EP0430989B1 - Procede de coulee de precision - Google Patents

Procede de coulee de precision Download PDF

Info

Publication number
EP0430989B1
EP0430989B1 EP89909225A EP89909225A EP0430989B1 EP 0430989 B1 EP0430989 B1 EP 0430989B1 EP 89909225 A EP89909225 A EP 89909225A EP 89909225 A EP89909225 A EP 89909225A EP 0430989 B1 EP0430989 B1 EP 0430989B1
Authority
EP
European Patent Office
Prior art keywords
shank
casting
shell
corehead
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89909225A
Other languages
German (de)
English (en)
Other versions
EP0430989A1 (fr
Inventor
Neil Andrew Abercrombie Simpson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Developments Ltd
Original Assignee
Astec Developments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB888818382A external-priority patent/GB8818382D0/en
Priority claimed from GB888821521A external-priority patent/GB8821521D0/en
Application filed by Astec Developments Ltd filed Critical Astec Developments Ltd
Publication of EP0430989A1 publication Critical patent/EP0430989A1/fr
Application granted granted Critical
Publication of EP0430989B1 publication Critical patent/EP0430989B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts

Definitions

  • This invention relates to a method of manufacturing petroleum/mining drill bits/coreheads with synthetic and natural diamond materials by utilising investment casting methods according to the preambles of claims 1 and 2, respectively.
  • tungsten carbide powder matrix is formed in a thick shell around a steel inner core which carries the threaded connection. The cutters are then brazed on to the pre-formed matrix shell.
  • tungsten carbide matrix is very resistant to fluid erosion and abrasive wear, natural diamonds can be included in the matrix shell for gauge protection, and relatively complex shapes can be produced.
  • the method suffers from the disadvantages that possible breakdown of bond between the matrix shell and steel core may occur, manufacture of the graphite mould is precision work requiring high labour input, and high cost due to quantity of carbide required.
  • the differential of contraction between matrix shell or steel core may cause cracking especially in the larger products and further, poor quality of the matrix body formed necessitates extensive hand fettling.
  • the normal method of manufacture is by machining from the solid using multi-axis milling machines and then hard-facing using welding or spray metal techniques prior to the installation of the cutters. These cutters are either brazed in place or pressed into prepared holes and held in place by interference fit.
  • the advantages of the steel body type are a single unit construction with no possibility of break-up due to bond failure or cracking, low cost materials, and CNC multi-axis milling machine techniques give good repeatability for batch production.
  • the steel body type method is labour intensive, in that hard facing has to be applied after machining, and any surplus hard facing has to be hand-ground away from cutter pockets prior to installation. Also, the allowable complexity of shape is restricted by limitations of machining capabilities.
  • a master mould is manufactured to cast accurate wax males of the product required.
  • the wax males are then coated with a ceramic material by dripping them in a slurry and then raining sand on the wet slurry. This is done a number of times, allowing the slurry and sand coating to dry before re-dipping.
  • this method of manufacture would not be used to produce a steel-bodied bit or corehead due to the fact that it would require subsequent hard facing after casting in order to withstand the fluid erosion and abrasive wear experienced downhole.
  • the application of this hard facing by spray metal or welding techniques would cover or damage the accurately-formed profile of the investment cast product thus spoiling the dimensional accuracy and therefore defeating the purpose of using this process in the first place.
  • a method of casting a drill bit or corehead comprising a two-stage process characterised in that the first stage comprises forming a hard outer shell by investment casting, the outer shell having substantially the final form of the outer part of the intended drill bit or corehead, and the second stage comprises casting a less hard core within the outer shell in conditions which cause fusion bonding of shell and core, the core either having the final form of the drill bit or corehead, or having principal features of the final form of the shank of the drill bit or corehead.
  • a method of casting a drill bit or corehead comprising the step of forming or providing at least the basis of a shank of the drill bit or corehead, the shank or proto-shank being of a less hard material, said method being characterised by the further steps of buttering the shank (or proto-shank) with weld material or spray metal deposit of lower melting temperature than that of a hard material subsequently to form an outer shell of the drill bit or corehead, forming or providing a ceramic mould of the bit head, suspending the pre-buttered shank or proto-shank in the ceramic mould, pre-heating the ceramic mould and shank (or proto-shank) to a predetermined casting temperature, and casting the hard material around the shank (or proto-shank) to be fusion bonded thereto and to form a hard outer shell around the shank.
  • a drill bit or corehead manufactured by the method according either to the first aspect of the present invention, or to the second aspect of the present invention.
  • the method of the invention combines the advantages of both matrix and steel bodied type production, substantially reducing the labour content per manufactured unit, thus greatly enhancing the possibilities of mass production.
  • the drill bit/corehead is made by two separate casting stages in a two-part manufacturing process, the body being cast in separate casts as follows:-
