EP0431448A1 - Procédé catalytique de préparation d'huiles lubrifiantes à bas point d'écoulement - Google Patents

Procédé catalytique de préparation d'huiles lubrifiantes à bas point d'écoulement Download PDF

Info

Publication number
EP0431448A1
EP0431448A1 EP90122676A EP90122676A EP0431448A1 EP 0431448 A1 EP0431448 A1 EP 0431448A1 EP 90122676 A EP90122676 A EP 90122676A EP 90122676 A EP90122676 A EP 90122676A EP 0431448 A1 EP0431448 A1 EP 0431448A1
Authority
EP
European Patent Office
Prior art keywords
process according
catalyst
composite
dewaxing
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90122676A
Other languages
German (de)
English (en)
Other versions
EP0431448B1 (fr
Inventor
Robert Peter Leonard Absil
Philip Jay Angevine
Thomas Francis Degnan, Jr.
George Harry Hatzikos
Rene Bernard Lapierre
John Paul Mcwilliams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Publication of EP0431448A1 publication Critical patent/EP0431448A1/fr
Application granted granted Critical
Publication of EP0431448B1 publication Critical patent/EP0431448B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Definitions

  • This invention relates to the processing of higher molecular weight vacuum distillates such as bright stock raffinates to lower their pour point.
  • a suitable feedstock for lubricant refining contains a quantity of lubricant stock having a predetermined set of properties such as appropriate viscosity, oxidation stability, and maintenance of fluidity at low temperatures.
  • the process of refining to isolate that lubricant stock consists of a set of subtractive unit operations which removes the unwanted components.
  • the most important of these unit operations include distillation, solvent refining, and dewaxing, which basically are physical separation processes in that if all the separated functions were recombined one would reconstitute the crude oil.
  • the complexity of the molecular makeup of the desired components is reflected by the first step in the lube refining process, vacuum distillation.
  • vacuum distillation the feed is separated into four boiling fractions, each of which has a different viscosity and a different mix of aromatics, naphthenes, paraffins, resins and asphaltenes. Separation must be exact because the resulting viscosity and composition cannot be adjusted later in subsequent refining steps.
  • the lightest fraction of the vacuum distillation step vacuum tower overhead, has a boiling range up to approximately 700°F (370°C) and is usually consigned to a fuel refinery to be made into light products.
  • the remaining three fractions can be used in preparing lube stock.
  • the second fraction, light neutral distillate has a boiling range between approximately 700 and 850°F (371 and 454°C), and is used to make low viscosity oils.
  • the fourth fraction, vacuum resid will not boil even under vacuum and will result in a lube base called "bright stock". This vacuum resid contains most of the resins and metals in the crude and all of the asphaltines.
  • Hydrotreating has been proposed to accomplish such upgrading.
  • a suitable fraction of a poor grade crude such as a California crude
  • the process is complex in that some of the oil is reduced in molecular weight and made unsuitable for lubes, but concurrently a substantial fraction of the polynuclear aromatics is hydrogenated to form naphthenes and paraffins.
  • Process conditions and choice of catalyst are selected to provide an optimal conversion of the polynuclear aromatic content of the stock, since this component degrades the viscosity index and stability of the stock.
  • hydrocracking is employed for processes such as the foregoing; by contrast the purpose of “hydrotreating” is to stabilize the lube base stock produced by hydrocracking. Hydrocracking and hydrotreating steps may be distinguished also by the amount of hydrogen consumed, the hydrocracking step typically consuming about 178 to 356 m3/m3 (1000-2000 SCF/bbl) while the hydrotreating step consumes only about a tenth as much.
  • hydrocracking process for increasing the availability of lube oils has an attractive feature that is not immediately apparent.
  • composition and properties of hydrocracked stocks are generally not particularly affected by the source and nature of the crude, i.e., they tend to be much more alike than fractions prepared from different crudes by conventional means.
  • the process therefore promises to free the refiner from dependence on a particular crude, with all of the advantages that this freedom implies.
  • Hydrocracked lube stocks tend to be unstable in the presence of air when exposed to sunlight. On such exposure, an unacceptable sludge is formed, sometimes very rapidly and in fairly substantial amount. Additionally, some hydrocracked lube oils tend to darken or to form a haze. Several methods have been proposed to correct this instability, such as those described in US-A-4,031,016, 3,666,657, 3,530,061, 4,162,962, 3,530,061 and 3,852,207.
  • Hydrocracked lubricating oils generally have an unacceptably high pour point and require dewaxing.
  • Catalytic methods for dewaxing have been proposed, for instance in US-A-3,700,585. Hydrotreating after catalytic dewaxing is disclosed in US-A-4,137,148.
