EP0438129A2 - Farbphotographisches Silberhalogenidmaterial - Google Patents

Farbphotographisches Silberhalogenidmaterial Download PDF

Info

Publication number
EP0438129A2
EP0438129A2 EP91100436A EP91100436A EP0438129A2 EP 0438129 A2 EP0438129 A2 EP 0438129A2 EP 91100436 A EP91100436 A EP 91100436A EP 91100436 A EP91100436 A EP 91100436A EP 0438129 A2 EP0438129 A2 EP 0438129A2
Authority
EP
European Patent Office
Prior art keywords
group
general formula
silver halide
inh
color photographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91100436A
Other languages
English (en)
French (fr)
Other versions
EP0438129A3 (en
EP0438129B1 (de
Inventor
Atsuhiro C/O Fuji Photo Film Co. Ltd. Ohkawa
Masuji C/O Fuji Photo Film Co. Ltd. Motoki
Keiji C/O Fuji Photo Film Co. Ltd. Mihayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Publication of EP0438129A2 publication Critical patent/EP0438129A2/de
Publication of EP0438129A3 publication Critical patent/EP0438129A3/en
Application granted granted Critical
Publication of EP0438129B1 publication Critical patent/EP0438129B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/305Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers
    • G03C7/30576Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers characterised by the linking group between the releasing and the released groups, e.g. time-groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/305Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers
    • G03C7/30541Substances liberating photographically active agents, e.g. development-inhibiting releasing couplers characterised by the released group

