EP0436576B1 - Vorrichtung zum erzeugen eines elektrischen bogens - Google Patents

Vorrichtung zum erzeugen eines elektrischen bogens Download PDF

Info

Publication number
EP0436576B1
EP0436576B1 EP89910405A EP89910405A EP0436576B1 EP 0436576 B1 EP0436576 B1 EP 0436576B1 EP 89910405 A EP89910405 A EP 89910405A EP 89910405 A EP89910405 A EP 89910405A EP 0436576 B1 EP0436576 B1 EP 0436576B1
Authority
EP
European Patent Office
Prior art keywords
arc
electrode
electrodes
power source
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89910405A
Other languages
English (en)
French (fr)
Other versions
EP0436576A4 (en
EP0436576A1 (de
Inventor
Ashley Grant Doolette
Walter Tilman Oppenlander
Subramania Ramakrishnan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Scientific and Industrial Research Organization CSIRO
Snoddis Tesmar Ltd
Original Assignee
Commonwealth Scientific and Industrial Research Organization CSIRO
Snoddis Tesmar Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Scientific and Industrial Research Organization CSIRO, Snoddis Tesmar Ltd filed Critical Commonwealth Scientific and Industrial Research Organization CSIRO
Publication of EP0436576A1 publication Critical patent/EP0436576A1/de
Publication of EP0436576A4 publication Critical patent/EP0436576A4/en
Application granted granted Critical
Publication of EP0436576B1 publication Critical patent/EP0436576B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3452Supplementary electrodes between cathode and anode, e.g. cascade
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid

Definitions

  • This invention is concerned with the generation of electric arcs and is particularly although not exclusively concerned with plasma torches for spraying, arc heaters and arc furnaces.
  • an electric arc is to be understood as an electric discharge in a gaseous medium sustained between spaced electrodes by the passage of relatively large currents and characterised by low voltage drops at the cathode.
  • the properties of the electric arc are influenced by a number of parameters such as the arc current, the fluid dynamics, the containment, the electrode material temperature and shape, the external magnetic fields (if used), and the gas in which the arc burns.
  • patent 3,832,519 (Westinghouse) is directed to an electric arc reactor which has been considered useful in the destruction of hazardous waste at high temperatures.
  • the material to be treated is injected into the region of the electric arc within an arc reactor to increase the resident time of the material in a high-temperature environment.
  • Patent application PCT/AU89/00216 entitled “Electric Arc Reactor” describes a method of injecting material into the core of an electric arc.
  • Effective and broad ranging control of arc power is important in devices such as plasma spraying torches, arc heaters and arc reactors for material treatment to attain high process efficiency and quality.
  • the ability to select any of a variety of methods and location of material feed is also important, but the majority of prior devices only provide for injection of material near the exit of the device and therefore away from a location at which direct interaction with the arc would be possible. If material is fed in such a way that interaction of the material with the electric arc takes place, then a control of the power distribution within the arc region is important. That will also apply when the material is fed further downstream into the arc flame.
  • the main method of control of arc power is achieved by operating the arc at different levels of arc current and/or by changing the composition and the flow rate of the gas in which the arc burns.
  • the main control parameter is the arc length which is effected by moving mechanically one of the electrodes of the arc with respect to the other while maintaining the arc current to be the same.
  • Arc heaters have also been proposed in which arc lengthening is achieved by the use of electrical switches during the start-up of the heater, and an example of such a heater is the well known Tioxide torch.
  • the invention also contemplates an improved method of treating material by controlling the interaction of the material with or influence by an electric arc, and the nature of that method, in its various possible forms, will be apparent from the following description.
  • an electric arc generating device as claimed in claim 1.
  • a device is characterised in that the electric arc can be generated between different electrodes within a group of three or more electrodes.
  • one electrode forms the cathode and there are two or more anodes which are individually controllable electrically as required.
  • the fundamental feature of the invention is the use of three or more electrodes and controlled activation of those electrodes in such a way that the path and the distribution of the electric current flowing from the electric arc to the external power source are varied to control the total arc power and its distribution within the electric arc.
  • gases and material such as powders and liquids
  • gases and material can be fed into the arc or the region of the arc in various ways and at various locations.
  • Such feed may involve directing material laterally into the arc column at a location between the ends of that column, and that can be effected through passageways provided between the electrodes.
  • material may be introduced into the device at either end of the arc, and the direction of introduction can be lateral or axial.
  • the device of Figure 1 includes a core electrode 1 which, by way of example, functions as a cathode and is of generally conical form, and two or more annular ring electrodes 2, 3 and 4, each of which has the potential to function as an anode in the particular example shown.
  • the electrodes 1, 2, 3 and 4 are arranged in substantially coaxial relationship as shown and the ring electrodes 2, 3 and 4 are arranged in axially spaced relationship.
  • the core electrode 1 could be axially spaced from the nearest ring electrode 2, but in the example shown, it intrudes into the ring electrode 2. It is possible that one of the electrodes of the device is a consumable electrode in the form of wire, for example, which is replenished by a suitable electrode-feeding system.
  • Appropriate cooling means can be provided for each of the electrodes 1 to 4.
  • each electrode could be different to that shown in Figure 1.
