EP0425730B1 - Kraftstoffzufuhrsystem für Einspritzvergaser - Google Patents

Kraftstoffzufuhrsystem für Einspritzvergaser Download PDF

Info

Publication number
EP0425730B1
EP0425730B1 EP89120361A EP89120361A EP0425730B1 EP 0425730 B1 EP0425730 B1 EP 0425730B1 EP 89120361 A EP89120361 A EP 89120361A EP 89120361 A EP89120361 A EP 89120361A EP 0425730 B1 EP0425730 B1 EP 0425730B1
Authority
EP
European Patent Office
Prior art keywords
fuel
chamber
flow rate
diaphragm
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89120361A
Other languages
English (en)
French (fr)
Other versions
EP0425730A1 (de
Inventor
Tetsuo C/O Mikuni Kogyo K.K. Muraji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to EP92105908A priority Critical patent/EP0497386B1/de
Priority to DE1989617482 priority patent/DE68917482T2/de
Publication of EP0425730A1 publication Critical patent/EP0425730A1/de
Application granted granted Critical
Publication of EP0425730B1 publication Critical patent/EP0425730B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • F02M69/18Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
    • F02M69/20Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air the device being a servo-motor, e.g. using engine intake air pressure or vacuum

Definitions

  • the invention relates to a fuel supply system for injection carburetors as per the preamble of claim 1.
  • a fuel system of such type is described in US-A-4 632 788.
  • the said known fuel supply system comprises amongst other items a suction tube which can meter a flow rate of fuel to render an air-fuel ratio of a gas mixture constant by balancing a difference between the negative pressure produced in the suction tube and the atmospheric pressure with a difference in fuel pressure between the upstream side and the downstream side of an orifice provided in a fuel passage.
  • a system metering a flow rate of fuel in accordance with relationship between the flow rate of fuel passing through an orifice and a difference in fuel pressure between the upstream side and the downstream side of the orifice has been designed so that only the fuel supplied to an engine passes through the orifice.
  • the passed fuel is metered by the orifice, as diagrammed in Fig.
  • the fuel pressure difference is proportional to the square of the fuel flow rate, with the result that, for example, if the fuel of the amount six times the minimum supply fuel flow rate of the system flows through the orifice, the fuel pressure difference will be increased as much as 36 times the difference at that time and reach a limit value in practical use.
  • general engines for automobiles which need to be capable of metering the fuel supply flow rate from the minimum to about 40 times that, cannot make use of such a conventional fuel injection system as in the foregoing. Accordingly, in order to solve this problem, as in EPC Patent Application EP-A-399 065, a system has been proposed in the past which is constructed to arrange at least two fuel control units for a slow zone and a main zone.
  • This system however, has defects that its structure is complicated and the transition from the slow zone to the main zone is not performed smoothly. Further, although another system is available which is capable of covering such a wide metering range as is mentioned above in the fuel supply system with a single fuel control unit, like SU carburetors, this system brings about defects that since the arrangement is such that the fuel flow rate is metered by change of the sectional area of the fuel passage (i.e., change of channel resistance) according to the flow rate of air, metering accuracy is reduced.
  • FIG. 2 shows an example of conceptional structure of a fuel supply system according to the present invention.
  • reference numeral 1 represents an air flow rate detecting means detecting a flow rate of air sucked into a suction tube 2, 3 a constant flow rate control means adapted to return only fuel of a constant flow rate, from the fuel fed from a fuel supply source 4 through a fuel pump 5 to a fuel ejection control means which will be mentioned later, to the fuel supply source 4, and 6 a fuel ejection control means injecting the fuel of the amount corresponding to the air flow rate detected by the air flow rate detecting means and discharging the remainder of the fuel fed from the fuel supply source 4 into the constant flow rate control means 3.
  • FIG. 3A depicts an example of concrete structure of the air flow rate detecting means 1.
  • reference numeral 7 designates a piston valve having a through-hold 7a in its top face for sliding in a direction normal to the suction tube 2 to form a variable venturi section 2a in the suction tube 2, 8 a spring biasing the piston valve 7 in a direction to narrow the variable venturi section 2a, 9 an adjusting screw capable of adjusting the resilient force of the spring 8 through a receiver 9a, 10 an atmospheric chamber provided under a large diameter section of the piston valve 7 so that atmosphere of an air horn is conducted thereinto, 11 a negative pressure passage opened in the variable venturi section 2a for taking out negative pressure created in the venturi section 2a, and 12 an air passage opened in the air horn for taking out relatively high reference pressure (for instance, atmospheric pressure).
  • relatively high reference pressure for instance, atmospheric pressure
  • Fig. 4 shows concrete structure of the constant flow rate control means 3, in which reference numeral 13 represents an inlet chamber having a fuel inlet port 13a, 14 an outlet chamber separated form the inlet chamber 13 by a diaphragm 15, having a fuel outlet port 14a, 16 an orifice communicating the inlet chamber 13 with the outlet chamber 14, 17 a valve having an end portion connected to the diaphragm 15 to be capable of controlling an opening degree of the fuel inlet port 13a of the inlet chamber 13, 18 a spring urging the diaphragm 15 toward the inlet chamber 13, and 19 an adjusting screw capable of adjusting the resilient force of the spring 18 through a receiver 19a.
  • reference numeral 13 represents an inlet chamber having a fuel inlet port 13a, 14 an outlet chamber separated form the inlet chamber 13 by a diaphragm 15, having a fuel outlet port 14a, 16 an orifice communicating the inlet chamber 13 with the outlet chamber 14, 17 a valve having an end portion connected to the diaphragm 15 to be capable of controlling an opening degree
