EP0436586B1 - Fuel injection nozzle with controllable fuel jet characteristic - Google Patents

Fuel injection nozzle with controllable fuel jet characteristic Download PDF

Info

Publication number
EP0436586B1
EP0436586B1 EP89910599A EP89910599A EP0436586B1 EP 0436586 B1 EP0436586 B1 EP 0436586B1 EP 89910599 A EP89910599 A EP 89910599A EP 89910599 A EP89910599 A EP 89910599A EP 0436586 B1 EP0436586 B1 EP 0436586B1
Authority
EP
European Patent Office
Prior art keywords
injection nozzle
stroke movement
nozzle
injection
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89910599A
Other languages
German (de)
French (fr)
Other versions
EP0436586A1 (en
Inventor
Dietmar Hohm
Peter Kleinschmidt
Hans Meixner
Dieter Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0436586A1 publication Critical patent/EP0436586A1/en
Application granted granted Critical
Publication of EP0436586B1 publication Critical patent/EP0436586B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/12Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/10Other injectors with multiple-part delivery, e.g. with vibrating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/0603Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0696Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by the use of movable windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/08Injectors peculiar thereto with means directly operating the valve needle specially for low-pressure fuel-injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/041Injectors peculiar thereto having vibrating means for atomizing the fuel, e.g. with sonic or ultrasonic vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Definitions

  • the present invention relates to a fuel injector as specified in the preamble of claim 1.
  • the injection nozzle generates a fuel jet shaped according to the design, the liquid components of which are atomized by the ultrasound-frequency-vibrating part of the entire nozzle into a flowing droplet mist consisting of fine aerosol droplets.
  • the same is apparent from JP-A-60 22 066 for the person skilled in the art.
  • the present invention is concerned with a development going in another direction, namely measures for make an appropriate choice of the shape of the fuel jet.
  • All known fuel injection nozzles have a characteristic shape of the fuel jet which is predetermined by their construction.
  • the shape of the fuel jet is known to be important for the air-fuel mixture formation, and not only in the With regard to minimal specific fuel consumption, but also with regard to environmental pollution due to undesirable emissions, and important for the smooth running of the engine.
  • a distinction is made between a fuel injection nozzle that generates a thread jet and a nozzle that delivers a cone jet. Both jet shapes are characteristic of one another, moreover, different size distributions of the droplets of the fuel sprayed out of the nozzle.
  • jet shapes are optimal.
  • the object of the present invention is to provide measures with which, in addition, at least largely optimal mixture formation can also be achieved with the selected injection nozzle for different operating states of the internal combustion engine.
  • the present invention is based on the idea of providing technical means on or for a fuel injection nozzle, with which the characteristic shape of the fuel jet of this one nozzle can be changed in an electrically controllable manner during operation.
  • the shape of the jet of the nozzle is controlled according to the invention in such a way that different opening angles of the injection jet, from the (slim) thread jet to a cone jet with e.g. 70 ° opening angle or even larger can be reached.
  • the spray shape can be controlled and optimally adjusted during operation.
  • the invention relates in particular to low-pressure injection at approximately 1 to 10 bar.
  • fuel injectors are also injectors.
  • the valve drive can be based on the effect of the liquid pressure exerted by the fuel to be injected.
  • injection nozzles are increasingly being provided with electromechanical devices for opening and closing their valve portion. Electromagnetic versions have mainly been provided for this purpose.
  • fuel injectors with a valve device with a piezoelectric drive.
  • the one fuel injection nozzle per cylinder is designed in such a way that it can bring about several mutually different, controllably selectable forms of "jet formation".
  • a "thread jet” can be generated with a fuel injection nozzle according to the invention, namely for continuous operation, the cross section of the impact on the valve being limited to a predeterminable proportion of the valve disk surface. This ensures that the fuel reaches the valve as “lossless” as possible and then immediately and without detour into the cylinder. The measured optimal air-fuel ratio can thus be maintained with certainty.
  • the evaporation of the fuel on the hot valve plate ensures that a finely divided fuel-air mixture is available for combustion in the cylinder.
  • the injection nozzle according to the invention is controlled so that a good fuel fine distribution occurs.
  • an injection “jet” is generated for this operating phase of the engine, which has a certain spreading in the manner of a cone jet.
  • a cone jet has the property that, and only at a certain distance from its nozzle opening, the liquid only disintegrates in the jet and that only then, but sufficiently early for the combustion process, is there a substantial proportion of the injection quantity in fine droplet distribution.
  • the above-mentioned distance is important here, because it can be achieved that this fuel fine distribution in the cone jet is present just before or even at the inlet valve and that droplets fail, e.g. on the wall of the intake pipe (i.e. in the area between the nozzle opening and the inlet valve) is excluded.
  • This advantage occurs particularly in such known injection nozzles that have an integrated ultrasonic liquid atomization. It must be taken into account that the fuel injector cannot be arranged anywhere near the inlet valve.
  • An injection nozzle according to the invention is designed so that it has a fast responding and fast working drive for opening and closing the nozzle opening. It can be advantageous in individual cases, in particular for optimally fulfilling the conditions in idle mode, if the injection nozzle according to the invention is one with proportional drive or proportional adjustability of the nozzle opening. It is thus easy to set such intermediate values of the degree of opening of the injection nozzle, with which an exact metering of the very small injection quantities that come into consideration, especially in idle mode, can be maintained per injection process.
  • the operational repetition frequency is in practical use, e.g. for a four-cylinder or six-cylinder engine and thus the repetition frequency for opening (t1) and closing (t2) the valve portion of the injector at about 5 Hz to 50 Hz.
  • the repetition frequency for opening (t1) and closing (t2) the valve portion of the injector at about 5 Hz to 50 Hz.
  • Correspondingly steep rising and falling edges of opening and closing of an injection nozzle according to the invention are at a frequency of considerably above 1 kHz (with a corresponding period T) as the upper limit of the Fourier spectrum of the opening and closing impulse.
  • the requirements for an injection nozzle according to the invention are given on the basis of the following exemplary operating values for a medium-sized passenger car:
  • the fuel throughput when the injector is continuously open (in the intake phase) is approx. 6 g / s per cylinder. This corresponds to almost full load operation.
  • the idle flow rate of such an engine is about 0.4 mg / s per cylinder. This clearly results in a dynamic range of four orders of magnitude to be managed.
  • an injection nozzle according to the invention are characterized in that the opening and closing of the injection nozzle (which is also designed as a valve) Serving valve needle and / or the opening cross section of the nozzle are to be set in lifting movements.
  • the beam cross section ie the beam shape, for example from the thread jet to the cone jet, can be varied with different opening angles.
  • FIG. 1 which shows a time / excitation or. Opening diagram of an injection nozzle according to the invention shows.
  • the injection nozzle according to the invention is able to periodically follow the mechanical movements of the electrical excitation with its stroke movements due to the above-mentioned rapid response of its parts, in particular with proportional drive.
  • the excitation frequencies for this stroke movement are optimally in the range from 5 KHz to 20 KHz, that is to say far below ultrasonic atomizing frequencies. This dimensioning applies both to injection nozzles and valves in low-pressure systems (approx. 3 bar) and to those with the usual diameter (0.3 to 1 mm) of the nozzle.
  • Figure 2 shows a basic structure of an injection nozzle 10 according to the invention with a superimposed, rapidly changing stroke movement of the nozzle needle.
  • FIG. 3 shows a corresponding embodiment with a lifting movement of the (valve) seat of the injection nozzle 20.
  • Figures 4 and 5 show in side and front view an embodiment 40 with a device for modulating the effective injection opening.
  • Figure 6 shows a piezoceramic drive device.
  • FIG. 7 shows a magnetostrictive drive device
  • FIG. 8 shows an electrodynamic drive device for an injection nozzle according to the invention.
  • FIG. 9 shows a complete configuration of an injection nozzle according to the invention.
  • 11 denotes the nozzle needle, which also acts as a valve needle. It is located in the nozzle part 12 which has the bore shown as the nozzle opening 13. If the injection nozzle is closed, the front end of the nozzle needle 11 closes the nozzle opening 13. 14 indicates the controllable mobility of the nozzle needle 11.
  • fuel indicated at 15 flows along the nozzle needle 11 and within the nozzle part 12 to the nozzle opening 13 in order to form an injection jet with the conical shape having the characteristic 15 shown.
  • This jet shape 15 results from the fact that the nozzle needle 11 in the open position is superimposed on the additional alternating stroke movement indicated by 14.
  • FIG. 3 reference can largely be made to the details described for FIG. 2. Reference symbols already described for FIG. 2 have the same or at least meaningful meaning in FIG. 3.
  • alternating stroke movement is provided for the nozzle part 12 with the nozzle opening 13.
  • there is a beam shape which essentially corresponds to that of the embodiment according to FIG. 2.
  • FIGS. 4 and 5 show an additional device attached to the nozzle part 12 in the region of the nozzle opening 13.
  • FIG. 5 shows an end view belonging to FIG. 4, ie a view against the sprayed jet.
  • This additional device 51 of the actual injection nozzle of FIGS. 4 and 5 consist of, for example, four rod-shaped extensions 151, each of which are to be excited to perform lifting movements. These lifting movements are indicated by the individual arrows 54.
  • These stroke movements 54 are bending movements of the parts 151.
  • These parts 151 form longitudinal guides for the fuel jet 45 emerging from the nozzle opening 13.
  • the alternating stroke movements 54 which are transverse to its jet direction, lead to a jet shape as shown at 55.
  • the drive element 6 according to FIG. 6 consists of a stack of piezoelectrically excitable disks 61. These disks are provided with flat electrodes, not shown. Such stacks are known in principle and are also supplied with controlled electrical voltage in the present case. In particular, AC voltage is supplied, preferably with such a frequency that leads to resonant oscillatory movements of the lifting movement 114 of the stack or of the drive 6.
  • FIG. 7 shows a magnetostrictive embodiment 7 of a drive.
  • 71 denotes a rod which can be excited to magnetostriction movements and which is located inside a magnetic field coil 72.
  • This magnetic field coil 72 is supplied with electrical voltage, preferably again at a frequency which leads to resonance with a natural oscillation of the rod 71, which leads to a correspondingly large stroke amplitude of the stroke movement 114.
  • FIG. 8 shows a drive 8 with plunger coil 81 and pot magnet 82, as is known in principle from loudspeakers. With a corresponding electrical alternating excitation, such a device leads to mechanical stroke movements 114. Resonance excitation can also be effected here.
  • FIG. 9 shows an example of an injection nozzle according to the invention.
  • the details given for the figures described above have the same meaning in FIG. 9.
  • the actuator 91 denotes an actuator, for example a stack consisting of piezoelectric plates. By applying electrical voltage between the connections 92 and 93, this actuator changes its length and thus drives the plunger 94 and the nozzle needle 11 connected to the plunger 94.
  • the actuator 91 is used to open and close the valve by moving the valve needle 11.
  • the inflow opening of the injection nozzle for the fuel is designated by 95.
  • the drive device for the alternating lifting movement to be carried out according to the invention is designated by 96.
  • this drive device comprises a plurality of stacks 97 with the electrical connecting lines 98 and 99. Between the connections 98 and 99, the AC drive voltage for this lifting movement is to be applied.
  • the outer housing 12 of the injection nozzle (sealed) is divided, this nozzle part 12 guides through the work of the drive 96 perform the alternating stroke movements according to the invention, specifically compared to the nozzle needle which is stationary in this example in the open state. This corresponds to the embodiment variant of the invention already described above in connection with FIG. 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

