EP0447428B1 - Verfahren zur herstellung eines mehrschichtigen überzuges, wasserverdünnbare beschichtungszusammensetzungen, wasserverdünnbare emulsionspolymere und verfahren zur herstellung von wasserverdünnbaren emulsionspolymeren - Google Patents

Verfahren zur herstellung eines mehrschichtigen überzuges, wasserverdünnbare beschichtungszusammensetzungen, wasserverdünnbare emulsionspolymere und verfahren zur herstellung von wasserverdünnbaren emulsionspolymeren Download PDF

Info

Publication number
EP0447428B1
EP0447428B1 EP90900099A EP90900099A EP0447428B1 EP 0447428 B1 EP0447428 B1 EP 0447428B1 EP 90900099 A EP90900099 A EP 90900099A EP 90900099 A EP90900099 A EP 90900099A EP 0447428 B1 EP0447428 B1 EP 0447428B1
Authority
EP
European Patent Office
Prior art keywords
weight
mixture
stage
monomer
monomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90900099A
Other languages
English (en)
French (fr)
Other versions
EP0447428A1 (de
Inventor
Stefan Wieditz
Jürgen Niemann
Arnold Dobbelstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Farben und Fasern AG
Original Assignee
BASF Lacke und Farben AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Lacke und Farben AG filed Critical BASF Lacke und Farben AG
Priority to AT90900099T priority Critical patent/ATE91923T1/de
Publication of EP0447428A1 publication Critical patent/EP0447428A1/de
Application granted granted Critical
Publication of EP0447428B1 publication Critical patent/EP0447428B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • B05D7/532Base coat plus clear coat type the two layers being cured or baked together, i.e. wet on wet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)

