EP0434707A1 - 6-oxo-9-fluor-prostaglandin-derivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung - Google Patents

6-oxo-9-fluor-prostaglandin-derivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung

Info

Publication number
EP0434707A1
EP0434707A1 EP19890909709 EP89909709A EP0434707A1 EP 0434707 A1 EP0434707 A1 EP 0434707A1 EP 19890909709 EP19890909709 EP 19890909709 EP 89909709 A EP89909709 A EP 89909709A EP 0434707 A1 EP0434707 A1 EP 0434707A1
Authority
EP
European Patent Office
Prior art keywords
group
free
formula
μmol
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19890909709
Other languages
English (en)
French (fr)
Inventor
Ulrich Klar
Helmut VORBRÜGGEN
Claus-Steffen Stürzebecher
Karl-Heinz Thierauch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Pharma AG
Original Assignee
Schering AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schering AG filed Critical Schering AG
Publication of EP0434707A1 publication Critical patent/EP0434707A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof

Definitions

  • the invention relates to new 6-oxo-9-fluoroprostaglandin derivatives, processes for their preparation and their use as medicaments.
  • the compounds of this invention are useful in the therapy of diseases of the cardiovascular system, the stomach, the pancreas, the liver and the kidney. They have a hypotensive and bronchodilatory effect. They are suitable for inhibiting platelet activation. Consequently, the new 6-oxo-9-fluoroprostaglandin derivatives of the formula I are valuable active pharmaceutical ingredients.
  • the invention relates to 6-oxo-9-fluoroprostaglandin derivatives of the formula I.
  • R 1 represents the radical COOR 2 or CONHSO 2 R 2 with R 2 meaning a C 5 -C 6 cycloalkyl or a C 6 -C 12 aryl group or a 5- or 6-membered heterocyclic radical or, if R 1 is COOR 2 , R 2 is a
  • W is a free or functionally modified hydroxymethylene group or a free or functionally modified OH group, the OH group
  • D is a straight-chain or branched-chain alkylene group with 1-5 C atoms or a direct bond
  • E is a -C ⁇ C group, a C 2 -C 4 alkenylene group or a group,
  • R 3 represents a hydrogen atom, a C 1 -C 10 alkenyl, C 3 -C 10 cycloalkyl or an optionally substituted C 6 -C 12 aryl group or a 5- or 6-membered heterocyclic group,
  • R 4 represents a hydrogen atom, a methyl group or a free or functionally modified hydroxy group and, if R 2 has the meaning of a hydrogen atom, the salts thereof with physiologically compatible bases, the ⁇ -, ⁇ - or ⁇ -cyclodextrin clathrates of the compounds of the formula I and also compounds of formula I encapsulated with liposomes
  • alkyl groups R 2 straight or branched chain alkyl groups with 1-10 C atoms are meant, such as methyl, ethyl, propyl, isopropyl, butyl,
  • alkyl groups R 2 can optionally be substituted one to more times by
  • Halogen atoms hydroxyl groups, C 1 -C 4 alkoxy groups, optionally substituted
  • alkyl groups are those which are monosubstituted. Examples of substituents are fluorine, chlorine or bromine atoms, phenyl, dimethylamino, diethylamino, methoxy, ethoxy.
  • Preferred alkyl groups R 2 are those with 1-4 C atoms, such as methyl,
  • Suitable aryl groups R 2 are both substituted and unsubstituted aryl groups, such as phenyl, ⁇ - or ⁇ -naphthyl and diphenyl. These groups can be substituted by 1-3 halogen atoms, a phenyl group, 1-3 alkyl groups each with 1-4 C atoms, a chloromethyl, fluoromethyl, trifluoromethyl, carboxyl, hydroxyl or alkoxy group with 1-4 C atoms his.
  • the substituents in the 3- and 4-position on the phenyl ring are preferred, for example by fluorine, chlorine, alkoxy or trifluoromethyl or in the 4-position by hydroxy.
  • the cycloalkyl groups R 2 can contain 3-10, preferably 5 and 6, carbon atoms in the ring.
  • the rings can be substituted by alkyl groups with 1-4 carbon atoms. Examples include cyclopentyl, cyclohexyl, methylcyclohexyl and adamantyl.
  • Suitable heterocyclic groups R 2 are 5- and 6-membered heterocycles, which preferably contain a heteroatom, preferably nitrogen, oxygen or sulfur.
  • hydroxyl groups R 4 , R 5 and in W can be functionally modified, for example by etherification or esterification, it being possible for the free or modified hydroxyl groups in W and R 5 to be ⁇ - or ⁇ -permanent and free hydroxyl groups are preferred.
  • Suitable ethers and acyl radicals are the radicals known to the person skilled in the art. Easily cleavable ether radicals, such as, for example, the tetrahydropyranyl, tetrahydrofuranyl, methoxymethyl, methoxyethyl, tert-butyldimethylsilyl, tert-butyl-diphenylsilyl, the ⁇ yl-dimethylsilyl and ⁇ -tribenzylsilyl radical, are preferred.
  • Acyl radicals which may be mentioned are, for example, acetyl, propionyl, butyryl and benzoyl.
  • Suitable alkyl groups R 3 are straight-chain and branched-chain, saturated and unsaturated alkyl radicals, preferably saturated, with 1-10, in particular 1-7, carbon atoms, which may optionally be substituted by optionally substituted aryl. Examples include methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, butenyl, isobutenyl, propenyl, pentyl, hexenyl, benzyl and p-chlorobenzyl.
  • the cycloalkyl group R 3 can contain 3-10, preferably 3-6 carbon atoms in the ring.
  • the rings can be substituted by alkyl groups with 1-4 carbon atoms. Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclohexyl and adamantyl.
  • substituted or unsubstituted aryl groups R 3 are phenyl, 1-naphthyl and 2-naphthyl, diphenyl, each of which is represented by 1-3 halogen atoms, a phenyl group, 1-3 alkyl groups each having 1-4 carbon atoms
  • Chloromethyl, fluoromethyl, trifluoromethyl, carboxyl, C 1 -C 4 alkoxy or hydroxy group can be substituted.
  • the substitution in the 3- and 4-position on the phenyl ring is preferred, for example by fluorine, chlorine, C 1 -C 4 -alkoxy or trifluoromethyl or in the 4-position by hydroxy.
  • Suitable heterocyclic groups R 3 are 5- and 6-membered heterocycles which contain at least 1 heteroatom, preferably nitrogen, oxygen or sulfur. Examples include 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl and 4-pyridyl.
  • Suitable alkylene groups D are straight-chain or branched-chain, saturated and unsaturated alkylene radicals, preferably saturated ones with 1-10, in particular 1-5, carbon atoms, which can optionally be substituted by fluorine atoms. Examples include methylene, fluoromethylene, ethylene, 1, 2-propylene, ethylethylene, trimethylene, tetramethylene, pentamethylene, 1-methyltetramethylene and 1-methyl-trimethylene.
  • R 2 H
  • the invention further relates to a process for the preparation of the compounds of formula I, which is characterized in that a compound of formula II
  • X is a or group
  • R 5 is a hydroxyl group and R 1 , R 3 , R 4 , A, W, D and E have the meanings given above and free OH groups in R 4 , R 5 and W are protected with diethylaminosulfur trifluoride [M. Sharma, Tetrahedron Lett. 57j (197%); WJ
  • the reaction of the compounds of general formula II to the compounds of general formula I is carried out with diethylaminosulfur trifluoride at -80 ° C to +40 ° C, preferably at -70 ° C to +20 ° C.
  • diethylaminosulfur trifluoride As a solvent are dichloromethane, 1.1.2-trifluorotrichloroethane, pyridine, toluene, benzene, ethylene chloride and others, but preferably toluene and methylene chloride.
  • the release of the functionally modified hydroxy groups R 4 , R 5 and in W and the oxidation of the released hydroxy group R 5 to the ketone is carried out according to the methods known to the person skilled in the art (DE 370853%).
  • the hydroxyl group in X is oxidized by the processes known to the person skilled in the art. Chromium sulfuric acid, for example, comes as the oxidizing agent
  • reaction is carried out with Jones reagent at -40 ° C to 0 ° C, preferably at -30 ° C to -10 ° C, using the other oxidizing agents, preferably at -10 ° C to +25 ° C.
  • Suitable solvents are methylene chloride, chloroform, ethylene chloride, acetone, pyridine, among others, but preferably methylene chloride and acetone.
  • ether protecting groups in an aqueous solution of an organic acid, e.g. Acetic acid, propionic acid, citric acid u. a. or in an aqueous solution of an inorganic acid, e.g. Hydrochloric acid, or in the case of tetrahydropyranyl ethers using pyridinium p-toluenesulfonate, preferably in alcohols as a solvent or using anhydrous magnesium bromide, preferably in diethyl ether as a solvent.
  • an organic acid e.g. Acetic acid, propionic acid, citric acid u. a.
  • an inorganic acid e.g. Hydrochloric acid
  • tetrahydropyranyl ethers using pyridinium p-toluenesulfonate preferably in alcohols as a solvent or using anhydrous magnesium bromide, preferably in diethyl ether as a solvent.
  • a water-miscible inert solvent is advantageously added when using aqueous-acidic reaction conditions.
  • Alcohols such as methanol and ethanol, ethers such as dimethoxyethane, dioxane and tetrahydrofuran, with tetrahydrofuran preferably being used.
  • the silyether protecting groups are cleaved off, for example, using tetrabutylamm ⁇ nium fluoride. Tetrahydrofurao diethyl ether, dioxane, methylene chloride etc. are suitable as solvents.
  • the cleavage is preferably carried out at temperatures between 20 ° C and 80 ° C.
  • the saponification of the acyl groups and prostaglandin esters is carried out according to the methods known to the person skilled in the art, such as, for example, with basic catalysts such as, for example, with alkali metal or alkaline earth metal carbonates or hydroxides in an alcohol or in the aqueous solution of an alcohol.
  • Aliphatic alcohols such as, for example, methanol, ethanol, butanol, etc. are suitable as alcohols, but preferably methanol.
  • Potassium and sodium salts may be mentioned as alkali carbonates and hydroxides.
  • the potassium salts are preferred.
  • Suitable alkaline earth carbonates and hydroxides are, for example, calcium carbonate, calcium hydroxide and tree carbonate.
  • the reaction is generally carried out at -10 ° C to +70 ° C, but preferably at +25 ° C.
  • ester group CO 2 R 2 for R 1 in which R 2 represents an alkyl group with 1-10 C atoms, takes place according to the methods known to the person skilled in the art.
  • the 1-carboxy compounds (R 2 - H) are reacted, for example, with diazo hydrocarbons in a manner known per se.
  • the esterification with diazo hydrocarbons takes place, for example, by dissolving the diazo hydrocarbon in an inert solvent, preferably in diethyl ether, with the
  • Diazole alkanes are either known or can be prepared by known methods [Org. Reactions Vol. 8, pp. 389-394
  • ester group CO 2 R 2 for R 1 in which R 2 represents a substituted or unsubstituted aryl group, takes place according to the methods known to the person skilled in the art.
  • the 1-carboxy compounds are reacted with the corresponding arylhydroxy compounds with dicyclohe ⁇ ylcarbodiimide in the presence of a suitable base such as pyridine, dimethylaminopyridine, triethylamine, in an inert solvent such as methylene chloride, ethylene chloride, chloroform, ethyl acetate, tetrahydrofuran, but preferably chloroform.
  • a suitable base such as pyridine, dimethylaminopyridine, triethylamine
  • an inert solvent such as methylene chloride, ethylene chloride, chloroform, ethyl acetate, tetrahydrofuran, but preferably chloroform.