An injection nozzle has a bore (13) and a needle (11) and a drive (91) with electric input parameters as well as a drive device (96) for an alternating lifting movement of the nozzle part (12), said lifting movement being overriden by the open state of the injection nozzle. The drive device (96) can be activated by electrical input parameters and is constructed so that at least one small time-interval which is many times smaller than the predetermined minimum opening time of the injection nozzle is available for the reversal of the lifting movement.

Description

Die vorliegende Erfindung bezieht sich auf eine Kraftstoff-Einspritzdüse wie sie im Oberbegriff des Patentanspruches 1 angegeben ist.The present invention relates to a fuel injector as specified in the preamble of claim 1.

Schon seit langem ist es zunächst für Dieselmotore und dann für Ottomotore bekannt, den für den Betrieb notwendigen Kraftstoff an einer jeweils vorgegebenen Stelle der Verbrennungskraftmaschine unter Druck einzuspritzen. Es kann dies Kraftstoffeinspritzung in einen Raum hinter dem Einlaßventil sein. Für Ottomotore ist auch Einspritzung auf das Einlaßventil oder in das Saugrohr vor dem Einlaßventil üblich.It has been known for a long time, first for diesel engines and then for gasoline engines, to inject the fuel required for operation under pressure at a predetermined point on the internal combustion engine. This can be fuel injection into a space behind the intake valve. Injection to the intake valve or to the intake manifold before the intake valve is also common for gasoline engines.

Es gibt Bestrebungen in der Richtung, eine Einspritzdüse so auszugestalten und zu betreiben, daß sie ein feineres Aerosol erzeugt, als dies mit einer Einspritzdüse ohnehin üblich und/ oder möglich ist. Bei solchen Einspritzdüsen ist, wie aus der EP-A-36 617 bekannt, zusätzlich Ultraschall-Vibration vorgesehen, wie dies für Ultraschall-Flüssigkeitszerstäuber schon seit langen bekannt war. Die anzuwendende Ultraschallfrequenz liegt für Flüssigkeitszerstäubung im Bereich von notwendigerweise oberhalb 100 KHz. Die genaue Frequenz und die Ausgestaltung eines jeweils vorgesehenen ultraschallfrequentschwingenden Teils der Düse sind voneinander abhängig. Die Einspritzdüse erzeugt dabei für sich genommen einen der konstruktiven Ausgestaltung entsprechend geformten Kraftstoffstrahl, dessen Flüssigkeitsbestandteile von dem ultraschallfrequent-schwingenden Teil der ganzen Düse dann zu einem strömenden Tröpfchennebel, bestehend aus feinen Aeorosoltröpfchen, zerstäubt wird. Gleichartiges geht aus der JP-A-60 22 066 für den Fachmann hervor.There are efforts in the direction of designing and operating an injection nozzle in such a way that it produces a finer aerosol than is customary and / or possible with an injection nozzle anyway. In such injection nozzles, as is known from EP-A-36 617, ultrasonic vibration is additionally provided, as has long been known for ultrasonic liquid atomizers. The ultrasonic frequency to be used for liquid atomization is in the range of necessarily above 100 KHz. The exact frequency and the design of an ultrasonic frequency oscillating part of the nozzle are dependent on one another. The injection nozzle generates a fuel jet shaped according to the design, the liquid components of which are atomized by the ultrasound-frequency-vibrating part of the entire nozzle into a flowing droplet mist consisting of fine aerosol droplets. The same is apparent from JP-A-60 22 066 for the person skilled in the art.

Die vorliegende Erfindung ist mit einer in eine andere Richtung gehenden Entwicklung befaßt, nämlich Maßnahmen zur geeigneten Wahl der Form des Kraftstoffstrahls zu treffen.The present invention is concerned with a development going in another direction, namely measures for make an appropriate choice of the shape of the fuel jet.

Alle bekannten Kraftstoffeinspritzdüsen haben eine durch ihre Konstruktion vorgegebene charakteristische Form des Kraftstoffstrahls. Die Form des Kraftstoffstrahls ist bekanntlich für die Luft-Kraftstoff-Gemischbildung wichtig, und zwar nicht nur im Hinblick auf minimalen spezifischen Kraftstoffverbrauch, sondern auch im Hinblick auf Umweltbelastung durch unerwünscht auftretende Abgasanteile, und wichtig für die Laufruhe des Motors. Zum Beispiel wird unterschieden zwischen von einer Kraftstoff-Einspritzdüse, die einen Fadenstrahl erzeugt und einer Düse, die einen Kegelstrahl liefert. Beide Strahlformen haben für sich charakteristisch im übrigen u.a. auch unterschiedliche Größenverteilungen der Tröpfchen des aus der Düse gespritzten Kraftstoffes.All known fuel injection nozzles have a characteristic shape of the fuel jet which is predetermined by their construction. The shape of the fuel jet is known to be important for the air-fuel mixture formation, and not only in the With regard to minimal specific fuel consumption, but also with regard to environmental pollution due to undesirable emissions, and important for the smooth running of the engine. For example, a distinction is made between a fuel injection nozzle that generates a thread jet and a nozzle that delivers a cone jet. Both jet shapes are characteristic of one another, moreover, different size distributions of the droplets of the fuel sprayed out of the nozzle.

Von Parametern einer jeweiligen Verbrennungskraftmaschine und deren Konstruktionsmerkmalen sowie dem jeweiligen Lastzustand abhängig sind jeweils verschiedene Strahlformen optimal.Depending on the parameters of a particular internal combustion engine and their design features as well as the respective load condition, different jet shapes are optimal.

Aufgabe der vorliegenden Erfindung ist es, Maßnahmen anzugeben, mit denen außerdem auch für unterschiedliche Betriebszustände der Verbrennungskraftmaschine wenigstens weitgehend jeweils optimale Gemischbildung mit der ausgewählten Einspritzdüse zu erreichen ist.The object of the present invention is to provide measures with which, in addition, at least largely optimal mixture formation can also be achieved with the selected injection nozzle for different operating states of the internal combustion engine.