Definitions

  • the present invention relates to a silver halide color photographic material comprising a novel compound capable of releasing, at an appropriate time during development, a development inhibitor and having excellent graininess, sharpness and preservability.
  • photographic materials having a high sensitivity such as an ISO sensitivity of 100 as in ISO 400 (Super HG-400 manufactured by Fuji Photo Film Co., Ltd.) and having excellent graininess, sharpness and preservability have been desired.
  • JP-A-60-218645, JP-A-60-249148, and JP-A-61-156127 examples of compounds which imagewise release a development inhibitor via two or more timing groups are described in JP-A-60-218645, JP-A-60-249148, and JP-A-61-156127 (the term "JP-A” as used herein refers to a "published unexamined Japanese patent application"), and U.S. Patent 4,861,701.
  • these compounds do not provide a satisfactory improvement in sharpness and graininess due to their inappropriate speed (timing) of releasing a development inhibitor or due to the excessive dispersibility of the released development inhibitor.
  • Most of the light-sensitive materials comprising these compounds are disadvantageous in that when allowed to stand for a prolonged period of time between exposure to light and development, or when exposed to an elevated temperature and a high humidity, they suffer from an increase in fogging and a drop in sensitivity.
  • European Patent Publication 348,139 discloses couplers capable of releasing a development inhibitor in a specified structure so that sharpness can be improved without heightening interimage effect. These couplers enable some improvement in sharpness. However, these couplers are disadvantageous in that their speed of releasing a development inhibitor cannot easily be controlled, which results in an unsatisfactory improvement in sharpness and causing some fluctuation in photographic properties with time between exposure and development, especially in conditions of high temperature and humidity.
  • the present invention provides a silver halide color photographic material comprising on a support at least one silver halide emulsion layer, wherein the material contains a compound represented by the general formula (I):
  • A represents a coupler residue excepting 1H-pyrazolo[1,5-b]-1,2,4-triazole and 1 H-pyrazolo[5,1-c]-1,2,4-triazole.
  • coupler residues examples include yellow coupler residues (e.g., closed chain ketomethylene), magenta coupler residues (e.g., 5-pyrazolone, pyrazoloimidazole), cyan coupler residues (e.g., phenolic, naphtholic), and colorless coupler residues (e.g., indanone, acetophenone).
  • yellow coupler residues e.g., closed chain ketomethylene
  • magenta coupler residues e.g., 5-pyrazolone, pyrazoloimidazole
  • cyan coupler residues e.g., phenolic, naphtholic
  • colorless coupler residues e.g., indanone, acetophenone
  • heterocyclic coupler residues as disclosed in U.S. Patents 4,315,070, 4,183,752, 3,961,959, and 4,171,223 may be used.
  • coupler residues represented by A include those represented by general formulae (Cp-1), (Cp-2), (Cp-3), (Cp-6), (Cp-7), (Cp-8), (Cp-9), and (Cp-10). These coupler residues are advantageous in that they undergo coupling at a high speed.
  • the free bonds in the coupling position each represents a position to which a coupling separable group is bonded.
  • the total number of carbon atoms contained in the coupler residue is 8 to 40, preferably 10 to 30. If no nondiffusible group is present, the total number of carbon atoms contained in the coupler residue is preferably 15 or less.
  • any one of the above mentioned substituents represents a divalent group which connects repeating units. In this case, the number of carbon atoms may deviate from the above disclosed range.
  • R 41 represents an aliphatic group, an aromatic group or a heterocyclic group
  • R 42 represents an aromatic group or a heterocyclic group
  • R 43 , R 44 and R 4 s each represents a hydrogen atom, an aliphatic group, an aromatic group or a heterocyclic group.
  • R 51 has the same meaning as R 41 .
  • the suffix b represents an integer of 0 or 1.
  • Rs 2 and R 53 each has the same meaning as R 42 .
  • Rss has the same meaning as R 41 .
  • R 58 has the same meaning as R 41 .
  • R 59 has the same meaning as R 41 or represents an group, an group, an group, an group, an R 41 O- group, an R 41 S- group, a halogen atom, or an group.
  • the suffix d represents an integer of 0 to 3. When d is plural, each R 59 represents the same or different substituents.
  • each R 59 may be a divalent group and may be connected to each other to form a cyclic structure.
  • divalent groups to be used for the formation of a cyclic structure include an group, or an group, wherein f represents an integer of 0 to 4; and g represents an integer of 0 to 2.
  • R 60 has the same meaning as R 41 .
  • R 61 has the same meaning as R 41 .
  • R 62 has the same meaning as R 41 or represents an R 41 OCONH- group, an group, an group, an R 43 0- group, an R 41 S- group, a halogen atom or an group.
  • R 63 has the same meaning as R 41 or represents an group, an group, an group, an R 41 SO 2 - group, an R 43 OCO- group, an R 43 0-S0 2 -group, a halogen atom, a nitro group, a cyano group or an R 43 CO- group.
  • the suffix e represents an integer of 0 to 4.
  • each R 62 or R 63 may be the same or different.
  • the above mentioned aliphatic group represented by R 4 , and R 43 to R 4 s is a C 1-32 , preferably a C 1-22 saturated or unsaturated, straight chain or branched chain or cyclic, substituted or unsubstituted aliphatic hydrocarbon group.
  • Typical examples of such an aliphatic hydrocarbon group include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, i-butyl, t-amyl, hexyl, cyclohexyl, 2-ethylhexyl, octyl, 1,1,3,3-tetramethylbutyl, decyl, dodecyl, hexadecyl, and octadecyl.
  • the above mentioned aromatic group represented by R 41 to R 45 is a C 6-20 , preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted naphthyl group.
  • the above mentioned heterocyclic group represented by R 41 to R 45 is a C 1 - 20 , preferably a C 1-7 3-to 8-membered substituted or unsubstituted heterocyclic group containing a hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom.
  • Typical examples of such a heterocyclic group include 2-pyridyl, 2-thienyl, 2-furyl, 1,3,4-thiadiazole-2-yl, 2,4-dioxo-1,3-imidazolidine-5-yl, 1,2,4-triazole-2-yl, and 1-pyrazolyl.
  • substituents to be contained in the above mentioned substituted aliphatic hydrocarbon group, aromatic group and heterocyclic group include a halogen atom, an R 47 O- group, an R 46 S-group, an group, an group, an group, an group, an R 46 SO 2 - group, an R 47 OCO- group, an group, an R 46 group, an group, an R 46 COO- group, an R 47 0S0 2 -group,a cyano group, and a nitro group, in which R 46 represents an aliphatic group, an aromatic group or a heterocyclic group, and R 47 , R 48 and R 49 each represents an aliphatic group, an aromatic group, a heterocyclic group or a hydrogen atom.
  • the aliphatic group, aromatic group or heterocyclic group represented by R 46 , R 47 and R 48 is as defined above for R 41 to R 45 .
  • R 51 to R s s, R 58 to R 63 , d and e will be described hereinafter.
  • R 51 is preferably an aliphatic or aromatic group.
  • R s2 , R 53 and Rss are preferably aromatic groups.
  • R 54 is preferably an R 41 CONH- group or an group.
  • R 58 is preferably an aliphatic group or an aromatic group.
  • R 59 is preferably a chlorine atom, an aliphatic group or an R 41 CONH- group.
  • the suffix d is preferably 1 or 2.
  • R 60 is preferably an aromatic group.
  • R 59 is preferably an R 41 CONH- group.
  • the suffix d is preferably 1.
  • R 61 is preferably an aliphatic group or an aromatic group.
  • the suffix e is preferably 0 or 1.
  • R 62 is preferably an R 41 OCONH- group, an R 41 CONH- group or an R 41 SO 2 NH- group.
  • R 62 preferably substitutes for the hydrogen atom in the 5-position of the naphthol ring.
  • R 63 is preferably an R 41 CONH- group, an R 41 SO 2 NH- group, an group, an R 41 SO 2 -group, an group, a nitro group or a cyano group.
  • the suffix e is preferably 1 or 2.
  • R 63 is preferably an group, an R 43 CCO- group or an R 43 CO- group.
  • the suffix e is preferably 1 or 2.
  • R S1 to Rss and Rs 8 to R 63 Typical examples of R S1 to Rss and Rs 8 to R 63 will be further described hereinafter.
  • R 51 examples include a t-butyl group, a 4-methoxyphenyl group, a phenyl group, a 3-[2-(2,4-di-t-amylphenoxy)butanamido]phenyl group, and a methyl group.
