegungsenergie einblasen kann, die ausreicht, um das Oxidationsmittel eine Strecke durchlaufen zu lassen, die mindestens gleich dem zweifachen des Innendurchmessers des zylindrischen Körpers ist.
  29. Drehrohrofen nach Anspruch 28, bei dem der drehbare zylindrische Körper ein Verhältnis von Länge zu Durchmesser hat, das größer als 4 ist.
  30. Drehrohrofen nach Anspruch 28, ferner versehen mit einer Anordnung zum Einbringen von Beschickung in den Ofen an dem Ende, an dem sich die Rauchzuganordnung befindet.
  31. Drehrohrofen nach Anspruch 28, ferner versehen mit einer Anordnung zum Einbringen von Beschickung in den Ofen an dem Ende, das dem Ende gegenüberliegt, an dem sich die Rauchzuganordnung befindet.
  32. Drehrohrofen nach Anspruch 28, bei dem der Drehrohrofen ein mobiler Drehrohrofen ist.
  33. Drehrohrofen nach Anspruch 28, bei dem das Einblasende der zweiten Oxidationsmittel-Einblasvorrichtung fluchtend mit der nichtdrehbaren Wand liegt, innerhalb der die Einblasvorrichtung angeordnet ist.
  34. Drehrohrofen nach Anspruch 28, bei dem das Einblasende der zweiten Oxidationsmittel-Einblasvorrichung über die nichtdrehbare Wand vorragt, in welcher die zweite Oxidationsmittel-Einblasvorrichtung angeordnet ist.
  35. Drehrohrofen nach Anspruch 28, bei dem mindestens eine der ersten und zweiten Oxidationsmittel-Einblasvorrichtungen ein Brenner ist.
  36. Drehrohrofen nach Anspruch 28, bei dem mindestens eine der ersten und zweiten Oxidationsmittel-Einblasvorrichtungen eine Lanze ist.
  37. Drehrohrofen nach Anspruch 28, bei dem die zweite Oxidationsmittel-Einblasvorrichtung eine verengte Öffnung mit einem Durchmesser, oder eine Mehrzahl von Öffnungen mit einem äquivalenten Durchmesser aufweist, der nicht größer als 1/30 des Innendurchmessers des drehbaren zylindrischen Körpers ist.
  38. Drehrohrofen nach Anspruch 28, bei dem die zweite Oxidationsmittel-Einblasvorrichtung einen Hohlraum in der nichtdrehbaren Wand aufweist, der mit dem drehbaren zylindrischen Körper in Verbindung steht.
  39. Drehrohrofen nach Anspruch 38, wobei der Hohlraum an der Stelle, an welcher er mit dem drehbaren zylindrischen Körper in Verbindung steht, einen verengten Durchmesser hat
  40. Drehrohrofen nach Anspruch 39, bei dem der verengte Durchmesser kleiner als 1/10 des Innendurchmessers des drehbaren zylindrischen Körpers ist.
EP91105063A 1990-03-29 1991-03-28 Drehrohrofen mit gegeneinander gerichteten Flammen Expired - Lifetime EP0451648B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50090690A 1990-03-29 1990-03-29
US500906 1990-03-29

Publications (3)

Publication Number Publication Date
EP0451648A2 EP0451648A2 (de) 1991-10-16
EP0451648A3 EP0451648A3 (en) 1992-05-13
EP0451648B1 true EP0451648B1 (de) 1993-05-05

Family

ID=23991420

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105063A Expired - Lifetime EP0451648B1 (de) 1990-03-29 1991-03-28 Drehrohrofen mit gegeneinander gerichteten Flammen

Country Status (7)

Country Link
EP (1) EP0451648B1 (de)
JP (1) JPH04225783A (de)
KR (1) KR960010601B1 (de)
BR (1) BR9101206A (de)
CA (1) CA2039317C (de)
DE (1) DE69100074T2 (de)
ES (1) ES2040605T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208935A1 (de) * 2009-01-15 2010-07-21 Siemens Aktiengesellschaft Brennkammer und Gasturbine