Diese Aufgabe wird mit den Maßnahmen des Patentanspruches 1 gelöst und weitere Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.This object is achieved with the measures of claim 1 and further refinements and developments of the invention emerge from the subclaims.

Der vorliegenden Erfindung liegt der Gedanke zugrunde, an einer bzw. für eine Kraftstoff-Einspritzdüse technische Mittel vorzusehen, mit denen im Betrieb die charakteristische Form des Kraftstoffstrahls dieser einen Düse elektrisch steuerbar verändert werden kann. Es wird erfindungsgemäß mit diesen Mitteln die Form des Strahls der Düse so gesteuert, daß verschiedene Öffnungswinkel des Einspritzstrahls, vom (schlanken) Fadenstrahl bis zu einem Kegelstrahl mit z.B. 70° Öffnungswinkel oder sogar noch größer erreichbar sind.The present invention is based on the idea of providing technical means on or for a fuel injection nozzle, with which the characteristic shape of the fuel jet of this one nozzle can be changed in an electrically controllable manner during operation. According to the invention, the shape of the jet of the nozzle is controlled according to the invention in such a way that different opening angles of the injection jet, from the (slim) thread jet to a cone jet with e.g. 70 ° opening angle or even larger can be reached.

Mit einer erfindungsgemäßen Einspritzdüse läßt sich im Betrieb die Strahlform steuerbar verändern und optimal anpassen.With an injection nozzle according to the invention, the spray shape can be controlled and optimally adjusted during operation.

Außerdem wird dabei eine steuerbare Veränderung der Verteilung der Tröpfchengröße durchgeführt. Die Erfindung bezieht sich insbesondere auf Niederdruck-Einspritzung mit etwa 1 bis 10 bar.In addition, a controllable change in the distribution of the droplet size is carried out. The invention relates in particular to low-pressure injection at approximately 1 to 10 bar.

In der überwiegenden Anzahl der Fälle sind Kraftstoff-Einspritzdüsen gleichzeitig auch Einspritzventile. Der Ventilantrieb kann dabei auf der Wirkung des vom einzuspritzenden Kraftstoff ausgeübten Flüssigkeitsdruckes beruhen. Zunehmend werden aber Einspritzdüsen mit elektromechanischen Einrichtungen zum Öffnen und Schließen ihres Ventilanteils versehen. Vorwiegend sind hierzu elektromagnetische Ausführungen vorgesehen worden. Es gibt bereits auch Kraftstoff-Einspritzdüsen mit Ventileinrichtung mit piezoelektrischem Antrieb.In the vast majority of cases, fuel injectors are also injectors. The valve drive can be based on the effect of the liquid pressure exerted by the fuel to be injected. However, injection nozzles are increasingly being provided with electromechanical devices for opening and closing their valve portion. Electromagnetic versions have mainly been provided for this purpose. There are also fuel injectors with a valve device with a piezoelectric drive.

Mit der vorliegenden Erfindung ist erreicht, unter Einhaltung von als besonders sinnvoll erkannten Randbedingungen eine Lösung zu haben, die es ermöglicht, solche variierten Strahlformen mit einer einzigen Einspritzdüse einstellen zu können, die den verschiedenartigen Betriebsbedingungen eines Verbrennungs-Kolbenmotors weitestgehend optimal angepaßt sind. Diese verschiedenen Betriebsbedingungen sind insbesondere zum einen die Kaltstart-Phase und andererseits der Dauerbetrieb des Motors mit stationär durchgewärmtem Motor. Es wäre denkbar, insbesondere für die beiden vorangehend genannten Betriebszustände zwei verschiedene Einspritzdüsen vorzusehen, die jede auf die ihr zugeordnete Betriebsphase optimiert sein könnte. Es soll aber nur eine Einspritzdüse vorgesehen sein. Bezüglich der Kaltstart-Phase ist vor allem die Randbedingung zu erfüllen, daß der jeweils im Ansaugtakt des Motors eingespritzte Kraftstoff als kegelförmiger Strahl so stark zerstäubt in den Zylinder gelangt, daß auch tatsächlich die bestimmungsgemäße Kraftstoffvermischung mit Luft und damit Kraftstoffverbrennung erfolgt.With the present invention it is achieved, while observing boundary conditions recognized as particularly useful, to have a solution which makes it possible to set such varied jet shapes with a single injection nozzle which are largely optimally adapted to the different operating conditions of a combustion piston engine. These various operating conditions are in particular the cold start phase on the one hand and the continuous operation of the engine with the engine warmed up in a stationary manner on the other hand. It would be conceivable to provide two different injection nozzles in particular for the two operating states mentioned above, each of which could be optimized for the operating phase assigned to it. However, only one injector should be provided. With regard to the cold start phase, the boundary condition must be met in particular that the fuel injected in the intake stroke of the engine as a cone-shaped jet reaches the cylinder so strongly that the intended fuel mixing with air and thus fuel combustion actually takes place.

In der Dauerbetriebsphase, d.h. bei Betriebstemperatur aller Motorteile, ist insbesondere ein heißes Einlaßventil vorhanden, das sich hervorragend zur Kraftstoff-Feinverteilung bzw. -verdampfung eignet. Es ist auch dementsprechend durchaus üblich, den einzuspritzenden Kraftstoff mit einem weitgehend fadenförmigen oder nur gering aufgefächerten Einspritzstrahl auf den heißen Ventilteller zu richten und dort auftreffen zu lassen.In the continuous operating phase, ie at the operating temperature of all engine parts, there is in particular a hot inlet valve which is excellent for fine fuel distribution or evaporation is suitable. Accordingly, it is also quite common to direct the fuel to be injected onto the hot valve plate with a largely filament-shaped or only slightly fanned-out injection jet and to have it hit there.

Im Zusammenhang mit der Erfindung ist festgestellt worden, daß es fallweise nicht unbedingt vorteilhaft ist, in der Dauerbetriebsphase eine schon direkt von der Einspritzdüse ausgehende größere insbesondere durch Ultraschall erzeugte Zerstäubung des einzuspritzenden Kraftstoffes vorzusehen. Es ist nämlich beobachtet worden, daß trotz hoher Betriebswärme des Motorblocks durchaus nachteilige Zustände bei schon von der Düse weg feinverteiltem bzw. zerstäubtem Kraftstoff auftreten. Zum einen können im doch nur begrenzt stark erwärmten Ansaugrohr noch Abscheidungen von Kraftstofftröpfchen erfolgen, die dann erst zeitverzögert zum falschen Zeitpunkt durch Wiederabdampfen in den Zylinder gelangen. Luftsäulenschwingungen im Ansaugrohr können ebenfalls zu Zuständen führen, daß schon vom Ort der Düse weg zerstäubter Kraftstoff nicht zum gewollten Zeitpunkt in den jeweiligen Zylinder gelangt. Damit sind in jedem Falle unerwünschte Verschiebungen hinsichtlich des Kraftstoff-Luft-Verhältnisses verbunden, das beabsichtigterweise möglichst genau zugemessenen sein soll.In connection with the invention, it has been found that in some cases it is not absolutely advantageous to provide a larger atomization of the fuel to be injected, which emanates directly from the injection nozzle, in the continuous operating phase. It has been observed that, despite the high operating heat of the engine block, disadvantageous conditions occur with fuel that has already been finely divided or atomized away from the nozzle. On the one hand, fuel droplets can still be deposited in the intake pipe, which is only heated to a limited extent, and then only delayed at the wrong time by re-evaporation. Air column vibrations in the intake manifold can also lead to conditions such that fuel atomized away from the location of the nozzle does not get into the respective cylinder at the desired time. In any case, this is associated with undesirable shifts in the fuel-air ratio, which is intended to be measured as precisely as possible.