  • Examples of Rs 2 and R 53 include a phenyl group, a 2-chloro-5-ethoxy group, a 2-chloro-5-dodecylox- ycarbonylphenyl group, a 2-chloro-5-hexadecylsulfonamidophenyl group, a 2-chloro-5-tetradecanamidophenyl group, a 2-chloro-5-[4-(2,4-di-t-amylphenoxy)butanamido]phenyl group, a 2-chloro-5-[2-(2,4-di-t-amylphenoxy)butanamido]phenyl group, a 2-methoxyphenyl group, a 2-methoxy-5-tetradecylox- ycarbonylphenyl group, a 2-chloro-5-(1-ethoxycarbonylethoxycarbonyl)phenyl group, a 2-pyridyl group, a 2-chloro
  • R 54 examples include a butanoylamino group, a 2-chloro-3-propanoylaminoanilino group, a 3-[2-(2,4-di-t-amylphenoxy)butanamido]benzamide group, a 3-[4-(2,4-di-t-amylphenoxy)butanamido]benzamide group, a 2-chloro-5-tetradecanamidoaniline group, a 5-(2,4-di-t-amylphenoxyacetamido)benzamide group, a 2-chloro-5-dodecenylsuccinimidoanilino group, a 2-chloro-5-[2-(3-t-butyl-4-hydroxyphenoxy)tetradecanamido]-anilino group, a 2,2-dimethylpropanamide group, a 2-(3-pentadecylphenoxy)butanamide group, a pyrrolidino group, and an
  • Rss include a 2,4,6-trichlorophenyl group, a 2-chlorophenyl group, a 2,5-dichlorophenyl group, a 2,3-dichlorophenyl group, a 2,6-dichloro-4-methoxyphenyl group, a 4-[2-(2,4-di-t-amylphenoxy)butanamido]phenyl group, and a 2,6-dichloro-4-methanesulfonylphenyl group.
  • Examples of Rs 8 include a 2-chlorophenyl group, a pentafluorophenyl group, a heptafluoropropyl group, a 1-(2,4-di-t-amylphenoxy)propyl group, a 3-(2,4-di-t-amylphenoxy)propyl group, a 2,4-di-t-amylmethyl group, and a furyl group.
  • R 59 examples include a chlorine atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a 2-(2,4-di-t-amylphenoxy)butanamide group, a 2-(2,4-di-t-amylphenoxy)-hexanamide group, a 2-(2,4-di-t-octylphenoxy)octanamide group, a 2-(2-chlorophenoxy)tetradecanamide group, a 2-[4-(4-hydroxyphenylsulfonyl)phenoxy]tetradecanamide group, and a 2-[2-(2,4-di-t-amylphenox- yacetamido)phenoxy]butanamide.
  • R 60 examples include a 4-cyanophenyl group, a 2-cyanophenyl group, a 4-butylsulfonylphenyl group, a 4-propylsulfonylphenyl group, a 4-chloro-3-cyanophenyl group, a 4-ethoxycarbonylphenyl group, and a 3,4-dichlorophenyl group.
  • R 61 examples include a propyl group, a 2-methoxyphenyl group, a dodecyl group, a hexadecyl group, a cyclohexyl group, a 3-(2,4-di-t-amylphenoxy)propyl group, a 4-(2,4-di-t-amylphenoxy)butyl group, a 3-dodecyloxypropyl group, a t-butyl group, a 2-methoxy-5-dodecyloxycarbonylphenyl group, and a 1-naphthyl group.
  • R 62 examples include an isobutyloxycarbonylamino group, an ethoxycarbonylamino group, a phenyl- sulfonylamino group, a methanesulfonamide group, a benzamide group, a trifluoroacetamide group, a 3-phenylureido group, a butoxycarbonylamino group, and an acetamide group.
  • R 63 examples include a 2,4-di-t-amylphenoxyacetamide group, a 2-(2,4-di-t-amylphenoxy)-butanamide group, a hexadecylsulfonamide group, an N-methyl-N-octadecylsulfamoyl group, a 4-t-octylbenzoyl group, a dodecyloxycarbonyl group, a chlorine atom, a nitro group, a cyano group, an N-[4-(2,4-di-t-amylphenoxy)butyl]carbamoyl group, an N-3-(2,4-di-t-amylphenoxy)propylsulfamoyl group, a methanesulfonyl group, and a hexadecylsulfonyl group.
  • the group represented by L 1 is or a group represented by general formula (T-1), in which * represents the position which is bonded to A in general formula (I), and ** represents the position which is bonded to L 2 .
  • W represents an oxygen atom, a sulfur atom or an group
  • R 11 and R 1 each independently represents a hydrogen atom or a substituent
  • R 1 represents a substituent.
  • R 11 and R 12 each independently represents a substituent
  • typical examples of such the substituent represented by R 11 and R 12 and typical examples of R 13 include R 15 , an R 15 CO- group, an R 15 SO 2 - group, an group, and an group in which R 15 represents an aliphatic group (e.g., methyl, ethyl, propyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, isopropyl, neopentyl), an aromatic group (e.g., phenyl, 1-naphthyl, 2-naphthyl, p-chlorophenyl, o-chlorophenyl, p-nitrophenyl, o-methoxyphenyl, p-methoxyphenyl, p-hydroxyphenyl, p-carboxyphenyl) or a heterocyclic group (e.g., 2-pyridyl, 4-pyri
  • R 11 and R 12 are hydrogen atoms.
  • the group represented by L 2 is a group which undergoes electron migration along a conjugated system to cause a cleavage reaction.
  • Examples of such a group include those described in U.S. Patents 4,409,323 and 4,421,845, and JP-A-57-188035, JP-A-58-98728, JP-A-58-209736, JP-A-58-209737 and JP-A-58-209738, and groups represented by general formula (T-2): wherein W, R 1 and R 1 are as defined in general formula (T-1); * represents the position which is bonded to L 1 in general formula (I); and ** represents the position which is bonded to INH(CH 2 ) n Q.
  • R 1 and R 12 may be connected to each other to form a benzene ring or heterocyclic ring. Alternatively, R 1 or R 1 may be connected to W to form a heterocyclic ring.
  • Z, and Z 2 each independently represents a carbon atom or a nitrogen atom.
  • the suffixes x and y each independently represents an integer of 0 or 1.
  • x represents an integer of 1.
  • x represents an integer of 0.
  • the relationship between Z 2 and y is the same as that between Z 1 and x.
  • the suffix t represents an integer of 1 or 2. When t is 2, the two groups may be the same or different.
  • Preferred among these groups are those which are connected to L 1 via a nitrogen atom.
  • the group represented by INH is a development inhibitor residue which is connected to L 2 via a hetero atom.
  • INH is preferably a group represented by any one of general formulae (INH-1) to (INH-12).
  • R 21 represents a hydrogen atom or a substituted or unsubstituted hydrocarbon group (e.g., methyl, ethyl, propyl, phenyl).
  • * represents the position which is bonded to L 2 in the compound represented by general formula (I); and ** represents the position which is connected to -(CH 2 ) n -Q in the compound represented by general formula (I).
  • Preferred among these groups are (INH-1), (INH-2), (INH-3), (INH-4), and (INH-12). Particularly preferred among these groups are (INH-1) and (INH-3).
  • Q is a group having a molecular weight of 80 to 250, preferably 90 to 200, more preferably 100 to 150.
  • Q represents a substituted or unsubstituted 2-branched alkyl group (e.g., 2-hexyl, 2-octyl, t-octyl, 2-decyl, 2-dodecyl) or an electron donating group-containing aryl group (e.g., p-methoxyphenyl, p-tolyl).
  • Q represents an alkyl group (e.g., hexyl, octyl, t-octyl, decyl, dodecyl), an acylamino group (e.g., benzamide, hexanamide), an alkoxy group (e.g., octyloxybenzyloxy), a sulfonamide group (e.g., pentanesulfonamide, p-toluenesulfonamide), an aryl group (e.g., p-methoxyphenyl, p-dimethylaminophenyl, p-ethyl-phenyl), an alkylthio group (e.g., hexylthio, octylthio), an alkylamino group (e.g., dibutylamino, piperidino), an alkoxycarbonyl group (e.g., butoxy
  • n is preferably an integer of 0 to 2, particularly 0 or 1.
  • Q is preferably an electron donating group-containing aryl group.
  • Q is preferably an alkoxy group, an aryl group, or an aryloxy group. In a particularly preferred case, n is 1 and Q is an aryl group.
  • the compound of the present invention can be synthesized in accordance with the method disclosed in JP-A-60-218645. Specific examples of the syntheses of Compound (1) and Compound (37) will be set forth below.
  • the compounds represented by general formula (I) can be incorporated into any layer in the light-sensitive material, preferably a light-sensitive silver halide emulsion layer and/or its adjacent layers, more preferably a light-sensitive silver halide emulsion layer, particularly preferably a red-sensitive silver halide emulsion layer.
  • the total amount of these compounds to be incorporated in the light-sensitive material is normally from 3 x 10- 7 to 1 x 10- 3 mol/m 2 , preferably 3 x 10- 6 to 5 X 10- 4 mol/m 2 , more preferably 1 x 10- 5 to 2 x 10-4 mol/m 2 .
  • the compounds represented by general formula (I) can be incorporated into the light-sensitive material in the same manner as a conventional coupler, as described later.
  • the color photographic light-sensitive material of the present invention for photographing can comprise at least one blue-sensitive layer, at least one green-sensitive layer and at least one red-sensitive layer on a support.
  • the number of silver halide emulsion layers and light-insensitive layers and the order of arrangement of these layers are not specifically limited.
  • the silver halide photographic material of the present invention comprises light-sensitive layers consisting of a plurality of silver halide emulsion layers having substantially the same color sensitivity and different light sensitivities on a support.