  • the core electrode 1 could be of rod-like form and contain a cavity as described in patent application PCT/AU89/00216 entitled "Electric Arc Reactor".
  • the disclosure of the specification of that earlier application is to be understood as being imported by cross reference into the present specification.
  • the electrode 1 could be a ring electrode. Any configuration of electrodes which permits changing of the arc path and employment of suitable gas/material flow, could be adopted.
  • An axial feed passage 5 is shown extending through the core electrode 1 of the Figure 1 device. That passage 5 can be used to inject gas and/or other material into and through the central openings 6 of the ring electrodes 2, 3 and 4.
  • the arrow 7 represents feed of gas and/or other material into the passage 5, and the block 8 represents means which may be provided to permit regulation of the rate of flow of gas and/or other material into the passage 5.
  • Feed passages for gas and/or other material may be provided between any two adjacent electrodes 2, 3 and 4, and the arrows 9 represent the feed of material into such passages. Those passages may be additional to, or alternative to, the passage 5, and it will be convenient to hereinafter refer to those passages as lateral feed passages. Gas and/or other material can also be introduced into the device at a location beyond the last ring electrode 4 in the group as is represented by arrows 10. Gas fed into the device at a location before the last ring electrode 4 emerges as a jet from the central opening of that electrode 4.
  • passive spacers may be located between each two adjacent ring electrodes, in which event the aforementioned lateral feed passages may be formed through such spacers.
  • the gas composition to be used with the device may vary according to the use application of the device, but could be argon, nitrogen, air, or any mixture of inert and reactive gases.
  • the material from which the electrodes are made will need to be selected to suit the circumstances of use. Different gases or combinations of gases can be used at each injection or feed introduction point as referred to above.
  • the injection In the case of lateral injection of gas, it is generally preferred that the injection be substantially uniform around the axis of the device and in a direction having a tangential component so as to induce swirl in the gas stream. That swirl characteristic tends to cause the point of attachment between the arc and each electrode to rotate about the relevant surface of the electrode, thereby reducing localised heating and erosion of the electrode.
  • the swirling action also assists in stabilising the arc column and mixing of the injected material and its interaction with the arc.
  • the device may include means whereby an axial magnetic field can be generated so as to assist the rotation of the points of arc attachment to the electrodes.
  • Material to be treated by the device can be of any suitable form.
  • that material can be in the form of wire or the like, solid particles or liquid droplets, and in either case the material can be introduced suspended in a gas stream introduced at any one of the injection points referred to above. Injection into the arc can be achieved in the manner described in the cross referenced patent application PCT/AU89/00216. Furthermore, the type and form of the material can be different at each injection point.
  • control means 12 is provided for controlling individually the current drawn by the electrodes 2, 3 and 4.
  • the control means 12 includes means for controlling the power source 11 and further means for controlling a number of current control elements 13, each of which is connected to a respective one of the ring electrodes 2, 3 and 4.
  • the current control element 13 connected to each ring electrode 2, 3 and 4 can be in the form of passive circuit components such as resistors and inductors, or active power electronic circuit elements such as transistors, or any combination of these elements.
  • control elements 13 connected to the ring electrodes 2, 3 and 4 are controlled in such a way that the current flowing in each of the individual element 2, 3 and 4 is adjusted to yield a desired current distribution and hence a power distribution in the device.
  • the power source 11 may be a constant-current type power source to maintain the required overall current through the device, or the source may be suitably controlled to give an optimum overall power.
  • the ring electrodes 2, 3 and 4 may be operated as cathodes or anodes of the electric arc by connecting them to either the negative or the positive terminal of the power source 11.
  • FIG 2 shows, in diagrammatic form, the consequences of the control system shown in Figure 1.
  • an arc 14 may be generated between the electrodes 1 and 2, and suitable operation of the control means 12 can create a change in the electrical influence on the arc 14 such that its path is shifted.