Erfindungsgemäß ist die eine einzige Kraftstoff-Einspritzdüse pro Zylinder so ausgebildet, daß sie mehrere voneinander verschiedene, steuerbar wählbare Formen der "Strahlausbildung" bewirken kann. Aufgrund dieser Steuerbarkeit läßt sich mit einer erfindungsgemäßen Kraftstoffeinspritzdüse, nämlich für den Dauerbetrieb, ein "Fadenstrahl" erzeugen, dessen Auftreffquerschnitt auf dem Ventil auf einen vorgebbaren Anteil der Ventilteller-Oberfläche begrenzt ist. Damit ist erreicht, daß der Kraftstoff möglichst "verlustlos" auf das Ventil und weiter sofort und ohne Umweg in den Zylinder gelangt. Das zugemessene optimale Kraftstoff-Luftverhältnis kann damit mit Sicherheit eingehalten werden. Aufgrund der Verdampfung des Kraftstoffs auf dem heißen Ventilteller ist sichergestellt, daß zur Verbrennung im Zylinder optimal fein verteiltes Kraftstoff-Luftgemisch zur Verfügung steht.According to the invention, the one fuel injection nozzle per cylinder is designed in such a way that it can bring about several mutually different, controllably selectable forms of "jet formation". On account of this controllability, a "thread jet" can be generated with a fuel injection nozzle according to the invention, namely for continuous operation, the cross section of the impact on the valve being limited to a predeterminable proportion of the valve disk surface. This ensures that the fuel reaches the valve as "lossless" as possible and then immediately and without detour into the cylinder. The measured optimal air-fuel ratio can thus be maintained with certainty. The evaporation of the fuel on the hot valve plate ensures that a finely divided fuel-air mixture is available for combustion in the cylinder.

In der Kaltstartphase wird die erfindungsgemäße Einspritzdüse so gesteuert, daß eine gute Kraftstoff-Feinverteilung auftritt. Mit der erfindungsgemäßen Einspritzdüse wird für diese Betriebsphase des Motors ein Einspritz-"Strahl" erzeugt, der eine gewisse Aufspreizung nach Art eines Kegelstrahls besitzt. Ein solcher Kegelstrahl hat die Eigenschaft, daß, und zwar erst in einer gewissen Entfernung von seiner Düsenöffnung, die Flüssigkeit erst im Strahl zerfällt und daß erst dann, aber für den Verbrennungsvorgang genügend zeitig, ein wesentlicher Anteil der Einspritzmenge in feiner Tröpfchenverteilung vorliegt. Der voranstehend erwähnte dabei auftretende Abstand ist dabei wichtig, denn damit kann erreicht werden, daß erst dicht vor oder gar erst am Einlaßventil diese Kraftstoff-Feinverteilung im Kegelstrahl vorliegt und ein Ausfallen von Tröpfchen z.B. an der Wandung des Ansaugrohres (also im Bereich zwischen der Düsenöffnung und dem Einlaßventil) ausgeschlossen ist. Dieser Vorteil tritt besonders bei solchen bekannten Einspritzdüsen auf, die eine integrierte Ultraschall-Flüssigkeitszerstäubung haben. Es ist ja zu berücksichtigen, daß die Kraftstoffeinspritzdüse nicht beliebig nahe dem Einlaßventil angeordnet werden kann.In the cold start phase, the injection nozzle according to the invention is controlled so that a good fuel fine distribution occurs. With the injection nozzle according to the invention, an injection “jet” is generated for this operating phase of the engine, which has a certain spreading in the manner of a cone jet. Such a cone jet has the property that, and only at a certain distance from its nozzle opening, the liquid only disintegrates in the jet and that only then, but sufficiently early for the combustion process, is there a substantial proportion of the injection quantity in fine droplet distribution. The above-mentioned distance is important here, because it can be achieved that this fuel fine distribution in the cone jet is present just before or even at the inlet valve and that droplets fail, e.g. on the wall of the intake pipe (i.e. in the area between the nozzle opening and the inlet valve) is excluded. This advantage occurs particularly in such known injection nozzles that have an integrated ultrasonic liquid atomization. It must be taken into account that the fuel injector cannot be arranged anywhere near the inlet valve.

Mit der Erfindung ist, und zwar schon mit nur bescheiden höherem Aufwand, auch für die Kaltstartphase ein wesentlich vorteilhafteres Ergebnis zu erreichen als es eine an sich bekannte Kraftstoff-Einspritzdüse, die für Ultraschall-Kraftstoffzerstäubung ausgebildet ist, verspricht. Es ist nämlich festgestellt worden, daß bei intermittierender, zylinderselektiver Einspritzung für wirklich quantitative Kraftstoffzerstäubung durch Ultraschall auch derart hohe Ultraschallenergie erforderlich wäre, wie sie in der Praxis zumindest mit Rücksicht auf die konstruktive Größe einer Einspritzdüse überhaupt nicht bereitgestellt werden kann.With the invention, even with only a modestly higher effort, it is also possible to achieve a much more advantageous result for the cold start phase than a fuel injection nozzle known per se, which is designed for ultrasonic fuel atomization, promises. It has been found that with intermittent, cylinder-selective injection for truly quantitative fuel atomization by ultrasound, such high ultrasound energy would be required as cannot be provided in practice at least with regard to the structural size of an injection nozzle.

Eine erfindungsgemäße Einspritzdüse ist so ausgelegt, daß sie einen schnell ansprechenden und schnell arbeitenden Antrieb für das Öffnen und Schließen der Düsenöffnung besitzt. Es kann im Einzelfall von Vorteil sein, und zwar insbesondere für optimales Erfüllen der Bedingungen im Leerlaufbetrieb, wenn die erfindungsgemäße Einspritzdüse eine solche mit proportionalem Antrieb bzw. proportionaler Einstellbarkeit der Düsenöffnung ist. Damit lassen sich nämlich leicht solche Zwischenwerte des Öffnungsgrades der Einspritzdüse definiert einstellen, mit denen eine genaue Zumessung der gerade im Leerlaufbetrieb in Betracht kommenden sehr geringen Einspritzmengen pro Einspritzvorgang einhalten.An injection nozzle according to the invention is designed so that it has a fast responding and fast working drive for opening and closing the nozzle opening. It can be advantageous in individual cases, in particular for optimally fulfilling the conditions in idle mode, if the injection nozzle according to the invention is one with proportional drive or proportional adjustability of the nozzle opening. It is thus easy to set such intermediate values of the degree of opening of the injection nozzle, with which an exact metering of the very small injection quantities that come into consideration, especially in idle mode, can be maintained per injection process.

Im praktischen Einsatz liegt die Betriebs-Folgefrequenz, z.B. für einen Vier-Zylinder- bzw. Sechs-Zylinder-Motor und damit die Folgefrequenz für das Öffnen (t₁) und Schließen (t₂) des Ventilanteils der Einspritzdüse bei etwa 5 Hz bis 50 Hz. Entsprechend steile Anstiegs- und Abfallflanken des Öffnens und Schließens einer erfindungsgemäßen Einspritzdüse liegen bei einer Frequenz von erheblich oberhalb 1 kHz (mit entsprechender Periodendauer T) als obere Grenze des Fourierspektrums des Impulses des Öffnens und Schließens.The operational repetition frequency is in practical use, e.g. for a four-cylinder or six-cylinder engine and thus the repetition frequency for opening (t₁) and closing (t₂) the valve portion of the injector at about 5 Hz to 50 Hz. Correspondingly steep rising and falling edges of opening and closing of an injection nozzle according to the invention are at a frequency of considerably above 1 kHz (with a corresponding period T) as the upper limit of the Fourier spectrum of the opening and closing impulse.

Die Anforderungen an eine erfindungsgemäße Einspritzdüse seien anhand der nachfolgenden, beispielhaften Betriebswerte für einen Mittelklasse-Personenwagen angegeben:
   Der Treibstoffdurchsatz bei Daueröffnung der Einspritzdüse (in der Ansaugphase) beträgt ca. 6 g/s pro Zylinder. Dies entspricht nahezu Voll-Lastbetrieb.
The requirements for an injection nozzle according to the invention are given on the basis of the following exemplary operating values for a medium-sized passenger car:
The fuel throughput when the injector is continuously open (in the intake phase) is approx. 6 g / s per cylinder. This corresponds to almost full load operation.

Der Leerlaufdurchsatz eines solchen Motors beträgt etwa 0,4 mg/s pro Zylinder. Ersichtlich ergibt sich daraus ein zu bewältigender Dynamikbereich von vier Größenordnungen.The idle flow rate of such an engine is about 0.4 mg / s per cylinder. This clearly results in a dynamic range of four orders of magnitude to be managed.