  • the light-sensitive layers are unit light-sensitive layers having a color sensitivity to any of blue light, green light and red light.
  • these unit light-sensitive layers are normally arranged in the order of red-sensitive layer, green-sensitive layer and blue-sensitive layer as viewed from the support. However, the order of arrangement can be optionally reversed depending on the application. Alternatively, two unit light-sensitive layers having the same color sensitivity can be arranged with a unit light-sensitive layer having a different color sensitivity interposed between them.
  • Light-insensitive layers such as various interlayers can be provided between these silver halide light-sensitive layers and on the uppermost layer and lowermost layer of the light-sensitive layers.
  • interlayers can comprise couplers, DIR compounds or the like as described in JP-A-61-43748, JP-A-59-113438, JP-A-59-113440, JP-A-61-20037 and JP-A-61-20038. These interlayers can further comprise a color stain inhibitor as commonly used.
  • the plurality of silver halide emulsion layers constituting each unit light-sensitive layer can be preferably a two-layer structure, i.e., a high sensitivity emulsion layer and a low sensitivity emulsion layer, as described in West German Patent 1,121,470 and British Patent 923,045.
  • these layers are preferably arranged in such an order that the light sensitivity becomes lower towards the support.
  • a light-insensitive layer can be provided between these silver halide emulsion layers.
  • a low sensitivity emulsion layer can be provided remotely from the support while a high sensitivity emulsion layer can be provided nearer to the support.
  • a low sensitivity blue-sensitive layer (BL), a high sensitivity blue-sensitive layer (BH), a high sensitivity green-sensitive layer (GH), a low sensitivity green-sensitive layer (GL), a high sensitivity red-sensitive layer (RH), and a low sensitivity red-sensitive layer (RL) can be arranged in this order from the side farthest from the support.
  • BH, BL, GL, GH, RH, and RL can be arranged in this order from the side farthest from the support.
  • BH, BL, GH, GL, RL, and RH can be arranged in this order from the side farthest from the support.
  • JP-B-55-34932 the term "JP-B” as used herein refers to an "examined Japanese patent publication”
  • a blue-sensitive layer, GH, RH, GL, and RL can be arranged in this order from the side farthest from the support.
  • a blue-sensitive layer, GL, RL, GH, and RH can be arranged in this order from the side farthest from the support.
  • a layer arrangement can be used such that the uppermost layer is a silver halide emulsion layer having the highest sensitivity, the middle layer is a silver halide emulsion layer having a lower sensitivity, and the lowermost layer is a silver halide emulsion layer having a lower sensitivity than that of the middle layer.
  • the light sensitivity becomes lower towards the support.
  • the layer structure comprises three layers having different light sensitivities, a middle sensitivity emulsion layer, a high sensitivity emulsion layer and a low sensitivity emulsion layer can be arranged in this order from the side farthest from the support in a color-sensitive layer as described in JP-A-59-2024643.
  • a high sensitivity emulsion layer, a low sensitivity emulsion layer and middle sensitivity emulsion layer or a low sensitivity emulsion layer, a middle sensitivity emulsion layer and a high sensitivity emulsion layer can be arranged in this order.
  • the layer structure comprises four or more layers
  • the arrangement of the layers can be varied as described above.
  • a donor layer (CL) having an interimage effect and a different spectral sensitivity distribution from a main light-sensitive layer such as BL, GL and RL may be preferably provided adjacent or close to the main light-sensitive layer.
  • a suitable silver halide to be incorporated in the photographic emulsion layer in the color light-sensitive material for photographing of the present invention is silver bromoiodide, silver chloroiodide or silver bromochloroiodide containing silver iodide in an amount of about 30 mol% or less. Particularly suitable is silver bromoiodide containing silver iodide in an amount of about 2 mol% to about 25 mol%.
  • the silver halide grains in the photographic emulsions may be so-called regular grains having a regular crystal form, such as a cube, octahedron and tetradecahedron, or those having an irregular crystal form such as a spherical form or a tabular form, those having a crystal defect such as a twinning plane, or those having a combination of these crystal forms.
  • the silver halide grains may be either fine grains of about 0.2 pm or smaller in diameter or large grains having a projected area diameter of up to about 10 pm.
  • the emulsion may be either a monodisperse emulsion or a polydisperse emulsion.
  • the silver halide photographic emulsion which can be used in the present invention can be prepared by any suitable method as described, for example, in Research Disclosure, No. 17643 (December, 1978), pages 22 and 23, "I. Emulsion Preparation and Types", and No. 18716 (November, 1979), page 648, Glafkides, Chimie et Physique Photographique, Paul Montel (1967), G.F. Duffin, Photographic Emulsion Chemistry, Focal Press, 1966, and V.L. zelikman et al., Making and Coating Photographic Emulsion, Focal Press, 1964.
  • monodisperse emulsions as described in U.S. Patents 3,574,628 and 3,655,394 can be preferably used in the present invention.
  • Tabular grains having an aspect ratio of about 5 or more can be used in the present invention.
  • the preparation of such tabular grains can be easily accomplished by any suitable method as described, for example, in Gutoff, Photographic Science and Engineering, Vol. 14, pages 248 to 257, 1970, U.S. Patents 4,434,226, 4,414,310, 4,433,048 and 4,439,520, and British Patent 2,112,157.
  • the individual silver halide crystals may have either a homogeneous structure or a heterogeneous structure composed of a core and an outer shell differing in halogen composition, or may have a layered structure. Furthermore, the grains may be fused to a silver halide having a different halogen composition or a compound other than silver halide, e.g., silver thiocyanate, lead oxide, etc., by an epitaxial junction. Mixtures of grains having various crystal forms may also be used.
  • the silver halide emulsion to be used in the present invention is normally subjected to physical ripening, chemical ripening and spectral sensitization. Additives to be used in these steps are described, for example, in Research Disclosure, Nos. 17643, 18716 and 307105 as tabulated below.
  • finely divided light-insensitive silver halide grains are preferably used in light-sensitive layers.
  • Finely divided light-insensitive silver halide grains are finely divided silver halide grains which are not sensitive to light upon imagewise exposure for obtaining color images and are not substantially developed.
  • the finely divided light-insensitive silver halide grains are not previously fogged.
  • the finely divided light-insensitive silver halide grains for use in the light-insensitive layers have a silver bromide content of 0 to 100 mol% and may optionally contain silver chloride and/or silver iodide, preferably 0.5 to 10 mol% of silver iodide.
  • the finely divided light-insensitive silver halide grains in the light-insensitive layers preferably have an average grain diameter of 0.01 to 0.5 pm (as calculated in terms of average of diameters of projected area corresponding to sphere), more preferably 0.02 to 0.2 pm.
  • the preparation of the finely divided light-insensitive silver halide grains can be accomplished in the same manner as ordinary light-sensitive silver halide grains.
  • the surface of the silver halide grains does not need to be optically sensitized.
  • the finally divided light-insensitive silver halide grains do not need to be spectrally sensitized.
  • the finally divided light-insensitive silver halide emulsion preferably contains a known stabilizer such as a triazole, azaindene, benzothiazolium or mercapto compound.
  • color couplers can be used in the present invention. Specific examples of suitable color couplers are disclosed in the patents described in the above cited Research Disclosure, No. 17643, VII-C to G and No. 307105, VII-C to G.
  • Preferred yellow couplers include those described in U.S. Patents 3,933,501, 4,022,620, 4,326,024, 4,401,752, 4,248,961, 3,973,968, 4,314,023, and 4,511,649, JP-B-58-10739, British Patents 1,425,020 and 1,476,760, and European Patent 249,473A.