  • the reaction is carried out at temperatures between -30 ° C and +50 ° C,
  • the prostaglandin derivatives of the formula I with R 1 in the meaning of a hydrogen atom can be mixed with suitable amounts of the corresponding inorganic bases be converted into salts with neutralization.
  • suitable amounts of the corresponding prostaglandic acids are dissolved in water which contains stoichiometric amounts of the base, the solid inorganic salt is obtained after the water has been evaporated off or after a water-miscible solvent, for example alcohol or acetone, has been added.
  • the amine salts are prepared in a conventional manner.
  • the prostaglandic acid is dissolved in a suitable solvent, e.g. Ethanol, acetone, diethyl ether or benzene and add 1 to 5 equivalents of the respective amine to this solution.
  • a suitable solvent e.g. Ethanol, acetone, diethyl ether or benzene
  • the salt is usually obtained in solid form or is isolated in a conventional manner after evaporation of the solvent.
  • the functional modification of the free hydroxyl groups takes place according to the methods known to the person skilled in the art.
  • To introduce the ether protecting groups for example, with dihydropyran or methyl vinyl ether in methylene chloride or chloroform using catalytic amounts of an acidic condensing agent such as e.g. p-toluenesulfonic acid.
  • the respective enol ether is added in excess, preferably in 1.5 to 10 times the theoretical amount.
  • the reaction normally takes place at -10 ° C to +30 ° C and is complete after 2-30 minutes.
  • the acyl protective groups are introduced by reacting a compound of the formula I in a manner known per se with a carboxylic acid derivative, e.g. Acid chloride, acid anhydride, etc., implemented.
  • a carboxylic acid derivative e.g. Acid chloride, acid anhydride, etc.
  • the new 6-oxo-9-fluor prostaglandin derivatives have the properties typical of this class of compounds, such as lowering peripheral arterial, coronary and pulmonary vascular resistance, lowering pulmonary blood pressure.
  • the new 5-oxo-9-fluor-prostaglandin derivatives are principally suitable for the treatment of stroke, the prophylaxis and therapy of coronary heart diseases, for Examples of coronary thrombosis, for the treatment of myocardial infarction, peripheral arterial diseases, for prophylaxis and therapy for other thromboembolic diseases and for arteriosclerosis, for chemical attacks of the CNS system and other circulatory disorders of the brain, for the treatment of hypertension and for the treatment of diseases associated with Increase in pulmonary vascular resistance such as pulmonary hypertension and for the treatment of shock and asthma. They can also be used to inhibit labor pains and to treat pregnancy toxicosis.
  • the new 6-oxo-9-fluoroprostaglandin derivatives can also be used to improve organ function after transplantation, for example in kidney transplantation, to prevent rejection reactions, instead of heparin or as an adjuvant in dialysis or hemofiltration and in the preservation of preserved blood plasma, for example preserved blood platelets.
  • the new 6-oxo-9-fluor prostaglandin derivatives have an antimetastatic effect and antiproliferative properties.
  • 6-oxo-9-fluoroprostaglandin derivatives of this invention can also be used in combination, e.g. with ß-blockers, diuretics, phosphodiesterase inhibitors, Ca antagonists, nothing teroidal anti-inflammatories, leukotriene synthetase inhibitors, leukotriene antagonists, thrombo-kinesan synthetase inhibitors or thrombo-kan antagonists.
  • the dose of the compounds is 1-1000 ⁇ g / kg / day when administered to the human patient.
  • the unit dose for the pharmaceutically acceptable carrier is 10 ⁇ g to 100 ⁇ g.
  • Sterile, injectable aqueous or oily solutions are used for parenteral administration.
  • Tablets, coated tablets or capsules, for example, are suitable for oral administration.
  • the invention thus also relates to medicaments based on the compounds of the formula I and customary auxiliaries and excipients, including cyclodextrin lactate and encapsulation with liposomes.
  • the active compounds according to the invention are to be used in conjunction with the auxiliaries known and customary in galenics, for example for the production of hypotensive agents, platelet aggregation inhibitors or cytoprotectants.
  • auxiliaries known and customary in galenics, for example for the production of hypotensive agents, platelet aggregation inhibitors or cytoprotectants.
  • Example 1a 45 mg (81.7 ⁇ mol) of the compound shown in Example 1a were mixed with 2 ml of a glacial acetic acid: water: tetrahydrofuran (65:35: 10) mixture and the mixture was stirred at 23 ° C. for 15 hours. The mixture was concentrated in a water jet vacuum and residual acetic acid was removed azeotropically by repeated addition of toluene. The crude oil obtained was purified by chromatography on an analytical thin-layer plate. A mixture of dichloromethane and methanol was used as the eluent, and a mixture of chloroform and isopropanol as the eluent. 23 mg (60 ⁇ mol, 73%) of the title compound were isolated as a colorless oil.
  • Example 1b 48 mg (85 ⁇ mol) of the compound shown in Example 1b was dissolved in 1.4 ml of methanol, mixed with 0.5 ml of an aqueous potassium hydroxide solution and stirred at 23 ° C. for 2.5 hours.
  • the methanol was removed in a water jet vacuum, diluted with a little water, acidified with saturated citric acid and extracted several times with a total of 15 ml of chloroform.
  • the organic phase was washed with H 2 O, dried over magnesium sulfate and isolated after filtration and removal of the solvent in a water jet vacuum 45 mg (82 ⁇ mol, 96%) of the title compound as a colorless oil.
  • Example 1c 280 mg (498 ⁇ mol) of the compound shown in Example 1c was dissolved in 8.5 ml of anhydrous toluene, 395 ⁇ l of anhydrous pyridine were added, the mixture was cooled to -70 ° C. under an atmosphere of dry argon and 297 ⁇ l of diethylaminosulfur trifluoride were added. The mixture was allowed to warm slowly to 20 ° C., mixed with a few drops of a saturated sodium bicarbonate solution, diluted with water and extracted several times with dichloromethane. After drying over magnesium sulfate, filtration and concentration in a water jet vacuum, the residue was purified by chromatography on about 30 ml of fine silica gel under pressure.
  • the mixture was diluted with 100 ml of ethyl acetate, washed several times with water, dried over magnesium sulfate and, after filtration and removal of the solvent, 5.1 g of a yellow oil were isolated.
  • the residue was placed on a silica gel column and eluted after a two-hour residence time with a mixture of dichloromethane / ace volume. 4.28 g (7.6 mmol, 81%) of the title compound were isolated as a colorless oil.
  • Example 2a 48 mg (90 ⁇ mol) of the compound shown in Example 2a were reacted analogously to Example 1 and, after working up and chromatographic purification, 25 mg (65 ⁇ mol, 72%) of the title compound were isolated as a colorless oil.
  • Example 2e 550 mg (811 ⁇ mol) of the compound shown in Example 2e were reacted analogously to Example 1b and, after workup and chromatographic purification, 330 mg (485 ⁇ mol, 60%) of the title compound were isolated as a colorless oil.
  • Example 2j 1.32 g (1.99 mmol) of the compound shown in Example 2j was dissolved in a mixture of 16 ml of anhydrous methanol and 5 ml of anhydrous dichloromethane, cooled to -40 ° C. under an atmosphere of dry argon and a total of 455 was added in portions mg sodium borohydride. The mixture was left to react at -40 ° C. for 1 hour, mixed with 740 ⁇ l of glacial acetic acid and concentrated in a water jet vacuum.
  • Example 2 11 mg (29 ⁇ mol) of the compound shown in Example 2 was esterified analogously to Example 3 and, after purification, 8.5 mg (21 ⁇ mol, 74%) of the title compound was isolated as a colorless oil.
  • Example 5a 37 mg (66 ⁇ mol) of the compound shown in Example 5a were reacted analogously to Example 1 and, after workup and purification, 17 mg (43 ⁇ mol, 65%) of the title compound were isolated as a colorless oil.
  • Example 5b 41 mg (73 ⁇ mol) of the fluorine compound shown in Example 5b is saponified in analogy to Example 1a and, after workup and purification, 37 mg (66 ⁇ mol, 90%) of the title compound are isolated as a colorless oil.
  • Example 5c 243 mg (422 ⁇ mol) of the compounds shown in Example 5c were reacted analogously to Example 1b and, after working up and chromatographic separation, 45 mg (81 ⁇ mol, 19%) of the title compound A and 41 mg were isolated
  • Example 6a 35 mg (62 ⁇ mol) of the compound shown in Example 6a was reacted analogously to Example 1 and, after workup and purification, 19 mg (48 ⁇ mol, 77%) of the title compound were isolated as a colorless oil.
  • Example 6b 61 mg (108 ⁇ mol) of the compound shown in Example 6b were reacted analogously to Example 2a and, after workup and purification, 35 mg (62 ⁇ mol, 57%) of the title compound were isolated as a colorless oil.
  • Example 6c 99 mg (152 ⁇ mol) of the compound shown in Example 6c were reacted analogously to Example 2b and, after workup and purification, 61 m (108 ⁇ mol. 71%) of the title compound were isolated as a colorless oil.
  • Example 6d 105 mg (158 ⁇ mol) of the compound shown in Example 6d were reacted analogously to Example 1a and, after working up and purification, 99 mg (152 ⁇ mol, 96%) of the title compound were isolated as a colorless oil.
  • IR film 3600-2500, 2960, 2920, 2860, 2230, 1730, 1710, 1445, 1130, 1080,
  • Example 6e 107 mg (164 ⁇ mol) of the compound shown in Example 6e were reacted analogously to Example 1b and, after workup and purification, 61 mg (92 ⁇ mol, 56%) of the title compound were isolated as a colorless oil.
  • Example 6f 150 mg (198 ⁇ mol) of the compound shown in Example 6f were reacted analogously to Example 2e and isolated after workup and purification
  • Example 6g 142 mg (217 ⁇ mol) of the compound shown in Example 6g were reacted analogously to Example 2f and, after workup and purification, 155 mg (204 ⁇ mol, 94%) of the title compound were isolated as a colorless oil.
  • Example 6i 468 mg (719 ⁇ mol) of the compound shown in Example 6i were reacted analogously to Example 2h and, after workup and purification, 425 mg (561 ⁇ mol, 78%) of the title compound were isolated as a colorless oil.
  • Example 6j 550 mg (848 ⁇ mol) of the compound shown in Example 6j were reacted analogously to Example 2i and, after workup and purification, 473 mg (727 ⁇ mol, 86%) of the title compound were isolated as a colorless oil.
  • Example 6j
  • Example 5c 518 mg (900 ⁇ mol) of the compound shown in Example 5c was reacted analogously to Example 2j and, after workup and purification, 562 mg (866 ⁇ mol, 96%) of the title compound was isolated as a colorless oil.
  • Example 5 6.5 mg (16.4 ⁇ mol) of the compound shown in Example 5 was reacted analogously to Example 3 and, after workup and purification, 4.8 mg (11.7 ⁇ mol, 717.) of the title compound was isolated as a colorless oil.
  • Example 6 9 mg (22.7 ⁇ mol) of the compound shown in Example 6 was reacted analogously to Example 3 and, after workup and purification, 6.5 mg (15.9 ⁇ mol, 70%) of the title compound were isolated as a colorless oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicinal Preparation (AREA)