Besondere Ausführungsformen einer erfindungsgemäßen Einspritzdüse sind dadurch gekennzeichnet, daß die an sich dem Öffnen und Schließen der (auch als Ventil ausgebildeten) Einspritzdüse dienende Ventilnadel und/oder der Öffnungsquerschnitt der Düse in Hubbewegungen zu versetzen sind. In Abhängigkeit von der elektrisch einstellbaren Hub-Periode kann der Strahlquerschnitt, d.h. die Strahlform z.B. vom Fadenstrahl bis zum Kegelstrahl mit verschiedenen Öffnungswinkeln variiert werden. Zur Verdeutlichung dient die beigefügte Figur 1, die ein Zeit/Anregungs-bzw. Öffnungsdiagramm einer erfindungsgemäßen Einspritzdüse zeigt. Die erfindungsgemäße Einspritzdüse ist aufgrund des oben erwähnten schnellen Ansprechens ihrer Teile, insbesondere bei proportionalem Antrieb, in der Lage mit ihren Hubbewegungen periodisch den mechanischen Bewegungen der elektrischen Anregung zu folgen. Die in der Figur 1 gezeigte Modulation bezieht sich auf eine Ausführungsform nach Figur 2 bzw. 3. Die Anregungsfrequenzen für diese Hubbewegung liegen optimal im Bereich von 5 KHz bis 20 KHz, also weit unterhalb von Ultraschall-Zerstäuberfrequenzen. Diese Bemessung gilt sowohl für Einspritzdüsen bzw. -ventile in Niederdrucksystemen (ca. 3bar) als auch für solche mit üblichem Durchmesser (0,3 bis 1 mm) der Düse.Particular embodiments of an injection nozzle according to the invention are characterized in that the opening and closing of the injection nozzle (which is also designed as a valve) Serving valve needle and / or the opening cross section of the nozzle are to be set in lifting movements. Depending on the electrically adjustable stroke period, the beam cross section, ie the beam shape, for example from the thread jet to the cone jet, can be varied with different opening angles. The attached FIG. 1, which shows a time / excitation or. Opening diagram of an injection nozzle according to the invention shows. The injection nozzle according to the invention is able to periodically follow the mechanical movements of the electrical excitation with its stroke movements due to the above-mentioned rapid response of its parts, in particular with proportional drive. The modulation shown in FIG. 1 relates to an embodiment according to FIGS. 2 and 3. The excitation frequencies for this stroke movement are optimally in the range from 5 KHz to 20 KHz, that is to say far below ultrasonic atomizing frequencies. This dimensioning applies both to injection nozzles and valves in low-pressure systems (approx. 3 bar) and to those with the usual diameter (0.3 to 1 mm) of the nozzle.

Figur 2 zeigt einen prinzipiellen Aufbau einer erfindungsgemäßen Einspritzdüse 10 mit überlagerter, rasch wechselnder Hubbewegung der Düsennadel.Figure 2 shows a basic structure of an injection nozzle 10 according to the invention with a superimposed, rapidly changing stroke movement of the nozzle needle.

Figur 3 zeigt eine entsprechende Ausführungsform mit Hubbewegung des (Ventil-)Sitzes der Einspritzdüse 20.FIG. 3 shows a corresponding embodiment with a lifting movement of the (valve) seat of the injection nozzle 20.

Die Figuren 4 und 5 zeigen in Seiten- und in Frontansicht eine Ausführungsform 40 mit einer Vorrichtung zum Modulieren der wirksamen Einspritzöffnung.Figures 4 and 5 show in side and front view an embodiment 40 with a device for modulating the effective injection opening.

Figur 6 zeigt eine piezokeramische Antriebseinrichtung.Figure 6 shows a piezoceramic drive device.

Figur 7 zeigt eine magnetostriktive Antriebseinrichtung undFIG. 7 shows a magnetostrictive drive device and

Figur 8 eine elektrodynamische Antriebseinrichtung für eine erfindungsgemäße Einspritzdüse.8 shows an electrodynamic drive device for an injection nozzle according to the invention.

Figur 9 zeigt eine erfindungsgemäße Einspritzdüse in kompletter Ausführung.FIG. 9 shows a complete configuration of an injection nozzle according to the invention.

In Figur 2 ist mit 11 die Düsennadel bezeichnet, die auch als Ventilnadel wirkt. Sie befindet sich in demjenigen Düsenteil 12, das als Düsenöffnung 13 die dargestellte Bohrung besitzt. Ist die Einspritzdüse geschlossen, so verschließt das vordere Ende der Düsennadel 11 die Düsenöffnung 13. Mit 14 ist auf die steuerbare Beweglichkeit der Düsennadel 11 hingewiesen. Im geöffneten Zustand der Einspritzdüse strömt mit 15 angedeuteter Kraftstoff entlang der Düsennadel 11 und innerhalb des Düsenteils 12 zur Düsenöffnung 13, um einen die dargestellte Charakteristik 15 aufweisenden Einspritzstrahl mit Kegelform zu bilden. Diese Strahlform 15 ergibt sich dadurch, daß der in Öffnungsposition befindlichen Düsennadel 11 die mit 14 angedeutete zusätzliche wechselnde Hubbewegung überlagert ist. Mit 16 ist auf die bereits oben angesprochene (hier sogar noch verkürzt dargestellte) Wegstrecke hingewiesen, innerhalb der, ausgehend von der Düsenöffnung 13, der ausgespritzte Kegelstrahl noch keine wesentliche Zerteilung in Tröpfchen aufweist. Dies zeigt im übrigen deutlich den Unterschied zu Ultraschall-Kraftstoffzerstäubung, bei der die Tröpfchen am schwingenden Teil entstehen und von diesem ausgehen.In Figure 2, 11 denotes the nozzle needle, which also acts as a valve needle. It is located in the nozzle part 12 which has the bore shown as the nozzle opening 13. If the injection nozzle is closed, the front end of the nozzle needle 11 closes the nozzle opening 13. 14 indicates the controllable mobility of the nozzle needle 11. In the opened state of the injection nozzle, fuel indicated at 15 flows along the nozzle needle 11 and within the nozzle part 12 to the nozzle opening 13 in order to form an injection jet with the conical shape having the characteristic 15 shown. This jet shape 15 results from the fact that the nozzle needle 11 in the open position is superimposed on the additional alternating stroke movement indicated by 14. At 16, reference is made to the path already mentioned above (even shown in an abbreviated form here), within which, starting from the nozzle opening 13, the sprayed-out cone jet does not yet have a substantial division into droplets. Incidentally, this clearly shows the difference to ultrasonic fuel atomization, in which the droplets form on the vibrating part and emanate from it.

Bezüglich der Figur 3 kann weitgehend auf zur Figur 2 beschriebene Einzelheiten verwiesen werden. Zur Figur 2 bereits beschriebene Bezugszeichen haben in Figur 3 gleiche oder wenigstens sinngemäße Bedeutung. Für die Ausführungsform nach Figur 3 ist wechselnde Hubbewegung für das Düsenteil 12 mit der Düsenöffnung 13 vorgesehen. Für eine Ausführungsform nach Figur 3 ergibt sich eine Strahlform, die im wesentlichen derjenigen der Ausführungsform nach Figur 2 entspricht.With regard to FIG. 3, reference can largely be made to the details described for FIG. 2. Reference symbols already described for FIG. 2 have the same or at least meaningful meaning in FIG. 3. For the embodiment according to FIG. 3, alternating stroke movement is provided for the nozzle part 12 with the nozzle opening 13. For an embodiment according to FIG. 3 there is a beam shape which essentially corresponds to that of the embodiment according to FIG. 2.

Die Figuren 4 und 5 zeigen eine im Bereich der Düsenöffnung 13 am Düsenteil 12 angebrachte Zusatzeinrichtung. Die Figur 5 zeigt eine zur Figur 4 gehörende stirnseitige Ansicht, d.h. eine Ansicht entgegen dem ausgespritzten Strahl. Diese zusätzliche Einrichtung 51 der eigentlichen Einspritzdüse der Figuren 4 und 5 bestehen aus z.B. vier stabförmigen Fortsetzungen 151, die jede für sich zu Hubbewegungen anzuregen sind. Diese Hubbewegungen sind mit den einzelnen Pfeilen 54 angedeutet. Diese Hubbewegungen 54 sind Biegebewegungen der Teile 151. Diese Teile 151 bilden Längsführungen für den aus der Düsenöffnung 13 austretenden Kraftstoffstrahl 45. Die zu dessen Strahlrichtung transversalen wechselnden Hubbewegungen 54 führen zur einer wie mit 55 dargestellten Strahlform.FIGS. 4 and 5 show an additional device attached to the nozzle part 12 in the region of the nozzle opening 13. FIG. 5 shows an end view belonging to FIG. 4, ie a view against the sprayed jet. This additional device 51 of the actual injection nozzle of FIGS. 4 and 5 consist of, for example, four rod-shaped extensions 151, each of which are to be excited to perform lifting movements. These lifting movements are indicated by the individual arrows 54. These stroke movements 54 are bending movements of the parts 151. These parts 151 form longitudinal guides for the fuel jet 45 emerging from the nozzle opening 13. The alternating stroke movements 54, which are transverse to its jet direction, lead to a jet shape as shown at 55.