  • the downstream root 15 of the arc 14 can be caused to shift from the electrode 2 to the electrode 3, and subsequently to the electrode 4 if desired.
  • the extent of the arc path is thereby changed as shown in broken line in Figure 2.
  • control means 12 By suitable operation of the control means 12, it is possible to rapidly change the arc path by producing a series of changes in the arc length, which involves both extension and reduction of that length, and thereby effectively control the power and power density distribution within the electrical arc device. That power distribution may be controlled in terms of space (extent of influence) and/or time (frequency and timing of change). In some circumstances, it may be desired to maintain a predetermined level of power and/or extent of distribution over a period of time, and that can be achieved by causing successive changes in the arc path to compensate for changes in power level and/or distribution which would otherwise occur.
  • Suitable control parameters may be imposed on the control means 12 through a suitable source 16 as shown diagrammatically in Figure 1.
  • Change in arc path need not be controlled solely by electrical influence as described above.
  • the rate of flow of gas and/or material through the device, and particularly through the zone of the arc 14, can have an influence on the extent of the arc. Consequently, variation of that flow rate can be a factor in controlling changes in the arc path.
  • the flow rate can be adjusted by operation of the regulator means 8 ( Figure 1). That same means 8, or similar means, can be used to regulate the flow rate at the material feeds 9 and 10.
  • the change in arc path can be sudden or progressive according to requirements. In the latter case, it may happen that the arc 14 is split, at least temporarily, so as to have two paths.
  • one path of the split arc may extend to the electrode 2 and the other path may extend to the electrode 3. That is, there will be two downstream root attachments 15 which are spaced apart in the axial direction of the device, and a single upstream root attachment 17 ( Figure 2).
  • Figure 3 shows, in diagrammatic form, an arrangement which is a variation of that shown in Figure 1.
  • Components of that variation which correspond to components of the Figure 1 arrangement, will be given like reference numerals, but in the number series 100 to 199.
  • Insulating means 119 is provided between adjacent electrodes in the Figure 3 arrangement, and passages for the material feeds 109 can be provided in some or all of those insulating means 119.
  • the control of the current distribution between the ring electrodes 102, 103, 104 and 118 is achieved by the use of appropriate switching means 113 which can operate at either a slow rate or at a rapid rate in comparison with the thermal times associated with the arc, or the material being treated by the device, so that the arc is kept in a substantially quasi-static condition.
  • Initiation of the arc is effected by applying a suitable trigger voltage between the core electrode 101 and the adjacent ring electrode 102.
  • the electrode 102 is rendered active by connecting that electrode to the power source 111 with the respective switch means 113 in a closed position.
  • the respective switch means 113 connected to each of the other ring electrodes 103, 104 and 118, may be left in a closed or an open position depending on material/gas flow conditions through the device. Immediately after arc initiation, the arc will burn between the core electrode 101 and the ring electrode 102.
  • the arc can be transferred to burn between the core electrode 101 and any one of the other ring electrodes 103, 104 and 118, by closing the respective switch means 113 connected to the required ring electrode and opening the switch means 113 connected to the ring electrode 102.
  • the switch means 113 connected to the ring electrode 104 is closed and the switch means 113 connected to ring electrode 102 is then opened.
  • the direction of gas flow through the device, the electrical conductivity of the hot gas, the voltage of the power source 111 and any overvoltages created by inductances in the system assist the arc transfer to the required ring electrode.
  • the extent of the change in the arc path length may be such that it is necessary to transfer the arc sequentially from an upstream ring electrode to an adjacent downstream electrode so as to guard against extinction of the arc.
  • the arc burning between the core electrode 101 and a ring electrode located in the downstream region of gas flow can be transferred back or retracted to a ring electrode located in a region upstream of the arcing electrode by closing the switch means connected to the new arcing electrode and if necessary, opening the switch means connected to the old, downstream, arcing electrode.
  • the switch means 113 connected to ring electrode 103 is closed; and the switch means 113 connected to ring electrode 104 may be opened or left closed depending upon the gas flow conditions.