  • US-A-4,283,271, 4,283,272, and 4,414,097 disclose processes for producing dewaxed lubricating oil base including hydrocracking a hydrocarbon feedstock, catalytically dewaxing the hydrocrackate and hydrotreating the dewaxed hydrocrackate, and employ catalyst compositions comprising zeolite ZSM-5, ZSM-11 and ZSM-23 for the dewaxing phase.
  • This invention provides an energy-efficient continuous process for producing dewaxed hydrocracked lubricating oil stock from a hydrocarbon feedstock effluent boiling over about 288°C (550°F), by passing such an effluent through a catalytic hydrodewaxing process in which the supported catalyst composition comprises a zeolite and matrix and, optionally, a Group VIII metal.
  • a cyclic catalytic dewaxing process for improving the pour point of a demetallized petroleum fraction free of components boiling below 371°C, comprises contacting a bright stock raffinate with a dewaxing catalyst at a temperature of 260 to 482°C, a pressure of 14.8 to 242.4 bar, a liquid hourly space velocity of 0.2 to 20 and a hydrogen circulation rate of 89 to 3560 m3/m3, said catalyst comprising a porous composite of a zeolite having a constraint index of 1 to 12 and a matrix whereof the zeolite constitutes 35 to 75 weight percent, at least 60 volume percent of the pores of said composite having a diameter less than 20 nm, the composite having a particle density of at least 1.0 g/cc.
  • Figure 1 is a plot of pore volume (cc/gm) vs. pore diameter
  • Figure 2 is a plot of reaction temperature vs. days on stream
  • Figure 3 is a plot of reaction temperature vs. days on stream.
  • Figure 4 is a plot of reactor temperature vs. days on stream.
  • the aging rate of dewaxing catalysts in dewaxing has been reduced. Accordingly, the start-of-cycle temperature in the second cycle, and subsequent cycles, of a multicycle dewaxing operation is reduced.
  • the capacity to reduce the aging rate of the dewaxing catalyst allows for longer periods between oxygen regeneration and hydrogen reactivation cycles and thus increases overall catalyst lifetime. It is noted that aging rate can be expressed by the daily increase in operating temperature necessary to maintain a product of constant pour point.
  • the benefits of the invention apply particularly to bright stock raffinate feedstocks, which induce among the fastest catalyst aging rates.
  • pore volume, pore size distribution and particle density can significantly affect catalytic performance.
  • a good example of this is in the design of demetallation catalysts, where a majority of the pores must be in the greater than 10 nm range to prevent pore plugging by deposited metals and to allow for diffusion of Ni- and V-containing porphyrins.
  • the design of the demetallation catalysts involves a critical balance between the required pore size distribution and the high surface area needed to produce the requisite activity.
  • the catalyst is a porous mixture, at least 60 percent of the pores of which, as measured by mercury porosimetry, have diameters less than 20 nm.
  • the average pore size of the mixture is preferably lower than 15 nm, more preferably lower than 10 nm, and in certain embodiments is less than 7 nm, and even less than 4 nm.
  • the particle density of the porous composite is at least 1.0 g/cc.
  • the zeolite component of the catalyst has a constraint index of 1 to 12.
  • the method by which constraint index is determined is described fully in US-A-4,016,218.
  • Constraint index (CI) values for some typical materials are:
  • test conditions e.g. temperature
  • constraint index of a particular zeolite e.g. ZSM-5, ZSM-11 and Beta.
  • the crystal size of the zeolite ranges from 0.02 to 0.05 micrometers.
  • the catalyst composition will generally, although not necessarily, contain a Group VIII metal, which when present may be exchanged into the composition, impregnated therein or physically and intimately admixed therewith by well known techniques.
  • the amount of Group VIII metal in the catalyst composition can range from 0.10 to 10 weight percent, preferably from about 0.1 to about 3 weight percent, most preferably from about 0.2 to about 1 weight percent, based on the total weight of the catalyst composition.
  • the Group VIII metal component can be platinum, palladium, iridium, ruthenium, cobalt, nickel, copper, molybdenum and mixtures thereof.
  • the preferred metal is nickel.
  • the Group VIII metal may be present alone or together with a metal from Group VI, such as chromium, molybdenum, tungsten and mixtures thereof.
  • the particle size (effective or hydraulic diameter) of preferred forms of the catalyst ranges from 0.75 to 3.2 mm.
  • the binder or matrix is suitably an alumina other than alpha alumina, preferably gammaalumina. Generally it is a small particle alumina with a packing density of 0.5 to 0.6 g/cc.
  • the matrix is characterized by a particle density of 0.95 to 1.50 g/cc.
  • Alumina monohydrate (pseudoboehmite) is converted into a desirably dense analogue during catalyst formation.
  • An alumina source for the matrix used for catalyst preparation preferably has a water content of 20 to 30 weight percent.