Definitions

  • the invention also relates to water-thinnable coating compositions, water-thinnable emulsion polymers and a process for the preparation of water-thinnable emulsion polymers.
  • aqueous base coating compositions used are composed such that they can be applied to the substrate in relatively thin, fast-drying layers, in particular with the aid of automatic painting systems, and after carrying out process steps (3) and (4), the metal pigment particles in parallel alignment to the substrate surface.
  • the aqueous base coating compositions must be composed in such a way that the base layer of the baked metal effect coating adheres well to the substrate and the transparent cover layer adheres well to the base layer. Furthermore, the aqueous base coating compositions must be composed in such a way that the baked-on metallic effect coating shows no matting, delamination phenomena or even bubbles after exposure to a constant temperature of condensed water.
  • aqueous basecoat compositions exhibit high storage stability.
  • DE-A-36 28 124 discloses aqueous base coating compositions which contain, as film-forming material, a mixture of a water-dilutable emulsification polymer and a water-dilutable polyurethane resin. These basecoat compositions do not optimally meet the requirements set out above.
  • the object on which the present invention is based is to provide aqueous base coating compositions which are suitable for the process in question and which optimally meet the requirements set out above.
  • aqueous coating compositions which can be used as wood lacquers and which contain a water-thinnable emulsion polymer which is free of hydroxyl groups and can be obtained via a two-stage emulsion polymerization process.
  • U.S. Patent 4,150,005 discloses aqueous coating compositions containing a water-thinnable emulsion polymer which can be obtained by preparing a highly hydrophilic polymer with a low glass transition temperature in a first emulsion polymerization stage and in its presence in a second emulsion polymerization stage a hydrophobic polymer with a high glass transition temperature is produced.
  • Multi-layer protective and / or decorative coatings of the type described above and the problems encountered in the manufacture of these coatings are not addressed in U.S. Patent No. 4,150,005.
  • GB-A-2,034,334 describes aqueous coating compositions which contain a water-thinnable emulsion polymer which can be obtained via a two-stage emulsion polymerisation process and which must have N-methylol groups.
  • GB-A-2,034,334 is not indicative of the fact that the two polymer stages have to differ in their glass transition temperatures in the manner according to the invention.
  • Multilayer protective and / or decorative coatings of the type described above and the problems encountered in the manufacture of these coatings are not addressed in GB-A-2,034,334.
  • EP-A-287 144 describes a process for producing a multilayer coating of the type described above, in which aqueous base coating compositions are used which contain a water-dilutable emulsification polymer which can be obtained via a two-stage emulsion polymerization process and which in the second stage ("shell" ) has a very high proportion of acid groups and in which the first and second polymer stages differ in their glass transition temperatures in such a way that the first stage has a lower glass transition temperature than the second stage.
  • aqueous base coating compositions which contain a water-dilutable emulsification polymer which can be obtained via a two-stage emulsion polymerization process and which in the second stage (“shell" ) has a very high proportion of acid groups and in which the first and second polymer stages differ in their glass transition temperatures in such a way that the first stage has a lower glass transition temperature than the second stage.
  • the water-dilutable emulsion polymers used according to the invention are, in a known manner, for example in a stirred tank, by a two-stage emulsion polymerization in an aqueous medium with heating and cooling device, producible.
  • the monomers can be added in such a way that a solution of all of the water, the emulsifier and part of the initiator is introduced and the monomer or monomer mixture and separately therefrom, but in parallel the rest of the initiator is slowly added at the polymerization temperature.
  • the water and the emulsifier it is also possible to introduce some of the water and the emulsifier and to prepare a pre-emulsion from the rest of the water and the emulsifier and from the monomer or monomer mixture, which is added slowly at the polymerization temperature, the initiator again being added separately. It is preferred in the first stage to add the monomer or monomer mixture in the form of a pre-emulsion and in the second stage to add the monomer or monomer mixture in bulk, ie without water and emulsifier, and to add the initiator separately but in parallel.
  • the polymerization temperature is generally in the range from 20 to 100 ° C., preferably 40 to 90 ° C.
  • the quantitative ratio between the monomers and the water can be selected so that the resulting dispersion has a solids content of 30 to 60% by weight, preferably 35 to 50% by weight.
  • An anionic emulsifier is preferably used alone or in a mixture as the emulsifier.
  • anionic emulsifiers are the alkali metal salts of sulfuric acid half-esters of alkylphenols or alcohols, furthermore the sulfuric acid half-esters of oxethylated alkylphenols or oxethylated alcohols, preferably the alkali metal salts of sulfuric acid half-esters of a nonylphenol, alkyl or with 4-5 moles of ethylene oxide per mole Aryl sulfonate, sodium lauryl sulfate, sodium lauryl ethoxylate sulfate and secondary sodium alkane sulfonates, the carbon chain of which contains 8-20 carbon atoms.
  • the amount of the anionic emulsifier is 0.1-5.0% by weight, based on the monomers, preferably 0.5-3.0% by weight.
  • a nonionic emulsifier of the ethoxylated alkylphenol or fatty alcohol type for example an addition product of 1 mol of nonylphenol and 4-30 mol of ethylene oxide, can be used in a mixture with the anionic emulsifier.
  • a peroxide compound is preferably used as the radical-forming initiator.
  • the initiator is water-soluble or monomer-soluble.
  • a water-soluble initiator is preferably used.
  • Suitable initiators are the customary inorganic per compounds, such as ammonium persulfate, potassium persulfate, ammonium or alkali metal peroxydiphosphate and organic peroxides, such as e.g. Benzoyl peroxide, organic peresters, such as perisopivalate, partly in combination with reducing agents, such as sodium disulfite, hydrazine, hydroxylamine and catalytic amounts of accelerators, such as iron, cobalt, cerium and vanadyl salts, preferably alkali metal or ammonium peroxydisulfates.
  • reducing agents such as sodium disulfite, hydrazine, hydroxylamine
  • accelerators such as iron, cobalt, cerium and vanadyl salts, preferably alkali metal or ammonium peroxydisulfates.
  • the redox initiator systems disclosed in EP-A-107300 can also be used.
  • the first stage 10 to 90, preferably 35 to 65 parts by weight of an ethylenically unsaturated monomer or a mixture of ethylenically unsaturated monomers are emulsion polymerized.
  • the monomer or monomer mixture used in the first stage is selected so that when the monomer or monomer mixture used in the first stage is completely polymerized out, a polymer with a glass transition temperature (T G1 ) of + 30 ° C. to + 110 ° C, preferably 60 to 95 ° C is obtained. Since the glass transition temperature of emulsion polymers according to the equation
  • Examples of monomers which can be used in the first stage are: vinylaromatic hydrocarbons, such as styrene, ⁇ -alkylstyrene and vinyltoluene, esters of acrylic acid or methacrylic acid, in particular aliphatic and cycloaliphatic acrylates or methacrylates with up to 20 carbon atoms in the alcohol radical, such as methyl, ethyl, propyl, butyl, hexyl, ethylhexyl, stearyl, lauryl and cyclohexyl acrylate or methacrylate, acrylic and / or methacrylic acid, acrylic and / or methacrylamide, N-methylolacrylamide and / or N-methylol methacrylamide, hydroxyalkyl esters of acrylic acid, methacrylic acid or another ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, such as 2-hydroxyethyl acrylate, 2-hydroxypropyl
  • ethylenically unsaturated monomers or mixtures of ethylenically unsaturated monomers which are essentially free of hydroxyl and carboxyl groups preference is given to using ethylenically unsaturated monomers or mixtures of ethylenically unsaturated monomers which are essentially free of hydroxyl and carboxyl groups.
  • substantially free is intended to mean that it is preferred to use monomers or monomer mixtures which are free from hydroxyl and carboxyl groups, but that the monomers or monomer mixtures used also contain small amounts (for example as a result of impurities) of hydroxyl and / or may contain carboxyl groups.
  • the content of hydroxyl and carboxyl groups should preferably be at most so high that a polymer prepared from the monomer or monomer mixture used in the first stage has an OH number of at most 5 and an acid number of at most 3.
  • component (a1) can be used, for example: cyclohexyl acrylate, cyclohexyl methacrylate, alkyl acrylates and alkyl methacrylates with up to 20 carbon atoms in the alkyl radical, such as methyl, ethyl, propyl, butyl, hexyl, ethylhexyl, stearyl and lauryl acrylate and methacrylate or mixtures of these monomers.
  • alkyl radical such as methyl, ethyl, propyl, butyl, hexyl, ethylhexyl, stearyl and lauryl acrylate and methacrylate or mixtures of these monomers.
  • component (a2) e.g. vinylaromatic hydrocarbons such as styrene, ⁇ -alkylstyrene and vinyltoluene, acrylic and methacrylamide and acrylonitrile and methacrylonitrile or mixtures of these monomers are used.
  • vinylaromatic hydrocarbons such as styrene, ⁇ -alkylstyrene and vinyltoluene, acrylic and methacrylamide and acrylonitrile and methacrylonitrile or mixtures of these monomers are used.
  • the monomer or monomer mixture used in the first stage and the monomer or monomer mixture used in the second stage are selected in such a way that the emulsion polymer obtained has a hydroxyl number of 2 to 100, preferably 10 to 50 and the difference T G1 - T G2 is 10 to 170, preferably 80 to 150 ° C.
  • Examples of monomers which can be used in the second stage are: vinylaromatic hydrocarbons, such as styrene, ⁇ -alkylstyrene and vinyltoluene, Esters of acrylic acid or methacrylic acid, in particular aliphatic and cycloaliphatic acrylates or methacrylates with up to 20 carbon atoms in the alcohol radical, such as methyl, ethyl, propyl, butyl, hexyl, ethylhexyl, stearyl, lauryl and cyclohexyl acrylate or - methacrylate, acrylic and / or methacrylic acid, acrylic and / or methacrylamide, N-methylolacrylamide and / or N-methylolmethacrylamide, hydroxyalkyl esters of acrylic acid, methacrylic acid or another ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, such as 2-hydroxyethyl acrylate, 2-hydroxypropy
  • component (b1) e.g. are used: cyclohexyl acrylate, cyclohexyl methacrylate, alkyl acrylates and alkyl methacrylates with up to 20 carbon atoms in the alkyl radical, such as e.g. Methyl, ethyl, propyl, butyl, hexyl, ethylhexyl, stearyl and lauryl acrylate and methacrylate or mixtures of these monomers.
  • alkyl radical such as e.g. Methyl, ethyl, propyl, butyl, hexyl, ethylhexyl, stearyl and lauryl acrylate and methacrylate or mixtures of these monomers.
  • hydroxyalkyl esters of acrylic acid, methacrylic acid or another ⁇ , ⁇ -ethylenically unsaturated carboxylic acid can be derived from an alkylene glycol esterified with the acid, or can be obtained by reacting the acid with an alkylene oxide.
  • Hydroxyalkyl esters of acrylic acid and methacrylic acid, in which the hydroxyalkyl group contains up to 4 carbon atoms, or mixtures of these hydroxyalkyl esters are preferably used as component (b2).
  • hydroxyalkyl esters examples include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-hydroxypropyl acrylate, 2-hydroypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxyethyl methacrylate, 4-hydroxybutyl acrylate or 4-hydroxybutyl methacrylate.
  • esters of other unsaturated acids such as ethacrylic acid, crotonic acid and similar acids with up to about 6 carbon atoms per molecule, can also be used.
  • Acrylic acid and / or methacrylic acid and / or acrylamidomethylpropanesulfonic acid are preferably used as component (b3).
  • ethylenically unsaturated acids with up to 6 carbon atoms in the molecule can also be used.
  • examples of such acids are ethacrylic acid, crotonic acid, maleic acid, fumaric acid and itaconic acid.
  • component (b4) e.g. are used: vinyl aromatic hydrocarbons, such as styrene, ⁇ -alkylstyrene and vinyl toluene, acrylic and methacrylamide and acrylonitrile and methacrylonitrile, or mixtures of these monomers.
  • vinyl aromatic hydrocarbons such as styrene, ⁇ -alkylstyrene and vinyl toluene, acrylic and methacrylamide and acrylonitrile and methacrylonitrile, or mixtures of these monomers.
  • the emulsion polymer used according to the invention should have a number average molar mass (determination: gel permeation chromatography using polystyrene as the standard) of 200,000 to 2,000,000, preferably 300,000 to 1,500,000.
  • aqueous base coating compositions according to the invention contain, in addition to the emulsion polymer described above, a water-dilutable polyurethane resin as the film-forming material.
  • the base coating compositions according to the invention preferably contain water-thinnable, urea-containing polyurethane resins which have a number average molecular weight (determination: gel permeation chromatography using polystyrene as the standard) of 1000 to 60,000, preferably 1500 to 50,000 and an acid number of 5 to 70, preferably 10 to 30 and by reaction, preferably chain extension of prepolymers containing isocyanate groups with polyamines and / or hydrazine can be produced.
  • a number average molecular weight determination: gel permeation chromatography using polystyrene as the standard
  • the prepolymer containing isocyanate groups can be prepared by reacting polyalcohols having a hydroxyl number from 10 to 1800, preferably 50 to 500, with excess polyisocyanates at temperatures up to 150 ° C., preferably 50 to 130 ° C., in organic solvents which do not react with isocyanates can, succeed.
  • the equivalence ratio of NCO to OH groups is between 1.5 and 1.0 to 1.0, preferably between 1.4 and 1.2 to 1.
  • the polyols used to prepare the prepolymer can be low molecular weight and / or high molecular weight and they can contain inert anionic groups.
  • Low molecular weight polyols can be used to increase the hardness of the polyurethane. They have a molecular weight from 60 to about 400 and can contain aliphatic, alicyclic or aromatic groups. Amounts of up to 30% by weight of the total polyol constituents, preferably about 2 to 20% by weight, are used.
  • the low molecular weight polyols with up to about 20 carbon atoms per molecule such as ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butylene glycol, 1,6-hexanediol, are advantageous , Trimethylolpropane, castor oil or hydrogenated castor oil, di-trimethylolpropane ether, pentaerythritol, 1,2-cyclohexanediol, 1,4-cyclohexanedimethanol, bisphenol A, bisphenol F, neopentylglycol, hydroxypivalic acid-neopentylglycol ester, hydroxyethylated or hydroxypropylated bisphenol A, bisphenol A, mixtures thereof .
  • a high proportion of a predominantly linear polyol with a preferred hydroxyl number of 30 to 150 should be added.
  • Up to 97% by weight of the total polyol can consist of saturated and unsaturated polyesters and / or polyethers with a molecular weight Mn exist from 400 to 5000.
  • polyether diols such as poly (oxyethylene) glycols, poly (oxypropylene) glycols and / or poly (oxybutylene) glycols.
  • the selected polyether diols should not introduce excessive amounts of ether groups, otherwise the polymers formed will swell in water.
  • the preferred polyether diols are poly (oxypropylene) glycols in the molecular weight range Mn from 400 to 3000.
  • Polyester diols are produced by esterification of organic dicarboxylic acids or their anhydrides with organic diols or are derived from a hydroxycarboxylic acid or a lactone.
  • polyols or polycarboxylic acids with a higher valency can be used to a small extent.
  • the dicarboxylic acids and diols can be linear or branched aliphatic, cycloaliphatic or aromatic dicarboxylic acids or diols.
  • the diols used to prepare the polyesters consist, for example, of alkylene glycols, such as ethylene glycol, propylene glycol, butylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol and other diols, such as dimethylcyclohexane.
  • the acid component of the polyester consists primarily of low molecular weight dicarboxylic acids or their anhydrides with 2 to 30, preferably 4 to 18, carbon atoms in the molecule.
  • Suitable acids are, for example, o-phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, cyclohexanedicarboxylic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, glutaric acid, hexachlorheptanedicarboxylic acid, tetrachlorophthalic acid and / or.
  • their anhydrides if they exist, can also be used.
  • polyester polyols smaller ones can also be used Amounts of carboxylic acids with 3 or more carboxyl groups, for example trimellitic anhydride or the adduct of maleic anhydride with unsaturated fatty acids, are present.
  • polyester diols are also used which are obtained by reacting a lactone with a diol. They are characterized by the presence of a terminal hydroxyl group and recurring polyester content of the formula - (- CO- (CHR) n -CH2-0 -) -.
  • n is preferably 4 to 6 and the substituent R is hydrogen, an alkyl, cycloalkyl or alkoxy radical.
  • No substituent contains more than 12 carbon atoms. The total number of carbon atoms in the substituent does not exceed 12 per lactone ring. Examples include hydroxycaproic acid, hydroxybutyric acid, hydroxydecanoic acid and / or hydroxystearic acid.
  • the lactone used as a raw material can be represented by the following general formula in which n and R have the meaning already given.
  • Unsubstituted -caprolactone in which n has the value 4 and all R substituents are hydrogen, is preferred for the preparation of the polyester diols.
  • the reaction with lactone is started by low molecular weight polyols, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, dimethylolcyclohexane.
  • other reaction components such as ethylenediamine, alkyldiacanolamines or urea, can also be reacted with caprolactone.
  • polylactam diols which are produced by reacting, for example, ⁇ -caprolactam with low molecular weight diols.
  • Aliphatic, cycloaliphatic and / or aromatic poly are used as typical multifunctional isocyanates isocyanates with at least two isocyanate groups per molecule.
  • the isomers or isomer mixtures of organic diisocyanates are preferred.
  • Suitable aromatic diisocyanates are phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, biphenylene diisocyanate, naphthylene diisocyanate and diphenylmethane diisocyanate. Due to their good resistance to ultraviolet light, (cyclo) aliphatic diisocyanates produce products with a low tendency to yellowing.
  • Examples include isophorone diisocyanate, cyclopentylene diisocyanate and the hydrogenation products of aromatic diisocyanates, such as cyclohexylene diisocyanate, methylcyclohexylene diisocyanate and dicyclohexylmethane diisocyanate.
  • aromatic diisocyanates such as cyclohexylene diisocyanate, methylcyclohexylene diisocyanate and dicyclohexylmethane diisocyanate.
  • aliphatic diisocyanates are trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, propylene diisocyanate, ethylethylene diisocyanate, dimethylethylene diisocyanate, methyltrimethylene diisocyanate and trimethylhexane diisocyanate.
  • Isophorone diisocyanate and dicyclohexyl methane diisocyanate are particularly preferred as diisocyanates.
  • the polyisocyanate component used to form the prepolymer can also contain a proportion of higher-quality polyisocyanates, provided that this does not cause gel formation.
  • Products which have been found to be suitable as triisocyanates are those which are formed by trimerization or oligomerization of diisocyanates or by reaction of diisocyanates with compounds containing polyfunctional OH or NH groups.
  • the average functionality can optionally be reduced by adding monoisocyanates.
  • chain terminating monoisocyanates are phenyl isocyanate, cyclohexyl isocyanate and stearyl isocyanate.
  • Polyurethanes are generally not compatible with water Lich, if special components are not incorporated in their synthesis and / or special manufacturing steps are carried out. So large an acid number is built in that the neutralized product can be dispersed stably in water.
  • compounds which contain two H-active groups reacting with isocyanate groups and at least one group capable of forming anions.
  • Suitable groups which react with isocyanate groups are, in particular, hydroxyl groups and primary and / or secondary amino groups.
  • Groups which are capable of forming anions are carboxyl, sulfonic acid and / or phosphonic acid groups.
  • Carboxylic acid or carboxylate groups are preferably used. They should be so inert that the isocyanate groups of the diisocyanate preferably react with the other groups of the molecule that are reactive toward isocyanate groups.
  • alkanoic acids with two substituents on the carbon atom are used.
  • the substituent can be a hydroxyl group, an alkyl group or an alkylol group.
  • These polyols have at least one, generally 1 to 3 carboxyl groups in the molecule. They have two to about 25, preferably 3 to 10, carbon atoms. Examples of such compounds are dihydroxypropionic acid, dihydroxysuccinic acid and dihydroxybenzoic acid.
  • Examples of such compounds are 2,2-dimethylol acetic acid, 2,2-dimethylol propionic acid, 2,2-dimethylol butyric acid and 2,2-dimethylol pentanoic acid.
  • the preferred dihydroxyalkanoic acid is 2,2-dimethylolpropionic acid.
  • Compounds containing amino groups are, for example, -diaminovaleric acid, 3,4-diaminobenzoic acid, 2,4-diaminotoluenesulfonic acid and 2,4-diaminodiphenyl ether sulfonic acid.
  • the polyol containing carboxyl groups can be 3 to Make up 100% by weight, preferably 5 to 50% by weight, of the total polyol component in the NCO prepolymer.
  • the amount of ionizable carboxyl groups available through the carboxyl group neutralization in salt form is generally at least 0.4% by weight, preferably at least 0.7% by weight, based on the solid.
  • the upper limit is about 6% by weight.
  • the amount of dihydroxyalkanoic acids in the unneutralized prepolymer gives an acid number of at least 5, preferably at least 10.
  • the upper limit of the acid number is 70, preferably 40, based on the solids.
  • this dihydroxyalkanoic acid is advantageously at least partially neutralized with a tertiary amine in order to avoid a reaction with the isocyanates.
  • the NCO prepolymers used according to the invention can be prepared by simultaneously reacting the polyol or polyol mixture with an excess of diisocyanate.
  • the implementation can also be carried out in stages in the prescribed order. Examples are described in DE 26 24 442 and DE 32 10 051.
  • the reaction temperature is up to 150 ° C, with a temperature in the range of 50 to 130 ° C being preferred. The reaction continues until practically all of the hydroxyl functions have been converted.
  • the NCO prepolymer contains at least about 0.5% by weight of isocyanate groups, preferably at least 1% by weight of NCO, based on the solid.
  • the upper limit is approximately 15% by weight, preferably 10% by weight, particularly preferably 5% by weight.
  • the reaction can optionally be carried out in the presence of a catalyst such as organotin compounds and / or tertiary amines.
  • a catalyst such as organotin compounds and / or tertiary amines.
  • organic that do not contain Zerewitinoff active hydrogen are possible.
  • Usable solvents are, for example, dimethylformamide, esters, ethers, such as diethylene glycol dimethyl ether, keto esters, ketones, such as methyl ethyl ketone and acetone, ketones substituted with methoxy groups, such as methoxy hexanone, glycol ether esters, chlorinated hydrocarbons, aliphatic and alicyclic hydrocarbon pyrrolidones, such as N-methylpyrrolidone Furans, aromatic hydrocarbons and their mixtures.