Description

6-Oxo- 9 - fluor- prostaglandιn- Deriva te
Verfahren zu ihrer Herstellung und
ihre pharmazeutische Verwendung
Beschreibung
Die Erfindung betrifft neue 6-Oxo-9-fluor-prostaglandin-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel.
Aus dem sehr umfangreichen Stand der Technik der Prostaglandine insbesondere vom E-Typ und ihrer Analoga, weiß man, daß diese Stoffklasse auf Grund ihrer biologischen und pharmakologischen Eigenschaften zur Therapie und Prophylaxe von Thrombosen, Infarkten und anderer Herz-Kreislauf-Erkrankungen sowie zur Therapie von Magenulcera geeignet ist. Strukturveränderungen haben deshalb zum Ziel, die Wirkungsdauer zu verlängern, die Selektivität der Wirksamkeit zu steigern und gleichzeitig die Wirkungsdosis zu reduzieren.
Es wurde nun überraschenderweise gefunden, daß durch die Einführung eines Fluoratoms in die Position 9 sowie die Einführung einer Dreifachbindung in die 18, 19- oder 19, 20- und/oder 13, H-Position sowie die Einführung einer Methylgruppe in die 16- und/oder 20-Position der unteren Kette der 6-Oκo-9-fluorprostaglandin-Analoga die chemische und metabolische Stabilität als auch die Wirksamkeit verbessert, die Selektivität erhöht und die Wirkdauer verlängert werden kann.
Die Verbindungen dieser Erfindung eignen sich zur Therapie von Erkrankungen des cardiovaskulären Systems, des Magens, des Pankreas, der Leber und der Niere. Sie wirken blutdrucksenkend und bronchodilatorisch. Sie sind geeignet zur Hemmung der Thrombozytenaktivierung. Folglich stellen die neuen 6-Oxo-9-fluorprostaglandin-Derivate der Formel I wertvolle pharmazeutische Wirkstoffe dar.
Die Erfindung betrifft 6-Oxo-9-fluor-prostaglandin-Derivate der Formel I
worin
R1 den Rest COOR2 oder CONHSO2R2 mit R2 in der Bedeutung einer C5-C6-Cycloalkyl- oder einer C6-C12-Aryl-Gruppe oder eines 5- oder 6-glιedrigen heterocyclischen Restes oder, falls R1 gleich COOR2 ist, R2 die Bedeutung eines
Wasserstoffatomes oder eines freien oder durch 1-3 Halogenatome substituierten Phenacyls haben kann. eine E-konfigurierte CH=CH- oder eine -C=C-Gruppe,
W eine freie oder funktionell abgewandelte Hydroxymethylengruppe oder eine freie oder funktionell abgewandelte OH-Gruppe, wobei die OH-Gruppe
jeweils α- oder ß-ständig sein kann,
D eine geradkettige oder verzweigtkettige Alkylengruppe mit 1-5 C-Atomen oder eine Direktbindung,
E eine -CΞC-Gruppe, eine C2-C4- Alkenylen-Gruppe oder eine -Gruppe,
R3 ein Wasserstoffatom, eine C1-C10-Alkenyl-, C3-C10-Cycloalkyl- oder eine gegebenenfalls substituierte C 6-C12-Arylgruppe oder eine 5- oder 6-glιedrige heterocyclische Gruppe,
R4 ein Wasserstoffatom, eine Methylgruppe oder eine freie oder funktionell abgewandelte Hydroxygruppe bedeuten und, falls R2 die Bedeutung eines Wasserstoffatoms hat, deren Salze mit physiologisch verträglichen Basen, die α-, ß- oder γ-Cyclodextrinclathrate der Verbindungen der Formel I sowie die mit Liposomen verkapselten Verbindungen der For mel I.
Als Alkylgruppen R2 sind gerad- oder verzweigtkettige Alkylgruppen mit 1-10 C Atomen gemeint wie beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl,
Isnbutyl, tert -Butyl, Pentyl, Isopentyl, Neopentyl, Heptyl, Heκyl, Decyl. Die Alkylgruppen R2 können gegebenenfalls ein- bis mehrfach substituiert sein durch
Halogenatome, Hydroxygruppen, C1-C4 -Alkoxygruppen, gegebenenfalls substituierte
C6-C12-Arylgruppen, D1-C1-C4- Alkylamme und Tri-C1-C4-Alkylammonium. Bevorzugt sind solche Alkylgruppen, die einfach substituiert sind. Als Substituenten seien beispielsweise genannt Fluor-, Chlor- oder Bromatome, Phenyl, Dimethylamino, Diethylamino, Methoxy, Ethoxy. Als bevorzugte Alkylgruppen R2 sind solche mit 1-4 C-Atomen wie z.B. Methyl,
Ethyl, Propyl, Dimethylaminopropyl, Isobutyl und Butyl zu nennen. Als Arylgruppen R2 kommen sowohl substituierte wie auch unsubstituierte Arylgruppen in Betracht wie beispielsweise Phenyl-, α- oder ß-Naphthyl und Diphenyl. Diese Gruppen können durch 1-3 Halogenatome, eine Phenylgruppe, 1-3 Alkylgruppen mit jeweils 1-4 C-Atomen, eine Chlormethyl-, Fluormethyl-, Trifluormethyl-, Carboxyl-, Hydroxy- oder Alkoxygruppe mit 1-4 C-Atomen substituiert sein. Bevorzugt sind die Substituenten in 3- und 4-Position am Phenylring, z.B. durch Fluor, Chlor, Alkoxy oder Trifluormethyl oder in 4-Posιtion durch Hydroxy. Die Cycloalkylgruppen R2 können im Ring 3-10, vorzugsweise 5 und 6 Kohlenstoffatome enthalten. Die Ringe können durch Alkylgruppen mit 1-4 Kohlenstoffatomen subsituiert sein. Als Beispiele seien Cyclopentyl-, Cyclohexyl-, Met'hylcyclohexyl- und Adamantyl genannt. Als heterocyclische Gruppen R2 kommen 5- und 6-glιedrιge Heterocyclen in Frage, die bevorzugt ein Heteroatom, vorzugsweise Stickstoff, Sauerstoff oder Schwefel enthalten. Als Beispiele seien 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyridyl, 3-Pyridyl und 4-Pyridyl genannt. Die Hydroxygruppen R4, R5 und in W können funktionell abgewandelt sein, beispielsweise durch Veretherung oder Veresterung, wobei die freien oder abgewandelten Hydroxygruppen in W und R5 α- oder ß-ständig sein können und freie Hydroxygruppen bevorzugt werden.
Als Ether und Acylreste kommen die dem Fachmann bekannten Reste in Betracht. Bevorzugt sind leicht abspaltbare Etherreste, wie beispielsweise der Tetrahydropyranyl-, Tetrahydrofuranyl-, Methoxymethyl-, Methoxyethyl-, tert.-Butyldimethylsilyl-, tert.-Butyl-diphenylsilyl-, Theκyl-dimethylsilyl- und α-Tribenzyl-silylrest. Als Acylreste seien beispielsweise Acetyl, Propionyl, Butyryl und Benzoyl genannt. Als Alkylgruppen R3 kommen gerad- und verzweigtkettige, gesättigte und ungesättigte Alkylreste, vorzugsweise gesättigte, mit 1-10, insbesondere 1-7 C-Atomen in Frage, die gegebenenfalls durch gegebenenfalls substituiertes Aryl substituiert sein können. Als Beispiele seien Methyl, Ethyl, Propyl, Butyl-, Isobutyl, tert.-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Butenyl, Isobutenyl, Propenyl, Pentyl, Hexenyl, Benzyl und p-Chlorbenzyl genannt. Die Cycloalkylgruppe R3 kann im Ring 3-10, vorzugsweise 3-6 Kohlenstoffatome enthalten. Die Ringe können durch Alkylgruppen mit 1-4 Kohlenstoffatomen substituiert sein. Als Beispiele seien Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Methylcyclohexyl und Adamantyl genannt.
Als substituierte bzw. unsubstituierte Arylgruppen R3 kommen beispielsweise Phenyl, 1-Naphthyl und 2-Naphthyl, Diphenyl, die jeweils durch 1-3 Halogenatome, eine Phenylgruppe, 1-3 Alkylgruppen mit jeweils 1-4 Kohlenstoffatomen, eine
Chlormethyl-, Fluormethyl-, Trifluormethyl-, Carboxyl-, C1-C4-Alkoxy oder Hydroxygruppe substituiert sein können, in Betracht. Bevorzugt ist die Substitution in 3- und 4-Position am Phenylring z.B. durch Fluor, Chlor, C1-C4-Alkoxy oder Trifluormethyl oder in 4-Position durch Hydroxy.
Als heterocyclische Gruppen R3 kommen 5- und 6-gliedrige Heterocyclen, die wenigstens 1 Heteroatom, vorzugsweise Stickstoff, Sauerstoff oder Schwefel enthalten, in Frage. Als Beispiele seien 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyridyl, 3-Pyridyl und 4-Pyridyl genannt.
Als Alkylengruppe D kommen geradkettige oder verzweigtkettige, gesättigte und ungesättigte Alkylenreste, vorzugsweise gesättigte mit 1-10, insbesondere 1-5 C-Atomen, in Frage, die gegebenenfalls durch Fluoratome substituiert sein können. Als Beispiele seien Methylen, Fluormethylen, Ethylen, 1, 2-Propylen, Ethylethylen, Trimethylen, Tetramethylen, Pentamethylen, 1 -Methyltetramethylen und 1-Methyl-trimethylen genannt. Zur Salzbildung mit den freien Sauren (R2 = H) sind anorganische und organische
Basen geeignet, wie sie dem Fachmann zur Bildung physiologisch verträglicher
Salze bekannt sind. Als Beispiele seien Alkalihydroxide wie Natrium- und Kaliumhydroxid, Erdalkalihydroxide wie Calciumhydroxid, Ammoniak, Amine, wie Etha nolamin, Diethylanolamin, Triethanolamin, N-Methylglucamin, Morpholin-, Tris- (hydroxymethhl)- methylamin etc. genannt. als C2-C 4 -Alkenylen-Gruppe umfaßt folgende Reste: -CH=CH-, -CH=C(CH3)-,
-C(CH3)=CH- oder -C(CH3)=C(CH3)-.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung der Verbindungen der Formel I, das dadurch gekennzeichnet ist, daß man eine Verbindung der Formel II
worin
X eine oder -Gruppe,