Das Antriebselement 6 nach Figur 6 besteht aus einem Stapel piezoelektrisch anregbarer Scheiben 61. Diese Scheiben sind mit nicht dargestellten flächigen Elektroden versehen. Solche Stapel sind an sich prinzipiell bekannt und sie werden auch im vorliegenden Falle mit gesteuerter elektrischer Spannung gespeist. Insbesondere erfolgt Speisung mit Wechselspannung, und zwar vorzugsweise mit einer solchen mit einer derartigen Frequenz, die zu Resonanzschwingungsbewegungen der Hubbewegung 114 des Stapels bzw. des Antriebes 6 führt.The drive element 6 according to FIG. 6 consists of a stack of piezoelectrically excitable disks 61. These disks are provided with flat electrodes, not shown. Such stacks are known in principle and are also supplied with controlled electrical voltage in the present case. In particular, AC voltage is supplied, preferably with such a frequency that leads to resonant oscillatory movements of the lifting movement 114 of the stack or of the drive 6.

Die Figur 7 zeigt eine magnetostriktive Ausführungsform 7 eines Antriebes. Mit 71 ist ein zu Magnetostriktions-Bewegungen anregbarer Stab bezeichnet, der sich im Inneren einer Magnetfeldspule 72 befindet. Diese Magnetfeldspule 72 wird mit elektrischer Spannung gespeist, und zwar vorzugsweise wiederum mit einer Frequenz, die zu Resonanz mit einer Eigenschwingung des Stabes 71 führt, die zu entsprechend großer Hubamplitude der Hubbewegung 114 führt.FIG. 7 shows a magnetostrictive embodiment 7 of a drive. 71 denotes a rod which can be excited to magnetostriction movements and which is located inside a magnetic field coil 72. This magnetic field coil 72 is supplied with electrical voltage, preferably again at a frequency which leads to resonance with a natural oscillation of the rod 71, which leads to a correspondingly large stroke amplitude of the stroke movement 114.

In Figur 8 ist ein Antrieb 8 mit Tauchspule 81 und Topfmagnet 82 dargestellt, wie er prinzipiell von Lautsprechern her bekannt ist. Eine solche Einrichtung führt bei entsprechender elektrischer Wechselanregung zu mechanischen Hubbewegungen 114. Es kann auch hier Resonanzanregung bewirkt werden.FIG. 8 shows a drive 8 with plunger coil 81 and pot magnet 82, as is known in principle from loudspeakers. With a corresponding electrical alternating excitation, such a device leads to mechanical stroke movements 114. Resonance excitation can also be effected here.

Figur 9 zeigt ein Beispiel einer erfindungsgemäßen Einspritzdüse. Zu den vorangehend beschriebenen Figuren angegebene Einzelheiten haben in Figur 9 dieselbe Bedeutung.FIG. 9 shows an example of an injection nozzle according to the invention. The details given for the figures described above have the same meaning in FIG. 9.

Mit 91 ist ein Aktuator, beispielsweise ein Stapel aus piezoelektrischen Platten bestehend, bezeichnet. Durch Anlegen elektrischer Spannung zwischen den Anschlüssen 92 und 93 ändert dieser Aktuator seine Länge und treibt damit den Stößel 94 und die mit dem Stößel 94 verbundene Düsennadel 11 an. Der Aktuator 91 dient zum Öffnen und Schließen des Ventils durch Bewegung der Ventilnadel 11. Mit 95 ist die Zuflußöffnung der Einspritzdüse für den Kraftstoff bezeichnet.91 denotes an actuator, for example a stack consisting of piezoelectric plates. By applying electrical voltage between the connections 92 and 93, this actuator changes its length and thus drives the plunger 94 and the nozzle needle 11 connected to the plunger 94. The actuator 91 is used to open and close the valve by moving the valve needle 11. The inflow opening of the injection nozzle for the fuel is designated by 95.

Mit 96 ist zusammengenommen die Antriebseinrichtung für die erfindungsgemäß auszuführende Wechsel-Hubbewegung bezeichnet. Diese Antriebseinrichtung umfaßt bei diesem Beispiel mehrere Stapel 97 mit den elektrischen Anschlußleitungen 98 und 99. Zwischen die Anschlüsse 98 und 99 ist die Antriebs-Wechselspannung für diese Hubbewegung anzulegen. Bei (wechselnder) Längenänderung der Plattenstapel 97 infolge des piezoelektrischen Effekts ergibt sich entsprechende Längenänderung des Gehäuses 100 der Antriebseinrichtung 96. Da, wie aus der Figur ersichtlich, das äußere Gehäuse 12 der Einspritzdüse (abgedichtet) geteilt ist, führt dieses Düsenteil 12 durch das Arbeiten des Antriebs 96 die erfindungsgemäßen Wechsel-Hubbewegungen aus, und zwar gegenüber der bei diesem Beispiel in geöffentem Zustand stillstehenden Düsennadel. Dies entspricht der schon oben im Zusammenhang mit der Figur 3 beschriebenen Ausführungsvariante der Erfindung.The drive device for the alternating lifting movement to be carried out according to the invention is designated by 96. In this example, this drive device comprises a plurality of stacks 97 with the electrical connecting lines 98 and 99. Between the connections 98 and 99, the AC drive voltage for this lifting movement is to be applied. With a (changing) change in length of the plate stack 97 as a result of the piezoelectric effect, there is a corresponding change in length of the housing 100 of the drive device 96. As can be seen from the figure, the outer housing 12 of the injection nozzle (sealed) is divided, this nozzle part 12 guides through the work of the drive 96 perform the alternating stroke movements according to the invention, specifically compared to the nozzle needle which is stationary in this example in the open state. This corresponds to the embodiment variant of the invention already described above in connection with FIG. 3.

Claims (11)

  1. Fuel injection nozzle or combustion engines, preferably for low-pressure injection, having
    - a nozzle bore (13) arranged in a nozzle part (12),
    - a nozzle needle (11),
    - a drive (91) having an electrical input variable (92,93) by means of which the nozzle needle (11) can be moved into a closing position, in which it closes the nozzle bore (13), and into an open position, in which it frees the nozzle bore (13), and
    - means (96) by which, during the open position of the nozzle needle (11), an alternating stroke movement can be imparted to at least a part (11, 12, 51) of the injection nozzle which is situated in the region of the formation (15, 25, 55) of the injection jet, these means (96) being excitable by an electrical input variable and being designed structurally in such a way that the period (T) for the alternation of the stroke movement is many times smaller than the predetermined minimum opening time (toff - ton) of the injection nozzle,
    characterised in that
    - the means (96) for exciting the alternating stroke movement of the said part (11, 12, 55), of which there is at least one, of the injection nozzle impart stroke movements with a period (T) which corresponds to an excitation frequency of between 5 kHZ and 20 kHZ, and
    - the opening angle of the injection jet of the injection nozzle can be altered by control of the electrical input variable of the means (96) for the alternating stroke movement.
  2. Injection nozzle according to Claim 1, characterised in that, to excite the alternating stroke movement (14, 24), alternating voltage (U) can be applied in addition to the electrical actuating voltage (Uon/off) to be applied for opening the nozzle.
  3. Injection nozzle according to Claim 1 or 2, characterised in that the means for executing the alternating stroke movement (114, 14, 24, 54) form a resonant system.
  4. Injection nozzle according to any of Claims 1 to 3, characterised in that the means for exciting the alternating stroke movement (114, 14, 24, 54) are designed in such a way that the nozzle needle (11) executes these alternating stroke movements (14, 24, 54, 114). (Fig. 2)
  5. Injection nozzle according to any of Claims 1 to 3, characterised in that the means for exciting the alternating stroke movement (114, 14, 24, 54) are designed in such a way that a portion of the nozzle bore (12, 13) executes this alternating stroke movement. (Fig. 3)
  6. Injection nozzle according to any of Claims 1 to 5, characterised in that longitudinal alternating stroke movement (14, 24) is provided.
  7. Injection nozzle according to any of Claims 1 to 5, characterised in that transverse alternating stroke movement (54) is provided.
  8. Injection nozzle according to any of Claims 1 to 7, characterised in that the means for exciting the alternating stroke movement comprise a piezoelectric excitation device (6).
  9. Injection nozzle according to any of Claims 1 to 7, characterised in that the means for exciting the alternating stroke movement comprise an electrodynamic device (8) with a homogeneous magnetic field.
  10. Injection nozzle according to any of Claims 1 to 7, characterised in that these means for exciting the alternating stroke movement comprise a magnetostrictive device (7).
  11. Injection nozzle according to any of Claims 1 to 7, characterised in that these means for exciting the alternating stroke movement comprise an electromagnetic device (7, 8).
EP89910599A 1988-09-29 1989-09-28 Fuel injection nozzle with controllable fuel jet characteristic Expired - Lifetime EP0436586B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3833093 1988-09-29
DE3833093A DE3833093A1 (en) 1988-09-29 1988-09-29 FUEL INJECTOR PROVIDED FOR INTERNAL COMBUSTION ENGINE WITH CONTROLLABLE CHARACTERISTICS OF THE FUEL JET