  • Additional transfers and consequent extension or retraction of the arc column can be achieved in a device having more than three ring electrodes.
  • the switching between ring electrodes can be achieved in such a sequence as to produce a required current distribution within the arc.
  • the distribution of power released in the arc varies thereby providing a means of controlling the arc power and its other properties such as temperature, pressure, etc.
  • the device can be operated in at least two basic modes of controlled operation.
  • one mode (termed for convenience as the slow mode of operation)
  • the arc can be allowed to burn on any one of the ring electrodes for a duration (of approximately 0.1 second or longer), which is large in comparison with the thermal time constant of the arc, before it is transferred to any other ring electrode.
  • This type of control provides a means to control the power of the arc in the device in a stepwise manner. It is to be understood, however, that the transfer of the arc from one ring electrode to another can be effected extremely rapidly by the use of electronic switching means even under the slow mode of operation.
  • Suitable control of the power source can also be used in conjunction with the transfer of the arc between ring electrodes within the device. The transfer of the arc between electrodes within the device and the control of the power source can be linked to a higher level control to achieve a required power distribution and total power.
  • the second mode of operation (termed for convenience as the fast mode of operation) is effected by transferring the arc between all or only a few of the ring electrodes of the device at a rate rapid enough so that the dwell time of the arc at any particular ring electrode is smaller than the thermal time constant of the arc plasma.
  • the power distribution and the power of the arc can be controlled by varying the dwell time of the arc on any particular ring electrode.
  • dwell time of the arc on a ring electrode implies the duration of current flow from the arc to the ring electrode during one transfer.
  • the arc plasma in the device While operating in the fast mode of operation, the arc plasma in the device is near a quasi-static condition and the average current drawn by the electrodes and hence the average power of the arc are varied by varying the arc dwell times on the different ring electrodes of the device. It is to be understood that the power source can also be controlled in conjunction with the fast operation of the device.
  • the two modes described above represent the two extreme ways of switched operation which are substantially different.
  • the plasma properties temperature, density, flow, speed, viscosity, etc.
  • the advantage of this mode is that altering conditions can be produced if desired which can be of advantage for the injection of powder into the arc, for example.
  • the fast mode essentially produces a quasi steady state of the plasma parameters and their distributions which can be changed by varying the dwell times as described.
  • the device can be operated under a variety of different modes of operation including a mode which makes use of the two basic modes of operation described above.
  • the rate of gas flow through the device is increased to supersonic level so that associated shock fronts or waves are produced.
  • rapid transitions between subsonic and supersonic flow conditions can be achieved by altering the electrical power input by way of a switching technique.
  • shock fronts produced in the foregoing manner could be beneficial in producing thick and dense coatings.
  • Figure 4 shows another embodiment of the invention which may be used to produce hot gas for material treatment or for use in surface treatment such as plasma spraying. Since the device shown in Figure 4 is essentially the same as that shown in Figure 3, the same reference numerals will be used.
  • the device shown in Figure 4 has a number of coaxially arranged ring electrodes 102, 103, 104 and 118 separated from each other by suitable insulators 119.
  • this device uses only one switch means 113 to transfer the current from one ring electrode to the other.
  • This device can be operated in both the slow and fast modes of operation. In the fast mode of operation, the arc is transferred between the two active ring electrodes 102 and 118 at a high frequency and the control of the arc power is effected by varying the ratio of the period during which the switch 113 remains closed to the period during which the switch 113 remains open.
  • a feed-back control system to maintain the arc power at a required value can be built.
  • Other types of feed-back control schemes to suit the application can also be built.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Discharge Heating (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Arc Welding Control (AREA)