  • Preferred magenta couplers include 5-pyrazolone compounds and pyrazoloazole compounds. Particularly preferred are those described in U.S. Patents 4,310,619, 4,351,897, 3,061,432, 3,725,064, 4,500,630, 4,540,654, and 4,556,630, European Patent 73,636, JP-A-60-33552, JP-A-60-43659, JP-A-61-72238, JP-A-60-35730, JP-A-55-118034, and JP-A-60-185951, Research Disclosure, Nos. 24220 (June, 1984) and 24230 (June, 1984), and WO(PCT)88/04795.
  • Cyan couplers which can be used in the present invention include naphthol and phenol couplers. Preferred are those described in U.S. Patents 4,052,212, 4,146,396, 4,228,233, 4,296,200, 2,369,929, 2,801,171, 2,772,162, 2,895,826, 3,772,002, 3,758,308, 4,334,011, 4,327,173, 3,446,622, 4,333,999, 4,775,616, 4,451,559, 4,427,767, 4,690,889, 4,254,212, and 4,296,199, West German Patent Publication No. 3,329,729, European Patents 121,365A and 249,453A, and JP-A-61-42658.
  • Couplers which form a dye having moderate diffusibility preferably include those described in U.S. Patent 4,366,237, British Patent 2,125,570, European Patent 96,570, and West German Patent Publication No. 3,234,533.
  • Colored couplers for correction of unnecessary absorptions of the developed color preferably include those described in Research Disclosure, No. 17643, VII-G, U.S. Patents 4,163,670, 4,004,929, and 4,138,258, JP-B-57-39413, and British Patent 1,146,368. Furthermore, couplers for correction of unnecessary absorptions of the developed color by a fluorescent dye released upon coupling as described in U.S. Patent 4,774,181 and couplers containing as a separable group a dye precursor group capable of reacting with a developing agent to form a dye as described in U.S. Patent 4,777,120 can be preferably used.
  • Couplers capable of releasing a photographically useful group upon coupling can also be used in the present invention.
  • DIR couplers which release a developing inhibitor are described in the patents cited in Research Disclosure, No. 17643, VII-F, and No. 307105, VII-F, JP-A-57-151944, JP-A-57-154234, JP-A-60-184248, and JP-A-63-37346, and U.S. Patents 4,248,962 and 4,782,012.
  • Couplers capable of imagewise releasing a nucleating agent or a developing accelerator at the time of development preferably include those described in British Patents 2,097,140 and 2,131,188, and JP-A-59-157638 and JP-A-59-170840.
  • the photographic material according to the present invention can further comprise competing couplers as described in U.S. Patent 4,130,427, polyequivalent couplers as described in U.S. Patents 4,283,472, 4,338,393, and 4,310,618, DIR redox compounds or DIR couplers or DIR coupler-releasing couplers as described in JP-A-60-185950 and JP-A-62-24252, couplers capable of releasing a dye which returns to its original color after release as described in European Patent 173,302A, couplers capable of releasing a bleach accelerator as described in Research Disclosure, Nos.
  • couplers can be incorporated intp the light-sensitive material by any suitable known dispersion method, such as an oil-in-water dispersion process or a latex dispersion process.
  • high boiling organic solvents having a boiling point of 175 C or higher at normal pressure which can be used in the oil-in-water dispersion process
  • phthalic esters e.g., dibutyl phthalate, dicyclohexyl phthalate, di-2-ethylhexyl phthalate, decyl phthalate, bis(2,4-di-t-amylphenyl)-phthalate, bis(2,4-di-t-amylphenyl)isophthalate, bis(1,1-diethylpropyl)phthalate), phosphoric or phosphonic esters (e.g., triphenyl phosphate, tricresyl phosphate, 2-ethylhexyl diphenyl phosphate, tricyclohexyl phosphate, tri-2-ethylhexyl phosphate, tridecyl phosphate, tributoxy ethyl phosphate, trichloropropy
  • an organic solvent having a boiling point of about 30° C or higher, preferably 50 C to about 160° C.
  • Typical examples of such an organic solvent include ethyl acetate, butyl acetate, ethyl propionate, methyl ethyl ketone, cyclohexanone, 2-ethoxyethyl acetate, and dimethylformamide.
  • the present invention is applicable to various types of color light-sensitive materials, preferably to color negative films for ordinary use or motion picture, color reversal films for slide or television, color papers, color positive films and color reversal papers.
  • the total thickness of all hydrophilic colloidal layers on the emulsion side is preferably 28 gm or less, more preferably 23 ILm or less, furthermore preferably 18 ⁇ m or less, particularly preferably 16 ⁇ m or less.
  • the film swelling rate T 2 is preferably 30 seconds or less, more preferably 20 seconds or less.
  • the film thickness is determined after being stored at a temperature of 25 C and a relative humidity of 55% over 2 days.
  • the film swelling rate T can be determined by a method known in the art, e.g., by means of a swellometer of the type as described in A. Green et al., Photographic Science Engineering, Vol. 19, No. 2, pages 124 to 129.
  • T is defined as the time taken until half the saturated film thickness is reached, wherein the saturated film thickness is 90% of the maximum swollen film thickness reached when the light-sensitive material is processed with a color developer at a temperature of 30 C over 195 seconds.
  • the film swelling rate T can be adjusted by adding a film hardener to a gelatin binder or altering the aging condition after coating.
  • the percentage of swelling of the light-sensitive material is preferably in the range of 150 to 400%.
  • the percentage of swelling can be calculated from the maximum swollen film thickness determined as described above in accordance with the equation: (maximum swollen film thickness - film thickness)/film thickness.
  • the color photographic light-sensitive material according to the present invention can be developed using conventional methods, such as described in Research Disclosure, Nos. 17643 (pages 28 and 29), 18716 (left column to right column on page 615) and 307105 (pages 880 and 881).
  • the color developer to be used in developing the light-sensitive material of the present invention is preferably an alkaline aqueous solution containing as a main component an aromatic primary amine color developing agent.
  • an aminophenolic compound can be effectively used.
  • p-phenylenediamine compounds are preferably used.
  • Typical examples of such p-phenylenediamine compounds include 3-methyl-4-amino-N,N-diethylaniline, 3-methyl-4-amino-N-ethyl-N-a-hydroxyethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -methanesulfonamidoethylaniline, 3-methyl-4-amino-N-ethyl-N- ⁇ -methoxyethylaniline, and sulfates, hydrochlorides and p-toluenesulfonates thereof. Particularly preferred among these compounds is 3-methyl-4-amino-N-ethyl-N- ⁇ -hydroxyethylaniline sulfate. These compounds can be used in a combination of two or more thereof depending on the purpose of application.
  • the color developer normally contains a pH buffer such as a carbonate and a phosphate of an alkaline metal or a development inhibitor or fog inhibitor such as bromides, iodides, benzimidazoles, benzothiazoles and mercapto compounds.
  • a pH buffer such as a carbonate and a phosphate of an alkaline metal
  • a development inhibitor or fog inhibitor such as bromides, iodides, benzimidazoles, benzothiazoles and mercapto compounds.
  • the color developer may further contain various preservatives, e.g., hydroxylamine, diethylhydroxylamine, sulfites, hydrazines (e.g., N,N-biscarboxymethyl hydrazine), phenyl- semicarbazides, triethanolamine, and catechol sulfonic acids; organic solvents, e.g., ethylene glycol and diethylene glycol; development accelerators, e.g., benzyl alcohol, polyethylene glycol, quaternary ammonium salts, and amines; color forming couplers; competing couplers; auxiliary developing agents, e.g., 1-phenyl-3-pyrazolidone; viscosity imparting agents; various chelating agents exemplified by aminopolycarboxylic acids, aminopolyphosphoric acids, alkylphosphonic acids, and phosphonocarboxylic acids, e.g., ethylenediaminetetraacetic acid, nitri
  • Black-and-white developers can contain one or more known black-and-white developing agents, such as dihydroxybenzenes, e.g., hydroquinone, 3-pyrazolidones, e.g., 1-phenyl-3-pyrazolidone, and aminophenols, e.g., N-methyl-p-aminophenol.
  • dihydroxybenzenes e.g., hydroquinone
  • 3-pyrazolidones e.g., 1-phenyl-3-pyrazolidone
  • aminophenols e.g., N-methyl-p-aminophenol.
  • the color developer or black-and-white developer usually has a pH of from 9 to 12.
  • the replenishment rate of the developer is usually 3 liters or less per m 2 of the light-sensitive material, although the rate depends on the type of color photographic material to be processed.