Publications (2)

Publication Number Publication Date
EP0436586A1 EP0436586A1 (en) 1991-07-17
EP0436586B1 true EP0436586B1 (en) 1992-12-02

Family

ID=6363986

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89117969A Expired - Lifetime EP0361480B1 (en) 1988-09-29 1989-09-28 Fuel injection nozzle for an internal-combustion engine with a controllable fuel-spray characteristic
EP89910599A Expired - Lifetime EP0436586B1 (en) 1988-09-29 1989-09-28 Fuel injection nozzle with controllable fuel jet characteristic

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP89117969A Expired - Lifetime EP0361480B1 (en) 1988-09-29 1989-09-28 Fuel injection nozzle for an internal-combustion engine with a controllable fuel-spray characteristic

Country Status (6)

Country Link
US (1) US5199641A (en)
EP (2) EP0361480B1 (en)
JP (1) JPH04501153A (en)
DE (2) DE3833093A1 (en)
ES (2) ES2031331T3 (en)
WO (1) WO1990003512A1 (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248087A (en) * 1992-05-08 1993-09-28 Dressler John L Liquid droplet generator
DE4340016A1 (en) * 1993-11-24 1995-06-01 Bosch Gmbh Robert Electromagnetically actuated fuel injector
DE4409848A1 (en) * 1994-03-22 1995-10-19 Siemens Ag Device for metering and atomizing fluids
US5636788A (en) * 1994-04-01 1997-06-10 City Of Hope Micro-volume fluid injector
JPH0893601A (en) * 1994-09-22 1996-04-09 Zexel Corp Fuel injection nozzle
FR2726603B1 (en) * 1994-11-09 1996-12-13 Snecma DEVICE FOR ACTIVE CONTROL OF THE COMBUSTION AND DECOKEFACTION INSTABILITIES OF A FUEL INJECTOR
US5836521A (en) * 1995-03-09 1998-11-17 Dysekompagniet I/S Valve device with impact member and solenoid for atomizing a liquid
US5788154A (en) * 1996-05-02 1998-08-04 Caterpillar Inc. Method of preventing cavitation in a fuel injector having a solenoid actuated control valve
JP3823391B2 (en) * 1996-08-31 2006-09-20 いすゞ自動車株式会社 Engine fuel injector
SE507519C2 (en) * 1996-10-16 1998-06-15 Mydata Automation Ab Device for applying a viscous medium to a substrate
US5855323A (en) * 1996-11-13 1999-01-05 Sandia Corporation Method and apparatus for jetting, manufacturing and attaching uniform solder balls
JP3404241B2 (en) * 1997-02-05 2003-05-06 明治製菓株式会社 Automatic spraying equipment for oily confectionery raw materials
US7320457B2 (en) * 1997-02-07 2008-01-22 Sri International Electroactive polymer devices for controlling fluid flow
FR2762648B1 (en) * 1997-04-25 1999-06-04 Renault FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINE
DE19802302A1 (en) 1998-01-22 1999-07-29 Bosch Gmbh Robert Piezoelectric actuator used e.g. for a fuel injection valve, a hydraulic valve, a micro-pump or an electrical relay
DE19921489A1 (en) * 1999-05-08 2000-11-09 Bosch Gmbh Robert Fuel injector
US7537197B2 (en) * 1999-07-20 2009-05-26 Sri International Electroactive polymer devices for controlling fluid flow
DE19936945A1 (en) * 1999-08-05 2001-02-08 Bosch Gmbh Robert Method for metering fuel and fuel injection systems
DE19946841A1 (en) * 1999-09-30 2001-05-03 Bosch Gmbh Robert Valve for controlling liquids
US6836056B2 (en) 2000-02-04 2004-12-28 Viking Technologies, L.C. Linear motor having piezo actuators
AU2001243481A1 (en) 2000-03-07 2001-09-17 Viking Technologies, Inc. Method and system for automatically tuning a stringed instrument
US6548938B2 (en) * 2000-04-18 2003-04-15 Viking Technologies, L.C. Apparatus having a pair of opposing surfaces driven by a piezoelectric actuator
US6717332B2 (en) 2000-04-18 2004-04-06 Viking Technologies, L.C. Apparatus having a support structure and actuator
US6363913B1 (en) * 2000-06-09 2002-04-02 Caterpillar Inc. Solid state lift for micrometering in a fuel injector
US6879087B2 (en) * 2002-02-06 2005-04-12 Viking Technologies, L.C. Apparatus for moving a pair of opposing surfaces in response to an electrical activation
US6759790B1 (en) 2001-01-29 2004-07-06 Viking Technologies, L.C. Apparatus for moving folded-back arms having a pair of opposing surfaces in response to an electrical activation
DE10145580A1 (en) 2001-09-15 2003-04-17 Bosch Gmbh Robert Method for avoiding spray coking of spray holes in a multi-hole injection valve
DE10153708B4 (en) * 2001-10-31 2004-01-29 Microdrop Gesellschaft für Mikrodosiersysteme mbH microdosing
US6792921B2 (en) * 2001-12-17 2004-09-21 Caterpillar Inc Electronically-controlled fuel injector
WO2004001871A2 (en) * 2002-06-21 2003-12-31 Viking Technologies, L.C. Uni-body piezoelectric motor
DE10248106A1 (en) * 2002-10-15 2004-05-19 Bühler AG Vibrodüsen arrangement
US6811093B2 (en) * 2002-10-17 2004-11-02 Tecumseh Products Company Piezoelectric actuated fuel injectors
JP4500900B2 (en) * 2002-10-24 2010-07-14 小川 秀和 Reduction device and clothing
US6991612B2 (en) * 2003-02-03 2006-01-31 The Seaberg Company, Inc. Orthopedic splints
FR2888889B1 (en) * 2005-07-20 2007-08-31 Renault Sas FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINE
WO2007039677A1 (en) * 2005-10-03 2007-04-12 Renault S.A.S. Device for cyclically vibrating an injector nozzle
US7819335B2 (en) 2006-01-23 2010-10-26 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
US7744015B2 (en) 2006-01-23 2010-06-29 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US7735751B2 (en) 2006-01-23 2010-06-15 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US7424883B2 (en) 2006-01-23 2008-09-16 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US7810743B2 (en) 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US8028930B2 (en) 2006-01-23 2011-10-04 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US7963458B2 (en) 2006-01-23 2011-06-21 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US8191732B2 (en) 2006-01-23 2012-06-05 Kimberly-Clark Worldwide, Inc. Ultrasonic waveguide pump and method of pumping liquid
DE102006012389A1 (en) * 2006-03-17 2007-09-20 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for atomizing a liquid
EP1860317A1 (en) * 2006-05-23 2007-11-28 Keihin Corporation Fuel Injection Device, Fuel Injection Control Device, and Control Method of Fuel Injection Device
JP4535032B2 (en) 2006-07-04 2010-09-01 株式会社デンソー Fuel injection control device
DE102007016626A1 (en) * 2007-04-05 2008-10-16 Continental Automotive Gmbh Injector and method and apparatus for operating the injector
DE102007016725B3 (en) * 2007-04-07 2008-01-17 Dräger Medical AG & Co. KG Electrodynamic drive for metering valve, comprises annular gap arranged between magnetic field source and housing, where moving coil with push rod is axially adjusted in gap, and measuring coil is provided within inference covering
FR2916810B1 (en) * 2007-05-31 2009-08-28 Renault Sas FLUID INJECTION DEVICE
FR2918122B1 (en) * 2007-06-27 2009-08-28 Renault Sas FLUID INJECTION DEVICE.
JP5602626B2 (en) 2007-06-29 2014-10-08 アーティフィシャル マッスル,インク. Electroactive polymer transducer for sensory feedback applications
US20090057438A1 (en) * 2007-08-28 2009-03-05 Advanced Propulsion Technologies, Inc. Ultrasonically activated fuel injector needle
US7533830B1 (en) * 2007-12-28 2009-05-19 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
FR2929656A1 (en) * 2008-04-03 2009-10-09 Renault Sas FLUID INJECTOR, AND METHOD FOR CONTROLLING SUCH INJECTOR
EP2239793A1 (en) 2009-04-11 2010-10-13 Bayer MaterialScience AG Electrically switchable polymer film structure and use thereof
NL1037570C2 (en) * 2009-12-18 2011-06-21 Heinmade B V A device for dispensing a substance.
WO2012118916A2 (en) 2011-03-01 2012-09-07 Bayer Materialscience Ag Automated manufacturing processes for producing deformable polymer devices and films
KR20140019801A (en) 2011-03-22 2014-02-17 바이엘 인텔렉쳐 프로퍼티 게엠베하 Electroactive polymer actuator lenticular system
US20130068200A1 (en) * 2011-09-15 2013-03-21 Paul Reynolds Injector Valve with Miniscule Actuator Displacement
EP2828901B1 (en) 2012-03-21 2017-01-04 Parker Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
KR20150031285A (en) 2012-06-18 2015-03-23 바이엘 인텔렉쳐 프로퍼티 게엠베하 Stretch frame for stretching process
WO2014066576A1 (en) 2012-10-24 2014-05-01 Bayer Intellectual Property Gmbh Polymer diode
US9506429B2 (en) 2013-06-11 2016-11-29 Cummins Inc. System and method for control of fuel injector spray using ultrasonics
US20150315981A1 (en) * 2014-05-02 2015-11-05 General Electric Company Fuel supply system
DE102016125156B4 (en) 2015-12-23 2023-08-10 Volkswagen Aktiengesellschaft Process for cleaning a fuel injection valve using ultrasonic excitation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1947329A1 (en) * 1969-09-18 1971-03-25 Szekessy Istvan Dipl Ing Apparatus for metered subdivision of liquids
GB1344635A (en) * 1970-05-14 1974-01-23 Plessey Co Ltd Transducers
GB1515002A (en) * 1975-03-05 1978-06-21 Plessey Co Ltd Fuel atomizers
CH557698A (en) * 1972-08-23 1975-01-15 Ciba Geigy Ag PROCESS FOR FRACTIONING A LIQUID, DEVICE IMPLEMENTING THIS PROCESS AND APPLICATION OF THIS PROCESS TO THE GRANULATION OF A PRELIMINATED PRODUCT.
US4211199A (en) * 1972-09-29 1980-07-08 Arthur K. Thatcher Computer controlled sonic fuel system
NL7301617A (en) * 1973-02-06 1974-08-08
DE2412490A1 (en) * 1974-03-15 1975-09-25 Kunz Dieter Injection and atomising head for vehicle engines - fuel atomisation is achieved by intersecting fluid streams and regulation is by orifice
DE2449379A1 (en) * 1974-10-17 1976-04-29 Rau Swf Autozubehoer Fuel jet with cleaning sealing needle for oil or gas oven - has direct coupled pole pieces and fits wholly inside oven
GB2012357B (en) * 1978-01-17 1982-03-24 Plessey Co Ltd Low pressure fuel injection system
IT1121343B (en) * 1978-06-24 1986-04-02 Plessey Handel Investment Ag FUEL INJECTOR
DE2904861C3 (en) * 1979-02-09 1981-08-06 Philips Patentverwaltung Gmbh, 2000 Hamburg Piezoelectric liquid atomizer
DE3010178C2 (en) * 1980-03-17 1985-10-03 Kraftwerk Union AG, 4330 Mülheim Slotted nozzle equipped with a quick-acting valve to induce pulsed gas flows
DE3010985A1 (en) * 1980-03-21 1981-10-01 Siemens AG, 1000 Berlin und 8000 München FUEL INJECTION NOZZLE WITH ADDITIONAL FUEL SPRAYING
FR2488655A2 (en) * 1980-08-18 1982-02-19 Rockwell International Corp FUEL INJECTOR EQUIPPED WITH A ULTRA-SOUND VIBRATION RETENTION CHECK, IN PARTICULAR FOR A DIESEL ENGINE
GB2096021B (en) * 1981-03-24 1985-01-23 British Hydromechanics High pressure liquid jetting guns
US4421280A (en) * 1981-09-28 1983-12-20 The Bendix Corporation Fuel injector
US4535743A (en) * 1983-04-15 1985-08-20 Nippon Soken, Inc. Fuel injection apparatus for an internal combustion engine
JPS6022066A (en) * 1983-07-19 1985-02-04 Hitachi Metals Ltd Fuel injector
DE3344229A1 (en) * 1983-12-07 1985-06-20 Pierburg Gmbh & Co Kg, 4040 Neuss ELECTROMAGNETIC FUEL INJECTION VALVE
US4635849A (en) * 1984-05-03 1987-01-13 Nippon Soken, Inc. Piezoelectric low-pressure fuel injector
FR2567238B1 (en) * 1984-07-06 1986-12-26 Sibe SOLENOID VALVE WITH PIEZOELECTRIC EFFECT
JPS6189975A (en) * 1984-10-09 1986-05-08 Diesel Kiki Co Ltd Fuel injection nozzle device for internal-combustion engine
US4726523A (en) * 1984-12-11 1988-02-23 Toa Nenryo Kogyo Kabushiki Kaisha Ultrasonic injection nozzle
DE3501077A1 (en) * 1985-01-15 1986-07-17 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe PULSE VALVE
DE3517257A1 (en) * 1985-05-13 1987-01-15 Vdo Schindling ELECTRICALLY OPERABLE FUEL INJECTION VALVE FOR INTERNAL COMBUSTION ENGINES
DE3533085A1 (en) * 1985-09-17 1987-03-26 Bosch Gmbh Robert METERING VALVE FOR DOSING LIQUIDS OR GASES
DE3533975A1 (en) * 1985-09-24 1987-03-26 Bosch Gmbh Robert METERING VALVE FOR DOSING LIQUIDS OR GASES
JPH065060B2 (en) * 1985-12-25 1994-01-19 株式会社日立製作所 Drive circuit for ultrasonic fuel atomizer for internal combustion engine
JPS63143361A (en) * 1986-12-04 1988-06-15 Aisan Ind Co Ltd Controlling method for injector valve
US4972996A (en) * 1989-10-30 1990-11-27 Siemens-Bendix Automotive Electronics L.P. Dual lift electromagnetic fuel injector