Claims (15)

  1. Vorrichtung zum Erzeugen von Entladungsbögen, die eine erste Elektrode (1; 101), zumindest zwei weitere Elektroden (2, 3, 4; 102, 103, 104, 118; 102, 118), eine Versorgungseinrichtung (11; 111) zum Schalten einer Stromquelle zwischen der ersten Elektrode und einer weiteren Elektrode, um zu bewirken, daß ein Bogen (14) zwischen der ersten Elektrode und einer weiteren Elektrode erzeugt wird, und eine Steuereinrichtung (12; 112) umfaßt, die so betrieben werden kann, daß der Weg des Bogens (14) zwischen der ersten Elektrode und den weiteren Elektroden verändert werden kann,
    dadurch gekennzeichnet, daß die versorgungseinrichtung (11; 111) so betrieben werden kann, daß die Stromquelle zwischen die erste Elektrode (1; 101) und eine oder mehrere der weiteren Elektroden (2, 3, 4; 102, 103, 104, 118; 102, 118) geschaltet werden kann, wobei die Steuereinrichtung so arbeitet, daß die Veränderung des Bogenweges eine Reihe von schnellen Veränderungen der Länge des Bogens (14) zur Folge hat, die sowohl Ausdehnungen als auch Verkürzungen der Bogenlänge umfaßt, um dadurch die Energieverteilung innerhalb des Bogenbereichs zu steuern, wobei zumindest einige der Veränderungen der Bogenlänge eine Übertragung des Bogens (14) von einer der weiteren Elektroden zu einer anderen umfassen, und wobei die Steuereinrichtung (12; 112) eine elektrische Einrichtung (13; 113) aufweist, die einen elektrischen Einfluß auf den Bogenweg ausübt, um dadurch zur Erzeugung der Reihe von Veränderungen zumindest beizutragen.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, daß die elektrische Einrichtung das Potential jeder weiteren Elektrode steuert, die Anlagerung eines Fußpunktes (15) des Bogens zu bewirken und dadurch den Bogenweg zu beeinflussen.
  3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß die Steuereinrichtung eine Strömungsregeleinrichtung (8) umfaßt, die so betrieben werden kann, sie daß die Geschwindigkeit regelt mit der Gas und/oder Zufuhrmaterial durch oder über den Bogenbereich strömt und dadurch das Ausmaß des Bogenweges beeinflußt.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die elektrische Einrichtung eine Schalteinrichtung (113) umfaßt, die so arbeitet, daß eine ausgewählte weitere Elektrode von der Stromquelle getrennt wird, oder daß eine ausgewählte weitere Elektrode mit der Stromquelle verbunden wird, um dadurch den Bogenweg zu verändern.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die Steuereinrichtung so betrieben werden kann, daß der einer weiteren Elektrode durch die Stromquelle zugeführte Strom angepaßt werden kann.
  6. Vorrichtung nach Anspruch 5,
    dadurch gekennzeichnet, daß die Steuereinrichtung so betrieben werden kann, daß der jeder weiteren Elektrode durch die Stromquelle zugeführte Strom selektiv variiert werden kann.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß jede weitere Elektrode eine im wesentlichen ringförmige Gestalt aufweist und im wesentlichen koaxial mit jeder anderen weiteren Elektrode angeordnet ist und sich ein Zufuhrdurchgang (6, 5; 106, 105) axial durch die weiteren Elektroden sowie durch die erste Elektrode erstreckt.
  8. Vorrichtung nach Anspruch 7,
    dadurch gekennzeichnet, daß zumindest ein Teil der ersten Elektrode (1; 101) eine konische Gestalt aufweist und der konische Teil in die zentrale Öffnung der benachbarten weiteren Elektrode (2; 102) hineinragt.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß die erste Elektrode eine Kathode und jede weitere Elektrode eine Anode bildet.
  10. Verfahren zum Betrieb einer Vorrichtung zum Erzeugen von Entladungsbögen, die eine erste Elektrode (1; 101) und zumindest zwei weitere Elektroden (2, 3, 4; 102, 103, 104, 118; 102, 118) aufweist, wobei eine Stromquelle mit den Elektroden verbunden ist, um zu bewirken, daß ein Bogen (14) zwischen der ersten Elektrode und einer der weiteren Elektroden erzeugt wird,
    gekennzeichnet durch Schritte zur Steuerung der Energieverteilung innerhalb des Bogens (14) durch Verursachen einer Reihe von schnellen Veränderungen der Länge des Bogens (14), wobei diese Reihe sowohl Ausdehnungen als auch Verkürzungen der Bogenlänge umfaßt, wobei zumindest einige der Veränderungen der Bogenlänge eine Übertragung des Bogens (14) von einer der weiteren Elektroden (2, 3, 4; 102, 103, 104, 118; 102, 118) zu einer anderen umfassen, und wobei die Modifizierung des Einflusses der Stromquelle auf eine oder mehrere der weiteren Elektroden zur Erzeugung der Reihe von Veränderungen zumindest beiträgt.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet, daß die Steuerung eine Regelung der Strömungsgeschwindigkeit des Gases oder Materials durch den Bogenbereich umfaßt.
  12. Verfahren nach Anspruch 10 oder 11,
    dadurch gekennzeichnet, daß die Modifizierung des Einflusses der Stromquelle zumindest zum Teil durch selektives Trennen und Wiederverbinden einer oder mehrerer der weiteren Elektroden von bzw. mit der Stromquelle bewirkt wird, um so zu veranlassen, daß sich die Anlagerung des Bogens von einer schaltbaren Elektrode zu einer anderen bewegt.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet, daß die Zeitdauer jeder Trennung bzw. Wiederverbindung zur Steuerung des Bogenstroms variiert wird.
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet, daß jeder Zeitraum, in dem der Bogen an der schaltbaren Elektrode angelagert bleibt, geringer ist als die Wärmeträgheit des Bogenplasmas oder des zu behandelnden Materials.
  15. Verfahren nach einem der Ansprüche 10 bis 14,
    dadurch gekennzeichnet, daß das Niveau des zumindest einer der schaltbaren Elektroden zugeführten Stroms so gesteuert wird, daß das Ausmaß und die Verteilung des Bogenstroms gesteuert werden kann.
EP89910405A 1988-09-13 1989-09-13 Vorrichtung zum erzeugen eines elektrischen bogens Expired - Lifetime EP0436576B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU388/88 1988-09-13
AUPJ038888 1988-09-13
PCT/AU1989/000396 WO1990003095A1 (en) 1988-09-13 1989-09-13 Electric arc generating device