  • the alumina monohydrate used as the source of matrix material in the Examples has a water content of 28 percent.
  • the alumina source is convertible to gamma-alumina.
  • Gamma-alumina is a phase of alumina which occurs as a result of calcination at a temperature of no greater than about 538°C (1000°F).
  • deltaalumina is a result of calcination at a temperature of about 927°C (1700°F).
  • the zeolite, a Group VIII metal and a source of binder or matrix are mulled together to form a homogeneous mixture.
  • the important feature of the mulling step is the water content of the mixture.
  • the water content can be expressed as ash content of the mixture: the ash content can range from 40 to 60 wt%.
  • Water content can also be expressed as solid content, which can range from 45 to 60, preferably from 42 to 55 weight percent.
  • Mulling is undertaken at a temperature ranging from 10 to 37.7°C (50 to 100°F).
  • the mixture may contain 0.05 to 5 wt% of an extrusion aid such as polyvinyl alcohol.
  • Extrusion is undertaken in conventional apparatus to produce a particle with a length to diameter ratio of at least 2.
  • the matrix precursor can be alumina monohydrate (.e., pseudoboehmite), which during catalyst formation is converted to a more dense analogue.
  • alumina monohydrate .e., pseudoboehmite
  • the feed to the dewaxing unit is a fraction produced by vacuum distillation of crude oil which has been demetallized and is free of boiling range components having a boiling range up to about 700°F, in particular one based on the vacuum resid which as noted above will produce a lube base called bright stock.
  • a lube dewaxing catalyst was produced by preparing a mixture of 65 percent ZSM-5, 35 percent of a coarse, high-chemical purity, low density, high-surface-area alpha alumina monohydrate (pseudoboehmite), nickel nitrate hexahydrate, and enough water to form a paste-like mixture, mulling this mixture, and extruding it into 1.6 mm (1/16 inch) cylindrical pellets by conventional means.
  • the catalyst was pre-calcined in nitrogen for 3 hours at 482°C (900°F) (2.8°C/min heat-up) and then in air at 538°C (1000°F) for 3 hours. This procedure converts the alpha alumina monohydrate into gamma-alumina.
  • the physical properties and pore size distribution are shown in Table 1.
  • the catalyst in this example will be referred to as a medium pore diameter catalyst. This catalyst has 60 percent of its pore with diameters less than 20 nm (as measured by mercury porosimetry).
  • a lube dewaxing catalyst was produced by preparing a mixture of 65 percent ZSM-5, 21 percent of the same alpha alumina monohydrate (pseudoboehmite) used in Example 1, 14 percent delta alumina, nickel nitrate hexahydrate, and enough water to form a paste-like mixture, mulling this mixture, and extruding it into 1.6 mm (1/16 inch) cylindrical pellets by conventional means.
  • the delta alumina was prepared by calcining the alpha alumina monohydrate in air at 927°C (1700°F) for 4 hours.
  • the catalyst was pre-calcined in nitrogen for 3 hours at 482°C (900°F) (2.8°C/min heat-up) and then in air at 538°C (1000°F) for 3 hours.
  • the physical properties and pore size distribution are shown in Table 1.
  • the catalyst in this example will be referred to as a large pore diameter catalyst.
  • This catalyst has 44 volume percent of its pores (as measured by mercury porosimetry) with diameters less than 20 nm.
  • a lube dewaxing catalyst was produced by preparing a mixture of 65% ZSM-5, 35% of a finely divided, dense, high chemical purity alpha alumina monohydrate, Keith alumina (pseudoboehmite from Keith Corporation), nickel nitrate hexahydrate, and enough water to form a paste-like mixture, mulling this mixture, and extruding it into 1.6 mm (1/16 inch) cylindrical pellets by conventional means.
  • the catalyst was precalcined in nitrogen for 3 hours at 482°C (900°F) (2.8°C/min heat-up) and then in air at 5.38°C (1000°F) for 3 hours. This procedure converts the alpha alumina monohydrate into gamma alumina.
  • the physical properties and pore size distribution are shown in the following Table.
  • the catalyst in this example will be referred to as a small pore diameter catalyst. It has an average pore diameter of 4 nm, 92 volume percent of its pores (as measured by mercury porosimetry) being of diameter less than 20 nm.
  • the catalysts of Examples 1 and 2 were examined for dewaxing of paraffinic North Sea Heavy Neutral and Bright Stock raffinates. Properties of the feedstocks are given in Table 2. Both catalysts were able to produce -6.6°C (20°F) pour point products. The aging rates of the catalysts were tracked by adjusting the reaction temperature to compensate for activity loss so as to maintain a target -6.6°C (20°F) pour point while maintaining all other conditions constant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
EP19900122676 1989-12-04 1990-11-27 Procédé catalytique de préparation d'huiles lubrifiantes à bas point d'écoulement Expired - Lifetime EP0431448B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US44520489A 1989-12-04 1989-12-04
US445204 1989-12-04