  • the amount of solvent can vary within wide limits and should be sufficient to form a prepolymer solution with a suitable viscosity.
  • Suitable tertiary amines are, for example, trimethylamine, triethylamine, dimethylethylamine, diethylmethylamine, N-methylmorpholine.
  • the NCO prepolymer is diluted with water and then results in a finely divided dispersion.
  • the isocyanate groups still present are included Di- and / or polyamines reacted with primary and / or secondary amino groups as chain extenders. This reaction leads to a further linkage and increase in the molecular weight.
  • the competitive reaction between amine and water with the isocyanate must be well coordinated (time, temperature, concentration) in order to obtain optimum properties and well monitored for reproducible production.
  • Water-soluble compounds are preferred as chain extenders because they increase the dispersibility of the polymeric end product in water.
  • Hydrazine and organic diamines are preferred because they usually build up the highest molecular weight without gelling the resin.
  • the prerequisite for this is that the ratio of the amino groups to the isocyanate groups is selected appropriately.
  • the amount of chain extender is determined by its functionality, the NCO content of the prepolymer and the duration of the reaction.
  • the ratio of the active hydrogen atoms in the chain extender to the NCO groups in the prepolymer should generally be less than 2: 1 and preferably in the range from 1.0: 1 to 1.75: 1.
  • the presence of excess active hydrogen, especially in the form of primary amino groups, can result in polymers with undesirably low molecular weights.
  • Polyamines are essentially alkylene polyamines having 1 to 40 carbon atoms, preferably about 2 to 15 carbon atoms. They can carry substituents that have no hydrogen atoms that are reactive with isocyanate groups. Examples are polyamines with a linear or branched aliphatic, cycloaliphatic or aromatic structure and at least two primary amino groups.
  • the diamines include ethylenediamine, propylenediamine, 1,4-butylenediamine, piperazine, 1,4-cyclohexyldimethylamine, 1,6-hexamethylenediamine, trimethylhexamethylenediamine, methanediamine, isophoronediamine, 4,4'-diaminodicyclohexylmethane and aminoethylethanolamine.
  • Preferred diamines are alkyl or cycloalkyl diamines, such as propylenediamine and 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane.
  • the chain can be extended at least partially with a polyamine that has at least three amine groups with a reactive hydrogen.
  • This type of polyamine can be used in such an amount that unreacted amine nitrogen atoms with 1 or 2 reactive hydrogen atoms are present after the polymer has been extended.
  • useful polyamines are diethylenetriamine, triethylenetetraamine, dipropylenetriamine and dibutylenetriamine.
  • Preferred polyamines are the alkyl or cycloalkyl triamines, such as diethylenetriamine.
  • monoamines such as ethylhexylamine, can also be added.
  • the mixture of emulsion polymer and polyurethane resin contained in the preferred aqueous base coating compositions as a film-forming material consists of 95 to 40% by weight of emulsion polymer and 5 to 60% by weight of polyurethane resin, the proportions each referring to the solids content and their total always 100% by weight .-%.
  • the aqueous base coating compositions according to the invention advantageously also contain further compatible water-dilutable synthetic resins, such as, for example, aminoplast resins, polyesters and polyethers, which generally serve as grind resins for the pigments.
  • the aqueous base coating compositions according to the invention preferably contain 5 to 20, particularly preferably 10 to 16% by weight, based on the total solids content of the base coating compositions, of a water-dilutable aminoplast resin, preferably melamine resin and 5 to 20, preferably 8 to 15% by weight, of a water-dilutable polyether (eg polypropylene glycol with a number average molecular weight of 400 to 900).
  • a water-dilutable aminoplast resin preferably melamine resin and 5 to 20, preferably 8 to 15% by weight
  • a water-dilutable polyether eg polypropylene glycol with a number average molecular weight of 400 to 900.
  • the base coating compositions according to the invention can contain coloring pigments on an inorganic basis, such as e.g. Titanium dioxide, iron oxide, soot, etc., coloring pigments on an organic basis as well as common metal pigments (e.g. commercially available aluminum bronzes, stainless steel bronzes ...) and non-metallic effect pigments (e.g. pearlescent or interference pigments).
  • the base coating compositions according to the invention preferably contain metal pigments and / or effect pigments.
  • the pigmentation level is in the usual ranges.
  • crosslinked polymeric microparticles such as are disclosed in EP-A-38 127 and / or customary rheological inorganic or organic additives, can be added to the base coating compositions according to the invention.
  • water-soluble cellulose ethers such as hydroxyethyl cellulose, methyl cellulose or carboxymethyl cellulose
  • synthetic polymers with ionic and / or associative groups such as polyvinyl alcohol, poly (meth) acrylamide, poly (meth) acrylic acid, polyvinyl pyrrolidone, styrene-maleic anhydride or ethylene-maleic anhydride, act as thickeners Copolymers and their derivatives or also hydrophobically modified ethoxylated urethanes or polyacrylates.
  • Carboxyl group-containing polyacrylate copolymers are particularly preferred with an acid number of 60 to 780, preferably 200 to 500.
  • the base coating compositions according to the invention generally have a solids content of about 15 to 50% by weight.
  • the solids content varies with the intended use of the coating compositions.
  • metallic paints for example, it is preferably 17 to 25% by weight.
  • plain-colored paints it is higher, for example 30 to 45% by weight.
  • the coating compositions according to the invention can additionally contain customary organic solvents. Their share is kept as low as possible. For example, it is below 15% by weight.
  • the base coating compositions according to the invention are generally adjusted to a pH between 6.5 and 9.0.
  • the pH can be adjusted with conventional amines, e.g. Ammonia, triethylamine, dimethylaminoethanol and N-methylmorpholine can be adjusted.
  • the task explained at the outset is solved.
  • the base coating compositions according to the invention high-quality coatings can be produced even without overcoating with a transparent top coating composition.
  • the coating compositions according to the invention can be applied to any substrates, such as metal, wood, plastic or paper.
  • Emulsion polymer dispersion 1 Emulsion polymer dispersion 1
  • Emulsion polymer dispersion 2 Emulsion polymer dispersion 2
  • An emulsion is prepared in the stirrable feed vessel from 720 g deionized water, 24 g emulsifier 1, 10.8 g acrylamide, 518 g methyl methacrylate, 292 g n-butyl methacrylate and 205 g styrene. 30% by weight of this emulsion are added for presentation. A solution of 0.9 g of ammonium peroxodisulfate APS in 55 g of deionized water is then added dropwise in the course of 5 minutes. An exothermic reaction occurs. The reaction temperature is kept between 80 and 85 ° C.
  • a mixture of 700 g of n-butyl acrylate, 89.8 g of hydroxypropyl methacrylate, 35.9 g of methyl methacrylate, 35.9 g of methacrylic acid, 26.9 g of acrylamide and 4.5 g is then added within 2 hours Eikosa (ethylene glycol) nonylphenyl ether (Antarox®CO 850 from GAF Corp., emulsifier 2) was added. After the addition has ended, the reaction mixture is kept at 82 ° C. for a further 1.5 hours. It is then cooled and the dispersion is spread over a fabric 30 ⁇ m mesh size given. A finely divided dispersion with a non-volatile content of 45% by weight, a pH of 2.5, an acid number of 14 and an OH number of 20 is obtained.
  • Emulsion polymer dispersion 5 Emulsion polymer dispersion 5
  • stirrable feed vessel 720 g of deionized water 24 g of emulsifier 1, 43.2 g of acrylamide, 907 g of methyl methacrylate and 216 g of n-butyl methacrylate, 842 g of n-butyl acrylate, 108 g of hydroxypropyl methacrylate, 43.2 g of methacrylic acid and 5.4 g emulsifier 2 an emulsion is prepared. 10% by weight of this emulsion are added for presentation. A solution of 0.87 g of ammonium peroxodisulfate in 53 g of deionized water is then added dropwise in the course of 5 minutes. An exothermic reaction occurs.
  • reaction temperature is kept between 82 and 88 ° C. 15 minutes after the addition of the APS solution has ended, the remaining 90% by weight of the emulsion are added within 3 hours and a solution of 2.23 g of APS in 478 g of deionized water is added within 3.5 hours, the temperature being at Is held at 82 ° C.
  • reaction mixture is kept at 82 ° C. for a further 1.5 hours. It is then cooled and the dispersion is passed over a 30 ⁇ m mesh. A finely divided dispersion with a non-volatile content of 45% by weight, a pH of 5.8, an acid number of 13 and an OH number of 20 is obtained.
  • the mass obtained is poured into 1840 g of cold deionized water with vigorous stirring. 86 g of a 15% hydrazine solution are added to the dispersion obtained within 20 minutes, with vigorous stirring. The resulting, very finely divided dispersion has a solids content of 35% and a run-out time of 27 seconds in the DIN cup 4.
  • the mixture is adjusted to a pH value of 7.7 with a 5% aqueous dimethylethanolamine solution and with 9.4 g of a 3.5% solution of a commercially available polyacrylic acid thickener (Viscalex®HV 30 from Allied Colloids, pH value: 8 , 0) offset.
  • Mixture 2 is obtained.
  • Mixtures 1 and 2 are produced at 800-1000 rpm for 30 minutes to produce the basecoats of the invention. mixed and then adjusted to a pH of 7.7 with a 5% aqueous solution of dimethylethanolamine. The viscosity is then adjusted to an outflow time of 25 seconds in a DIN 4 cup by adding deionized water.
  • the base coating compositions BB1, BB2, BB3 and BB4 according to the invention are obtained.
  • the base coating composition BB5 is obtained by incorporating 36.2 g of the emulsion polymer dispersion 1 into the mixture 2. BB5 does not contain a polyurethane resin dispersion.
  • the base coating compositions thus obtained show excellent storage stability.
  • the base coating compositions are sprayed onto well-known methods onto phosphated steel sheets (Bonder 132) coated with a commercially available electrodeposition coating and a commercially available filler, overcoated with a commercially available clearcoat after a flash-off time of 10 minutes and baked at 140 ° C. for 20 minutes.
  • the metallic effect coatings obtained in this way show a good metallic effect, good adhesion to the filler, good adhesion between the basecoat and topcoat, good gloss and good resistance in a condensed water constant climate according to DIN 50 017.
  • BB1, BB2, BB3 and BB4 show a better metallic effect than BB5.
  • a part of the painted sheets is coated again with the base coating compositions BB1, BB2, BB3, BB4 and BB5 and overcoated with a commercially available clear coat.
  • the coatings obtained in this way are baked at 80 ° C. for 40 minutes.
  • the coatings baked at 80 ° C adhere well to the coatings baked at 140 ° C.
  • a basecoat composition prepared as described above using the emulsion polymer dispersion 5 shows insufficient storage stability.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von mehrschichtigen Überzügen, bei dem eine pigmentierte wäßrige Basisbeschichtungszusammensetzung eingesetzt wird, die als filmbildendes Material ein wasserverdünnbares Emulsionspolymer enthält. Das wasserverdünnbare Emulsionspolymer wird in einer zweistufigen Emulsionspolymerisation hergestellt. In der ersten Stufe wird ein Polymer mit einer Glasübergangstemperatur (TG1) von +30 bis +110°C hergestellt. In der zweiten Stufe wird dann in Gegenwart des in der ersten Stufe hergestellten Polymers ein Monomerengemisch polymerisiert, das für sich alleine polymerisiert ein Polymer mit einer Glasübergangstemperatur (TG2) von -60 bis +20°C ergeben würde. Die Hydroxylzahl des Emulsionspolymers liegt zwischen 2 und 100.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines mehrschichtigen schützenden und/oder dekorativen Überzugs auf einer Substratoberfläche, bei dem
    • (1) als Basisbeschichtungszusammensetzung eine pigmentierte wäßrige Beschichtungszusammensetzung, die als filmbildendes Material ein wasserverdünnbares Emulsionspolymer enthält, auf die Substratoberfläche aufgebracht wird
    • (2) aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymerfilm gebildet wird
    • (3) auf der so erhaltenen Basisschicht eine geeignete transparente Deckbeschichtungszusammensetzung aufgebracht wird und anschließend
    • (4) die Basisschicht zusammen mit der Deckschicht eingebrannt wird.
  • Die Erfindung betriffft auch wasserverdünnbare Beschichtungszusammensetzungen, wasserverdünnbare Emulsionspolymere und ein Verfahren zur Herstellung von wasserverdünnbaren Emulsionspolymeren.
  • Das oben beschriebene Verfahren zur Herstellung von mehrschichtigen schützenden und/oder dekorativen Überzügen ist bekannt und wird insbesondere zur Herstellung von Metalleffektlackierungen auf Automobilkarosserien eingesetzt (vgl. z.B. EP-A-89497, DE-A-3 628 124 und EP-A-38 127).
  • Mit dem in Rede stehenden Verfahren können nur dann Metalleffektlackierungen mit einem guten Metalleffekt hergestellt werden, wenn die eingesetzten wäßrigen Basisbeschichtungszusammensetzungen so zusammengesetzt sind, daß sie - insbesondere mit Hilfe von automatischen Lackieranlagen - in relativ dünnen, schnell trocknenden Schichten auf das Substrat aufgebracht werden können und nach Durchführung der Verfahrensschritte (3) und (4) die Metallpigmentteilchen in paralleler Ausrichtung zur Substratoberfläche enthalten.
  • Außerdem müssen die wäßrigen Basisbeschichtungszusammensetzungen so zusammengesetzt sein, daß die Basisschicht der eingebrannten Metalleffektlackierung am Untergrund gut haftet und die transparente Deckschicht auf der Basisschicht gut haftet. Weiter müssen die wäßrigen Basisbeschichtungszusammensetzungen so zusammengesetzt sein, daß die eingebrannte Metalleffektlackierung nach Belastung im Schwitzwasserkonstantklima keine Vermattung, Enthaftungsphänomene oder gar Bläschen zeigt.
  • Schließlich ist es wünschenswert, daß die wäßrigen Basisbeschichtungszusammensetzungen eine hohe Lagerstabilität zeigen.
  • In der DE-A-36 28 124 werden wäßrige Basisbeschichtungszusammensetzungen offenbart, die als filmbildendes Material ein Gemisch aus einem wasserverdünnbaren Emulbionspolymer und einem wasserverdünnbaren Polyurethanharz enthalten. Diese Basisbeschichtungszusammensetzungen erfüllen die oben dargelegten Anforderungen nicht in optimaler Weise.
  • Die der vorliegenden Erfindung zugrundeliegende Aufgabenstellung besteht darin, für das in Rede stehende Verfahren geeignete wäßrige Basisbeschichtungszusammensetzungen bereitzustellen, die die oben dargelegten Anforderungen optimal erfüllen.
  • Diese Aufgabe wird überraschenderweise durch wäßrige Basisbeschichtungszusammensetzungen gelöst, die ein wasserverdünnbares Emulsionspolymer enthalten, das erhältlich ist, indem
    • (a) in einer ersten Stufe 10 bis 90 Gewichtsteile eines Gemisches aus
      • (a1) 100 bis 60, vorzugsweise 99,5 bis 75 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern und
      • (a2) 0 bis 40, vorzugsweise 0,5 bis 25 Gew.-% eines mit (a1) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
      in wäßriger Phase in Gegenwart eines oder mehrerer Emulgatoren und eines oder mehrerer radikalbildender Initiatoren polymerisiert werden, wobei die Summe der Gewichtsanteile von (a1) und (a2) stets 100 Gew.-% ergibt und (a1) und (a2) so ausgewählt werden, das in der ersten Stufe ein Polymer mit einer Glasübergangstemperatur (TG₁) von +30 bis +110°C erhalten wird und
    • (b) nachdem mindestens 80 Gew.-% des in der ersten Stufe eingesetzten ethylenisch ungesättigten Monomers bzw. Monomerengemisches umgesetzt worden sind, in einer zweiten Stufe 90 bis 10 Gewichtsteile eines Gemisches aus
      • (b1) 47 bis 99, vorzugsweise 75 bis 90 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern
      • (b2) 1 bis 20, vorzugsweise 5 bis 15 Gew.-% eines mindestens eine Hydroxylgruppe tragenden mit (b1), (b3) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
      • (b3) 0 bis 8, vorzugsweise 2 bis 6 Gew.-% eines mindestens eine Carboxyl- oder Sulfonsäuregruppe tragenden mit (b1), (b2) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren und
      • (b4) 0 bis 25, vorzugsweise 2 bis 15 Gew.-% eines weiteren mit (b1), (b2) und (b3) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
      in Gegenwart des in der ersten Stufe erhaltenen Polymers polymerisiert werden, wobei die Summe der Gewichtsanteile von (b1), (b2), (b3) und (b4) stets 100 Gew.-% ergibt und (b1), (b2), (b3) und (b4) so ausgewählt werden, daß eine alleinige Polymerisation des in der zweiten Stufe eingesetzten Monomerengemisches zu einem polymer mit einer Glasübergangstemperatur (TG2) von -60 bis +20°C führen würde und wobei die Reaktionsbedingungen so gewählt werden, daß das erhaltene Emulsionspolymer eine zahlenmittlere Molmasse von 200.000 bis 2.000.000 aufweist und wobei das in der ersten Stufe eingesetzte ethylenisch ungesättigte Monomer bzw. Monomerengemisch und das in der zweiten Stufe eingesetzte Monomerengemisch in Art und Menge so ausgewählt werden, daß das erhaltene Emulsionspolymer eine Hydroxylzahl von 2 bis 100 aufweist und die Differenz TG1 - TG2 10 bis 170°C beträgt.
  • In der nicht vorveröffentlichten EP-A-332 011 werden wäßrige Beschichtungszusammensetzungen offenbart, die als Holzlacke verwendbar sind und die ein hydroxylgruppenfreies, über ein zweistufiges Emulsionspolymerisationsverfahren erhältliches, wasserverdünnbares Emulsionspolymer enthalten. In der US-PS-4,150,005 werden wäßrige Beschichtungszusammensetzungen offenbart, die ein wasserverdünnbares Emulsionspolymer enthalten, das erhältlich ist, indem in einer ersten Emulsionspolymerisationsstufe ein stark hydrophiles Polymer mit einer niedrigen Glasübergangstemperatur hergestellt wird und in dessen Gegenwart in einer zweiten Emulsionspolymerisationsstufe ein hydrophobes Polymer mit einer hohen Glasübergangstemperatur hergestellt wird. Mehrschichtige schützende und/oder dekorative Überzüge der oben beschriebenen Art und die bei der Herstellung dieser Überzüge auftretenden Probleme werden in der US-PS-4,150,005 nicht angesprochen. In der GB-A-2,034,334 werden wäßrige Beschichtungszusammensetzungen beschrieben, die ein wasserverdünnbares, über ein zweistufiges Emulsionspolymeribatlonsverfahren erhältliches Emulsionspolymer enthalten, das zwingend N-Methylolgruppen aufweisen muß. Der GB-A-2,034,334 bind keine Hinweise darauf zu entnehmen, daß die beiden polymerstufen sich in ihren Glasübergangstemperaturen in der erfindungsgemäßen Art und Weise unterscheiden müssen. Mehrschichtige schützende und/oder dekorative Überzüge der oben beschriebenen Art und die bei der Herstellung dieser Überzüge auftretenden Probleme werden in der GB-A-2,034,334 nicht angesprochen. In der EP-A-287 144 wird ein Verfahren zur Herstellung eines mehrschichtigen Überzugs der oben beschriebenen Art beschrieben, bei dem wäßrige Basisbeschichtungszusammensetzungen eingesetzt werden, die ein über ein zweistufiges Emulsionspolymerisationsverfahren erhältliches, wasserverdünnbares Emulbionspolymer enthalten, das in der zweiten Stufe ("Schale") einen sehr hohen Anteil an Säuregruppen aufweist und bei dem sich die erste und zweite Polymerstufe in ihren Glasübergangstemperaturen derart unterscheiden, daß die erste Stufe eine tiefere Glasübergangstemperatur aufweist als die zweite Stufe.
  • Die erfindungsgemäß eingesetzten wasserverdünnbaren Emulsionspolymere sind durch eine zweistufige Emulsionspolymerisation in einem wäßrigen Medium in den bekannten Apparaturen, beispielsweise in einem Rührkessel mit Heiz- und Kühlvorrichtung, herstellbar. Die Zugabe der Monomeren kann in der Weise erfolgen, daß eine Lösung aus dem gesamten Wasser, dem Emulgator und einem Teil des Initiators vorgelegt wird und das Monomer bzw. Monomerengemisch und getrennt davon, aber parallel dazu der Rest des Initiators bei der Polymerisationstemperatur langsam zugegeben wird. Es ist jedoch auch möglich, einen Teil des Wassers und des Emulgators vorzulegen und aus dem Rest des Wassers und des Emulgators und aus dem Monomer bzw. Monomerengemisch eine Voremulsion herzustellen, die bei der Polymerisationstemperatur langsam zugegeben wird, wobei der Initiator wiederum getrennt zugegeben wird.
    Es ist bevorzugt, in der ersten Stufe das Monomer bzw. Mono- merengemisch in Form einer Voremulsion zuzugeben und in der zweiten Stufe das Monomer bzw. Monomerengemisch in Substanz, d.h. ohne Wasser und Emulgator zuzugeben und den Initiator getrennt, aber parallel dazu zuzugeben. Es ist besonders bevorzugt, in der ersten Stufe aus einem Teil (in der Regel etwa 30 Gew.-% der insgesamt einzusetzenden Voremulsion) der in der ersten Stufe einzusetzenden Voremulsion zuerst ein Saatpolymer herzustellen und danach den Rest der in der ersten Stufe einzusetzenden Voremulsion zuzugeben. Die Polymerisationstemperatur liegt im allgemeinen im Bereich von 20 bis 100°C, vorzugsweise 40 bis 90°C.
  • Das Mengenverhältnis zwischen den Monomeren und dem Wasser kann so ausgewählt werden, daß die resultierende Dispersion einen Feststoffgehalt von 30 bis 60 Gew.-%, vorzugsweise 35 bis 50 Gew.-% aufweist.
  • Als Emulgator wird vorzugsweise ein anionischer Emulgator allein oder im Gemisch eingesetzt.
  • Beispiele für anionische Emulgatoren sind die Alkalisalze von Schwefelsäurehalbestern von Alkylphenolen oder Alkoholen, ferner die Schwefelsäurehalbester von oxethylierten Alkylphenolen oder oxethylierten Alkoholen, vorzugsweise die Alkalisalze des Schwefelsäurehalbesters eines mit 4 - 5 Mol Ethylenoxid pro Mol umgesetzten Nonylphenols, Alkyl- oder Arylsulfonats, Natriumlaurylsulfat, Natriumlaurylethoxylatsulfat und sekundäre Natriumalkansulfonate, deren Kohlenstoffkette 8 - 20 Kohlenstoffatome enthält. Die Menge des anionischen Emulgators beträgt 0,1 - 5,0 Gew.-%, bezogen auf die Monomeren, vorzugsweise 0,5 - 3,0 Gew.-%. Ferner kann zur Erhöhung der Stabilität der wässrigen Dispersionen zusätzlich ein nichtionischer Emulgator vom Typ eines ethoxylierten Alkylphenols oder Fettalkohols, z.B. ein Additionsprodukt von 1 Mol Nonylphenol und 4 - 30 Mol Ethylenoxid in Mischung mit dem anionischen Emulgator eingesetzt werden.
  • Als radikalbildender Initiator wird vorzugsweise eine Peroxidverbindung eingesetzt. Der Initiator ist wasserlöslich oder monomerlöslich. Vorzugsweise wird ein wasserlöslicher Initiator verwendet.
  • Als Initiatoren eignen sich die üblichen anorganischen Perverbindungen, wie Ammoniumpersulfat, Kaliumpersulfat, Ammonium- oder Alkalimetallperoxydiphosphat und organische Peroxide, wie z.B. Benzoylperoxid, organische Perester, wie Perisopivalat, zum Teil in Kombination mit Reduktionsmitteln, wie Natriumdisulfit, Hydrazin, Hydroxylamin und katalytische Mengen Beschleuniger, wie Eisen-, Kobalt-, Cer- und Vanadylsalze eingesetzt, vorzugsweise Alkali- bzw. Ammoniumperoxydisulfate. Es können auch die Redox-Initiatorsysteme, die in der EP-A-107300 offenbart werden, eingesetzt werden.
  • In der ersten Stufe werden 10 bis 90, vorzugsweise 35 bis 65 Gewichtsteile eines ethylenisch ungesättigten Monomeren oder eines Gemisches aus ethylenisch ungesättigten Monomeren emulsionspolymerisiert. Das in der ersten Stufe eingesetzte Monomer bzw. Monomerengemisch wird so ausgewählt, daß bei völliger Auspolymerisation des in der ersten Stufe eingesetzten Monomers bzw. Monomerengemisches ein Polymer mit einer Glasübergangstemperatur (TG1) von + 30°C bis + 110°C, vorzugsweise 60 bis 95°C erhalten wird. Da die Glasüber- gangstemperatur von Emulsionspolymeren nach der Gleichung
    Figure imgb0001
  • TG
    = Glasübergangstemp. des Copolymers in °K
    Wn
    = Gewichtsanteil des n-ten Monomers
    TGn
    = Glasübergangstemp. des Homopolymers aus dem n-ten Monomer
    x
    = Anzahl der verschiedenen Monomeren