Publications (3)

Publication Number Publication Date
EP0436576A1 EP0436576A1 (de) 1991-07-17
EP0436576A4 EP0436576A4 (en) 1991-10-16
EP0436576B1 true EP0436576B1 (de) 1996-07-03

Family

ID=3773364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89910405A Expired - Lifetime EP0436576B1 (de) 1988-09-13 1989-09-13 Vorrichtung zum erzeugen eines elektrischen bogens

Country Status (6)

Country Link
EP (1) EP0436576B1 (de)
JP (1) JP2813398B2 (de)
AT (1) ATE140118T1 (de)
CA (1) CA1330831C (de)
DE (1) DE68926787T2 (de)
WO (1) WO1990003095A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210914A1 (de) * 2002-03-04 2003-10-02 Gtv Ges Fuer Thermischen Versc Plasmabrenner und Verfahren zur Erzeugung eines Plasmastrahls

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468110B1 (de) * 1990-07-24 1995-06-28 Institut Elektroniki Imeni U.A. Arifova Akademii Nauk Uzbexkoi Ssr Elektrische Lichtbogenbehandlung von Teilchen
DE4105408C1 (de) * 1991-02-21 1992-09-17 Plasma-Technik Ag, Wohlen, Ch
IT1246682B (it) * 1991-03-04 1994-11-24 Proel Tecnologie Spa Dispositivo a catodo cavo non riscaldato per la generazione dinamica di plasma
US5361768A (en) 1992-06-30 1994-11-08 Cardiovascular Imaging Systems, Inc. Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same
US6996432B2 (en) 1992-06-30 2006-02-07 Scimed Life Systems, Inc. Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same
US5444208A (en) * 1993-03-29 1995-08-22 Fmc Corporation Multiple source plasma generation and injection device
US6114649A (en) * 1999-07-13 2000-09-05 Duran Technologies Inc. Anode electrode for plasmatron structure
DE19963904C2 (de) * 1999-12-31 2001-12-06 Gtv Ges Fuer Thermischen Versc Plasmabrenner und Verfahren zur Erzeugung eines Plasmastrahls
SE523135C2 (sv) 2002-09-17 2004-03-30 Smatri Ab Plasmasprutningsanordning
KR101380793B1 (ko) * 2005-12-21 2014-04-04 슐저메트코(유에스)아이엔씨 하이브리드 플라즈마-콜드 스프레이 방법 및 장치
EP2116112B1 (de) * 2007-02-02 2015-12-30 Plasma Surgical Investments Limited Plasmaspritzeinrichtung und -verfahren
JP5403501B2 (ja) * 2008-06-13 2014-01-29 スタンレー電気株式会社 強誘電体膜の製造方法
US8492979B2 (en) * 2010-03-25 2013-07-23 General Electric Company Plasma generation apparatus
DE102012003306B4 (de) * 2012-02-18 2024-03-21 Amt Ag Vorrichtung zum Plasmabeschichten
CN104203477A (zh) * 2012-02-28 2014-12-10 苏舍美特科(美国)公司 延长的级联等离子枪
CN103997841B (zh) * 2014-05-30 2016-04-27 南京工业大学 手持便携式滑动弧低温等离子体的产生装置
CN103997840B (zh) * 2014-05-30 2016-04-27 南京工业大学 手持便携式滑动弧低温等离子体的产生装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3343019A (en) * 1964-03-06 1967-09-19 Westinghouse Electric Corp High temperature gas arc heater with liquid cooled electrodes and liquid cooled chamber walls
BE789294A (fr) * 1971-11-02 1973-03-26 British Titan Ltd Bobine d'excitation perfectionnee
GB1360659A (en) * 1971-12-09 1974-07-17 British Titan Ltd Heating device
SE364520B (de) * 1972-06-29 1974-02-25 Aga Ab
FR2191394B1 (de) * 1972-07-05 1974-10-25 Aerospatiale