  • bit shank requires different properties to the bit head i.e. the bit head requires to be resistant to abrasive wear and to be resistant to fluid erosion whereas the shank requires to be easily machinable and to have the capability of withstanding high stress/fatigue levels.
  • the complex form of a drill bit head is difficult and expensive to machine and therefore lends itself to the investment casting process.
  • the bit shank on the other hand is less critical and can be sand cast or investment cast and machined to size at a later stage.
  • the internal hydraulic manifolding required to direct fluid to the nozzles in the bits used for cooling and cleaning could be cast in situ in the second cast by installing this prefabricated ceramic into the shell of the first cast and casting around; thereby creating the bit complete with its manifolding in a two-step casting process.
  • a preferred preliminary stage is to produce an accurate male wax model of the bit head to be cast. This can be achieved in a number of ways:-
  • the preferred second stage of manufacture is to produce a ceramic mould from the wax male which has been produced by one of the above methods. This may be done by the conventional investment casting method as previously described.
  • the preferred third stage is to make an investment casting by pouring molten alloy into the prepared ceramic mould thus producing an exact copy of the original wax male.
  • This casting material should be highly resistant to abrasive wear and fluid erosion in its cast stage e.g. the high-cobalt alloys such as stellite.
  • the resultant casting preferably incorporates all the cutter and gauge slug pockets to a high degree of accuracy. It may also include fluid porting and nozzle positions together with an internal attachment profile such as thread slots or keyways.
  • the preferred fourth stage after casting and cleaning, is to fit the internal ceramic components into position within the hard shell and prepare the hard shell for the second casting operation.
  • the shell from the first cast is therefore now set in a sand mould bed with the shank form created using sand or ceramic moulding techniques.
  • the preferred fifth stage is to pre-heat the combined mould before the second cast to such a level that it takes into account the temperatures, masses and specific heat values of the two materials being combined such that a percentage of the inner skin of the outer shell is melted down to form a fusion bond between the two materials. This will cause alloying of the two materials causing fusion bonding to take place between the hard outer shell and the softer but tougher inner core material. Latent heat of fusion plays a major role in this process, ensuring that fusion bonding can take place without total melt-down of the shell.
  • a suitable pre-heat temperature of the shell can be determined by taking into account the relative masses and respective temperatures of the shell and the material poured to product the inner core.
  • an alloy mandrel 10 has an attachment thread 12 formed on one end.
  • a wax block 14 (shown in ghost outline) is cast around the thread 12 to form an assembly ready for machining to shape.
  • Fig. 2 shows a wax shell 16 as typically machined from the block 14, and unscrewed from the thread 12 to leave an internal attachment thread 18.
  • the cutter shell 16 has a four-bladed form, with pockets 20 on the blade edges for subsequent mounting of cutter inserts, and side-face pockets 22 for subsequent insertion of hard inserts to maintain cutter gauge against diameter reduction by wear.
  • the wax shell 16 could be formed by injection moulding.
  • a ceramic mould 24 (Fig. 3) is formed from the wax shell 16, the mould including runners 26 and a riser 28 for the pouring in of liquid metal.
  • the ceramic mould 16 is mechanically supported in a bed of sand 30 during the first stage of the casting process.
  • Fig. 4 shows the second stage of casting, in which the first-stage casting 32 (with risers removed) is placed against a ceramic shank mould 34.
  • a ceramic manifold insert 36 is placed within the casting 32 to form a manifold in the second-stage casting.
  • the assembly of first-stage casting 32 and shank mould 34 is mounted within and supported by sand 38 held in a drum 40.
  • Figs. 5 and 6 show the composite casting 42 resulting from the second stage of the moulding process.
  • the composite casting 42 includes a bit shank 44 fusion bonded to the hard first-stage casting 32 along a fusion bond line or zone 46.
  • a central conduit 48 runs from a connector 50 on the bit shank 44 through to a flow manifold chamber 52 and thence to nozzles 54, these passages being formed in the second stage of casting (Fig. 4) by the inclusion of the ceramic manifold insert 36.
  • PDC cutters 56 are mounted in the pre-formed cutter pockets 20 (Fig. 4) in the blade edges, and hard slugs or inserts 58 are fitted in the pre-formed pockets 22 outer edges of the blades, to act as gauge protectors.
  • the process of the invention has the advantage that highly accurate investment casting requires a minimum of hand grinding, machining etc, prior to cutter installation, thus substantially reducing labour content involved in the standard method of producing drill bits/coreheads.
  • Fusion bonding ensures integrity of bond between the shank and bit head.
  • the casting method allows for greater flexibility in the design of fluid porting, and in cutter and gauge insert installation.
  • the inherent accuracy of the casting process gives better quality control of cutter pockets and braze bond integrity due to the fine clearances achievable, giving good capillary action of the braze material and better self-distribution.
  • Injection moulded wax ensures consistency of cutter positioning and therefore of bit performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