    näherungsweise berechnet werden kann, bereitet es dem Fachmann keine Probleme, das in der ersten Stufe einzusetzende Monomer bzw. Monomerengemisch so auszuwählen, daß bei völliger Auspolymerisation des in der ersten Stufe eingesetzten Monomers bzw. Monomerengemisches ein polymer mit einer Glasübergangstemperatur (TG1) von + 30 bis + 110°C, vorzugsweise 60 bis 95°C erhalten wird.
  • Als Beispiele für Monomere, die in der ersten Stufe eingesetzt werden können, werden genannt: vinylaromatische Kohlenwasserstoffe, wie Styrol, α -Alkylstyrol und Vinyltoluol, Ester der Acrylsäure oder Methacrylsäure, insbesondere aliphatische und cycloaliphatische Acrylate oder Methacrylate mit bis zu 20 Kohlenstoffatomen im Alkoholrest, wie z.B. Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-, Ethylhexyl-, Stearyl-, Lauryl- und Cyclohexylacrylat oder -methacrylat, Acryl- und/oder Methacrylsäure, Acryl- und/oder Methacrylamid, N-Methylolacrylamid und/oder N-Methylolmethacrylamid, Hydroxyalkylester der Acrylsäure,Methacrylsäure oder einer anderenα ,β-ethylenisch ungesättigten Carbonsäure, wie z.B. 2-Hydroxyethylacrylat, 2-Hydroxypropylacrylat, 3-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylmethacrylat, 2-Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat usw.
  • In der ersten Stufe werden vorzugsweise ethylenisch ungesättigte Monomere bzw. Gemische aus ethylenisch ungesättigten Monomeren eingesetzt, die im wesentlichen frei von Hydroxyl- und Carboxylgruppen sind. "Im wesentlichen frei" soll bedeuten, daß es bevorzugt ist, Monomere bzw. Monomerengemische einzusetzen, die frei von Hydroxyl- und Carboxylgruppen sind, daß die eingesetzten Monomere bzw. Monomerengemische aber auch geringe Mengen (z.B. infolge von Verunreinigungen) an Hydroxyl- und/oder Carboxylgruppen enthalten können. Der Gehalt an Hydroxyl- und Carboxylgruppen sollte vorzugsweise höchstens so hoch sein, daß ein aus dem in der ersten Stufe eingesetzten Monomer bzw. Monomerengemisch hergestelltes Polymer eine OH-Zahl von höchstens 5 und eine Säurezahl von höchstens 3 aufweist.
  • In der ersten Stufe wird besonders bevorzugt ein Gemisch aus
    • (a1) 100 bis 60, vorzugsweise 99,5 bis 75 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern und
    • (a2) 0 bis 40, vorzugsweise 0,5 bis 25 Gew.-% eines mit (a1) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren

    eingesetzt, wobei die Summe der Gewichtsanteile von (a1) und (a2) stets 100 Gew.-% ergibt.
  • Als Komponente (a1) können z.B. eingesetzt werden: Cyclohexylacrylat, Cyclohexylmethacrylat, Alkylacrylate und Alkylmethacrylate mit bis zu 20 Kohlenstoffatomen im Alkylrest, wie z.B. Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-, Ethylhexyl-, Stearyl- und Laurylacrylat und -methacrylat oder Gemische aus diesen Monomeren.
  • Als Komponente (a2) können z.B. eingesetzt werden vinylaromatische Kohlenwasserstoffe, wie Styrol, α-Alkylstyrol und Vinyltoluol, Acryl und Methacrylamid und Acryl- und Methacrylnitril oder Gemische aus diesen Monomeren.
  • Nachdem mindestens 80 Gew.-%, vorzugsweise mindestens 95 Gew.-% des in der ersten Stufe eingesetzten ethylenisch ungesättigten Monomers bzw. Monomerengemisches umgesetzt worden sind, werden in einer zweiten Stufe 90 bis 10, vorzugsweise 65 bis 35 Gewichtsteile eines ethylenisch ungesättigten Monomeren oder eines Gemisches aus ethylenisch ungesättigten Monomeren in Gegenwart des in der ersten Stufe erhaltenen Polymers emulsionspolymerisiert, wobei das in der zweiten Stufe eingesetzte Monomer bzw. Monomerengemisch so ausgewählt wird, daß eine alleinige Polymerisation des in der zweiten Stufe eingesetzten Monomers bzw. Monomerengemisches zu einem Polymer mit einer Glasübergangstemperatur (TG2) von -60 bis +20°C, vorzugsweise -50 bis 0°C führen würde. Diese Auswahl bereitet dem Fachmann keine Schwierigkeiten, da die Glasübergangstemperaturen von Emulsionspolymeren - wie oben bereits dargelegt - leicht näherungsweise berechnet werden können.
  • Es ist weiter erfindungswesentlich, daß das in der ersten Stufe eingesetzte Monomer bzw. Monomerengemisch und das in der zweiten Stufe eingesetzte Monomer bzw. Monomerengemisch in der Art und Menge so ausgewählt werden, daß das erhaltene Emulsionspolymer eine Hydroxylzahl von 2 bis 100, vorzugsweise von 10 bis 50 aufweist und die Differenz TG1 - TG2 10 bis 170, vorzugsweise 80 bis 150°C beträgt.
  • Als Beispiele für Monomere, die in der zweiten Stufe eingesetzt werden können, werden genannt: vinylaromatische Kohlenwasserstoffe, wie Styrol, α-Alkylstyrol und Vinyltoluol, Ester der Acrylsäure oder Methacrylsäure, insbesondere aliphatische und cycloaliphatische Acrylate oder Methacrylate mit bis zu 20 Kohlenstoffatomen im Alkoholrest, wie z.B. Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-, Ethylhexyl-, Stearyl-, Lauryl- und Cyclohexylacrylat oder -methacrylat, Acryl- und/oder Methacrylsäure, Acryl und/oder Methacrylamid, N-Methylolacrylamid und/oder N-Methylolmethacrylamid, Hydroxyalkylester der Acrylsäure, Methacrylsäure oder einer anderenα, β-ethylenisch ungesättigten Carbonsäure, wie z.B. 2-Hydroxyethylacrylat, 2-Hydroxypropylacrylat, 3-Hydroxypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylmethacrylat, 2-Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat, 4-Hydroxybutylmethacrylat usw.
  • In der zweiten Stufe wird vorzugsweise ein Gemisch aus
    • (b1) 47 bis 99, vorzugsweise 75 bis 90 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern
    • (b2) 1 bis 20, vorzugsweise 5 bis 15 Gew.-% eines mindestens eine Hydroxylgruppe tragenden mit (b1), (b3) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    • (b3) 0 bis 8, vorzugsweise 2 bis 6 Gew.-% eines mindestens eine Carboxyl- oder Sulfonsäuregruppe tragenden, mit (b1), (b2) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren und
    • (b4) 0 bis 25, vorzugsweise 2 bis 15 Gew.-% eines weiteren mit (b1), (b2) und (b3) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren eingesetzt, wobei die Summe der Gewichtsanteile von (b1), (b2), (b3) und (b4) stets 100 Gew. % ergibt.
  • Als Komponente (b1) können z.B. eingesetzt werden: Cyclohexylacrylat, Cyclohexylmethacrylat, Alkylacrylate und Alkylmethacrylate mit bis zu 20 Kohlenstoffatomen im Alkylrest, wie z.B. Methyl-, Ethyl-, Propyl-, Butyl-, Hexyl-, Ethylhexyl-, Stearyl- und Laurylacrylat und -methacrylat oder Gemische aus diesen Monomeren.
  • Als Komponente (b2) können z.B. eingesetzt werden: Hydroxyalkylester der Acrylsäure, Methacrylsäure oder einer anderen α,β-ethylenisch ungesättigten Carbonsäure. Diese Ester können sich von einem Alkylenglykol ableiten, das mit der Säure verestert ist, oder sie können durch Umsetzung der Säure mit einem Alkylenoxid erhalten werden. Als Komponente (b2) werden vorzugsweise Hydroxyalkylester der Acrylsäure und Methacrylsäure, in denen die Hydroxyalkylgruppe bis zu 4 Kohlenstoffatome enthält, oder Mischungen aus diesen Hydroxyalkylestern eingesetzt. Als Beispiele für derartige Hydroxyalkylester werden 2-Hydroxyethylacrylat, 2-Hydroxypropylacrylat, 3-Hydroxypropylacrylat, 2-Hydroypropylmethacrylat, 3-Hydroxypropylmethacrylat, 2-Hydroxyethylmethacrylat, 4-Hydroxybutylacrylat oder 4-Hydroxybutylmethacrylat genannt. Entsprechende Ester von anderen ungesättigten Säuren, wie z.B. Ethacrylsäure, Crotonsäure und ähnliche Säuren mit bis zu etwa 6 Kohlenstoffatomen pro Molekül können auch eingesetzt werden.
    Als Komponente (b3) werden vorzugsweise Acrylsäure und/oder Methacrylsäure und/oder Acrylamidomethylpropansulfonsäure eingesetzt. Es können aber auch andere ethylenisch ungesättigte Säuren mit bis zu 6 Kohlenstoffatomen im Molekül eingesetzt werden. Als Beispiele für solche Säuren werden Ethacrylsäure, Crotonsäure, Maleinsäure, Fumarsäure und Itaconsäure genannt.
  • Als Komponente (b4) können z.B. eingesetzt werden: vinylaromatische Kohlenwasserstoffe, wie Styrol, α-Alkylstyrol und Vinyltoluol, Acryl- und Methacrylamid und Acryl- und Methacrylnitril oder Gemische aus diesen Monomeren.
  • Das erfindungsgemäß eingesetzte Emulsionspolymer sollte eine zahlenmittlere Molmasse (Bestimmung: gelpermeationschromatographisch mit Polystyrol als Standard) von 200.000 bis 2.000.000, vorzugsweise von 300.000 bis 1.500.000 aufweisen.
  • Dem Fachmann ist bekannt, wie er die Reaktionsbedingungen während der Emulsionspolymerisation zu wählen hat, damit er Emulsionspolymere erhält, die die oben angegebenen zahlenmittleren Molmassen aufweisen (vgl. z.B. Chemie, Physik und Technologie der Kunststoffe in Einzeldarstellungen, Dispersionen synthetischer Hochpolymerer, Teil 1 von F. Hölscher, Springer Verlag, Berlin, Heidelberg, New York, 1969).
  • Es ist bevorzugt, daß die erfindungsgemäßen wäßrigen Basisbeschichtungszusammensetzungen neben dem oben beschriebenen Emulsionspolymer noch ein wasserverdünnbares Polyurethanharz als filmbildendes Material enthalten.
  • Die erfindungsgemäßen Basisbeschichtungszusammensetzungen enthalten vorzugsweise wasserverdünnbare, Harnstoffgruppen enthaltende Polyurethanharze, die ein zahlenmittleres Molekulargewicht (Bestimmung: gelpermeationschromatographisch mit Polystyrol als Standard) von 1000 bis 60.0000, vorzugsweise 1500 bis 50.000 und eine Säurezahl von 5 bis 70, vorzugsweise 10 bis 30 aufweisen und durch Umsetzung, vorzugsweise Kettenverlängerung von Isocyanatgruppen aufweisenden Präpolymeren mit Polyaminen und/oder Hydrazin herstellbar sind.
  • Die Herstellung des isocyanatgruppenhaltigen präpolymeren kann durch Reaktion von Polyalkoholen mit einer Hydroxylzahl von 10 bis 1800, bevorzugt 50 bis 500, mit überschüssigen Polyisocyanaten bei Temperaturen bis zu 150°C, bevorzugt 50 bis 130°C, in organischen Lösemitteln, die nicht mit Isocyanaten reagieren können,-erfolgen. Das Äquivalenzverhältnis von NCO zu OH-Gruppen liegt zwischen 1,5 und 1,0 zu 1,0, bevorzugt zwischen 1,4 und 1,2 zu 1. Die zur Herstellung des Präpolymeren eingesetzten Polyole können niedrigmolekular und/oder hochmolekular sein und sie können reaktionsträge anionische Gruppen enthalten.
  • Um die Härte des Polyurethans zu erhöhen, kann man niedrigmolekulare Polyole einsetzen. Sie haben ein Molekulargewicht von 60 bis zu etwa 400 und können aliphatische, alicyclische oder aromatische Gruppen enthalten. Es werden dabei Mengen bis zu 30 Gew.-% der gesamten Polyol-Bestandteile, bevorzugt etwa 2 bis 20 Gew.-% eingesetzt. Vorteilhaft sind die niedermolekularen Polyole mit bis zu etwa 20 Kohlenstoffatomen je Molekül, wie Ethylenglykol, Diethylenglykol, Triethylenglykol, 1,2-Propandiol, 1,3-Propandiol, 1,4-Butandiol, 1,2-Butylenglykol, 1,6-Hexandiol, Trimethylolpropan, Rizinusöl oder hydriertes Rizinusöl, Di-trimethylolpropanether, Pentaerythrit, 1,2-Cyclohexandiol, 1,4-Cyclohexandimethanol, Bisphenol A, Bisphenol F, Neopentylglykol, Hydroxypivalinsäure-neopentylglykolester, hydroxyethyliertes oder hydroxypropyliertes Bisphenol A, hydriertes Bisphenol A und deren Mischungen.
    Um ein NCO-Präpolymeres hoher Flexibilität zu erhalten, sollte ein hoher Anteil eines überwiegend lineares Polyols mit einer bevorzugten Hydroxylzahl von 30 bis 150 zugesetzt werden. Bis zu 97 Gew.-% des gesamten Polyols können aus gesättigten und ungesättigten Polyestern und/oder Polyethern mit einer Molmasse Mn von 400 bis 5000 bestehen. Als hochmolekulare Polyole sind geeignet aliphatische Polyetherdiole der allgemeinen Formel H-(-0-(-CHR)n-)m-OH in der R = Wasserstoff oder ein niedriger, gegebenenfalls mit verschiedenen Substituenten versehener Alkylrest ist, wobei n = 2 bis 6, bevorzugt 3 bis 4 und m - 2 bis 100, bevorzugt 5 bis 50 ist. Beispiele sind lineare oder verzweigte Polyetherdiole, wie Poly-(oxyethylen)glykole Poly(oxypropylen)glykole und/oder Poly(oxybutylen)glykole. Die ausgewählten Polyetherdiole sollen keine übermäßigen Mengen an Ethergruppen einbringen, weil sonst die gebildeten polymere in Wasser anquellen. Die bevorzugten Polyetherdiole sind Poly(oxypropylen)glykole im Molmassenbereich Mn von 400 bis 3000. Polyesterdiole werden durch Veresterung von organischen Dicarbonsäuren oder ihren Anhydriden mit organischen Diolen hergestellt oder leiten sich von einer Hydroxycarbonsäure oder einem Lacton ab. Um verzweigte Polyesterpolyole herzustellen, können in geringem Umfang Polyole oder Polycarbonsäuren mit einer höheren Wertigkeit eingesetzt werden. Die Dicarbonsäuren und Diole können lineare oder verzweigte aliphatische, cycloaliphatische oder aromatische Dicarbonsäuren oder Diole sein.
    Die zur Herstellung der Polyester verwendeten Diole bestehen beispielsweise aus Alkylenglykolen, wie Ethylenglykol, Propylenglykol, Butylenglykol, Butandiol-1,4, Hexandiol-1,6, Neopentylglykol und andere Diole, wie Dimethylcyclohexan. Die Säurekomponente des Polyesters besteht in erster Linie aus niedermolekularen Dicarbonsäuren oder ihren Anhydriden mit 2 bis 30, bevorzugt 4 bis 18 Kohlenstoffatomen im Molekül. Geeignete Säure sind beispielsweise o-Phthalsäure, Isophthalsäure, Terephthalsäure, Tetrahydrophthalsäure, Cyclohexandicarbonsäure, Bernsteinsäure, Adipinsäure, Azelainsäure, Sebazinsäure, Maleinsäure, Fumarsäure, Glutarsäure, Hexachlorheptandicarbonsäure, Tetrachlorphthalsäure und/oder dimersisierte Fettsäuren. Anstelle dieser Säuren können auch ihre Anhydride, soweit diese existieren, verwendet werden. Bei der Bildung von Polyesterpolyolen können auch kleinere Mengen an Carbonsäuren mit 3 oder mehr Carboxylgruppen, beispielsweise Trimellithsäureanhydrid oder das Addukt von Maleinsäureanhydrid an ungesättigten Fettsäuren anwesend sein.
  • Erfindungsgemäß werden auch Polyesterdiole eingesetzt, die durch Umsetzung eines Lactons mit einem Diol erhalten werden. Sie zeichnen sich durch die Gegenwart einer endständigen Hydroxylgruppe und wiederkehrende Polyesteranteil der Formel -(-CO-(CHR)n-CH₂-0-)- aus. Hierbei ist n bevorzugt 4 bis 6 und der Substituent R Wasserstoff, ein Alkyl-, Cycloalkyl- oder Alkoxy-Rest. Kein Substituent enthält mehr als 12 Kohlenstoffatome. Die gesamte Anzahl der Kohlenstoffatome im Substituenten übersteigt nicht 12 pro Lactonring. Beispiele hierfür sind Hydroxycapronsäure, Hydroxybuttersäure, Hydroxydecansäure und/oder Hydroxystearinsäure. Das als Ausgangsmaterial verwendete Lacton kann durch die folgende allgemeine Formel dargestellt werden
    Figure imgb0002