  • the replenishment rate may be reduced to 500 ml/m 2 or less by decreasing the bromide ion concentration in the replenisher.
  • the area of the liquid surface in contact with air can be referred to as the opening value defined as follows:
  • the opening value is preferably 0.1 or less, more preferably 0.001 to 0.05.
  • the reduction of the opening value can be accomplished by providing a cover such as a floating cover on the surface of the photographicprocessing solution in the processing tank, or by a process which uses a mobile cover as described in JP-A-1-82033, or a slit development process as described in JP-A-63-216050.
  • the reduction of the opening value can be applied not only to both the color development and black-and-white development but also to the subsequent steps such as bleaching, blixing, fixing, rinsing and stabilizing.
  • the replenishment rate can also be reduced by a means for suppressing the accumulation of bromide ion in the developing solution.
  • the color development time is normally selected between 2 and 5 minutes.
  • the color development time can be further reduced by carrying out color development at an elevated temperature and a high pH value with a color developing solution containing a high concentration of color developing agent.
  • the photographic emulsion layer which has been color developed is normally subjected to bleach.
  • Bleaching may be carried out simultaneously with fixing (i.e., blixing), or these two steps may be carried out separately.
  • bleaching may be followed by blixing.
  • other embodiments such as wherein two blixing baths are connected in series, blixing is preceded by fixing, and blixing is followed by bleaching may be selected according to purpose.
  • Bleaching agents which can be used include compounds of polyvalent metals, e.g., iron(III), peroxides, quinones, and nitro compounds.
  • bleaching agents are organic complex salts of iron(III) with aminopolycarboxylic acids, e.g., ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, cyclohexanediaminetetraacetic acid, methyliminodiacetic acid, 1,3-diaminopropanetetraacetic acid, and glycol ether diaminetetraacetic acid, or citric acid, tartaric acid, malic acid, etc.
  • aminopolycarboxylic acid iron(III) complex salts such as (ethylenediaminetetraacetato)iron-(III) complex salts are preferred for speeding up processing and preserving the environment.
  • aminopolycarboxylic acid iron(III) complex salts are useful in both a bleaching solution and a blixing solution.
  • the bleaching or blixing solution containing an aminopolycarboxylic acid iron(III) complex salt normally has a pH value of 4.0 to 8.0. For speeding up processing, it is possible to use a lower pH value.
  • the bleaching bath, blixing bath or a prebath thereof can contain, if desired, a bleaching accelerator.
  • a bleaching accelerator examples include compounds containing a mercapto group or a disulfide group as described in U.S. Patent 3,893,858, West German Patent 1,290,812, JP-A-53-32736, JP-A-53-57831, JP-A-53-37418,JP-A-53-72623, JP-A-53-95630, JP-A-53-95631, JP-A-53-104232, JP-A-53-124424, JP-A-53-141623, and JP-A-53-28426, and Research Disclosure, No.
  • the bleaching accelerators may be incorporated into the light-sensitive material.
  • the bleaching accelerators are particularly effective for blixing color light-sensitive photographic materials.
  • the bleaching solution or blixing solution which can be used in the present invention may preferably contain an organic acid in addition to the above mentioned compounds for the purpose of inhibiting bleach stains.
  • a particularly preferred organic acid is a compound having an acid dissociation constant (pKa) of 2 to 5.
  • Specific examples of such an organic acid include acetic acid and propionic acid.
  • Fixing agents which can be used in the present invention include thiosulfates, thiocyanates, thioethers, thioureas, and a large amount of iodides.
  • thiosulfates normally used, ammonium thiosulfate has the broadest application.
  • These thiosulfates may preferably be used in combination with thiocyanates, thioether compounds, thiourea or the like.
  • preservatives for the fixing bath or blixing bath there can be preferably used sulfites, bisulfites, carbonyl bisulfite adducts or sulfinic acid compounds as described in European Patent 294,769A.
  • various aminopolycarboxylic acids or organic phosphonic acids can be added to the fixing bath or blixing bath for the purpose of stabilizing the solution.
  • the fixing solution or blixing solution preferably contains a compound having a pKa of 6.0 to 9.0, preferably an imidazole, such as, for example, imidazole, 1-methylimidazole, 1-ethylimidazole and 2-methylimidazole, in an amount of 0.1 to 10 mol/liter.
  • an imidazole such as, for example, imidazole, 1-methylimidazole, 1-ethylimidazole and 2-methylimidazole, in an amount of 0.1 to 10 mol/liter.
  • the total desilvering time is preferably short provided that no insufficient desilvering takes place.
  • the total desilvering time is preferably 1 to 3 minutes, more preferably 1 to 2 minutes.
  • the desilvering temperature is usually 25 to 50 C, preferably 35 to 45 C. In this preferred temperature range, the desilvering rate can be improved, and the occurrence of stain after processing can be effectively inhibited.
  • agitation is preferably intensified as much as possible.
  • agitation can be intensified by various methods.
  • the processing solution may be jetted to the surface of the emulsion layer in the light-sensitive material as described in JP-A-62-183460 and JP-A-62-183461.
  • the agitating effect can be improved by a rotary means as described in JP-A-62-183461.
  • the agitating effect can be improved by moving the light-sensitive material with the emulsion surface in contact with a wiper blade provided in the bath so that a turbulence occurs on the emulsion surface.
  • the agitation can be intensified by increasing the total circulated amount of processing solution.
  • An agitation improving method can be effectively applied to the bleaching bath, blixing bath or fixing bath.
  • the improvement in agitation effect expedites the supply of bleaching agent, fixing agent or the like into the emulsion film, resulting in an improvement in de-silvering rate.
  • the above mentioned agitation improving method is more effective when a bleaching accelerator is used.
  • the agitation improving method can remarkably enhance the bleaching accelerating effect or eliminate the effect of inhibiting fixation by the bleaching accelerator.
  • An automatic developing machine suitable for use in the present invention is preferably equipped with a light-sensitive material conveying means as described in JP-A-60-191257, JP-A-60-191258 and JP-A-60-191259.
  • a conveying means can remarkably reduce the amount of processing solution carried over from a bath to its succeeding bath, to thereby inhibit the deterioration of properties of the processing solution.
  • Such an effect is particularly effective for reducing the processing time at each step or for reducing the replenishment rate of the processing solution.
  • the quantity of water to be used in the washing can be selected from a broad range depending on the characteristicsof the light-sensitive material (for example, the kind of couplers, etc.), the end use of the light-sensitive material, the temperature of washing water, the number of washing tanks (number of stages), the replenishment system (e.g., countercurrent flow system or cocurrent flow system), and other various factors. Of these factors, the relationship between the number of washing tanks and the quantity of water in a multistage countercurrent flow system can be obtained according to the method described in Journal of the Society of Motion Picture and Television Engineers, Vol. 64, pages 248 to 253 (May, 1955).
  • isothiazolone compounds or thiabendazoles as described in JP-A-57-8542, chlorine type bactericides, e.g., chlorinated sodium isocyanurate, benzotriazole, and bactericides described in Hiroshi Horiguchi, Bokin Bobaizai no Kagaku, Eisei Gijutsu Gakkai (ed.), Biseibutsu no Mekkin, Sakkin, Bobaigijutsu, and Nippon Bokin Bobai Gakkai (ed.), Bokin Bobaizai Jiten (1986).
  • the washing water has a pH value of from 4 to 9, preferably from 5 to 8.
  • the temperature of the water and the washing time can be selected from broad ranges depending on the characteristics and end use of the light-sensitive material, but the temperature usually ranges from 15 to 45 0 C and developing time from 20 seconds to 10 minutes, preferably from 25 to 40 C and from 30 seconds to 5 minutes.