R5 eine Hydroxygruppe und R1, R3, R4, A, W, D und E die oben angegebenen Bedeutungen aufweisen und freie OH-Gruppen in R4, R5 und W geschützt sind mit Diethylaminoschwefeltrifluorid [M. Sharma, Tetrahedron Lett. 57j (197%); W.J.
Middleton, J. Org. Chem. 40, 574 (1975)] oder anderen Fluoπerungsmitteln wie z.B. (HF)n Pyridin [G.A. Olah, Synthesis 786 (1973)], SeF4 Pyrιdιn [G.A. Olah,
J. Am. Chem. Soc. 96. 925 (1974)] oder (C2H5)2 N CF2 CHClF [E.J. Bailey, Chem. Commun. 106 (1970); J. Kopecky, Chem. Ind. 271 (1969)] umsetzt und gegebenenfalls geschützte Hydroxygruppen in X freisetzt und zum Keton oxidiert, sowie geschützte Hydroxygruppen in R4 und W freisetzt und/oder freie Hydroxygruppen verestert, verethert und/oder eine veresterte Carboxygruppe verseift oder eine Carboxygruppe mit einer physiologisch vertraglichen Base in ein Salz oder mit α- , ß- oder γ-Cyclodextrin in ein Clathrat überfuhrt, oder mit Liposomen verkapselt.
Die Umsetzung der Verbindungen der allgemeinen Formel II zu den Verbindungen der allgemeinen Formel I wird mit Diethylaminoschwefeltrifluorid bei -80 °C bis +40 °C, vorzugsweise bei -70 °C bis +20 °C durchgeführt. Als Losungsmittel eig nen sich Dichlormethan, 1.1.2-Trifluortrichlorethan, Pyridin, Toluol, Benzol, Ethylenchlorid u.a., vorzugsweise jedoch Toluol und Methylenchlorid. Die Freisetzung der funktionell abgewandelten Hydroxygruppen R4, R5 und in W sowie die Oxidation der freigesetzten Hydroxygruppe R5 zum Keton erfolgt nach den dem Fachmann bekannten Methoden (DE 370853%).
Die Oxidation der Hydroxygruppe in X erfolgt nach den dem Fachmann bekannten Verfahren. Als Oxidationsmittel kommen beispielsweise Chromschwefelsäure
(Jones-Reagenz), Pyridiniumchromat, Pyridiniumchlorochromat, Collins-Reagenz oder Komplexe aus CrO3 mit anderen Aminbasen wie z.B. Benzotriazol und Pyrazol in Frage. Die Umsetzung wird mit Jones-Reagenz bei -40 °C bis 0 °C, vorzugsweise bei -30 °C bis -10 °C, unter Verwendung der anderen Oxidationsmittel vorzugsweise bei -10 ° C bis +25 °C durchgeführt. Als Lösungsmittel eignen sich Methylenchlorid, Chloroform, Ethylenchlorid, Aceton, Pyridin, u.a., vorzugswei se jedoch Methylenchlorid und Aceton.
Beispielsweise wird die Abspaltung von Etherschutzgruppen in einer wässrigen Lösung einer organischen Säure, wie z.B. Essigsäure, Propionsäure, Zitronensäure u. a. oder in einer wässrigen Lösung einer anorganischen Säure, wie z.B. Salzsäure, oder im Falle von Tetrahydropyranylethern unter Verwendung von Pyridinium-p-Toluolsulfonat, vorzugsweise in Alkoholen als Lösungsmittel oder unte Verwendung von wasserfreiem Magnesiumbromid, vorzugsweise in Diethylether als Lösungsmittel, durchgeführt.
Zur Verbesserung der Löslichkeit wird bei Verwendung wässrig-saurer Reaktionsbedingungen zweckmäßigerweise ein mit Wasser mischbares inertes Lösungsmittel zugesetzt. Als geeignet erweisen sich z.B. Alkohole wie Methanol und Ethanol, Ether wie Dimethoxyethan, Dioxan und Tetrahydrofuran, wobei Tetrahydrofuran bevorzugt angewendet wird.
Die Abspaltung der Silyetherschutzgruppen erfolgt beispielsweise mit Tetrabutylammαniumfluorid. Als Lösungsmittel sind beispielsweise Tetrahydrofurao Diethylether, Dioxan, Methylenchlorid etc. geeignet.
Die Abspaltung wird vorzugsweise bei Temperaturen zwischen 20 °C und 80 °C durchgeführt. Die Verseifung der Acylgruppen und Prostaglandinester wird nach den dem Fachmann bekannten Methoden durchgeführt, wie beispielsweise mit basischen Katalysatoren wie z.B. mit Alkali- oder Erdalkali-carbonaten oder -hydroxiden in einem Alkohol oder in der wässrigen Losung eines Alkohols. Als Alkohole kommen alipathische Alkohole wie z.B. Methanol, Ethanol, Butanol etc. in Betracht, vorzugsweise jedoch Methanol. Als Alkalicarbonate und -hydroxide seien Kaliumund Natriumsalze genannt. Bevorzugt sind die Kaliumsalze. Als Erdalkalicarbonate und -hydroxide eignen sich beispielsweise Calciumcarbonat , Calciumhydroxid und Baπumcarbonat. Die Umsetzung erfolgt allgemein bei -10 °C bis +70 °C, vorzugsweise jedoch bei +25 °C.
Die Einfuhrung der Estergruppe CO2R 2 für R1, bei welcher R2 eine Alkylgruppe mit 1-10 C-Atomen darstellt, erfolgt nach den dem Fachmann bekannten Methoden. Die 1-Carboxyverbindungen (R2 - H) werden beispielsweise mit Diazokohlenwasserstoffen in an sich bekannter Weise umgesetzt. Die Veresterung mit Diazokohlenwasserstoffen erfolgt z.B. dadurch, daß eine Losung des Diazokohlenwasserstoffes in einem inerten Lösungsmittel, vorzugsweise in Diethylether, mit der
1-Carboxyverbιndung, gelost in dem gleichen oder in einem anderen ebenfalls inerten Losungsmittel, wie z.B. Methylenchlorid, vermischt wird. Nach beendeter
Umsetzung in 1 bis 60 Minuten wird das Losungsmittel entfernt und der Ester in üblicher Weise gereinigt. Diazolalkane sind entweder bekannt oder können nach bekannten Methoden hergestellt werden [Org. Reactions Bd. 8. Seiten 389 - 394
(1954)].
Die Einfuhrung der Estergruppe CO2R2 für R1, bei welcher R2 eine substituierte oder unsubstituierte Arylgruppe darstellt, erfolgt nach den dem Fachmann bekannten Methoden. Beispielsweise werden die 1-Carboxyverbindungen mit den entsprechenden Arylhydroxyverbindungen mit Dicycloheκylcarbodiimid in Gegenwart einer geeigneten Base wie z.B. Pyridin, Dimethylaminopyridin, Triethylamin, in einem inerten Losungsmittel wie z.B. Methylenchlorid, Ethylenchlorid, Chloroform, Essigsaureethylester, Tetrahydrofuran, vorzugsweise jedoch Chloroform umgesetzt. Die Reaktion wird bei Temperaturen zwischen -30 °C und +50 °C, vorzugsweise bei +10 °C, durchgeführt.
Die Prostaglandinderivate der Formel I mit R1 in der Bedeutung eines Wasserstoffatoms können mit geeigneten Mengen der entsprechenden anorganischen Basen unter Neutralisierung in Salze überführt werden. Beispielsweise erhalt man beim Losen der entsprechenden Prostaglandinsäuren in Wasser, welcher, stochiometrische Mengen der Base enthalt, nach Abdampfen des Wassers oder nach Zugabe eines mit Wasser mischbaren Lösungsmittels, z.B. Alkohol oder Aceton, das feste anorganische Salz.
Die Herstellung der Aminsalze erfolgt in üblicher Weise. Dazu löst man die Prostaglandinsaure in einem geeigneten Lösungsmittel, wie z.B. Ethanol, Aceton, Diethylether oder Benzol und setzt 1 bis 5 Äquivalente des jeweiligen Amins dieser Lösung zu. Dabei fällt das Salz gewöhnlich in fester Form an oder wird nach Verdampfen des Lösungsmittels in üblicher Weise isoliert.
Die funktionelle Abwandlung der freien Hydroxygruppen erfolgt nach den dem Fachmann bekannten Methoden. Zur Einführung der Etherschutzgruppen wird beispielsweise mit Dihydropyran oder Methylvinylether in Methylenchlorid oder Chloroform unter Verwendung katalytischer Mengen eines sauren Kondensationsmittels wie z.B. p-Toluolsulfonsäure, umgesetzt. Der jeweilige Enolether wird im Überschuß, vorzugsweise in der 1.5- bis 10-fachen Menge des theoretischen Bedarfs, zugesetzt. Die Umsetzung erfolgt normalerweise bei -10 °C bis +30 °C und ist nach 2-30 Minuten beendet.
Die Einführung der Acylschutzgruppen erfolgt, indem man eine Verbindung der Formel I in an sich bekannter Weise mit einem Carbonsäurederivat, wie z.B. Saurechlorid, Säureanhydrid etc., umsetzt.
Die neuen 6-Oxo-9-fluor-prostaglandιn-Derivate besitzen die für diese Verbindungsklasse typischen Eigenschaften, wie z.B. Senkung des peripheren arteriellen, des koronaren und des pulmonalen Gefäßwiderstandes, Senkung des pulmonalen Blutdrucks. Senkung des systemischen Blutdrucks ohne zugleich Schlagvolumen und koronare Durchblutung zu senken, Förderung der Nierendurchblutung und der Durchblutung anderer peripherer Organe, Erhöhung der cerebralen Durchblutung, Inhibierung der Thrombozytenaktivierung und Auflösung von Thromben, Inhibierung der Bronchokonstriktion, Inhibierung der Magensäuresekretion, Zytoprotektion des Herzens, der Magen- und Darmschleimhaut, der Leber, Zytoprotektion im Pankreas und in der Niere sowie antiallergische Eigenschaften. Daher sind die neuen 5-Oxo-9-fluor-prostaglandin-Derivate prinzipiell geeignet zur Behandlung des Schlaganfalles, der Prophylaxe und Therapie koronarer Herzerkrankungen, zum Beispiel der Koronarthrombose, zur Behandlung des Herzinfarktes, peripherer Arterienerkrankungen, zur Prophylaxe und Therapie bei anderen thromboembolischen Erkrankungen und bei Arteriosklerose, bei chemischen Attacken des ZNS- Systems und anderer Durchblutungsstörungen des Gehirns, zur Behandlung der Hypertonie und zur Behandlung von Krankheiten, die mit einer Erhöhung des pulmonalen Gefäßwiderstandes einhergehen wie z.B. der pulmonalen Hypertonie und zur Therapie des Schocks und des Asthmas. Sie können ferner eingesetzt werden zur Inhibierung von Geburtswehen und zur Behandlung von Schwangerschaftstoxikosen.