Un procédé de fabrication d'outils de forage ou de couronnes de carottier composites d'une pièce adaptés pour le forage ou le carottage de puits de pétrole ou dans l'exploitation minière. On forme une enveloppe (32) de matériau résistant à l'usure et à l'érosion par coulée de précision dans une forme finie ne nécessitant pas de façonnage de finition, ou tout au plus une finition minimale. On coule ensuite une anse de poche (44) de matériau usinable dans l'enveloppe, dans des conditions provoquant la liaison par fusion des deux matériaux, pour former un outil de forage (42) ou une couronne de carottier composite d'une pièce selon le procédé de coulage en deux étapes. On soumet l'anse de poche (44) à un usinage de finition afin de former un raccordement permettant la fixation à un train de tiges. On peut préformer des poches (20) pour inserts de lame et des protecteurs de jauges de dimensions définitives dans l'enveloppe (32) dure. On peut incorporer un collecteur (52) ainsi que des ajutages (54) dans l'outil de forage ou la couronne de carottier en prévoyant une âme (36) en céramique pendant la coulée. On peut inverser les étapes, de sorte que l'anse de poche (44), ou une pièce d'âme à partir de laquelle l'anse (44) est ensuite usinée, est d'abord formée à partir d'un matériau usinable, par coulée ou autrement, l'enveloppe (32) extérieure de matériau dur étant ensuite coulée par moulage de précision autour de l'anse de poche (44) ou de la pièce d'âme dans des conditions provoquant la liaison par fusion des deux matériaux. Le moule de précision pour l'enveloppe (24) permet de couler le matériau dur dans la forme requise avec peu ou pas de façonnage de finition. L'invention concerne aussi des outils de forage et des couronnes de carottier réalisés selon l'un ou l'autre des procédés. Lesdits procédés permettent la fabrication d'outils de forage et de couronnes de carottier à un coût relativement faible, car ils éliminent la plupart ou toutes les opérations de finition manuelles spécialisées.

Claims (2)

  1. Méthode de moulage d'une mèche ou d'une tête de forage, ladite méthode comprenant un procédé de moulage en deux phases,
       caractérisée en ce que la première phase comprend la formation d'une coque extérieure dure par coulée de précision, la coque extérieure présentant sensiblement la forme définitive de la partic extérieure de la mèche ou tête de forage prévue, et la seconde phase comprend le moulage par coulée d'un noyau moins dur dans la coque extérieure dans des conditions de nature à entraîner la liaison par fusion de la coque et du noyau, le noyau présentant ou bien la forme définitive de la mèche ou de la tête de forage ou bien les caractéristiques principales de la forme définitive de la tige de la mèche ou de la tête de forage.
  2. Méthode de moulage d'une mèche ou tête de forage, ladite méthode comprenant l'étape de formation ou fourniture d'au moins la base d'une tige de la mèche ou tête de forage, la tige ou proto-tige étant réalisée dans une matière moins dure, ladite méthode étant caractérisée par les autres étapes consistant à enduire la tige (ou proto-tige) de matériau de soudure ou d'un dépôt de métal vaporisé de température de fusion inférieure à celle de la matière dure qui doit ensuite former une coque extérieure de la mèche ou tête de forage, à former ou fournir un moule céramique de la tête de mèche, à suspendre la tige ou la proto-tige pré-enduite dans le moule céramique, à préchauffer le moule céramique et la tige (ou proto-tige) jusqu'à une température de coulée prédéterminée, et à couler la matière dure autour de la tige ou de la proto-tige pour y être liée par fusion et former une coque extérieure dure autour de la tige.
EP89909225A 1988-08-02 1989-08-02 Procede de coulee de precision Expired - Lifetime EP0430989B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB888818382A GB8818382D0 (en) 1988-08-02 1988-08-02 Casting process
GB8818382 1988-08-02
GB888821521A GB8821521D0 (en) 1988-09-14 1988-09-14 Casting process
GB8821521 1988-09-14
PCT/GB1989/000881 WO1990001384A1 (fr) 1988-08-02 1989-08-02 Procede de coulee de precision