    in der n und R die bereits angegebene Bedeutung haben. Für die Herstellung der Polyesterdiole wird das unsubstituierte -Caprolacton, bei dem n den Wert 4 hat und alle R-Substituenten Wasserstoff sind, bevorzugt. Die Umsetzung mit Lacton wird durch niedermolekulare Polyole, wie Ethylenglykol, 1,3-Propandiol, 1,4-Butandiol, Dimethylolcyclohexan gestartet. Es können jedoch auch andere Reaktionskomponenten, wie Ethylendiamin, Alkyldiakanolamine oder auch Harnstoff mit Caprolacton umgesetzt werden.
  • Als höhermolekulare Diole eigenen sich auch Polylactamdiole, die durch Reaktion von beispielsweise ε-Caprolactam mit niedermolekularen Diolen hergestellt werden.
  • Als typische multifunktionelle Isocyanate werden verwendet aliphatische, cycloaliphatische und/oder aromatische Poly isocyanate mit mindestens zwei Isocyanatgruppen pro Molekül. Bevorzugt werden die Isomeren oder Isomerengemische von organischen Diisocyanaten. Als aromatische Diisocyanate eignen sich Phenylendiisocyanat, Toluylendiisocyanat, Xylylendiisocyanat, Biphenylendiisocyanat, Naphthylendiisocyanat und Diphenylmethandiisocyanat.
    Aufgrund ihrer guten Beständigkeit gegenüber ultraviolettem Licht ergeben (cyclo)aliphatische Diisocyanate Produkte mit geringer Vergilbungsneigung. Beispiele hierfür sind Isophorondiisocyanat, Cyclopentylendiisocyant sowie die Hydrierungsprodukte der aromatischen Diisocyanate, wie Cyclohexylendiisocyanat, Methylcyclohexylendiisocyanat und Dicyclohexylmethandiisocyanat. Als Beispiele für aliphatische Diisocyanate werden Trimethylendiisocyanat, Tetramethylendiisocyanat, Pentamethylendiisocyanat, Hexamethylendiisocyanat, Propylendiisocyanat, Ethylethylendiisocyanat, Dimethylethylendiisocyanat, Methyltrimethylendiisocyanat und Trimethylhexandiisocyanat. Besonders bevorzugt werden als Diisocyanate Isophorondiisocyanat und Dicyclohexyl-methandiisocyanat. Die zur Bildung des Präpolymeren gebrauchte Polyisocyanat-Komponente kann auch einen Anteil höherwertiger Polyisocyanate enthalten, vorausgesetzt dadurch wird keine Gelbildung verursacht. Als Triisocyanate haben sich Produkte bewährt, die durch Trimerisation oder Oligomerisation von Diisocyanaten oder durch Reaktion von Diisocyanaten mit polyfunktionellen OH- oder NH-Gruppen enthaltenden Verbindungen entstehen. Hierzu gehören beispielsweise das Biuret von Hexamethylendiisocyanat und Wasser, das Isocyanurat des Hexamethylendiisocyanats oder das Addukt von Isophorondiisocyanat an Trimethylolpropan.
    Die mittlere Funktionalität kann gegebenenfalls durch Zusatz von Monoisocyanaten gesenkt werden. Beispiele für solche kettenabbrechenden Monoisocyanate sind Phenylisocyanat, Cyclohexylisocyanat und Stearylisocyanat.
    Polyurethane sind im allgemeinen nicht mit Wasser verträg lich, wenn nicht bei ihrer Synthese spezielle Bestandteile eingebaut und/oder besondere Herstellungsschritte vorgenommen werden. So wird eine so große Säurezahl eingebaut, daß das neutralisierte Produkt stabil in Wasser zu dispergieren ist. Hierzu dienen Verbindungen, die zwei mit Isocyanatgruppen reagierende H-aktive Gruppen und mindestens eine zur Anionenbildung befähigte Gruppe enthalten. Geeignete, mit Isocyanatgruppen reagierende Gruppen, sind insbesondere Hydoxylgruppen sowie primäre und/oder sekundäre Aminogruppen. Gruppen, die zur Anionenbildung befähigt sind, sind Carboxyl-, Sulfonsäure und/oder Phosphonsäuregruppen. Bevorzugt werden Carbonsäure- oder Carboxylatgruppen verwendet. Sie sollen so reaktionsträge sein, daß die Isocyanatgruppen des Diisocyanats vorzugsweise mit den anderen gegenüber Isocyanatgruppen reaktiven Gruppen des Moleküls reagieren. Es werden dazu Alkansäuren mit zwei Substituenten am -ständigen Kohlenstoffatöm eingesetzt. Der Substituent kann eine Hydroxylgruppe, eine Alkylgruppe oder eine Alkylolgruppe sein. Diese Polyole haben wenigstens eine, im allgemeinen 1 bis 3 Carboxylgruppen im Molekül. Sie haben zwei bis etwa 25, vorzugsweise 3 bis 10 Kohlenstoffatome. Beispiele für solche Verbindungen sind Dihydroxypropionsäure, Dihydroxybernsteinsäure und Dihydroxybenzoesäure. Eine besonders bevorzugte Gruppe von Dihydroxyalkansäuren sind dieα ,α-Dimethylolalkansäuren, die durch die Strukturformel RC(CH₂OH)₂COOH gekennzeichnet sind, worin R=Wasserstoff oder eine Alkylgruppe mit bis zu etwa 20 Kohlenstoffatomen bedeutet. Beispiele für solche Verbindungen sind 2,2-Dimethylolessigsäure, 2,2-Dimethylolpropionsäure, 2,2-Dimethylolbuttersäure und 2,2-Dimethylolpentansäure. Die bevorzugte Dihydroxyalkansäure ist 2,2-Dimethylolpropionsäure. Aminogruppenhaltige Verbindungen sind beispielsweise , -Diaminovaleriansäure, 3,4-Diaminobenzoesäure, 2,4-Diaminotoluolsulfonsäure und 2,4-Diamino-diphenylethersulfonsäure. Das Carboxylgruppen enthaltende Polyol kann 3 bis 100 Gew.-%, vorzugsweise 5 bis 50 Gew.-% des gesamten Polyolbestandteiles im NCO-Präpolymeren ausmachen.
    Die durch die Carboxylgruppen-Neutralisation in Salzform verfügbare Menge an ionisierbaren Carboxylgruppen beträgt im allgemeinen wenigstens 0,4 Gew.-%, vorzugsweise wenigstens 0,7 Gew.-%, bezogen auf den Feststoff. Die obere Grenze beträgt etwa 6 Gew.-%. Die Menge an Dihydroxyalkansäuren im unneutralisierten Präpolymeren ergibt eine Säurezahl von wenigstens 5, vorzugsweise wenigstens 10. Die obere Grenze der Säurezahl liegt bei 70, vorzugsweise bei 40, bezogen auf den Feststoff.
    Diese Dihydroxyalkansäure wird vor der Umsetzung mit Isocyanaten vorteilhafterweise mindestens anteilweise mit einem tertiären Amin neutralisiert, um eine Reaktion mit den Isocyanaten zu vermeiden.
    Die erfindungsgmäß verwendeten NCO-Präpolymere können durch gleichzeitige Umsetzung des Polyols oder Polyolgemisches mit einem Diisocyanat-Überschuß hergestellt werden. Andererseits kann die Umsetzung auch in vorgeschriebener Reihenfolge stufenweise vorgenommen werden.
    Beispiele sind in den DE 26 24 442 und DE 32 10 051 beschrieben. Die Reaktionstemperatur beträgt bis zu 150°C, wobei eine Temperatur im Bereich von 50 bis 130°C bevorzugt wird. Die Umsetzung wird fortgesetzt, bis praktisch alle Hydroxylfunktionen umgesetzt sind.
  • Das NCO-Präpolymer enthält wenigstens etwa 0,5 Gew.-% Isocyanatgruppen, vorzugsweise wenigstens 1 Gew.-% NCO, bezogen auf Feststoff. Die obere Grenze liegt bei etwa 15 Gew.-%, vorzugsweise 10 Gew.-%, besonders bevorzugt bei 5 Gew.-%. Die Umsetzung kann gegebenenfalls in Gegenwart eines Katalysators, wie Organozinnverbindungen und/oder tertiären Aminen durchgeführt werden. Um die Reaktionsteilnehmer in flüssigem Zustand zu halten und eine bessere Temperaturkontrolle während der Reaktion zu ermöglichen, ist der Zusatz von organischen Lösemitteln, die keinen aktiven Wasserstoff nach Zerewitinoff enthalten, möglich. Verwendbare Lösemittel sind beispielsweise Dimethylformamid, Ester, Ether, wie Diethylenglykol-dimethylether, Ketoester, Ketone, wie Methylethylketon und Aceton, mit Methoxygruppen substituierte Ketone, wie Methoxy-hexanon, Glykoletherester, chlorierte Kohlenwasserstoffe, aliphatische und alicyclische Kohlenwasserstoffpyrrolidone, wie N-Methylpyrrolidon, hydrierte Furane, aromatische Kohlenwasserstoffe und deren Gemische. Die Menge an Lösemittel kann in weiten Grenzen variieren und sollte zur Bildung einer Präpolymer-Lösung mit geeigneter Viskosität ausreichen. Meistens genügen 0,01 bis 15 Gew.-% Lösemittel, vorzugsweise 0,02 bis 8 Gew.-% Lösemittel, bezogen auf den Festkörper. Sieden die gegebenenfalls nicht wasserlöslichen Lösemittel niedriger als das Wasser, so können sie nach der Herstellung der harnstoffhaltigen Polyurethan-Dispersion durch Vakuumdestillation oder Dünnschichtverdampfung schonend abdestilliert werden. Höhersiedende Lösemittel sollten wasserlöslich sein und verbleiben in der wäßrigen Polyurethan-Dispersion, um das Zusammenfließen der polymer-Teilchen während der Filmbildung zu erleichtern. Besonders bevorzugt sind als Lösemittel N-Methylpyrrolidon, gegebenenfalls im Gemisch mit Ketonen, wie Methylethylketon.
    Die anionischen Gruppen des NCO-Präpolymeren werden mit einem tertiären Amin mindestens teilweise neutralisiert. Die dadurch geschaffene Zunahme der Dispergierbarkeit in Wasser reicht für eine unendliche Verdünnbarkeit aus. Sie reicht auch aus, um das neutralisierte harnstoffgruppenhaltige Polyurethan beständig zu dispergieren. Geeignete tertiäre Amine sind beispielsweise Trimethylamin, Triethylamin, Dimethylethylamin, Diethylmethylamin, N-Methylmorpholin. Das NCO-Präpolymer wird nach der Neutralisation mit Wasser verdünnt und ergibt dann eine feinteilige Dispersion. Kurz danach werden die noch vorhandenen Isocyanatgruppen mit Di- und/oder Polyaminen mit primären und/oder sekundären Aminogruppen als Kettenverlängerer umgesetzt. Diese Reaktion führt zu einer weiteren Verknüpfung und Erhöhung des Molekulargewichts. Die Konkurrenzreaktion zwischen Amin und Wasser mit dem Isocyanat muß, um optimale Eigenschaften zu erhalten, gut abgestimmt (Zeit, Temperatur, Konzentration) und für eine reproduzierbare Produktion gut überwacht werden. Als Kettenverlängerer werden wasserlösliche Verbindungen bevorzugt, weil sie die Dispergierbarkeit des polymeren Endproduktes in Wasser erhöhen. Bevorzugt werden Hydrazin und organische Diamine, weil sie in der Regel die höchste Molmasse aufbauen, ohne das Harz zu gelieren. Vorausssetzung hierfür ist jedoch, daß das Verhältnis der Aminogruppen zu den Isocyanatgruppen zweckentsprechend gewählt wird. Die Menge des Kettenverlängerers wird von seiner Funktionalität, vom NCO-Gehalt des Präpolymeren und von der Dauer der Reaktion bestimmt. Das Verhältnis der aktiven Wasserstoffatome im Kettenverlängerer zu den NCO-Gruppen im Präpolymeren sollte in der Regel geringer als 2 : 1 und vorzugsweise im Bereich von 1,0 : 1 bis 1,75 : 1 liegen. Die Anwesenheit von überschüssigem aktiven Wasserstoff, insbesondere in Form von primären Aminogruppen, kann zu Polymeren mit unerwünscht niedriger Molmasse führen.
    Polyamine sind im wesentlichen Alkylen-Polyamine mit 1 bis 40 Kohlenstoffatomen, vorzugsweise etwa 2 bis 15 Kohlenstoffatomen. Sie können Substituenten tragen, die keine mit Isocyanat-Gruppen reaktionsfähige Wasserstoffatome haben. Beispiele sind Polyamine mit linearer oder verzweigter aliphatischer, cycloaliphatischer oder aromatischer Struktur und wenigstens zwei primären Aminogruppen. Als Diamine sind zu nennen Ethylendiamin, Propylendiamin, 1,4-Butylendiamin, Piperazin, 1,4-Cyclohexyldimethylamin, Hexamethylendiamin-1,6, Trimethylhexamethylendiamin, Methandiamin, Isophorondiamin, 4,4'-Diaminodicyclohexylmethan und Aminoethylethanolamin. Bevorzugte Diamine sind Alkyl- oder Cycloalkyldiamine, wie Propylendiamin und 1-Amino-3-aminomethyl-3,5,5-trimethylcyclohexan.
    Die Ketterverlängerung kann wenigstens teilweise mit einem Polyamin erfolgen, das mindestens drei Amingruppen mit einem reaktionsfähigen Wasserstoff aufweist. Dieser Polyamin-Typ kann in einer solchen Menge eingesetzt werden, daß nach der Verlängerung des Polymers nicht umgesetzte Aminstickstoffatome mit 1 oder 2 reaktionsfähigen Wasserstoffatomen vorliegen. Solche brauchbaren Polyamine sind Diethylentriamin, Triethylentetraamin, Dipropylentriamin und Dibutylentriamin. Bevorzugte Polyamine sind die Alkyl- oder Cycloalkyltriamine, wie Diethylentriamin. Um ein Gelieren bei der Kettenverlängerung zu verhindern, können auch kleine Anteil von Monoaminen, wie Ethylhexylamin zugesetzt werden.
  • Die erfindungsgemäß einzusetzenden wasserverdünnbaren Polyurethanharze und deren Herstellung werden auch in der EP-A-89497 und US-PS 4,719,132 beschrieben.
  • Das in den bevorzugten wäßrigen Basisbeschichtungszusammensetzungen als filmbildende Material enthaltene Gemisch aus Emulsionspolymer und Polyurethanharz besteht aus 95 bis 40 Gew.-% Emulsionspolymer und 5 bis 60 Gew.-% Polyurethanharz, wobei sich die Mengenanteile jeweils auf den Festkörperanteil beziehen und ihre Summe stets 100 Gew.-% beträgt.
  • Die erfindungsgemäßen wäßrigen Basisbeschichtungszusammensetzungen enthalten neben dem Emulsionspolymer bzw. dem Gemisch aus Emulsionspolymer und Polyurethanharz vorteilhafterweise noch weitere verträgliche wasserverdünnbare Kunstharze, wie z.B. Aminoplastharze, Polyester und Polyether, die im allgemeinen als Anreibeharze für die Pigmente dienen.
  • Die erfindungsgemäßen wäßrigen Basisbeschichtungszusammensetzungen enthalten vorzugsweise 5 bis 20, besonders bevorzugt 10 bis 16 Gew.-%, bezogen auf den Gesamtfeststoffgehalt der Basisbeschichtungszusammensetzungen, eines wasserverdünnbaren Aminoplastharzes, vorzugsweise Melaminharz und 5 bis 20, vorzugsweise 8 bis 15 Gew.-%, eines wasserverdünnbaren Polyethers (z.B. Polypropylenglykol mit einem zahlenmittleren Molekulargewicht von 400 bis 900).
  • Als Pigmente können die erfindungsgemäßen Basisbeschichtungszusammensetzungen farbgebende Pigmente auf anorganischer Basis, wie z.B. Titandioxid, Eisenoxid, Ruß usw., farbgebende Pigmente auf organischer Basis sowie übliche Metallpigmente (z.B. handelsübliche Aluminiumbronzen, Edelstahlbronzen ...) und nicht-metallische Effektpigmente (z.B. Perlglanz bzw. Interferenzpigmente) enthalten. Die erfindungsgemäßen Basisbeschichtungszusammensetzungen enthalten vorzugsweise Metallpigmente und/oder Effektpigmente. Die Pigmentierungshöhe liegt in üblichen Bereichen.
  • Weiterhin können den erfindungsgemäßen Basisbeschichtungszusammensetzungen vernetzte polymere Mikroteilchen, wie sie in der EP-A-38 127 offenbart sind und/oder übliche rheologische anorganische oder organische Additive zugesetzt werden. So wirken als Verdicker beispielsweise wasserlösliche Celluloseether, wie Hydroxyethylcellulose, Methylcellulose oder Carboxymethylcellulose sowie synthetische Polymere mit ionischen und/oder assoziativ wirkenden Gruppen, wie Polyvinylalkohol, Poly(meth)acrylamid, Poly(meth)acrylsäure, Polyvinylpyrrolidon, Styrol-Maleinsäureanhydrid oder Ethylen-Maleinsäureanhydrid-Copolymere und ihre Derivate oder auch hydrophob modifizierte ethoxylierte Urethane oder Polyacrylate. Besonders bevorzugt werden carboxylgruppenhaltige Polyacrylat-Copolymere mit einer Säurezahl von 60 bis 780, bevorzugt 200 bis 500.
  • Die erfindungsgemäßen Basisbeschichtungszusammensetzungen weisen im allgemeinen einen Festkörpergehalt von etwa 15 bis 50 Gew.-% auf. Der Festkörpergehalt variiert mit dem Verwendungszweck der Beschichtungszusammensetzungen. Für Metalliclacke liegt er beispielsweise bevorzugt bei 17 bis 25 Gew.-%. Für unifarbige Lacke liegt er höher, beispielsweise bei 30 bis 45 Gew.-%.
    Die erfindungsgemäßen Beschichtungszusammensetzungen können zusätzlich übliche organische Lösemittel enthalten. Deren Anteil wird möglichst gering gehalten. Er liegt beispielsweise unter 15 Gew.-%.
  • Die erfindungsgemäßen Basisbeschichtungszusammensetzungen werden im allgemeinen auf einen pH-Wert zwischen 6,5 und 9,0 eingestellt. Der pH-Wert kann mit üblichen Aminen, wie z.B. Ammoniak, Triethylamin, Dimethylaminoethanol und N-Methylmorpholin eingestellt werden.
  • Mit der Bereitstellung der erfindungsgemäßen Basisbeschichtungszusammensetzungen wird die eingangs erläuterte Aufgabenstellung gelöst.
    Mit den erfindungsgemäßen Basisbeschichtungszusammensetzungen können auch ohne Überlackierung mit einer transparenten Deckbeschichtungszusammensetzung qualitativ hochwertige Überzüge hergestellt werden.
    Die erfindungsgemäßen Beschichtungszusammensetzungen können auf beliebige Substrate, wie z.B. Metall, Holz, Kunststoff oder Papier aufgebracht werden.
  • In den folgenden Beispielen wird die Erfindung näher erläutert.
  • A. Herstellung der Emulsionspolymere Emulsionspolymerdispersion 1
  • In einem zylindrischen Glasdoppelwandgefäß mit Rührer, Rückflußkühler, rührbarem Zulaufgefäß, Tropftrichter und Thermometer werden 1344 g deionisiertes Wasser und 12 g einer 30 %igen wäßrigen Lösung des Ammoniumsalzes des Penta(ethylenglykol)nonylphenylethersulfats (Fenopon® EP 110 der GAF Corp., Emulgator 1) vorgelegt und auf 82°C aufgeheizt. Im rührbaren Zulaufgefäß wird aus 720 g deionisiertem Wasser, 24 g Emulgator 1, 10,8 g Acrylamid, 864 g Methylmethacrylat und 216 g n-Butylmethacrylat eine Emulsion hergestellt. 30 Gew.-% dieser Emulsion werden zur Vorlage gegeben. Dann werden 28 Gew.-% einer Lösung von 3,1 g Ammoniumperoxodisulfat (APS) in 188 g deionisiertem Wasser innerhalb von 5 Minuten zugetropft. Es tritt eine exotherme Reaktion ein. Die Reaktionstemperatur wird zwischen 82 und 88°C gehalten. 15 Minuten nach Beendigung der Zugabe der Ammoniumperoxodisulfatlösung werden die restlichen 70 Gew.-% der Emulsion zusammen mit den restlichen 72 Gew.-% der Ammoniumperoxodisulfatlösung innerhalb einer Stunde zugegeben, wobei die Temperatur bei 85°C gehalten wird. Danach wird auf 82°C abgekühlt und innerhalb von 2 Stunden werden eine Mischung aus 842 g n-Butylacrylat, 108 g Hydroxypropylmethacrylat, 43 g Methylmethacrylat, 43,2 g Methacrylsäure, 32,4 g Acrylamid und 5,4 g Eikosa(ethylenglykol)nonylphenylether (Antarox® CO 850 der GAF Corp., Emulgator 2) sowie 343 g deionisiertes Wasser zugegeben. Nach Beendigung der Zugabe wird die Reaktionsmischung noch für 1,5 Stunden bei 85°C gehalten. Danach wird abgekühlt und die Dispersion über ein Gewebe mit 30 µm Maschenweite gegeben. Man erhält eine feinteilige Dispersion mit einem nichtflüchtigen Anteil von 45 Gew.-%, einem pH-Wert von 3,4, einer Säurezahl von 13 und einer OH-Zahl von 20.
  • Emulsionspolymerdispersion 2
  • In einem zylindrischen Glasdoppelwandgefäß mit Rührer, Rückflußkühler, rührbarem Zulaufgefäß, Tropftrichter und Thermometer werden 1344 g deionisiertes Wasser und 12 g einer 40 %igen wäßrigen Lösung des Ammoniumsalzes des Penta(ethylenglykol)nonylphenylethersulfats (Fenopon® EP 110 der GAF Corp., Emulgator 1) vorgelegt und auf 80°C aufgeheizt. Im rührbaren Zulaufgefäß wird aus 720 g deionisiertem Wasser, 24 g Emulgator 1, 10,8 g Acrylamid, 518 g Methylmethacrylat, 292 g n-Butylmethacrylat und 205 g Styrol eine Emulsion hergestellt.
    30 Gew.-% dieser Emulsion werden zur Vorlage gegeben. Dann wird eine Lösung von 0,9 g Ammoniumperoxodisulfat APS in 55 g deionisiertem Wasser innerhalb von 5 Minuten zugetropft. Es tritt eine exotherme Reaktion ein. Die Reaktionstemperatur wird zwischen 80 und 85°C gehalten. 15 Minuten nach Beendigung der Zugabe der obengenannten APS-Lösung werden eine Lösung von 2,2 g APS in 480 g Wasser innerhalb von 3 Stunden und die restlichen 70 Gew.-% der obengenannten Emulsion innerhalb von einer Stunde zugegeben, wobei die Reaktionstemperatur bei 80°C gehalten wird. Nach Beendigung der Zugabe der Emulsion wird auf 77°C abgekühlt und innerhalb von 2 Stunden eine Mischung aus 745 g n-Butylacrylat, 119 g Methylmethacrylat, 108 g Hydroxypropylmethacrylat, 54 g Styrol, 42,7 g Ethylhexylacrylat, 42,7 g Methacrylsäure, 21,6 g Acrylamid und 2,2 g Emulgator 2 zugegeben. Nach Beendigung der Zugabe wird die Reaktionsmischung noch für 1,5 Stunden bei 80°C gehalten.
  • Danach wird abgekühlt und die Dispersion über ein Gewebe mit 30 µm Maschenweite gegeben. Man erhält eine feinteilige Dispersion mit einem nichtflüchtigen Anteil von 45 Gew.-%, einen pH-Wert von 3,8, einer Säurezahl von 13 und einer OH-Zahl von 19.
  • Emulsionspolymerdispersion 3
  • In einem zylindrischen Glasdoppelwandgefäß mit Rührer, Rückflußkühler, rührbarem Zulaufgefäß, Tropftrichter und Thermometer werden 1109 g deionisiertes Wasser und 10 g einer 30 %igen wäßrigen Lösung des Ammoniumsalzes des Penta(ethylenglykol)nonylphenylethersulfats (Fenopon®EP 110 der GAF Corp., Emulgator 1) vorgelegt und auf 82°C aufgeheizt. Im rührbaren Zulaufgefäß wird aus 748,2 g deionisiertem Wasser, 20,3 g Emulgator 1, 9,0 g Acrylamid, 718,1 g Methylmethacrylat und 179,5 g n-Butylmethacrylat eine Emulsion hergestellt. 30 Gew.-% dieser Emulsion werden zur Vorlage gegeben. Dann werden 10 Gew.-% einer Lösung von 7,2 g Ammoniumperoxodisulfat in 305 g deionisiertem Wasser innerhalb von 5 Minuten zugetropft. Es tritt eine exotherme Reaktion ein. Die Reaktionstemperatur wird zwischen 82 und 88°C gehalten. 15 Minuten nach Beendigung der Zugabe der Ammoniumperoxodisulfatlösung werden die restlichen 70 Gew.-% der Emulsion zusammen mit den restlichen 90 Gew.-% der Ammoniumperoxodisulfatlösung innerhalb einer Stunde zugegeben, wobei die Temperatur bei 82°C gehalten wird. Danach wird innerhalb von 2 Stunden eine Mischung aus 700 g n-Butylacrylat, 89,8 g Hydroxypropylmethacrylat, 35,9 g Methylmethacrylat, 35,9 g Methacrylsäure, 26,9 g Acrylamid und 4,5 g
    Eikosa(ethylenglykol)nonylphenylether (Antarox®CO 850 der GAF Corp., Emulgator 2) zugegeben. Nach Beendigung der Zugabe wird die Reaktionsmischung noch für 1,5 Stunden bei 82°C gehalten. Danach wird abgekühlt und die Dispersion über ein Gewebe mit 30 µm Maschenweite gegeben. Man erhält eine feinteilige Dispersion mit einem nichtflüchtigen Anteil von 45 Gew.-%, $inem pH-Wert von 2,5, einer Säurezahl von 14 und einer OH-Zahl von 20.
  • Emulsionspolymerdispersion 4
  • In einem zylindrischen Glasdoppelwandgefäß mit Rührer, Rückflußkühler, rührbarem Zulaufgefäß, Tropftrichter und Thermometer werden 1344 g deionisiertes Wasser und 12 g einer 30 %igen wäßrigen Lösung des Ammoniumsalzes des Penta(ethylenglykol)nonylphenylethersulfats (Fenopon® EP 110 der GAF Corp., Emulgator 1) vorgelegt und auf 82°C aufgeheizt. Im rührbaren Zulaufgefäß wird aus 477 g deionisiertem Wasser, 66,7 g Emulgator 1, 10,8 g Acrylamid, 864 g Methylmethacrylat und 216 g n-Butylmethacrylat eine Emulsion hergestellt. 30 Gew.-% dieser Emulsion werden zur Vorlage gegeben. Dann werden 3,6 Gew.-% einer Lösung von 8,6 g Ammoniumperoxodisulfat in 183 g deionisiertem Wasser innerhalb von 5 Minuten zugetropft. Es tritt eine exotherme Reaktion ein. Die Reaktionstemperatur wird zwischen 82 und 88°C gehalten. 15 Minuten nach Beendigung der Zugabe der Ammoniumperoxodisulfatlösung werden die restlichen 70 Gew.-% der Emulsion zusammen mit den restlichen 96,4 Gew.-% der Ammoniumperoxodisulfatlösung innerhalb einer Stunde zugegeben, wobei die Temperatur bei 82°C gehalten wird. Danach wird innerhalb von 2 Stunden eine Mischung aus 842 g n-Butylacrylat, 108 g Hydroxypropylmethacrylat, 43,2 g Methylmethacrylat, 43,2 g Acrylamidomethylpropansulfonsäure, 32,4 g Acrylamid, 66,7 g Emulgator 1 und 5,4 g Eikosa(ethylenglykol)nonylphenylether (Antarox® CO 850 der GAF Corp., Emulgator 2) zugegeben. Nach Beendigung der Zugabe wird die Reaktionsmischung noch für 1,5 Stunden bei 82°C gehalten. Danach wird abgekühlt und die Dispersion über ein Gewebe mit 30 µm Maschenweite gegeben. Man erhält eine feinteilige Dispersion mit einem nichtflüchtigen Anteil von 46 Gew.-%, einem pH-Wert von 2,5, einer Säurezahl von 6 und einer OH-Zahl von 19.
  • Emuslionspolymerdispersion 5
  • In einem zylindrischen Glasdoppelwandgefäß mit Rührer, Rückflußkühler, rührbarem Zulaufgefäß, Tropftrichter und Thermometer werden 1344 g deionisiertes Wasser und 12 g einer 30 %igen wäßrigen Lösung des Ammoniumsalzes des Penta(ethylenglykol)nonylphenylethersulfats (Fenopon® EP 110 der GAF Corp., Emulgator 1) vorgelegt und auf 82°C aufgeheizt. Im rührbaren Zulaufgefäß wird aus 720 g deionisiertem Wasser, 24 g Emulgator 1, 43,2 g Acrylamid, 907 g Methylmethacrylat und 216 g n-Butylmethacrylat, 842 g n-Butylacrylat, 108 g Hydroxypropylmethacrylat, 43,2 g Methacrylsäure und 5,4 g Emulgator 2 eine Emulsion hergestellt. 10 Gew.-% dieser Emulsion werden zur Vorlage gegeben. Dann wird eine Lösung von 0,87 g Ammoniumperoxodisulfat in 53 g deionisiertem Wasser innerhalb von 5 Minuten zugetropft. Es tritt eine exotherme Reaktion ein. Die Reaktionstemperatur wird zwischen 82 und 88°C gehalten. 15 Minuten nach Beendigung der Zugabe der APS-Lösung werden die restlichen 90 Gew.-% der Emulsion innerhalb von 3 Stunden und eine Lösung von 2,23 g APS in 478 g deionisiertem Wasser innerhalb von 3,5 Stunden zugegeben, wobei die Temperatur bei 82°C gehalten wird.
  • Nach Beendigung der Zugabe wird die Reaktionsmischung noch für 1,5 Stunden bei 82°C gehalten. Danach wird abgekühlt und die Dispersion über ein Gewebe mit 30 µm Maschenweite gegeben. Man erhält eine feinteilige Dispersion mit einem nichtflüchtigen Anteil von 45 Gew.-%, einem pH-Wert von 5,8, einer Säurezahl von 13 und einer OH-Zahl von 20.
  • B Herstellung der erfindungsgemäß eingesetzten Polyurethanharze Polyurethanharzdispersion 1
  • 570 g eines handelsüblichen aus Caprolacton und Ethylenglykol hergestellten Polyesters mit einer Hydroxylzahl von 196 werden bei 100°C l Stunde im Vakuum entwässert. Bei 80°C werden 524 g 4,4'-Dicyclohexylmethandiisocyanat zugegeben und bei 90°C so lange gerührt, bis der Isocyanatgehalt 7,52 Gew.-%, bezogen auf die Gesamteinwaage, beträgt. Nach Abkühlen auf 60°C werden eine Lösung von 67 g Dimethylolpropionsäure und 50 g Triethylamin in 400 g N-Methylpyrrolidon zugegeben und 1 Stunde bei 90°C gerührt. Die erhaltene Masse wird unter intensivem Rühren in 1840 g kaltes deionisiertes Wasser gegeben. Zu der erhaltenen Dispersion werden unter intensivem Rühren innerhalb von 20 Minuten 86 g einer 15 %igen Hydrazinlösung zugegeben. Die resultierende, sehr feinteilige Dispersion hat einen Festkörpergehalt von 35 % und eine Auslaufzeit von 27 Sekunden im DIN-Becher 4.
  • Polyurethanharzdispersion 2
  • 830 g eines Polyesters aus Neopentylglykol, Hexandiol-1,6 und Adipinsäure mit einer Hydroxylzahl von 135 und einer Säurezahl unter 3 werden bei 100°C l Stunde im Vakuum entwässert. Bei 80°C werden 524 g 4,4'-Dicyclohexylmethandiisocyanat zugegeben und bei 90°C gerührt, bis der Gehalt an freien Isocyanatgruppen 6,18 Gew.-%, bezogen auf die Gesamteinwaage, beträgt. Nach Abkühlung auf 60°C werden eine Lösung von 67 g Dimethylpropionsäure und 50 g Triethylamin in 400 g N-Methylpyrrolidon zugegeben und 1 Stunde bei 90°C gerührt.
    Die erhaltene Masse wird unter intensivem Rühren in 2400 g kaltes deionisiertes Wasser gegeben. Man erhält eine feinteilige Dispersion. Zu dieser Dispersion werden unter intensivem Rühren innerhalb von 20 Minuten 80 g einer 30 %igen wäßrigen Lösung von Ethylendiamin zugegeben. Die resultierende, sehr feinteilige Dispersion hat einen Festkörpergehalt von 35 % und eine Auslaufzeit von 23 Sekunden im DIN-Becher 4.
  • C Herstellung von Basisbeschichtungszusammensetzungen
  • 18,2 g Butylglykol, 3,7 g eines handelsüblichen Melamin-Formaldehydharzes (Cymel® 301), 3,1 g Polypropylenglykol (mittleres Molekulargewicht = 400) und 7,2 g einer Aluminiumbronze gemäß DE-OS-36 36 183 (Aluminiumgehalt: 60 Gew.-%) werden mit einem Schnellrührer 15 Minuten bei 300-500 U/min. gerührt. Es wird eine Mischung 1 erhalten.
    27,2 g Emulsionspolymerdispersion 1, 2, 3 oder 4 werden mit 11,6 g Polyurethanharzdispersion 1 und 19,6 g deionisiertem Wasser gemischt. Die Mischung wird mit einer 5 %igen wäßrigen Dimethylethanolaminlösung auf einen pH-Wert von 7,7 eingestellt und mit 9,4 g einer 3,5 %igen Lösung eines handelsüblichen Polyacrylsäureverdickers (Viscalex®HV 30 der Allied Colloids, pH-Wert: 8,0) versetzt. Es wird die Mischung 2 erhalten.
  • Zur Herstellung der erfindungsgemäßen Basislacke werden die Mischungen 1 und 2 30 Minuten bei 800-1000 U/min. gemischt und danach mit einer 5 %gen wäßrigen Dimethylethanolaminlösung auf einen pH-Wert von 7,7 eingestellt. Anschließend wird die Viskosität durch Zugabe von deionisiertem Wasser auf eine Auslaufzeit von 25 sec. im DIN 4-Becher eingestellt. Es werden die erfindungsgemäßen Basisbeschichtungszusammensetzungen BB1, BB2, BB3 und BB4 erhalten.
  • Die Basisbeschichtungszusammensetzung BB5 wird erhalten, indem in die Mischung 2 36,2 g der Emulsionspolymerdispersion 1 eingearbeitet werden. BB5 enthält keine Polyurethanharzdispersion.
  • Die so erhaltenen Basisbeschichtungszusammensetzungen zeigen ausgezeichnete Lagerstabilitäten.
  • Die Basisbeschichtungszusammensetzungen werden nach gut bekannten Methoden auf mit einer handelsüblichen Elektrotauchlackierung und einem handelsüblichen Füller beschichtete phosphatierte Stahlbleche (Bonder 132) gespritzt, nach einer Ablüftzeit von 10 Minuten mit einem handelsüblichen Klarlack überlackiert und 20 Minuten bei 140°C eingebrannt.
    Die so erhaltene Metalleffektlackierungen zeigen einen guten Metalleffekt, gute Haftung zum Füller, gute Haftung zwischen Basislack und Decklack, guten Glanz und gute Beständigkeit im Schwitzwasserkonstantklima nach DIN 50 017. BB1, BB2, BB3 und BB4 zeigen einen besseren Metalleffekt als BB5.
  • Ein Teil der lackierten Bleche wird nochmals mit den Basisbeschichtungszusammensetzungen BB1, BB2, BB3, BB4 und BB5 beschichtet und mit einem handelsüblichen Klarlack überlackiert. Die so erhaltenen Lackierungen werden 40 Minuten bei 80°C eingebrannt. Die bei 80°C eingebrannten Lackierungen haften ausgezeichnet auf den bei 140°C eingebrannten Lackierungen.
  • Vergleischsbeispiel
  • Eine gemäß obiger Beschreibung unter Verwendung der Emulsionspolymerdispersion 5 hergestellte Basisbeschichtungszusammensetzung zeigt eine unzureichende Lagerstabilität.