Also Published As

Publication number Publication date
EP0436586A1 (en) 1991-07-17
JPH04501153A (en) 1992-02-27
DE3833093A1 (en) 1990-04-12
US5199641A (en) 1993-04-06
EP0361480A1 (en) 1990-04-04
ES2015816A6 (en) 1990-09-01
DE58902915D1 (en) 1993-01-14
ES2031331T3 (en) 1992-12-01
WO1990003512A1 (en) 1990-04-05
EP0361480B1 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
EP0436586B1 (en) Fuel injection nozzle with controllable fuel jet characteristic
DE60025530T2 (en) FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINE
EP0036617A2 (en) Fuel injector with further fuel atomizing
DE2650415C3 (en) Device for injecting and atomizing fuel
DE3124854C2 (en) High pressure injection system with ultrasonic atomization
EP0681873B1 (en) Device for metering and atomizing fluids
DE3132463A1 (en) ULTRASONIC VALVE FOR A DIESEL OIL INJECTOR
DE3828591C2 (en) Injection valve for internal combustion engines
DE20122813U1 (en) Modular ultrasonic fuel injector with a ceramic valve body
DE2820695A1 (en) FUEL SUPPLY DEVICE WORKING WITH A HOLLOW CYLINDER-SHAPED ULTRASONIC VIBRATING PART
WO2008025728A2 (en) Method for reducing depositions within a spray hole of a fuel injection device
DE2348395A1 (en) SYSTEM FOR INTRODUCING FUEL INTO A CONSUMER FACILITY
DE2701422A1 (en) FUEL INJECTION DEVICE
DE1476168C3 (en) Device for continuous fuel injection into the intake manifold of internal combustion engines
EP1563177B1 (en) Operating method for a hydraulic injection valve comprising a piezoelectric actuator and a control unit
DE3122295A1 (en) ULTRASONIC FUEL INJECTOR FOR DIESEL ENGINES
DE2925108A1 (en) INJECTOR
EP0467072B1 (en) Fuel injection device for air compressing-combustion
DE3614115C2 (en)
DE19516245C2 (en) Method for controlling a multi-phase injection of a direct injection diesel engine
DE3627325A1 (en) ELECTRIC PRESSURE CONVERSION CONTROL DEVICE
DE60104210T2 (en) FUEL INJECTION DEVICE FOR A INTERNAL COMBUSTION ENGINE
WO2001011224A1 (en) Method for metered dispensing of fuel and fuel injection installation
DE2827322A1 (en) IC engine fuel vaporisation system - delivers fuel onto ultrasonic oscillation surface during intervals between excitation periods
DE102015222035B4 (en) Injection valve with piezo direct drive and operating method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19920331

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 58902915

Country of ref document: DE

Date of ref document: 19930114

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19920205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EUG Se: european patent has lapsed

Ref document number: 89910599.3

Effective date: 19940410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970826

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970924

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971120

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980928

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050928