Publications (2)

Publication Number Publication Date
EP0430989A1 EP0430989A1 (fr) 1991-06-12
EP0430989B1 true EP0430989B1 (fr) 1994-11-30

Family

ID=26294231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89909225A Expired - Lifetime EP0430989B1 (fr) 1988-08-02 1989-08-02 Procede de coulee de precision

Country Status (5)

Country Link
US (1) US5358026A (fr)
EP (1) EP0430989B1 (fr)
AU (1) AU4060389A (fr)
DE (1) DE68919702D1 (fr)
WO (1) WO1990001384A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9103828D0 (en) * 1991-02-23 1991-04-10 Brit Bit Limited Improvements relating to drill bits
GB9500659D0 (en) * 1995-01-13 1995-03-08 Camco Drilling Group Ltd Improvements in or relating to rotary drill bits
GB2318993B (en) * 1995-01-13 1998-10-14 Camco Drilling Group Ltd Improvements in or relating to rotary drill bits
GB9517372D0 (en) * 1995-08-24 1995-10-25 Bbl Drill bit body manufacture
US5924502A (en) * 1996-11-12 1999-07-20 Dresser Industries, Inc. Steel-bodied bit
US6655240B1 (en) 1997-06-02 2003-12-02 Snap-On Tools Company Insulating driver with injection molded shank and fluted working tip
GB9822979D0 (en) * 1998-10-22 1998-12-16 Camco Int Uk Ltd Methods of manufacturing rotary drill bits
GB2384263B (en) * 1999-01-25 2003-10-22 Baker Hughes Inc A mold for fabricating an earth-boring drill bit
SE523928C2 (sv) * 2001-11-13 2004-06-01 Ind Utvecklingscentrum I Olofs Verktyg samt förfarande för dess framställning
US20040238154A1 (en) * 2003-05-28 2004-12-02 Woodworker's Supply, Inc. Stainless steel forstner bit
DE102004038254A1 (de) * 2004-08-06 2006-03-16 Volker Gallatz Verfahren zum Herstellen eines Erzeugnisses sowie ein zugehöriges Erzeugnis
US8915166B2 (en) * 2007-07-27 2014-12-23 Varel International Ind., L.P. Single mold milling process
GB0900606D0 (en) 2009-01-15 2009-02-25 Downhole Products Plc Tubing shoe
US8517123B2 (en) 2009-05-29 2013-08-27 Varel International, Ind., L.P. Milling cap for a polycrystalline diamond compact cutter
AU2010256521B2 (en) * 2009-06-05 2015-04-09 Varel International, Ind., L.P. Casing bit and casing reamer designs
CN102189245B (zh) * 2010-11-17 2013-03-27 王惠臣 消失模铸造双金属双液复合破碎机锤的工艺方法
US9505064B2 (en) * 2011-11-16 2016-11-29 Kennametal Inc. Cutting tool having at least partially molded body and method of making same
US10472896B2 (en) * 2014-11-19 2019-11-12 Esco Group Llc Downhole tool and method of manufacturing a tool
CN104959535B (zh) * 2015-07-07 2016-09-14 东方电气集团东方汽轮机有限公司 筒状司太立零件精密铸造成型方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US167887A (en) * 1875-09-21 Improvement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1676887A (en) * 1922-07-14 1928-07-10 John R Chamberlin Core-drill bit
GB556007A (en) * 1941-11-04 1943-09-16 Diamond Corebit & Tool Co Inc Method and apparatus for casting diamond studded tools
US2381415A (en) * 1943-11-19 1945-08-07 Jr Edward B Williams Drill bit
US3754593A (en) * 1971-12-06 1973-08-28 Wean United Inc Centrifugal casting of bi-metal rolls
US4023613A (en) * 1971-12-29 1977-05-17 Toyo Kogyo Co., Ltd. Method of making a composite metal casting
US3757879A (en) * 1972-08-24 1973-09-11 Christensen Diamond Prod Co Drill bits and methods of producing drill bits
US3945070A (en) * 1975-05-19 1976-03-23 Avia Instrument Company Wire thread cast insert
US4352400A (en) * 1980-12-01 1982-10-05 Christensen, Inc. Drill bit
US4423646A (en) * 1981-03-30 1984-01-03 N.C. Securities Holding, Inc. Process for producing a rotary drilling bit
JPS5930465A (ja) * 1982-08-12 1984-02-18 Yanmar Diesel Engine Co Ltd アルミニウム合金による鉄系材料の鋳包み方法
JPS59174262A (ja) * 1983-03-23 1984-10-02 Chobe Taguchi 銅合金と鋳鉄の溶着法
US4499795A (en) * 1983-09-23 1985-02-19 Strata Bit Corporation Method of drill bit manufacture
JPS6123822A (ja) * 1984-07-09 1986-02-01 Ngk Spark Plug Co Ltd 金属とセラミツクスの接合体
GB8508621D0 (en) * 1985-04-02 1985-05-09 Nl Petroleum Prod Rotary drill bits
JPS63183771A (ja) * 1986-12-23 1988-07-29 Hokkaido 溶射皮膜を利用した鋳込み接合法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US167887A (en) * 1875-09-21 Improvement