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186617A (en) * 1991-11-06 1993-02-16 Praxair Technology, Inc. Recirculation and plug flow combustion method
GB9125423D0 (en) * 1991-11-29 1992-01-29 Kyffin Robin A Heat treatment of expansible materials to form lightweight aggregate
EP0614452B1 (de) * 1991-11-29 1996-05-15 KYFFIN, Robin Anthony Wärmebehandlung von aufblähfähigen Materialien für die Herstellung von leichtem Zuschlagstoff
US5203859A (en) * 1992-04-22 1993-04-20 Institute Of Gas Technology Oxygen-enriched combustion method
BR9404470A (pt) * 1993-11-17 1997-03-11 Praxair Technology Inc Processo para conduçao de combustao com simultânea geraçao reduzida de oxidos de nitrogênio
FR2733303B1 (fr) * 1995-04-19 1997-05-30 Gaz De France Chaudiere-incinerateur de dechets et procede de fonctionnement d'une chaudiere-incinerateur de dechets
KR100339484B1 (ko) * 1999-08-06 2002-05-31 장기종 로터리 킬른 소각 시스템
ITRM20040324A1 (it) * 2004-06-30 2004-09-30 Ct Sviluppo Materiali Spa Apparato per lo smaltimento di rifiuti.
DE102006023677A1 (de) * 2006-05-19 2007-11-22 Polysius Ag Anlage und Verfahren zur Herstellung von Zementklinker
DE102006028770B4 (de) * 2006-06-23 2008-04-30 Basf Coatings Ag Verbrennungsanlage für flüssige und feste Rückstände und Verfahren
JP5876264B2 (ja) * 2011-10-07 2016-03-02 株式会社アクトリー 廃棄物処理装置
DE102012002548A1 (de) 2012-02-09 2013-08-14 Linde Aktiengesellschaft Befeuerung eines Drehrohrofens
EP2626628B1 (de) 2012-02-09 2014-04-09 Linde Aktiengesellschaft Befeuerung eines Industrieofens und zugehöriger Brenner
DE102013017943A1 (de) * 2013-10-29 2015-04-30 Linde Aktiengesellschaft Verfahren zum Betreiben eines Drehtrommelofens
EP3037765A1 (de) 2014-12-26 2016-06-29 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Direkt befeuerte geneigte Gegenstrom-Drehöfen und Verwendung davon

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141271A (en) * 1974-09-24 1976-04-07 Daburyuu Baakusu Paa Ekitai gasujo oyobi peesutojohatsubutsunoshokyakuho narabini sochi
DE2549076A1 (de) * 1975-11-03 1977-05-12 Kraftanlagen Ag Einrichtung zur verbrennung von abfallstoffen
US4245571A (en) * 1978-04-05 1981-01-20 T R Systems, Inc. Thermal reductor system and method for recovering valuable metals from waste
US4863371A (en) * 1988-06-03 1989-09-05 Union Carbide Corporation Low NOx high efficiency combustion process
JPH0210017A (ja) * 1988-06-29 1990-01-12 Mitsubishi Heavy Ind Ltd ゴミ焼却装置
US4957050A (en) * 1989-09-05 1990-09-18 Union Carbide Corporation Combustion process having improved temperature distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208935A1 (de) * 2009-01-15 2010-07-21 Siemens Aktiengesellschaft Brennkammer und Gasturbine
WO2010081578A1 (de) * 2009-01-15 2010-07-22 Siemens Aktiengesellschaft Brennkammer und gasturbine

Also Published As

Publication number Publication date
EP0451648A2 (de) 1991-10-16
DE69100074T2 (de) 1993-08-12
BR9101206A (pt) 1991-11-05
EP0451648A3 (en) 1992-05-13
KR910017153A (ko) 1991-11-05
CA2039317C (en) 1995-01-17
JPH04225783A (ja) 1992-08-14
KR960010601B1 (ko) 1996-08-06
ES2040605T3 (es) 1993-10-16
DE69100074D1 (de) 1993-06-09

Similar Documents

Publication Publication Date Title
EP0451648B1 (de) Drehrohrofen mit gegeneinander gerichteten Flammen
US4861262A (en) Method and apparatus for waste disposal
US5123364A (en) Method and apparatus for co-processing hazardous wastes
US5102330A (en) Opposed fired rotary kiln
US5105747A (en) Process and apparatus for reducing pollutant emissions in flue gases
EP0541105B1 (de) Verbrennungsverfahren mit Rückführung und Pfropfenströmung
USRE34298E (en) Method for waste disposal
CA2222819C (en) Method and device for producing and utilizing gas from waste materials
US5000102A (en) Method for combusting wet waste
US5553554A (en) Waste disposal and energy recovery system and method
CN102449394A (zh) 回转炉的NOx抑制技术
US5372497A (en) Process and apparatus for igniting a burner in an inert atmosphere
US5213492A (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
KR101133434B1 (ko) 고온 fgr을 이용한 저공해 연소장치
US5242295A (en) Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion
JP4015026B2 (ja) ボイラー用の先進NOx低減法
EP0499184B1 (de) Verbrennungsverfahren zum gleichseitigen Regeln von Stickstoffoxiden und Produkte von unvollständiger Verbrennung
CA1333973C (en) Method and apparatus for waste disposal
JPH0510514A (ja) 廃棄物焼却方法及びその装置
AU621059B2 (en) A method and apparatus for waste disposal
RU2052726C1 (ru) Устройство для дожигания сбросных газов
JP2004085027A (ja) 乾燥汚泥を利用する廃棄物焼却炉の運転方法及び乾燥汚泥熱分解装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES FR IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE ES FR IT

17P Request for examination filed

Effective date: 19920527

17Q First examination report despatched

Effective date: 19920810

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PRAXAIR TECHNOLOGY, INC.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR IT

REF Corresponds to:

Ref document number: 69100074

Country of ref document: DE

Date of ref document: 19930609

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2040605

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990302

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990305

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990324

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

BERE Be: lapsed

Owner name: PRAXAIR TECHNOLOGY INC.

Effective date: 20000331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050328