Claims (11)

  1. Verfahren zur Herstellung eines mehrschichtigen schützenden und/oder dekorativen Überzugs auf einer Substratoberfläche, bei dem
    (1) als Basisbeschichtungszusammensetzung eine pigmentierte wäßrige Beschichtungszusammensetzung, die als filmbildendes Material ein wasserverdünnbares Emulsionspolymer enthält, auf die Substratoberfläche aufgebracht wird
    (2) aus der in Stufe (1) aufgebrachten Zusammensetzung ein Polymer film gebildet wird
    (3) auf der so erhaltenen Basisschicht eine geeignete transpartente Deckbeschichtungszusammensetzung aufgebracht wird und anschließend
    (4) die Basisschicht zusammen mit der Deckschicht eingebrannt wird,
    dadurch gekennzeichnet, daß die Basisbeschichtungszusammensetzung ein wasserverdünnbares Emulsionspolymer enthält, das erhältlich ist, indem
    (a) in einer ersten Stufe 10 bis 90 Gewichtsteile eines Gemisches aus
    (a1) 100 bis 60 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern und
    (a2) 0 bis 40 Gew.-% eines mit (a1) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    in wäßriger Phase in Gegenwart eines oder mehrerer Emulgatoren und eines oder mehrerer radikalbildender Initiatoren polymerisiert werden, wobei die Summe der Gewichtsanteile von (a1) und (a2) stets 100 Gew.-% ergibt und (a1) und (a2) so ausgewählt werden, daß in der ersten Stufe ein Polymer mit einer Glasübergangstemperatur (TG1) von +30 bis +110°C erhalten wird und
    (b) nachdem mindestens 80 Gew.-% des in der ersten Stufe eingesetzten ethylenisch ungesättigten Monomers bzw. Monomerengemisches umgesetzt worden sind, in einer zweiten Stufe 90 bis 10 Gewichtsteile eines Gemisches aus
    (b1) 47 bis 99 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern
    (b2) 1 bis 20 Gew.-% eines mindestens eine Hydroxylgruppe tragenden mit (b1), (b3) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    (b3) 0 bis 8 Gew.-% eines mindestens eine Carboxyl- oder Sulfonsäuregruppe tragenden mit (b1), (b2) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren und
    (b4) 0 bis 25 Gew.-% eines weiteren mit (b1), (b2) und (b3) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    in Gegenwart des in der ersten Stufe erhaltenen Polymers polymerisiert werden, wobei die Summe der Gewichtsanteile von (b1), (b2), (b3) und (b4) stets 100 Gew.-% ergibt und (b1), (b2), (b3) und (b4) so ausgewählt werden, daß eine alleinige Polymerisation des in der zweiten Stufe eingesetzten Monomerengemisches zu einem Polymer mit einer Glasübergangstemperatur (TG2) von -60 bis +20°C führen würde und wobei die Reaktionsbedingungen so gewählt werden, daß das erhaltene Emulsionspolymer eine zahlenmittlere Molmasse von 200.000 bis 2.000.000 aufweist und wobei das in der ersten Stufe eingesetzte ethylenisch ungesättigte Monomer bzw. Monomerengemisch und das in der zweiten Stufe eingesetzte Monomerengemisch in Art und Menge so ausgewählt werden, daß das erhaltene Emulsionspolymer eine Hydroxylzahl von 2 bis 100 aufweist und die Differenz TG1 - TG2 10 bis 170°C beträgt
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Basisbeschichtungszusammensetzung ein Metallpigment, vorzugweise Aluminiumpigment, enthält.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß 99,5 bis 75 Gew.-% der Komponente (a1) und/oder 0,5 bis 25 Gew.-% der Komponente (a2) und/oder 75 bis 90 Gew.-% der Komponente (b1) und/oder 5 bis 15 Gew.-% der Komponente (b2) und/oder 2 bis 6 Gew.-% der Komponente (b3) und/oder 2 bis 15 Gew.-% der Komponente (b4) polymerisiert werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das filmbildende Material aus 95 bis 40 Gew.-% des Emulsionspolymeren und 5 bis 60 Gew.-% eines wasserverdünnbaren Polyurethanharzes besteht, wobei sich die Mengenanteile jeweils auf den Festkörperanteil beziehen und ihre Summe stets 100 Gew.-% beträgt.
  5. Wasserverdünnbare Beschichtungszusammensetzungen, dadurch gekennzeichnet, daß sie als filmbildendes Material ein wasserverdünnbares Emulsionspolymer enthalten, das erhältlich ist, indem
    (a) in einer ersten Stuße 10 bis 90 Gewichtsteile eines Gemisches aus
    (a1) 100 bis 60 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern und
    (a2) 0 bis 40 Gew.-% eines mit (a1) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    in wäßriger Phase in Gegenwart eines oder mehrerer Emulgatoren und eines oder mehrerer radikalbildender Initiatoren polymerisiert werden, wobei die Summe der Gewichtsanteile von (a1) und (a2) stets 100 Gew.-% ergibt und (a1) und (a2) so ausgewählt werden, daß in der ersten Stufe ein Polymer mit einer Glasübergangstemperatur (TG1) von +30 bis +110°C erhalten wird und
    (b) nachdem mindestens 80 Gew.-% des in der ersten Stufe eingesetzten ethylenisch ungesättigten Monomers bzw. Monomerengemisches umgesetzt worden sind, in einer zweiten Stufe 90 bis 10 Gewichtsteile eines Gemisches aus
    (b1) 47 bis 99 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern
    (b2) 1 bis 20 Gew.-% eines mindestens eine Hydroxylgruppe tragenden mit (b1), (b3) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    (b3) 0 bis 8 Gew.-% eines mindestens eine Carboxyl- oder Sulfonsäuregruppe tragenden mit (b1), (b2) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren und
    (b4) 0 bis 25 Gew.-% eines weiteren mit (b1), (b2) und (b3) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    in Gegenwart des in der ersten Stufe erhaltenen Polymers polymerisiert werden, wobei die Summe der Gewichtsanteile von (b1), (b2), (b3) und (b4) stets 100 Gew.-% ergibt und (b1), (b2), (b3) und (b4) so ausgewählt werden, daß eine alleinige Polymerisation des in der zweiten Stufe eingesetzten Monomerengemisches zu einem Polymer mit einer Glasübergangstemperatur (TG2) von -60 bis +20°C führen würde und wobei die Reaktionsbedingungen so gewählt werden, daß das erhaltene Emulsionspolymer eine zahlenmittlere Molmasse von 200.000 bis 2.000.000 aufweist und wobei das in der ersten Stufe eingesetzte ethylenisch ungesättigte Monomer bzw. Monomerengemisch und das in der zweiten Stufe eingesetzte Monomerengemisch in Art und Menge so ausgewählt werden, daß das erhaltene Emulsionspolymer eine Hydroxylzahl von 2 bis 100 aufweist und die Differenz TG1 - TG2 10 bis 170°C beträgt
  6. Beschichtungszusammensetzungen nach Anspruch 5, dadurch gekennzeichnet, daß sie ein Metallpigment, vorzugsweise Aluminiumpigment enthalten.
  7. Beschichtungzusammensetzungen nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß 99,5 bis 75 Gew.-% der Komponente (a1) und/oder 0,5 bis 25 Gew.-% der Komponente (a2) und/oder 75 bis 90 Gew.-% der Komponente (b1) und/oder 5 bis 15 Gew.-% der Komponente (b2) und/oder 2 bis 6 Gew.-% der Komponente (b3) und/oder 2 bis 15 Gew.-% der Komponente (b4) polymerisiert werden.
  8. Wasserverdünnbare Emulsionspolymere, dadurch gekennzeichnet, daß sie erhältlich sind, indem
    (a) in einer ersten Stufe 10 bis 90 Gewichtsteile eines Gemisches aus
    (a1) 100 bis 60 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern und
    (a2) 0 bis 40 Gew.-% eines mit (a1) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    in wäßriger Phase in Gegenwart eines oder mehrerer Emulgatoren und eines oder mehrerer radikalbildender Initiatoren polymerisiert werden, wobei die Summe der Gewichtsanteile von (a1) und (a2) stets 100 Gew.-% ergibt und (a1) und (a2) so ausgewählt werden, daß in der ersten Stufe ein Polymer mit einer Glasübergangstemperatur (TG1) von +30 bis +110°C erhalten wird und
    (b) nachdem mindestens 80 Gew.-% des in der ersten Stufe eingesetzten ethylenisch ungesättigten Monomers bzw. Monomerengemisches umgesetzt worden sind, in einer zweiten Stufe 90 bis 10 Gewichtsteile eines Gemisches aus
    (b1) 47 bis 99 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern
    (b2) 1 bis 20 Gew.-% eines mindestens eine Hydroxylgruppe tragenden mit (b1), (b3) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    (b3) 0 bis 8 Gew.-% eines mindestens eine Carboxyl- oder Sulfonsäuregruppe tragenden mit (b1), (b2) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren und
    (b4) 0 bis 25 Gew.-% eines weiteren mit (b1), (b2) und (b3) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren in Gegenwart des in der ersten Stufe erhaltenen Polymers polymerisiert werden, wobei die Summe der Gewichtsanteile von (b1), (b2), (b3) und (b4) stets 100 Gew.-% ergibt und (b1), (b2), (b3) und (b4) so ausgewählt werden, daß eine alleinige Polymerisation des in der zweiten Stufe eingesetzten Monomerengemisches zu einem Polymer mit einer Glasübergangstemperatur (TG2) von -60 bis +20°C führen würde und wobei die Reaktionsbedingungen so gewählt werden, daß das erhaltene Emulsionspolymer eine zahlenmittlere Molmasse von 200.000 bis 2.000.000 aufweist und wobei das in der ersten Stufe eingesetzte ethylenisch ungesättigte Monomer bzw. Monomerengemisch und das in der zweiten Stufe eingesetzte Monomerengemisch in Art und Menge so ausgewählt werden, daß das erhaltene Emulsionspolymer eine Hydroxylzahl von 2 bis 100 aufweist und die Differenz TG1 - TG2 10 bis 170°C beträgt
  9. Emulsionspolymere nach Anspruch 8, dadurch gekennzeichnet, daß 99,5 bis 75 Gew.-% der Komponente (a1) und/oder 0,5 bis 25 Gew.-% der Komponente (a2) und/oder 75 bis 90 Gew.-% der Komponente (b1) und/oder 5 bis 15 Gew.-% der Komponente (b2) und/oder 2 bis 6 Gew.-% der Komponente (b3) und/oder 2 bis 15 Gew.-% der Komponente (b4) polymerisiert werden.
  10. Verfahren zur Herstellung von wasserverdünnbaren Emulsionspolymeren, dadurch gekennzeichnet, daß
    (a) in einer ersten Stufe 10 bis 90 Gewichtsteile eines Gemisches aus
    (a1) 100 bis 60 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern und
    (a2) 0 bis 40 Gew.-% eines mit (a1) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    in wäßriger Phase in Gegenwart eines oder mehrerer Emulgatoren und eines oder mehrerer radikalbildender Initiatoren polymerisiert werden, wobei die Summe der Gewichtsanteile von (a1) und (a2) stets 100 Gew.-% ergibt und (a1) und (a2) so ausgewählt werden, daß in der ersten Stufe ein Polymer mit einer Glasübergangstemperatur (TG1) von +30 bis +110°C erhalten wird und
    (b) nachdem mindestens 80 Gew.-% des in der ersten Stufe eingesetzten ethylenisch ungesättigten Monomers bzw. Monomerengemisches umgesetzt worden sind, in einer zweiten Stufe 90 bis 10 Gewichtsteile eines Gemisches aus
    (b1) 47 bis 99 Gew.-% eines cycloaliphatischen oder aliphatischen Esters der Methacrylsäure oder Acrylsäure oder eines Gemisches aus solchen Estern
    (b2) 1 bis 20 Gew.-% eines mindestens eine Hydroxylgruppe tragenden mit (b1), (b3) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    (b3) 0 bis 8 Gew.-% eines mindestens eine Carboxyl- oder Sulfonsäuregruppe tragenden mit (b1), (b2) und (b4) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren und
    (b4) 0 bis 25 Gew.-% eines weiteren mit (b1), (b2) und (b3) copolymerisierbaren Monomeren oder eines Gemisches aus solchen Monomeren
    in Gegenwart des in der ersten Stufe erhaltenen Polymers polymerisiert werden, wobei die Summe der Gewichtsanteile von (b1), (b2), (b3) und (b4) stets 100 Gew.-% ergibt und (b1), (b2), (b3) und (b4) so ausgewählt werden, daß eine alleinige Polymerisation des in der zweiten Stufe eingesetzten Monomerengemisches zu einem Polymer mit einer Glasübergangstemperatur (TG2) von -60 bis +20°C führen würde und wobei die Reaktionsbedingungen so gewählt werden, daß das erhaltene Emulsionspolymer eine zahlenmittlere Molmasse von 200.000 bis 2.000.000 aufweist und wobei das in der ersten Stufe eingesetzte ethylenisch ungesättigte Monomer bzw. Monomerengemisch und das in der zweiten Stufe eingesetzte Monomerengemisch in Art und Menge so ausgewählt werden, daß das erhaltene Emulsionspolymer eine Hydroxylzahl von 2 bis 100 aufweist und die Differenz TG1 - TG2 10 bis 170°C beträgt
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß 99,5 bis 75 Gew.-% der Komponente (a1) und/oder 0,5 bis 25 Gew.-% der Komponente (a2) und/oder 75 bis 90 Gew.-% der Komponente (b1) und/oder 5 bis 15 Gew.-% der Komponente (b2) und/oder 2 bis 6 Gew.-% der Komponente (b3) und/oder 2 bis 15 Gew.-% der Komponente (b4) polymerisiert werden.
EP90900099A 1988-12-09 1989-11-27 Verfahren zur herstellung eines mehrschichtigen überzuges, wasserverdünnbare beschichtungszusammensetzungen, wasserverdünnbare emulsionspolymere und verfahren zur herstellung von wasserverdünnbaren emulsionspolymeren Expired - Lifetime EP0447428B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90900099T ATE91923T1 (de) 1988-12-09 1989-11-27 Verfahren zur herstellung eines mehrschichtigen ueberzuges, wasserverduennbare beschichtungszusammensetzungen, wasserverduennbare emulsionspolymere und verfahren zur herstellung von wasserverduennbaren emulsionspolymeren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3841540 1988-12-09
DE3841540A DE3841540A1 (de) 1988-12-09 1988-12-09 Verfahren zur herstellung eines mehrschichtigen ueberzuges, wasserverduennbare beschichtungszusammensetzungen, wasserverduennbare emulsionspolymere und verfahren zur herstellung von wasserverduennbaren emulsionspolymeren