Publications (2)

Publication Number Publication Date
EP0431448A1 true EP0431448A1 (fr) 1991-06-12
EP0431448B1 EP0431448B1 (fr) 1993-11-18

Family

ID=23767989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900122676 Expired - Lifetime EP0431448B1 (fr) 1989-12-04 1990-11-27 Procédé catalytique de préparation d'huiles lubrifiantes à bas point d'écoulement

Country Status (6)

Country Link
EP (1) EP0431448B1 (fr)
JP (1) JPH03212493A (fr)
AU (1) AU629425B2 (fr)
CA (1) CA2029999A1 (fr)
DE (1) DE69004670T2 (fr)
ES (1) ES2045729T3 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765207A1 (fr) * 1997-06-25 1998-12-31 Inst Francais Du Petrole Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2765209A1 (fr) * 1997-06-25 1998-12-31 Inst Francais Du Petrole Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2765208A1 (fr) * 1997-06-25 1998-12-31 Inst Francais Du Petrole Zeolithe nu-85, catalyseur et procede et pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2765206A1 (fr) * 1997-06-25 1998-12-31 Inst Francais Du Petrole Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043681A1 (fr) * 1980-07-07 1982-01-13 Mobil Oil Corporation Procédé catalytique pour la production d'une huile lubrifiante
US4508615A (en) * 1984-02-16 1985-04-02 Mobil Oil Corporation Multi-stage process for demetalation, desulfurization and dewaxing of petroleum oils

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510044A (en) * 1982-02-08 1985-04-09 Mobil Oil Corporation Process for hydrotreating petroleum residua and catalyst therefor
US4440630A (en) * 1982-02-08 1984-04-03 Mobil Oil Corporation Process for simultaneous hydrodesulfurization and hydrodewaxing with a catalyst of controlled pore size and metals content
US4510043A (en) * 1984-02-16 1985-04-09 Mobil Oil Corporation Process for dewaxing of petroleum oils prior to demetalation and desulfurization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043681A1 (fr) * 1980-07-07 1982-01-13 Mobil Oil Corporation Procédé catalytique pour la production d'une huile lubrifiante
US4508615A (en) * 1984-02-16 1985-04-02 Mobil Oil Corporation Multi-stage process for demetalation, desulfurization and dewaxing of petroleum oils