  • the light-sensitive material of the present invention may be directly processed with a stabilizer in place of the washing step.
  • any of the known techniques as described in JP-A-57-8543, JP-A-58-14834 and JP-A-60-220345 can be used.
  • the aforesaid washing step may be followed by stabilization in some cases.
  • a stabilizing bath containing a dye stabilizer and a surface active agent as is used as a final bath for color light-sensitive materials for photographing.
  • a dye stabilizer include aldehydes such as formalin and glutaraldehyde, N-methylol compounds, hexamethylenetetramine, and aldehyde-sulfurous acid adducts.
  • This stabilizing bath may also contain various chelating agents or bactericides.
  • the overflow accompanying replenishment of the washing bath and/or stabilizing bath can be reused in other steps such as desilvering.
  • water may be preferably supplied to the system to make up for the evaporation.
  • the silver halide color light-sensitive material of the present invention may contain a color developing agent for the purpose of simplifying and expediting processing.
  • a color developing agent is preferably used in the form of various precursors.
  • precursors include indoaniline compounds as described in U.S. Patent 3,342,597, Schiff's base type compounds as described in U.S. Patent 3,342,599, and Research Disclosure, Nos. 14850 and 15159, and aldol compounds as described in Research Disclosure, No. 13924, metal complexes as described in U.S. Patent 3,719,492, and urethane compounds as described in JP-A-53-135628.
  • the silver halide color light-sensitive material of the present invention may optionally comprise various 1-phenyl-3-pyrazolidones for the purpose of accelerating color development. Typical examples of such compounds are described in JP-A-56-64339, JP-A-57-144547 and JP-A-58-115438.
  • the various processing solutions are used at a temperature of 10° C to 50 C.
  • the standard temperature range is normally from 33 C to 38° C.
  • a higher temperature range can be used to accelerate processing to reduce the processing time.
  • a lower temperature range can be used to improve the picture quality or the stability of the processing solutions.
  • the silver halide photographic material of the present invention can also be applied to a heat- developable light-sensitive material as described in U.S. Patent 4,500,626, JP-A-60-133449, JP-A-59-218443, and JP-A-61-238056, and European Patent 210,660A2.
  • a multilayer color light-sensitive material was prepared as Sample 101 by coating on an undercoated cellulose triacetate film support various layers having the following compositions.
  • the coated amount of silver halide and colloidal silver is represented in g/m 2 as calculated in terms of amount of silver.
  • the coated amount of couplers, additives and gelatin is represented in g/m 2.
  • the coated amount of sensitizing dyes is represented in mol per mol of silver halide contained in the same layer.
  • Cpd-3, Cpd-5, Cpd-6, Cpd-7, Cpd-8, P-1, P-2, W-1, W-2 and W-3 as described later were incorporated in these layers. These fourteen layers were then coated simultaneously to a dried film thickness of 16.2 ⁇ m.
  • Sample 102 was prepared in the same manner as in Sample 101, except that Comparative Coupler RC-1 was incorporated in the third layer and fourth layer in amounts of 0.025 g/m 2 and 0.040 g/m 2 , respectively.
  • Samples 103 to 111 were prepared in the same manner as in Sample 102, except that RC-1 was replaced by other comparative compounds and the compounds of the present invention represented by general formula (I), respectively.
  • the type and amount (molar ratio relative to that of RC-1 as 1.0) of the compounds added are set forth in Table 1. These added amounts were properly adjusted so that the desired gradation (gamma) could be substantially met.
  • the color development was effected at a temperature of 38° C by means of an automatic developing machine as follows:
  • the washing step was effected in a counter-current process wherein the washing water flows from (2) to (1).
  • the composition of the various processing solutions will be further described hereinafter.
  • the replenishment rate of the color developer was 1,200 ml per m 2 of color light-sensitive material.
  • the replenishment rate of the other processing solutions were each 800 ml per m 2 of color light-sensitive material.
  • the amount of the processing solution brought over into the washing step from the prebath was 50 ml per m 2 of color light-sensitive material.
  • Bleaching Solution (The mother solution was used also as replenisher.)
  • Blixing Solution (The mother solution was used also as replenisher)
  • Stabilizing Solution (The mother solution was used also as replenisher)
  • the drying temperature was 50° C.
  • Sample 201 was prepared by incorporating Compound (1) of formula (1) of the present invention in the fourth layer and the fifth layer in Sample 105 in JP-A-1-214849 in amounts of 0.015 g/m 2 and 0.008 g/m 2 , respectively.
  • Samples 202 to 206 were prepared in the same manner as in Sample 201, except that Compound (1) was replaced by comparative compounds and the compounds of the present invention, respectively.
  • the type and amount (molar ratio relative to that of Compound (1) as 1.0) of the compounds added are set forth in Table 2.
  • These samples were then irradiated with soft X-ray through an opening having a size of 500 tLm x 4 cm and an opening having a size of 15 L m x 4 cm. For the measurement of edge effect, the cyan density ratio was determined at the center point of each opening.
  • Table 2 shows that the samples of the present invention exhibit an excellent effect, i.e., excellent sharpness.
  • the washing step was effected in a counter-current process wherein the washing water flows from (2) to (1).
  • the overflow from the washing tanks were all introduced into the fixing bath.
  • the upper portion of the bleaching bath and the lower portion of the blixing bath, and the upper portion of the fixing bath and the lower portion of the blixing bath were connected to each other via a pipe so that the overflow produced by the supply of the replenisher to the bleaching bath and the fixing bath flowed entirely into the blixing bath.
  • the amount of the developer brought over to the bleaching step, the amount of the bleaching solution brought over to the blixing step, the amount of the blixing solution brought over to the fixing step, and the amount of the fixing solution brought over to the washing step were 2.5 ml, 2.0 ml, 2.0 ml, and 2.0 ml per m of 35 mm wide light-sensitive material, respectively.
  • the time for crossover was 5 seconds in all the steps. This crossover time is included in the processing time at the previous step.
  • the processing solution was jetted to collide with the emulsion surface of the light-sensitive material by a method as described in JP-A-62-18346.
  • the various processing solutions had the following compositions:
  • a 15/85 mixture of the above mentioned mother solution of bleaching solution and the mother solution of the following fixing solution was used as the mother solution of the blixing solution.
  • washing Solution (The mother solution was used also as replenisher)
  • Tap water was passed through a mixed bed column packed with an H-type strongly acidic cation exchange resin (Amberlite IR-120B available from Rohm & Haas) and an OH-type strongly basic anion exchange resin (Amberlite IRA-400 available from Rohm & Haas) so that the calcium ion concentration and magnesium ion concentration were each reduced to 3 mg/liter or less.
  • Dichlorinated sodium isocyanurate and sodium sulfate were then added to the solution in amounts of 20 mg/liter and 150 mg/liter, respectively.
  • the washing solution thus obtained had a pH value of 6.5 to 7.5.
  • Stabilizing Solution (The mother solution was used also as replenisher)
  • a sample was prepared by incorporating Compounds (1), (3) and (7) of formula (I) of the present invention into the third layer in Sample 101 in JP-A-1-243056 in amounts of 4 x 10- 5 mol/m 2 , respectively.
  • the sample was tested in the same manner as in Example 1. As a result, it was confirmed that the incorporation of the compounds of the present invention provides light-sensitive materials with an excellent graininess, sharpness and preservability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
EP19910100436 1990-01-17 1991-01-16 Farbphotographisches Silberhalogenidmaterial Expired - Lifetime EP0438129B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7480/90 1990-01-17
JP748090 1990-01-17
JP32621990A JPH03255441A (ja) 1990-01-17 1990-11-28 ハロゲン化銀カラー写真感光材料
JP326219/90 1990-11-28