Die neuen 6 -Oxo-9-fluor-prostaglandin-Derivate können außerdem Anwendung finden zur Verbesserung der Organf unktion nach Transplantation, zum Beispiel bei der Nierentransplantation, zur Verhinderung von Abstoßungsreaktionen, an Stelle von Heparin oder als Adjuvans bei der Dialyse oder Hämofiltration und bei der Konservierung von Blutplasmakonserven, zum Beispiel von Blutplattchenkonserven. Die neuen 6-Oxo-9-fluor-prostaglandin-Derivate besitzen eine antimetastatische Wirkung und antiproliferative Eigenschaften.
Die 6-Oxo-9-fluorprostaglandιn-Derivate dieser Erfindung können auch in Kombination, z.B. mit ß-Blockern, Diuretika, Phosphodiesterasehemmern, Ca- Antagonisten, nichts teroidalen Entzündungshemmern, Leukotriensynthetasehemmern, Leukotrienantagonisten, Thromboκansynthetasehemmern oder Thromboκanantagonisten verwendet werden.
Die Dosis der Verbindungen ist 1-1000 μg/kg/Tag, wenn sie am menschlichen Patienten verabreicht wird. Die Einheitsdosis für den pharmazeutischen akzeptablen Trager beträgt 10 μg bis 100 μg.
Für die parenterale Applikation werden sterile, injizierbare wäßrige oder ölige Losungen benutzt. Für die orale Applikation sind beispielsweise Tabletten, Dragees oder Kapseln geeignet. Die Erfindung betrifft somit auch Arzneimittel auf Basis der Verbindungen der Formel I und üblicher Hilfs- und Tragerstoffe einschließlich Cyclodextrincla thrate und Verkapselung mit Liposomen.
Die erfindungsgemaßen Wirkstoffe sollen in Verbindung mit den in der Galenik bekannten und üblichen Hilfsstoffen zum Beispiel zur Herstellung von Blutdrucksenkern, Throrrtbozytenaggregationshemmern oder Cytoprotektiva dienen. Beispiel 1
(9R,11R,13E,15S, 16S)-6-Oxo-9-fluor-11,15-bis-hydroxy-16-methyl-18.18,19,19-te¬tradehydro-13-prostensäure:
45 mg (81,7 μmol) der in Beispiel 1a dargestellten Verbindung versetzte man mit 2 ml eines Eisessig: Wasser : Tetrahydrofuran (65:35 : 10 )-Gemisches und ließ 15 Stunden bei 23 °C rühren. Man engte im Wasserstrahlvakuum ein und entfernte restliche Essigsäure azeotrop durch wiederholte Zugabe von Toluol. Das erhaltene Rohöl reinigte man durch Chromatographie an einer analytischen Dünnschichtplatte. Als Laufmittel diente ein Gemisch aus Dichlormethan und Methanol, als Elutionsmittel ein Gemisch aus Chloroform und Isopropanol. Isoliert wurden 23 mg (60 μmol, 73 % ) der Titelverbindung als farbloses Öl.
IR (Film): 3700-2400, 2960, 2920, 2850, 1710, 1410. 1375, 1095 und 975 cm-1.
Beispiel 1a
(9R.11R,13E,15S.16S)-6-Oxo-9-fluor-11,15-bis-(tetrahydropyran-2-yloxy)-16-methyl- 1 8 , 1 8 , 1 9 , 19-tetradehydro- 1 3-prosten säure :
48 mg (85 μmol) der in Beispiel 1b dargestellten Verbindung löste man in 1,4ml Methanol, versetzte mit 0,5 ml einer wässrigen Kaliumhydroxidlösung und rührte 2,5 Stunden bei 23 °C. Man zog das Methanol im Wasserstrahlvakuum ab, verdünnte mit wenig Wasser, säuerte mit gesättigter Citronensäure an und extrahierte mehrfach mit insgesamt 15 ml Chloroform. Die organische Phase wusch man mit H2O, trocknete über Magnesiumsulfat und isolierte nach Filtration und Abzug des Lösungsmittels im Wasserstrahlvakuum 45 mg (82 μmol, 96 %) der Titelverbindung als farbloses Öl.
IR (Film] 3600-2500, 2950, 2860, 1710. 1440, 1130, 1030 1020, 970, 870 und 810 cm-1. Beispiel 1b
(11R.13E.15S,16S)-6-Oxo-11,15-bis-(tetrahydropyran-2-yloxy)-16-methyl-18,18,19 19-tetradehydro-8,13-prostadιensauremethylester (A) und ( 9R, 11 R ,13E,15S,16S)-6- Oxo-9-fluor-11,15-bis-(tetrahydropyran-2-yloκy)-16-methyl-18,18,19,19-tetradehydro-13-prostensauremethylester (B):
280 mg (498 μmol) der in Beispiel 1c dargestellten Verbindung loste man in 8,5 ml wasserfreiem Toluol, versetzte mit 395 μl wasserfreiem Pyridin, kühlte unter einer Atmosphäre aus trockenem Argon auf -70 °C und gab 297 μl Diethylaminoschwefeltrifluorid zu. Man ließ langsam auf 20 °C erwarmen, versetzte mit einigen Tropfen einer gesattigten Natπumhydrogencarbonatlosung, verdünnte mit Wasser und extrahierte mehrfach mit Dichlormethan . Nach Trocknen über Magnesiumsulfat, Filtration und Einengen im Wasserstrahlvakuum reinigte man den Ruckstand durch Chromatographie an ca. 30 ml feinem Kieselgel unter Druck. Als Elutionsmittel diente ein Gemisch aus n-Hexan/Ethylacetat . Isoliert wurden 31 mg (56,9 μmol, 11 % ) der Titelverbindung A sowie 48 mg ('85 μmol, 17 % ) der Titelverbindung B jeweils als farbloses Öl.
IR (Film) von B: 2940. 2860, 1735, 1710, 1435, 1200, 1130. 1030, 1020, 970, 870 und 815 cm-1.
Beispiel 1c
(9S,11R,13E,15S,16S)-6-Oxo-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-16-methyl-18,18,19,19-tetradehydro-13-prostensauremethylester:
6,3 g (9,3 mmol) ( 5RS , 6RS ,16S)-5-Iod-16-methyl-18,18,19,19-tetradehydro-prostaglandin I1 -11,15-bιs-(tetrahydropyranylether)-methylester (Herstellung siehe DE 3708537 unter Verwendung von Dimethyl-(2-oxo-3S-methyl-hept-5-ιnyl)-phosphonat) loste man in 95 ml wasserfreiem Benzol, versetzte mit 20,5 ml DBU und rührte 2 Stunden bei 55 °C unter einer Atmosphäre aus trockenem Argon. Man verdünnte mit 100 ml Ethylacetat, wusch mehrfach mit Wasser, trocknete über Magnesiumsulfat und isolierte nach Filtration und Abzug des Lösungsmittels 5,1 g eines gelben Öles. Den Ruckstand gab man auf eine Kieselgelsaule und eluierte nach einer zweistündigen Verweilzeit mit einem Gemisch aus Dichlormethan/Ace ton. Isoliert wurden 4,28 g (7,6 mmol, 81 % ) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200, 2950, 2860, 1740, 1715, 1440, 1355, 1200, 1130, 1020, 970, 865 und 810 cm-1.
Beispiel 2
(9S,11R,13E,15S,16S)-6-Oxo-9-fluor-11,15-dihydroxy-16-methyl-18.18.19,19-tetradehydro-13-prostensäure:
48 mg (90 μmol) der nach Beispiel 2a dargestellten Verbindung setzte man in Analogie zu Beispiel 1 um und isolierte nach Aufarbeitung und chromatographischer Reinigung 25 mg (65 μmol, 72 % ) der Titelverbindung als farbloses Öl.
IR (Film): 3700-2400. 2960. 2920. 2850, 1710, 1410, 1375. 1090. 1040. 1010, 925 und 915 cm-1.
Beispiel 2a
(9S.11R,13E,15S,16S)-6-Oxo-9-fluor-11,15-bis-(tetrahydropyran-2-yloxy)-16-methyl-18,18,19,19-tetradehydro-13-prostensäure:
Die Lösung von 64 mg (116 μmol) der nach Beispiel 2b dargestellten Verbindung in 500 μl Aceton kühlte man auf -40 °C, versetzte mit 68 μl einer standartisierten Chromschwefelsäure (Jones-Lösung) und ließ 2,5 Stunden reagieren. Überschüssiges Oxidationsmittel zersetzte man durch Zugabe von 120 μl Isopropanol, ließ auf 0 °C erwärmen, verdünnte mit Wasser und extrahierte nach einer Stunde mehrfach mit Chloroform. Die organischen Extrakte wusch man mit Wasser und gesättigter Natriumchloridlösung neutral, trocknete über Magnesiumsulfat und reinigte den nach Filtration und Abzug des Lösungsmittels erhaltenen Rückstand durch Chromatographie an zwei analytischen Dünnschichtplatten. Als Laufmittel diente ein Gemisch aus Dichlormethan und Methanol, als Elutionsmittel ein Gemisch aus Chloroform/Isopropanol. Isoliert wurden 33 mg (60 μmol, 52 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-2500, 2940, 2860, 1715. 1435, 1135, 1030, 1020, 970, 865 und 810 cm-1.
Beispiel 2b
(6RS,9S,11R,13E.15S, 16S ) -6-Hydroxy-9-fluor-11,15-bis-(tetrahydropyran-2-yloxy)- 16-methyl-18,18,19,19-tetradehydro-13-prostensäure:
Die Lösung von 196 mg (194 μmol) der nach Beispiel 2c dargestellten Verbindung in 3,3 ml wasserfreiem Tetrahydrofuran versetzte man mit 1,16 ml einer 1M-LÖ- sung von Tetrabutylammoniumfluorid in Tetrahydrofuran, ließ 8 Stunden bei 50 °C unter einer Atmosphäre aus trockenem Argon reagieren, gab in Eiswasser und extrahierte mehrfach mit Dichlormethan. Die organischen Extrakte wusch man mit Wasser und gesättigter Natriumchloridlösung, trocknete über Magnesiumsulfat und reinigte den nach Filtration und Abzug des Lösungsmittels erhaltenen Rückstand durch Chromatographie an 7 analytischen Dünnschichtplatten. Als Laufmittel diente ein Gemisch aus Dichlormethan/Methanol, als Elutionsmittel ein Gemisch aus Chloroform/Isopropanol. Isoliert wurden 64 mg (116 μmol, 60 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-2500, 2940, 2860. 1725, 1710, 1445, 1130, 1020, 970 und 840 cm-1.