Publications (2)

Publication Number Publication Date
EP0447428A1 EP0447428A1 (de) 1991-09-25
EP0447428B1 true EP0447428B1 (de) 1993-07-28

Family

ID=6368825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90900099A Expired - Lifetime EP0447428B1 (de) 1988-12-09 1989-11-27 Verfahren zur herstellung eines mehrschichtigen überzuges, wasserverdünnbare beschichtungszusammensetzungen, wasserverdünnbare emulsionspolymere und verfahren zur herstellung von wasserverdünnbaren emulsionspolymeren

Country Status (9)

Country Link
EP (1) EP0447428B1 (de)
JP (1) JPH075860B2 (de)
AU (1) AU630645B2 (de)
BR (1) BR8907816A (de)
CA (1) CA2004988C (de)
DE (2) DE3841540A1 (de)
ES (1) ES2060136T3 (de)
WO (1) WO1990006186A1 (de)
ZA (1) ZA899023B (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3942804A1 (de) * 1989-12-23 1991-06-27 Basf Lacke & Farben Verfahren zur herstellung eines mehrschichtigen ueberzuges
DE4009000A1 (de) * 1990-03-21 1991-09-26 Basf Lacke & Farben Verfahren zur herstellung einer mehrschichtigen reparaturlackierung
DE4143688B4 (de) 1991-03-30 2007-03-29 Basf Coatings Ag Verwendung eines Mischsystems sowie Verfahren zur Herstellung von Wasserbasislacken und von wasserverdünnbaren Überzugsmitteln
DE4216613A1 (de) * 1992-05-20 1993-11-25 Basf Lacke & Farben Verfahren zur Herstellung einer zweischichtigen Lackierung und für dieses Verfahren geeignete wäßrige Lacke
AT400440B (de) * 1993-12-06 1995-12-27 Vianova Kunstharz Ag Verfahren zur herstellung von wasserverdünnbaren lackbindemitteln und deren verwendung
WO1996040511A1 (en) * 1995-06-07 1996-12-19 The Sherwin-Williams Company Waterborne basecoat compositions for use in basecoat/clearcoat applications
DE19904330A1 (de) 1999-01-28 2000-08-10 Basf Coatings Ag Wäßriger Beschichtungsstoff und Modulsystem zu seiner Herstellung
DE19930066A1 (de) 1999-06-30 2001-01-11 Basf Coatings Ag Farb- und/oder effektgebende Mehrschichtlackierung, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19930067A1 (de) 1999-06-30 2001-01-11 Basf Coatings Ag Beschichtungsstoff und seine Verwendung zur Herstellung von Füllerschichten und Steinschlagschutzgrundierungen
DE19930665A1 (de) 1999-07-02 2001-01-11 Basf Coatings Ag Basislack und seine Verwendung zur Herstellung von farb- und/oder effektgebenden Basislackierungen und Mehrschichtlackierung
DE19930664A1 (de) 1999-07-02 2001-01-11 Basf Coatings Ag Klarlack und seine Verwendung zur Herstellung von Klarlackierungen und farb- und/oder effektgebenden Mehrschichtlackierungen
DE19938759A1 (de) 1999-08-16 2001-02-22 Basf Coatings Ag Beschichtungsstoff und seine Verwendung zur Herstellung hochkratzfester mehrschichtiger Klarlackierungen
US6437036B1 (en) * 1999-11-17 2002-08-20 Basf Corporation Waterborne primer with improved chip resistance
DE19959923A1 (de) 1999-12-11 2001-06-28 Basf Coatings Ag Wäßrige Primärdispersionen und Beschichtungsstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10005819A1 (de) 2000-02-10 2001-08-23 Basf Coatings Ag Wäßrige Primärdispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10018078A1 (de) 2000-04-12 2001-11-08 Basf Coatings Ag Formmassen und Verfahren zur Herstellung von Formkörpern
DE10018601A1 (de) 2000-04-14 2001-10-25 Basf Coatings Ag Wäßrige Primärdispersionen und Beschichtungsstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10029802A1 (de) 2000-06-16 2002-01-03 Basf Coatings Ag Farb- und/oder effektgebende wäßrige Beschichtungsstoffe und ihre Verwendung zur Herstellung farb- und/oder effektgebender, verformbarer Laminate
DE10106567A1 (de) 2001-02-13 2002-08-22 Basf Coatings Ag Von flüchtigen organischen Stoffen im wesentlichen oder völlig freie wäßrige Primärdispersion, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10106566A1 (de) 2001-02-13 2002-08-22 Basf Coatings Ag Von flüchtigen organischen Stoffen im wesentlichen oder völlig freier wäßriger Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE10126651A1 (de) 2001-06-01 2002-12-12 Basf Coatings Ag Pulverlacksuspensionen (Pulverslurries) und Pulverlacke, Verfahren zu ihrer Herstellung und ihre Verwendung
US6822040B2 (en) * 2001-09-25 2004-11-23 Basf Corporation Basecoat composition with improved repair properties
EP3009248A1 (de) 2014-10-13 2016-04-20 RECTICEL Automobilsysteme GmbH Verfahren zur herstellung einer elastomeren haut mit rauer oberfläche
US20210301147A1 (en) * 2016-07-15 2021-09-30 Basf Coatings Gmbh Aqueous basecoat and production of multi-coat paint systems using the basecoat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4150005A (en) * 1977-03-17 1979-04-17 Rohm And Haas Company Internally plasticized polymer latex
GB1598419A (en) * 1978-05-17 1981-09-23 Ici Ltd Coating process
GB2034334B (en) * 1978-10-24 1983-03-02 Canadian Ind Process for preparing emulsions of copolymers containing n-methylol or n-methylol ether groups
US4973621A (en) * 1987-04-07 1990-11-27 Akzo N.V. Aqueous coating composition based on a dispersion of an addition polymer, especially suited to be used in an aqueous base coat
DE3807531A1 (de) * 1988-03-08 1989-09-21 Basf Ag Herstellung von waessrigen polyalkylmethacrylat-dispersionen durch emulsionspolymerisation in zwei stufen und deren verwendung in holzlacken

Also Published As

Publication number Publication date
CA2004988A1 (en) 1990-06-09
DE58905068D1 (de) 1993-09-02
JPH04501737A (ja) 1992-03-26
AU4655089A (en) 1990-06-26
ZA899023B (en) 1990-08-29
WO1990006186A1 (de) 1990-06-14
BR8907816A (pt) 1991-10-22
EP0447428A1 (de) 1991-09-25
ES2060136T3 (es) 1994-11-16
DE3841540A1 (de) 1990-06-13
JPH075860B2 (ja) 1995-01-25
CA2004988C (en) 1999-08-24
AU630645B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
EP0507819B1 (de) Verwendung eines Verfahrens zur Herstellung eines mehrschichtigen Überzuges
EP0447428B1 (de) Verfahren zur herstellung eines mehrschichtigen überzuges, wasserverdünnbare beschichtungszusammensetzungen, wasserverdünnbare emulsionspolymere und verfahren zur herstellung von wasserverdünnbaren emulsionspolymeren
EP0521040B2 (de) Verfahren zur herstellung einer mehrschichtigen reparaturlackierung
EP0730613B1 (de) Verfahren zur herstellung einer zweischichtigen lackierung und wässrige lacke
EP0297576B1 (de) Verfahren zur Herstellung eines Mehrschichtüberzuges und hierfür geeignetes wässriges Überzugsmittel
EP0521928B1 (de) Verfahren zur herstellung einer mehrschichtigen lackierung und wässriger lack
EP0256540B1 (de) Wässriges Überzugsmittel, Verfahren zu seiner Herstellung und dessen Verwendung
DE19722862C1 (de) Wäßriger Lack und dessen Verwendung zur Herstellung einer zweischichtigen Lackierung
DE3628124A1 (de) Waessriges ueberzugsmittel, verfahren zu seiner herstellung und dessen verwendung
EP0871552A1 (de) Verfahren zur herstellung von mehrschichtigen überzügen
EP0879255A1 (de) Bindemittel fur lacke auf polyurethanbasis
US5635564A (en) Preparation of a multicoat coating, water-thinnable coating compositions, water-thinnable emulsion polymers and preparation of water-thinnable emulsion polymers
WO1990006187A1 (de) Verfahren zur herstellung einer mehrschichtigen lackierung, wasserverdünnbarer lack, verfahren zur herstellung von vernetzten polymermikroteilchen und vernetzte polymermikroteilchen
EP0720637B1 (de) Verfahren zur herstellung von decklackschichten und wässrige lacke
EP0670867A1 (de) Verfahren zum grundieren oder einschichtigen lackieren von kunststoffen mit einem wässrigen beschichtungsmittel
DE10128886B4 (de) Thermisch oder thermisch und mit aktinischer Strahlung härtbarer, wäßriger, farb- und/oder effektgebender Beschichtungsstoff und seine Verwendung
DE4322006A1 (de) Verfahren zur Herstellung von Korrosionsschutzgrundierungs- und/oder Füllerschichten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19910510

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF LACKE + FARBEN AG

17Q First examination report despatched

Effective date: 19921008

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 91923

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58905068

Country of ref document: DE

Date of ref document: 19930902

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: CALVANI SALVI E VERONEL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930913

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2060136

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 90900099.4

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001024

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20001122

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20001123

Year of fee payment: 12

Ref country code: BE

Payment date: 20001123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20001124

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20001128

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011127

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011130

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: BASF LACKE + FARBEN A.G.

Effective date: 20011130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020601

EUG Se: european patent has lapsed

Ref document number: 90900099.4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011127

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071122

Year of fee payment: 19

Ref country code: ES

Payment date: 20071219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071108

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090603

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130