Publications (3)

Publication Number Publication Date
EP0438129A2 true EP0438129A2 (de) 1991-07-24
EP0438129A3 EP0438129A3 (en) 1991-08-21
EP0438129B1 EP0438129B1 (de) 1995-04-12

Family

ID=26341782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910100436 Expired - Lifetime EP0438129B1 (de) 1990-01-17 1991-01-16 Farbphotographisches Silberhalogenidmaterial

Country Status (3)

Country Link
EP (1) EP0438129B1 (de)
JP (1) JPH03255441A (de)
DE (1) DE69108747T2 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499279A1 (de) * 1991-02-15 1992-08-19 Fuji Photo Film Co., Ltd. Farbfotografisches lichtempfindliches Silberhalogenidmaterial
EP0529436A1 (de) * 1991-08-19 1993-03-03 Fuji Photo Film Co., Ltd. Farbphotographisches lichtempfindliches Silberhalogenidmaterial und sein Verarbeitungsverfahren
US5514529A (en) * 1991-07-02 1996-05-07 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material containing chemically sensitized grains and pug compound
US5541050A (en) * 1991-08-29 1996-07-30 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
US5547824A (en) * 1991-07-16 1996-08-20 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material containing compounds capable of releasing photographically useful groups and a specific silver iodobromide
US5670301A (en) * 1995-06-30 1997-09-23 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group
US5686234A (en) * 1995-06-30 1997-11-11 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group
US5709987A (en) * 1996-10-17 1998-01-20 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group through a triazole group
US5719017A (en) * 1996-10-17 1998-02-17 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group through a pyrazole group
US5928851A (en) * 1996-06-20 1999-07-27 Eastman Kodak Company Photographic couplers which release useful groups anchiomerically and their synthesis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255085A2 (de) * 1986-07-30 1988-02-03 EASTMAN KODAK COMPANY (a New Jersey corporation) Photographisches Element und Verfahren
EP0362870A2 (de) * 1988-10-06 1990-04-11 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenidmaterial

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214849A (ja) * 1988-02-23 1989-08-29 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料の処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255085A2 (de) * 1986-07-30 1988-02-03 EASTMAN KODAK COMPANY (a New Jersey corporation) Photographisches Element und Verfahren
EP0362870A2 (de) * 1988-10-06 1990-04-11 Fuji Photo Film Co., Ltd. Farbphotographisches Silberhalogenidmaterial

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837438A (en) * 1991-02-15 1998-11-17 Fuji Photo Film, Co., Ltd. Silver halide color photographic photosensitive material
EP0499279A1 (de) * 1991-02-15 1992-08-19 Fuji Photo Film Co., Ltd. Farbfotografisches lichtempfindliches Silberhalogenidmaterial
US5514529A (en) * 1991-07-02 1996-05-07 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material containing chemically sensitized grains and pug compound
US5547824A (en) * 1991-07-16 1996-08-20 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material containing compounds capable of releasing photographically useful groups and a specific silver iodobromide
EP0529436A1 (de) * 1991-08-19 1993-03-03 Fuji Photo Film Co., Ltd. Farbphotographisches lichtempfindliches Silberhalogenidmaterial und sein Verarbeitungsverfahren
US5403703A (en) * 1991-08-19 1995-04-04 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material, and method or processing the same
US5541050A (en) * 1991-08-29 1996-07-30 Fuji Photo Film Co., Ltd. Silver halide color photographic light-sensitive material
US5686234A (en) * 1995-06-30 1997-11-11 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group
US5670301A (en) * 1995-06-30 1997-09-23 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group
US5912110A (en) * 1995-06-30 1999-06-15 Eastman Kodak Company Photographic coupler capable of releasing a photographically useful group
US5962656A (en) * 1995-06-30 1999-10-05 Eastman Kodak Company Indazole containing coupler
US5928851A (en) * 1996-06-20 1999-07-27 Eastman Kodak Company Photographic couplers which release useful groups anchiomerically and their synthesis
US5709987A (en) * 1996-10-17 1998-01-20 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group through a triazole group
US5719017A (en) * 1996-10-17 1998-02-17 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group through a pyrazole group
US5817809A (en) * 1996-10-17 1998-10-06 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photographically useful group through a triazole group
US5834604A (en) * 1996-10-17 1998-11-10 Eastman Kodak Company Photographic element containing a coupler capable of releasing a photograpically useful group through a pyrazole group

Also Published As

Publication number Publication date
EP0438129A3 (en) 1991-08-21
DE69108747T2 (de) 1995-09-14
EP0438129B1 (de) 1995-04-12
DE69108747D1 (de) 1995-05-18
JPH03255441A (ja) 1991-11-14

Similar Documents

Publication Publication Date Title
EP0482552B1 (de) Farbphotographische lichtempfindliche Silberhalogenidmaterialien
US5066576A (en) Silver halide color photographic material
US5350666A (en) Silver halide photographic materials
EP0447920A1 (de) Farbphotographisches Silberhalogenidmaterial
US5071735A (en) Silver halide color photographic material containing a compound releasing a dir command upon reaction with an oxidized developing agent
EP0438129B1 (de) Farbphotographisches Silberhalogenidmaterial
US5192651A (en) Silver halide color photographic photosensitive materials containing at least two types of cyan dye forming couplers
US5210012A (en) Silver halide color photographic material
US5326680A (en) Silver halide color photographic light-sensitive material
EP0456257A1 (de) Farbphotographisches Silberhalogenidmaterial
EP0438150B1 (de) Farbphotographisches Silberhalogenidmaterial
US5459022A (en) Silver halide color photographic material containing a yellow-colored cyan coupler and a compound capable of releasing a bleaching accelerator or a precursor thereof, and a method for processing the same
EP0499279B1 (de) Farbfotografisches lichtempfindliches Silberhalogenidmaterial
EP0451526B1 (de) Farbfotografische Silberhalogenidmaterialien
US5063145A (en) Silver halide color photographic material
US5356767A (en) Silver halide photographic light-sensitive material containing an acylacetamide type yellow dye forming coupler having an acyl group and a compound capable of releasing a development inhibitor
US5336591A (en) Silver halide color photographic material
US5312726A (en) Silver halide color photographic material
EP0369486A2 (de) Farbphotographisches lichtempfindliches Silberhalogenidnegativmaterial
US5447833A (en) Silver halide photographic material and imidazole derivatives
US5286620A (en) Silver halide color photographic material
EP0428902B1 (de) Farbfotografische Silberhalogenidmaterialien
EP0438148A2 (de) Farbphotographisches Silberhalogenidmaterial
US5338654A (en) Silver halide color photographic material
EP0421453A1 (de) Farbphotographisches Silberhalogenidmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19911113

17Q First examination report despatched

Effective date: 19930301

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69108747

Country of ref document: DE

Date of ref document: 19950518

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050112

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050113

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070116