Also Published As

Publication number Publication date
DE68919702D1 (de) 1995-01-12
WO1990001384A1 (fr) 1990-02-22
EP0430989A1 (fr) 1991-06-12
US5358026A (en) 1994-10-25
AU4060389A (en) 1990-03-05

Similar Documents

Publication Publication Date Title
US5101692A (en) Drill bit or corehead manufacturing process
EP0430989B1 (fr) Procede de coulee de precision
US5944128A (en) Matrix hard facing by lost wax process
US5829539A (en) Rotary drill bit with hardfaced fluid passages and method of manufacturing
US5441121A (en) Earth boring drill bit with shell supporting an external drilling surface
US4499795A (en) Method of drill bit manufacture
US10399258B2 (en) Heat flow control for molding downhole equipment
US6209420B1 (en) Method of manufacturing bits, bit components and other articles of manufacture
US9790744B2 (en) Forming objects by infiltrating a printed matrix
EP2796660A2 (fr) Ensembles de moulage comprenant un moule insérable dans un récipient
ITMI20060745A1 (it) Punte per trivella a matrice composita e relativo metodo di produzione
CA2819096A1 (fr) Corps imprimes en 3d pour moulage d'equipement de fond
US10472896B2 (en) Downhole tool and method of manufacturing a tool
GB2244075A (en) Drill bit with faceted profile.
RU2602852C2 (ru) Использование трубчатого прутка из карбида вольфрама для армирования матрицы из поликристаллического алмазного композита
US9359824B2 (en) Method for reducing intermetallic compounds in matrix bit bondline
US20090025984A1 (en) Single mold milling process for fabrication of rotary bits to include necessary features utilized for fabrication in said process
GB2238736A (en) Drill bit or corehead manufacturing process
GB2318994A (en) Improvements in or relating to rotary drill bits
CA1256423A (fr) Trepans de forage et leur fabrication
US12006773B2 (en) Drilling tool having pre-fabricated components
US11512537B2 (en) Displacement members comprising machineable material portions, bit bodies comprising machineable material portions from such displacement members, earth-boring rotary drill bits comprising such bit bodies, and related methods
US20210222497A1 (en) Drilling tool having pre-fabricated components
EP0847312A1 (fr) Fabrication d'un foret
EP2899360B1 (fr) Procédé de réduction de composés inter-métalliques de collage de bits dans une matrice

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): BE CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19930625

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19941130

Ref country code: BE

Effective date: 19941130

Ref country code: LI

Effective date: 19941130

Ref country code: FR

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

REF Corresponds to:

Ref document number: 68919702

Country of ref document: DE

Date of ref document: 19950112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070801

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080802