Beispiel 2c
(6RS.9S.11R.13E.15S, 16S ) -6-tert.-Butyldimethylsilyloxy-9-fluor-11.15-bis-(tetrahydropyran-2-yloxy)-16-methyl-18,18,19,19-tetradehydro-13-prostensäure:
195 mg (285 μmol) der nach Beispiel 2d isolierten Fluorverbindung verseifte man in Analogie zu Beispiel 1a und isolierte nach Aufarbeitung und Reinigung 188 mg (282 μmol, 99 %) der Titelverbindung als farbloses Öl. IR (Film): 3600-2500, 2940, 2850, 1730, 1710, 1450, 1255, 1130 1075, 1030, 1020, 970, 835 und 775 cm-1.
Beispiel 2d
(6RS,9S,11R,13E,15S,16S)-6-tert.-Butyldimethylsilyoxy-9-fluor-11,15-bis-(tetrahydropyran-2-yloκy)-16-methyl-18,18,19,19-tetradehydro-13-prostensäuremethylester:
550 mg (811 μmol) der nach Beispiel 2e dargestellten Verbindung setzte man in Analogie zu Beispiel 1b um und isolierte nach Aufarbeitung und chromatographischer Reinigung 330 mg (485 μmol, 60 % ) der Titelverbindung als farbloses Öl.
IR (Film): 2940. 2850. 1740. 1435, 1250. 1130, 1110, 1075. 1030, 1020. 970. 835 und 770 cm-1.
Beispiel 2e
(6RS,9R,13E,15S,16S)-6-tert.-Butyldimethylsilyoxy-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-16-methyl-18,18,19,19-tetradehydro-13-prostensäuremethylester:
Die Lösung von 775 mg (989 μmol) der nach Beispiel 2f dargestellten Verbindung in 4 ml wasserfreiem Methanol versetzte man mit 120 mg fein pulversisiertem Kaliumcarbonat und ließ 8 Stunden bei 45 °C unter einer Atmosphäre aus trockenem Argon rühren. Man versetzte mit Wasser, brachte durch Zugabe von gesättigter Citronensäure auf pH4 , extrahierte mehrfach mit Dichlormethan, wusch mit Wasser und gesättigter Natriumchloridlösung neutral und trocknete über Magnesiumsulfat. Nach Filtration und Lösungsmittelabzug reinigte man den Rückstand durch Chromatographie an ca. 30 ml feinem Kieselgel unter Verwendung eines Gradientensystems aus n-Hexan/Ethylacetat. Isoliert wurden 551 mg (817 μmol, 82 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200, 2940, 2860, 1740. 1435, 1360, 1255. 1200, 1130, 1115, 1030, 1020, 970, 865, 835, 810 und 775 cm-1. Beispiel 2f
(6RS,9R,13E,15S,16S)-6-tert.-Butyldιphenylsιlyoxy-9-benzoyloxy-11,15-bιs-(tetrahydropyran-2-yloxy)-16-methyl-18,18,19,19-tetradehydro-13-prostensäuremethylester:
Die Losung von 693 mg (1,02 mmol) der nach Beispiel 2g dargestellten Verbindung in 25 ml wasserfreiem Toluol versetzte man mit 590 mg Triphenylphosphin, 277 mg Benzoesaure und 355 μl Azodicarbonsaurediethylester. Die gelbe Losung ließ man 5 Stunden bei 23 °C unter einer Atmosphäre aus trockenem Argon rühren, versetzte mit Wasser, extrahierte mehrfach mit Diethylether und trocknete über Magnesiumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Ruckstand reinigte man durch Chromatographie an ca. 70 ml feinem Kieselgel unter Verwendung eines Gradientensystems aus n-Hexan/Ethylacetat. Isoliert wurden 776 mg (991 μmol, 97 % ) der Titelverbindung als farbloses Öl.
IR (Film): 3040, 2940, 2850, 1740, 1715, 1600, 1430, 1360, 1250, 1200, 1110, 1020, 970, 860, 835, 810, 775 und 740 cm-1.
Beispiel 2g
(6RS,9S,13E,15S,16S)-6-tert.-Butyldιmethylsιlyoxy-9-hydroxy-11,15-bιs-(tetrahydropyran-2-yloκy)-16-methyl-18,18,19,19-tetradehydro-13-prostensauremethylester:
1,168 g (1,49 mmol) der nach Beispiel 2h dargestellten Verbindungen loste man in 6 ml Methanol, versetzte mit 2,5 ml einer 5 %ιgen methanolischen Lithiumhydroxidlosung und rührte 6 Stunden bei 50 °C. Man engte im Wasserstrahlvakuum ein, versetzte mit Wasser und Dichlormethan, säuerte durch Zugabe einer gesattigten Citronensaurelosung an und extrahierte mehrfach mit Dichlormethan. Die organische Phase wurde mit gesättigter Natriumchloridlosung gewaschen, über Magnesiumsulfat getrocknet und die nach Filtration und Losungsmittelabzug erhaltene Hydroxysaure bei 5 °C mit einer etherischen Diazomethanlosung in Analogie zu Beispiel 3 verestert. Der nach erneutem Losungsmittelabzug erhaltene Ruckstand wurde an ca. 70 ml feinem Kieselgel mittels eines Gradientensystems aus n-Hexan/Ethylacetat chromatographisch gereinigt. Isoliert wuerden 903 mg (1,33 mmol, 90 % ) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200, 2940. 2850, 1740. 1435, 1360, 1250, 1200. 1030. 1020, 970, 835 und 775 cm-1.
Beispiel 2h
(6RS,9S,13E,15S,16S)-6-tert.-Butyldimethylsilyloxy-9-benzoyloxy-11,15-bis-(tetrahydropyran-2-yloκy)-16-methyl-18,18,19,19-tetradehydro-13-prostensäuremethylester:
Die farblose Lösung von 1,19 g (1,79 mmol) der nach Beispiel 2i dargestellten Verbindung in 18 ml wasserfreiem Dimethylformamid versetzte man mit 305 mg Imidazol, 675 mg tert.-Butyldimethylchlorsilan und rührte 5 Stunden bei 23 °C unter einer Atmosphäre aus trockenem Argon. Man goß in eiskalte 107 Ammoniumchloridlösung, extrahierte mehrfach mit Diethylether, wusch mit Wasser und trocknete über Magnesiumsulfat. Den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand reinigte man durch Chromatographie an ca. 70 ml feinem Kieselgel mittels eines Gradientensystems aus n-Hexan/Ethylacetat. Isoliert wurden 1,16 g (1,49 mmol, 83 % ) der Titelverbindung als farbloses Öl.
IR (Film): 3060, 2940, 2855, 1735. 1715, 1600, 1450. 1360. 1270, 1200, 1110, 1030, 1020, 970, 870. 835. 810. 775. 735 und 710 cm-1.
Beispiel 2i
(6RS,9S,13E,15S, 16S)-6-Hydroxy-9-benzoyloxy-11,15-bis-(tetrahydropyran-2-yloxy)-16-methyl-18,18,19,19-tetradehydro-13-prostensäuremethylester:
1,32 g (1,99 mmol) der nach Beispiel 2j dargestellten Verbindung löste man in einem Gemisch aus 16 ml wasserfreiem Methanol und 5 ml wasserfreiem Dichlormethan, kühlte unter einer Atmosphäre aus trockenem Argon auf -40 °C und versetzte portionsweise mit insgesamt 455 mg Natriumborhydrid. Man ließ 1 Stunde bei -40 °C reagieren, versetzte mit 740 μl Eisessig und engte im Wasserstrahlvakuum ein. Den Rückstand nahm man in Dichlormethan auf, wusch mehrfach mit Wasser, trocknete über Magnesiumsulfat und reinigte den nach Filtration und Losungsmittelabzug erhaltenen Ruckstand durch Chromatographie an ca. 130 ml feinem Kieselgel unter Verwendung eines Gradientensystems aus n-Hexan/Ethylacetat. Isoliert wurden 1.19 g (1,78 mmol, 89 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3300, 3060. 2940, 2870, 1735, 1715, 1600, 1450. 1370. 1275,
1200, 1115. 1020, 970, 870, 815 und 715 cm-1.
Beispiel 2j
(9S,11R,13E,15S,16S)-6-Ox0-9-benzoyloxy-11,15-bis-(tetrahydropyran-2-yloκy)- 16-methyl 18,18,19,19-tetradehydro-13-prostensauremethylester:
1,13 g (2,0 mmol) der nach Beispiel 1c dargestellten Verbindung loste man in 4,4 ml wasserfreiem Pyridin, kühlte unter einer Atmosphäre aus trockenem Argon auf 5 °C, tropfte 600 μl Benzoylchlorid zu und rührte 3,5 Stunden bei 23 °C. Man goß in Eiswasser, extrahierte mehrfach mit Diethylether, trocknete über Magnesiumsulfat und reinigte den nach Filtration und Lösungsmittelabzug erhaltenen Rückstand durch Chromatographie an ca. 130 ml feinem Kieselgel mittels eines Gradientensystems aus n-Hexan/Ethylacetat. Isoliert wurden 1,33 g
(1,99 mmol, 99 %) der Titelverbindung als farbloses Öl.
IR (Film): 3060, 2940. 2870, 1735, 1715, 1600, 1450, 1370, 1270, 1200, 1110, 1020, 970, 870, 815 und 715 cm-1.
Beispiel 3
(9R,11R,13E,15S.16S)-6-Oxo-9-fluor-11,15-dιhydroxy-16-methyl-18,18,19,19-tetradehydro-13-prostensauremethylester:
10 mg (26 μmol) der nach Beispiel 1 dargestellten Verbindung veresterte man bei 5-10 °C durch Zugabe einer etherischen Diazomethanlosung. Die nach ca. 15 Minuten gebildete homogene Losung engte man im Wasserstrahlvakuum ein und reinigte durch Chromatographie an einer halben analytischen Dunnschichtplatte. Als Laufmittel diente ein Gemisch aus n-Hexan/Ethylacetat, als Elutionsmittel Diethyl ether. Isoliert wurden 7,6 mg (19 μmol, 74 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200, 2960. 2930. 2860. 1740, 1720, 1410, 1380, 1095 und 975 cm-1.
Beispiel 4
(9S,11R,13E,15S,16S)-6-Oxo-9-fluor-11,15-dihydroxy-16-methyl.18,18.19,19-tetradehydro-13-prostensäuremethylester:
11 mg (29 μmol) der nach Beispiel 2 dargestellten Verbindung veresterte man in Analogie zu Beispiel 3 und isolierte nach Reinigung 8,5 mg (21 μmol, 74 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200. 2960. 2940. 2850, 1735, 1715, 1410, 1375, 1090 und 975 cm-1.
Beispiel 5
(9R,11R,15S,16S)-6-Oxo-9-fluor-11,15-bis-hydroxy-16,20-dimethyl-13,14,18,18,19, 19-hexadehydro-13-prostensäure:
37 mg (66 μmol) der nach Beispiel 5a dargestellten Verbindung setzte man in Analogie zu Beispiel 1 um und isolierte nach Aufarbeitung und Reinigung 17 mg (43 μmol, 65 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-2500. 2970. 2230, 1730, 1710, 1410. 1275. 1020 und 970 cm-1. Beispiel 5a
(9R,11R,15S,16S)-6-Oxo-9-fluor-11,15-bis-(tetrahydropyran-2-yloxy)-16,20-dimethyl-13,14,18,18,19,19-hexadehydro-13-prostensäure:
41 mg (73 μmol) der nach Beispiel 5b dargestellten Fluorverbindung verseifte man in Analogie zu Beispiel 1a und isolierte nach Aufarbeitung und Reinigung 37 mg (66 μmol, 90 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-2500, 2960, 2920, 2850, 2230. 1715, 1435. 1135. 1030, 1020, 970, 870 und 815 cm-1.
Beispiel 5b
(11R,15S,16S)-6-Oxo-11,15-bis-(tetrahydropyran-2-yloxy)-16,20-dimethyl-13,14, 18 ,18,19,19-hexadehydro-8,13-prostadiensäuremethylester (A) und (9R,11R,15S, 16S)-6-Oxo-9-fluor-11,15-bis-(tetrahydropyran-2-yloxy)-16,20-dimethyl-13,14, 18,18,19,19-hexadehydro-13-prostensäuremethylester ( B ):
243 mg (422 μmol) der nach Beispiel 5c dargestellten Verbindungen setzte man in Analogie zu Beispiel 1b um und isolierte nach Aufarbeitung und chromatographischer Trennung 45 mg (81 μmol, 19 %) der Titelverbindung A sowie 41 mg
(71 μmol, 17 %) der Titelverbindung B als farbloses Öl.
IR (Film) von B: 2960, 2920, 2860, 2230. 1735, 1715. 1440, 1200, 1130, 1030, 1020, 970, 875 und 810 cm-1.
Beispiel 5c
(9R,11R,15S,16S)-6-Oxo-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-16,20- dimethyl-13,14,18,18,19,19-heκadehydro-13-prostensäuremethylester:
4,6 g (6,7 mmol) (5RS,6RS.16S)-5-Iod-16,20-dimethyl-13,14,18,18,19,19-hexadehydro-prostaglandin-I1-11,15-bis-( tetra hydropyra nylether ) -methyle ster (Darstellung siehe DE3708537) setzte man in Analogie zu Beispiel 1c um und isolierte nach Aufarbeitung und chromatographischer Reinigung 3.5 g (6,1 mmol, 91 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200. 2960, 2920, 2850, 2230, 1730. 1710. 1435, 1200, 1130, 1030. 1020. 970, 870 und 815 cm-1.
Beispiel 6
(9S,11R,15S.16S)-6-Oxo-9-fluor-11.15-dihydroxy-16,20-dimethyl-13,14,18,18,19, 19 -hexadehydro-13-prostensäure:
35 mg (62 μmol) der nach Beispiel 6a dargestellten Verbindung setzte man in Analogie zu Beispiel 1 um und isolierte nach Aufarbeitung und Reinigung 19 mg (48 μmol, 77 %) der Titelverbindung als farbloses Öl.
IR (Film): 3700-2500. 2960, 2920. 2850. 2230. 1715. 1410. 1380. 1090, 1035, 1020. 930 und 915 cm-1.
Beispiel 6a
(9S,11R,15S.16S)-6-Oxo-9-fluor-11.15-dihydroxy-16,20-dim thyl-13,14,18,18,19,19-hexadehydro-13-prostensäure:
61 mg (108 μmol) der nach Beispiel 6b dargestellten Verbindung setzte man in Analogie zu Beispiel 2a um und isolierte nach Aufarbeitung und Reinigung 35 mg (62 μmol, 57 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-2500, 2960. 2920. 2850, 2230, 1730, 1715, 1440, 1130, 1030, 1020, 970, 870 und 815 cm-1. Beispiel 6b
(6RS,9S,11R,15S,16S)-6-Hydroxy-9-fluor-11,15-bis-(tetrahydropyran-2-yloxy)- 16,20-dimethyl-13,14,18,18,19,19-hexadehydro-13-prostensäure:
99 mg (152 μmol) der nach Beispiel 6c dargestellten Verbindung setzte man in Analogie zu Beispiel 2b um und isolierte nach Aufarbeitung und Reinigung 61 m (108 μmol. 71 %) der Titelverbindung als farbloses Öl.
IR (Film): 3600-2500, 2960, 2930, 2850, 2230, 1720, 1440, 1130, 1025, 970 und 835 cm-1.
Beispiel 6c
(6RS,9S,11R,15S,16S)-6-Hydroxy-9-fluor-11,15-bis-(tetrahydropyran-2-yloxy)- 16,20-dimethyl-13,14,18,18,19,19-hexadehydro-13-prostensäure:
105 mg (158 μmol) der nach Beispiel 6d dargestellten Verbindung setzte man in Analogie zu Beispiel 1a um und isolierte nach Aufarbeitung und Reinigung 99 mg (152 μmol, 96 %) der Titelverbindung als farbloses Öl.
IR (Film 3600-2500, 2960, 2920, 2860, 2230, 1730, 1710, 1445, 1130, 1080,
1030, 1020, 970, 840 und 770 cm-1 .
Beispiel 6d
(6RS,9S,11R,15S,16S)-6-tert.-Butyldimethylsilyloxy-11,15-bis-(tetrahdropyran-2- yloxy)-16.20-dimethyl-13,14,18,18,19,19-hexadehydro-13-prostensäuremethylester:
107 mg (164 μmol) der nach Beispiel 6e dargestellten Verbindung setzte man in Analogie zu Beispiel 1b um und isolierte nach Aufarbeitung und Reinigung 61 mg (92 μmol, 56 %) der Titelverbindung als farbloses Öl.
IR (Film): 2960, 2930, 2860, 2230, 1740, 1440, 1245, 1130, 1080, 1030, 1020, 970, 840 und 770 cm-1. Beispiel 6e
(6RS,9R,15S,16S)-6-tert.-Butyldimethylsilyloxy-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-16,20-dιmethyl-13,14,18,18,19,19-hexadehydro-13-prostensäuremethylester:
150 mg (198 μmol) der nach Beispiel 6f dargestellten Verbindung setzte man in Analogie zu Beispiel 2e um und isolierte nach Aufarbeitung und Reinigung
110 mg (168 μmol, 85%) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200, 2940. 2850. 2230, 1735, 1440, 1355. 1250. 1200, 1130, 1030, 1020, 970. 860, 840, 815 und 775 cm-1.
Beispiel 6f
(6RS,9R,15S,16S)-6-tert.-Butyldimethylsilyloxy-9-benzoyloxy-11,15-bis-(tetrahydropyran-2-yloxy)-16,20-dimethyl-13,14,18,18.19,19-hexadehydro-13-prostensäuremethylester:
142 mg (217 μmol) der nach Beispiel 6g dargestellten Verbindung setzte man in Analogie zu Beispiel 2f um und isolierte nach Aufarbeitung und Reinigung 155 mg (204 μmol, 94%) der Titelverbindung als farbloses Öl.
IR (Film): 3050. 2960. 2920, 2860, 2230, 1740, 1715, 1435. 1355. 1240, 1200, 1110. 1030, 1020. 970, 865, 835, 810. 775 und 735 cm-1.
Beispiel 6g
(6RS,9S,15S,16S)-6-tert.-Butyldimethylsilyloκy-9-hydroxy-11,15-bis-(tetrahydropyran-2-yloxy)-16,20-dimethyl-13,14,18,18,19,19-hexadehydro-13-prostensäure¬methylester: 419 mg (552 μmol) der nach Beispiel 6h dargestellten Verbindung setzte man in Analogie zu Beispiel 2g um und isolierte nach Aufarbeitung und Reinigung 352 mg (506 μmol, 92%) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200, 2960, 2920, 2850, 2230, 1740, 1435, 1355, 1250, 1200, 1030, 1020, 970, 835 und 775 cm-1.
Beispiel 6h
(6RS,9S,15S,16S)-6-tert.-Butyldimethylsilyloxy-9-benzoyloxy-11,15-bis-(tetrahydropyran-2-yloxy)-16,20-dimethyl-13,14,18,18,19,19-hexadehydro-13-prostensäuremethylester:
468 mg (719 μmol) der nach Beispiel 6i dargestellten Verbindung setzte man in Analogie zu Beispiel 2h um und isolierte nach Aufarbeitung und Reinigung 425 mg (561 μmol, 78%) der Titelverbindung als farbloses Öl.
IR (Film): 3060, 2950, 2860, 2230, 1740, 1715, 1600, 1445, 1355, 1260, 1200, 1110, 1030, 1020, 970, 865, 830, 810, 770, 735 und 710 cm-1.
Beispiel 6i
(6RS,9S,15S,16S)-6-Hydroxy-9-benzoyloxy-11,15-bis-(tetrahydropyran-2-yloxy)- 16,20-dimethyl-13,14,18,18,19,19-hexadehydro-13-prostensäuremethylester:
550 mg (848 μmol) der nach Beispiel 6j dargestellten Verbindung setzte man in Analogie zu Beispiel 2i um und isoliete nach Aufarbeitung und Reinigung 473 mg (727 μmol, 86%) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200, 3060, 2950, 2860, 2230, 1735, 1715, 1600, 1450, 1360, 1200. 1110, 1030, 1020, 970, 870, 820 und 710 cm-1. Beispiel 6j
(9S,11R,15S,16S)-6-Oxo-9-benzoyloxy-11,15-bis-(tetrahydropyran-2-yloxy)-16.20- dimethyl-13,14,18.18,19,19-hexadehydro-13-prostensäuremethylester:
518 mg (900 μmol) der nach Beispiel 5c dargestellten Verbindung setzte man in Analogie zu Beispiel 2j um und isolierte nach Aufarbeitung und Reinigung 562 mg (866 μmol, 96%) der Titelverbindung als farbloses Öl.
IR (Film): 3050, 2960, 2920. 2860. 2230. 1735, 1715. 1600. 1450. 1375, 1260, 1200, 1110. 1020. 970, 865, 815 und 710 cm-1.
Beispiel 7
(9R,11R,15S.16S)-6-Oxo-9-fluor-11.15-dihydroxy-16,20-dimethyl-13,14,18,18,19,19-hexadehydro-13-prostensäuremethylester:
6 , 5 mg (16,4 μmol) der nach Beispiel 5 dargestellten Verbindung setzte man in Analogie zu Beispiel 3 um und isolierte nach Aufarbeitung und Reinigung 4 , 8 mg (11,7 μmol, 717.) der Titelverbindung als farbloses Öl.
IR (Film): 3600-3200, 2960. 2920, 2850, 2230, 1735, 1715, 1410, 1375, 1095 und 980 cm-1.
Beispiel 8
(9S,11R,15S,16S)-6-Oκo-9-fluor-11.15-dihydroxy-16.20-dimethyl-13,14,18.18,19. 19-hexadehydro-13-prostensäuremethylester:
9 mg (22,7 μmol) der in Beispiel 6 dargestellten Verbindung setzte man in Analogie zu Beispiel 3 um und isolierte nach Aufarbeitung und Reinigung 6,5 mg (15,9 μmol, 70%) der Titelverbindung als farbloses Öl.
IR (Film) 3600-3200, 2960. 2920, 2850. 1735, 1715, 1410, 1375, 1095 und 980 cm-1.