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210914A1 (de) * 2002-03-04 2003-10-02 Gtv Ges Fuer Thermischen Versc Plasmabrenner und Verfahren zur Erzeugung eines Plasmastrahls
DE10210914B4 (de) * 2002-03-04 2005-01-20 GTV-Gesellschaft für thermischen Verschleiss-Schutz mbH Plasmabrenner und Verfahren zur Erzeugung eines Plasmastrahls
DE10210914C5 (de) * 2002-03-04 2009-02-12 GTV-Gesellschaft für thermischen Verschleiss-Schutz mbH Plasmabrenner und Verfahren zur Erzeugung eines Plasmastrahls

Also Published As

Publication number Publication date
WO1990003095A1 (en) 1990-03-22
ATE140118T1 (de) 1996-07-15
DE68926787D1 (de) 1996-08-08
EP0436576A4 (en) 1991-10-16
DE68926787T2 (de) 1997-01-16
JP2813398B2 (ja) 1998-10-22
EP0436576A1 (de) 1991-07-17
CA1330831C (en) 1994-07-19
JPH04500741A (ja) 1992-02-06

Similar Documents

Publication Publication Date Title
US5227603A (en) Electric arc generating device having three electrodes
EP0436576B1 (de) Vorrichtung zum erzeugen eines elektrischen bogens
US4982067A (en) Plasma generating apparatus and method
US5144110A (en) Plasma spray gun and method of use
US4818837A (en) Multiple arc plasma device with continuous gas jet
US20200331012A1 (en) Plasma transfer wire arc thermal spray system
EP0244774B1 (de) Plasma-Sprühverfahren und Apparat zur Durchführung dieses Verfahrens mit einstellbarem tangential-radialem Plasma-Gas-Strömungsverhältnis
EP0427194B1 (de) Mehrfach-Brennervorrichtung zur Plasmaerzeugung und Verfahren zu ihrer Verwendung
CN112024885A (zh) 一种等离子弧喷头及具有其的等离子发生装置和三维打印设备
JP2005539143A (ja) プラズマ溶射装置
US6781087B1 (en) Three-phase plasma generator having adjustable electrodes
CA1230387A (en) Electric arc plasma torch
CA1244526A (en) Multiple arc plasma device with continuous gas jet
US4725447A (en) Method of utilizing a plasma column
USRE32908E (en) Method of utilizing a plasma column
AU620455B2 (en) Electric arc generating device
Landes Plasma generators for thermal plasma processes: Dedicated to Prof. Bernhard Wielage on the occasion of his 65th birthday
EP1258177A1 (de) Dreiphasen-plasmagenerator mit einstellbaren elektroden
Yen et al. A NEW METHOD FOR INJECTION OF PARTICULATE MATTER
KR20050023301A (ko) 나노파우더 합성을 위한 반지름방향 펄스형 아크 방전 건
Harry et al. Multiple Arc Discharges for Metallurgical Reduction or Metal Melting
Petrov et al. New Plasma Equipment for Supersonic Spraying
String Article Title: Multiple Arc Discharges for Metallurgical Reduction or Metal Melting
Safronov et al. POWERFUL ALTERNATING CURRENT PLASMA TORCHES FOR PLASMA TECHNOLOGIES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910306

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19910826

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19930528

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIDDONS RAMSET LIMITED

Owner name: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH OR

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 140118

Country of ref document: AT

Date of ref document: 19960715

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

REF Corresponds to:

Ref document number: 68926787

Country of ref document: DE

Date of ref document: 19960808

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060903

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060907

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060908

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060913

Year of fee payment: 18

Ref country code: CH

Payment date: 20060913

Year of fee payment: 18

Ref country code: GB

Payment date: 20060913

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060921

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060906

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20071121

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070914

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070913

BERE Be: lapsed

Owner name: *SIDDONS RAMSET LTD

Effective date: 20080930

Owner name: *COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH O

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070913

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070913