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765207A1 (fr) * 1997-06-25 1998-12-31 Inst Francais Du Petrole Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2765209A1 (fr) * 1997-06-25 1998-12-31 Inst Francais Du Petrole Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2765208A1 (fr) * 1997-06-25 1998-12-31 Inst Francais Du Petrole Zeolithe nu-85, catalyseur et procede et pour l'amelioration du point d'ecoulement de charges contenant des paraffines
FR2765206A1 (fr) * 1997-06-25 1998-12-31 Inst Francais Du Petrole Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
US6153548A (en) * 1997-06-25 2000-11-28 Institut Francais Du Petrole NU-85 zeolite catalyst and a process for improving the pour point of feeds containing paraffins
US6350370B1 (en) 1997-06-25 2002-02-26 Institut Francais Du Petrole NU-85 zeolite catalyst and a process for improving the pour point of feeds containing paraffins
US6733658B2 (en) 1997-06-25 2004-05-11 Institut Francais Du Petrole EU-1 zeolite catalyst and a process for the reduction of the pour point of feeds containing paraffins

Also Published As

Publication number Publication date
DE69004670T2 (de) 1994-03-10
EP0431448B1 (fr) 1993-11-18
CA2029999A1 (fr) 1991-06-05
JPH03212493A (ja) 1991-09-18
AU629425B2 (en) 1992-10-01
ES2045729T3 (es) 1994-01-16
DE69004670D1 (de) 1993-12-23
AU6652990A (en) 1991-06-06

Similar Documents

Publication Publication Date Title
EP0464546B1 (fr) Production de lubrifiants à haut indice de viscosité
CA2230760C (fr) Procede integre d'amelioration de lubrifiant
EP0092376B1 (fr) Procédé catalytique pour la fabrication d'huiles lubrifiantes à bas point d'écoulement
US6190532B1 (en) Production of high viscosity index lubricants
KR100695180B1 (ko) 전환-수소화 이성화 반응후 접촉 탈왁스화 처리에 의한베이스 오일 및 중간 증류물의 융통적인 제조 방법
EP0464547A1 (fr) Production de lubrifiants à haute indice de viscosité
US6231749B1 (en) Production of high viscosity index lubricants
JP3628023B2 (ja) ロウ水素化異性化法
JP2003522251A (ja) 向上されたzsm−5触媒を用いる高粘度潤滑油基材油の製造
KR20000023803A (ko) 윤활유수소화전화용적층촉매계
EP0079778A1 (fr) Procédé de déparaffinage et hydrotraitement catalytique
KR100830737B1 (ko) 통합된 윤활제 업그레이드 방법
EP1789187B1 (fr) Tamis moleculaire ameliore contenant des catalyseurs d'hydroparaffinage
KR20040014410A (ko) 통합된 윤활제 업그레이드 방법
EP0775184B2 (fr) Production d'huile de lubrification avec un catalyseur de selection de l'indice de viscosite
EP1720961B1 (fr) Procédé de préparation de deux ou plusieurs huiles de base et distillats moyens
US4908120A (en) Catalytic dewaxing process using binder-free zeolite
US4541919A (en) Shape selective dewaxing using coke modified large pore zeolites
WO1999041330A1 (fr) Procede d'amelioration de charges paraffineuses via un catalyseur renfermant en combinaison un produit catalyseur de deparaffinage en poudre et un produit catalyseur d'isomeration en poudre et presente sous forme de particule discrete
US5800698A (en) Catalyst for the hydroisomerization of contaminated hydrocarbon feedstock
KR100336723B1 (ko) 귀금속및실리카-알루미나를주성분으로하는촉매및중질공급물을수소이성질체화시키는방법
KR100603225B1 (ko) 의약용 오일 및 임의로 중간 증류물의 융통적인 제조 방법
US4921593A (en) Catalytic dewaxing process
EP0431448B1 (fr) Procédé catalytique de préparation d'huiles lubrifiantes à bas point d'écoulement
ZA200509836B (en) Process for improving the pour point of hydrocarbon charges resulting from the Fishcier-Tropsch process, using a catalyst based on ZBM-30 zeolite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19911227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 69004670

Country of ref document: DE

Date of ref document: 19931223

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2045729

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960912

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960916

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960925

Year of fee payment: 7

Ref country code: FR

Payment date: 19960925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961112

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961128

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19971128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

BERE Be: lapsed

Owner name: MOBIL OIL CORP.

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051127