Claims

P a t e n t a n s p r u c h e 1.6-Oxo-9-fluor-prostaglandinderivate der Formel I,
worin
R1 den Rest COOR2 oder CONHSO2R2 mit R2 in der Bedeutung einer C5-C6-Cyclo
5 6 alkyl- oder einer C6-C12- Aryi-Gruppe oder eines 5- oder 6-glιedrιgen heterocyclischen Restes oder, falls R1 gleich COOR ist, R 2 die Bedeutung eines Wasserstoffatomes oder eines freien oder durch 1-3 Halogenatome substitierten Phenacyls haben kann,
A eine E-konflgurierte CH=CH- oder eine -C≡C-Gruppe ,
W eine freie oder funktionell abgewandelte Hydroxymethylengruppe oder eine freie oder funktionell abgewandelte C(CH3)OH-Gruppe, wobei die OH-Gruppe
jeweils α- oder ß-ständig sein kann,
D eine geradkettige oder verzweigtkettige Alkylengruppe mit 1-5 C-Atomen oder eine Direktbindung,
E eine - C≡C -Gruppe, eine C2-C4 AI kenyl en-Gruppe oder eine Gruppe,
R2 ein Wasserstoffatom, eine C1-C10- Alkenyl-, C3-C10-Cycloalkyl- oder eine gegebenenfalls substituierte C6 - C12- Arylgruppe oder eine 5- oder 6-glιe- drige heterocyclische Gruppe, R4 ein Wasserstoffatom, eine Methylgruppe oder eine freie oder funktionell angewandelte Hydroxygruppe bedeuten und, falls R2 die Bedeutung eines Wassers toffatoms hat, deren Salze mit physiologisch verträglichen Basen, die α- , ß- oder y- Cyclαdextrinclathrate der Verbindungen der Formel I sowie die mit Liposomen verkapselten Verbindungen der Formel I.
2. Verfahren zur Herstellung der Verbindungen der Formel I, dadurch gekennzeichnet, daß man eine Verbindung der Formel II,
worin
X eine C=0- oder CH(R5)-Gruppe,
R5 eine Hydroxygruppe und R1, R3, R4, A, W, D und E die oben angegebenen Becleutungen aufweisen und freie OH-Gruppen in R 4, R5 und W geschützt sind mit Diethylaminoschwefeltrifluorid oder anderen Fluorierungsmitteln umsetzt und geschützte Hydroxygruppen in X freisetzt und zum Keton oxidiert, geschützte Hydroxygruppen in R4 und W freisetzt und/oder freie
Hydroxygruppen verestert, verethert und/oder eine veresterte Carboxygruppe verseift oder eine Carboxylgruppe mit einer phyiologisch verträglichen Base in ein Salz überfuhrt oder mit α-, ß- oder γ-Cyclodextrin zu einem Clathrat umsetzt oder mit Liposomen verkapselt.
3. Arzneimittel aus einer oder mehreren Verbindungen der Formel I und üblichen Hilfs-, Träger- und Zusatzstoffen.
EP19890909709 1988-09-09 1989-09-10 6-oxo-9-fluor-prostaglandin-derivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung Withdrawn EP0434707A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19883831222 DE3831222A1 (de) 1988-09-09 1988-09-09 6-oxo-9-fluor-prostaglandin-derivate verfahren zu ihrer herstellung und ihre pharmazeutische verwendung
DE3831222 1988-09-09

Publications (1)

Publication Number Publication Date
EP0434707A1 true EP0434707A1 (de) 1991-07-03

Family

ID=6362926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890909709 Withdrawn EP0434707A1 (de) 1988-09-09 1989-09-10 6-oxo-9-fluor-prostaglandin-derivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung

Country Status (3)

Country Link
EP (1) EP0434707A1 (de)
DE (1) DE3831222A1 (de)
WO (1) WO1990002728A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008959A1 (en) * 1992-10-20 1994-04-28 Taisho Pharmaceutical Co., Ltd. Prostaglandine derivative

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3126924A1 (de) * 1981-07-03 1983-01-20 Schering Ag, 1000 Berlin Und 4619 Bergkamen 9-fluor-prostaglandinderivate, verfahren zur herstellung und verwendung als arzneimittel
DE3708537A1 (de) * 1987-03-13 1988-09-22 Schering Ag 6-oxoprostaglandin-e-derivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9002728A2 *

Also Published As

Publication number Publication date
WO1990002728A2 (de) 1990-03-22
DE3831222A1 (de) 1990-03-22
WO1990002728A3 (de) 1990-07-26

Similar Documents

Publication Publication Date Title
EP0051558B1 (de) Prostacyclinderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0563358B1 (de) 9-substituierte bicyclo [3.3.0]octan-derivate verwendbar als txa2-antagonisten
EP0099538A1 (de) Neue Carbacycline, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0130142A1 (de) Neue Prostacyclinderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0057660A2 (de) Neue Prostacyclin-Derivate, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel
EP0284547B1 (de) 6-Oxoprostaglandin-E-Derivate, Verfahren zu ihrer Herstellung und Arzneimittel
DE4225488A1 (de) Neue Bicyclo[3.3.0]octan-Derivate, Verfahren zu ihrer Herstellung und ihre pharmazeutische Verwendung
EP0434707A1 (de) 6-oxo-9-fluor-prostaglandin-derivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung
EP0434833B1 (de) 9-fluor-prostaglandin-derivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung
EP0051557B1 (de) 5-Cyan-prostacyclinderivate, Verfahren zu ihrer Herstellung und ihrer Verwendung als Arzneimittel
EP0153274B1 (de) Neue Carbacycline, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0051597B1 (de) Neue prostacyclinderivate und ihre herstellung
DE3428266A1 (de) Neue carbacycline, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel
DD209806A5 (de) Verfahren zur herstellung von carbacyclinen
EP0098794B1 (de) Neue Carbacycline, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0113311B1 (de) 5-Fluorcarbacycline, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
EP0434832B1 (de) D8- und D9-PROSTAGLANDIN-DERIVATE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE PHARMAZEUTISCHE VERWENDUNG
DE4037941A1 (de) Cyclopentanetherderivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung
EP0155901B1 (de) Neue Carbacycline, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
WO1989000990A1 (fr) Nouveaux derives de carbacycline substitues en 9, leur procede de fabrication et leur emploi a titre de medicaments
WO1987003283A1 (en) New carbacyclines, process for their production and their use as medicaments
DE4010355A1 (de) Bicyclo(3.3.0)octan-derivate, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung
EP0139731A1 (de) 5-äthinyl-prostacycline, verfahren zu ihrer herstellung und ihre pharmazeutische verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930401