  • reference numeral 20 represents an atmosphere chamber adapted to conduct the atmospheric pressure thereinto through the air passage 12 of the air flow rate detecting means, 21 a depression chamber adapted to conduct the negative pressure of the venturi section 2a thereinto through the negative pressure passage 11 of the air flow rate detecting means 1, 22 a diaphragm constituting a partition between the atmosphere chamber 20 and the depression chamber 21, 23 a fuel pressure chamber adapted to feed the fuel from the fuel supply source thereinto, 24 a fuel ejection chamber divided from the fuel pressure chamber 23 by a fuel diaphragm 25, having a fuel ejection port 24a open to the suction tube 2, and 26 an orifice communicating the fuel pressure chamber 23 with the fuel ejection chamber 24.
  • Reference numeral 27 designates a connecting member connected between the diaphragms 22 and 25, having a fuel ejection valve 27a capable of opening and closing the fuel ejection port 24a, 28 a spring pressing the negative pressure diaphragm 22 to open the fuel ejection valve 27a, and 29 an adjusting screw adjusting the resilient force of the spring 28 through a receiver 29a.
  • the venturi section 2a is configured as depicted in Fig. 3B so that the difference of the pressure (the magnitude of the negative pressure) produced between the negative pressure passage 11 and the air passage 12 in accordance with the air flow rate can accommodate the relationship of the fuel flow rate and the fuel pressure difference between the upstream side and the downstream side of the orifice through which the fuel passes.
  • the constant flow rate control means 3 is constructed so that the opening degree of the valve 17 is adjusted by operating the adjusting screw 19 and thereby the flow rate of the fuel flowing through the fuel inlet chamber 13 and the fuel outlet chamber 14 is controlled. Further, in the fuel ejection control means 6, the flow rate of the fuel passing through the orifice 26 in the injection of the fuel is such that a variable ejection flow rate Qa of the fuel delivered form the ejection port 24a which is metered in response to the air flow rate is added to a predetermined flow rate Q A of the fuel returned to the fuel supply source through the constant flow rate control means 3.
  • Fig. 7A is a characteristic diagram showing the relationship of the fuel pressure difference P between the outstream side and the downstream side of the orifice 26 and the ejection flow rate Qa, and Fig. 7B the relationship of the air flow rate required accordingly for the air flow rate detecting means 1 and the pressure difference.
  • the fuel pump 5 prior to an engine start, the fuel pump 5 is first started by an initial operation of a start key and the fuel is fed from the fuel supply source 4 to the fuel ejection control means 6 (refer to arrows of solid lines in Fig. 2).
  • the fuel ejection valve 27a is in a closed state, and the fuel introduced into the fuel pressure chamber 23 flows into the fuel ejection chamber 24 at the predetermined flow rate Q A under the differential pressure P0 and is returned to the fuel supply source 4 through the constant flow rate control means 3.
  • the fuel of a constant flow rate is circulated by the fuel pump 5 within a closed channel constructed from the fuel supply source 4, the fuel ejection control means 6, and the constant flow rate control means.
  • negative pressure corresponding to the flow rate of air sucked into the venturi section 2a of the suction tube 2 is produced.
  • the negative pressure is introduced into the depression chamber 21 of the fuel ejection control means 6 through the negative pressure passage 11 and consequently the negative pressure diaphragm 22 will be displaced toward the depression chamber 21 in virtue of the pressure difference generated between the atmosphere chamber 20 and the depression chamber 21.
  • the fuel ejection valve 27a is opened so that the fuel is injected into the suction tube 2 from the fuel ejection chamber 24.
  • the fuel pressure difference P between the upstream side and the downstream side of the orifice becomes greater than the differential pressure P0 and the fuel of the flow rate Qa higher than the predetermined flow rate Q A is metered by the orifice 26 to be included in the fuel ejection chamber 24.
  • Fig. 8 shows concrete structure of the fuel ejection control means used in a second embodiment of the present invention.
  • reference numeral 30 represents a first diaphragm constituting a partition between the fuel pressure chamber 23 and the atmosphere chamber 20, 31 a second diaphragm constituting a partition between the fuel ejection chamber 24 and the depression chamber 21, and 32 a partition wall dividing the atmosphere chamber 20 from the depression chamber 21 and having a small hole 32a into which the connecting member 27 is inserted.
  • a flow control valve 27b is configured at the upper end of the connecting rod 27, associated with a fuel inlet port 23a of the fuel pressure chamber 23, and actuated by the second diaphragm 31 displaced in response to the negative pressure of the venturi section 2a which is introduced into the depression chamber 21 to control the flow rate of the fuel introduced into the fuel pressure chamber 23.
  • the valve 27b is held to a predetermined opening degree by the spring 28 and the like to secure the predetermined flow rate Q A .
  • Reference numeral 33 denotes an injection nozzle ejecting the fuel, through an ejection port 33a, supplied from a discharge port 24b of the fuel ejection chamber 24 and incorporating a diaphragm 34 connected with a needle valve 34a and a spring 35. Accordingly, when the negative pressure detected by the air flow rate detecting means 1 is conducted into the depression chamber 21, the valve 27a is moved in its opening direction and resultant increase of the amount of a fuel flow from the fuel supply source 4 causes the fuel pressure in each of the chambers 23, 24 to be raised, so that force acting upward on the diaphragm 34 of the injection nozzle 33 is increased to open the valve 34a against the resilient force of the spring 35, thereby injecting the fuel into the suction tube 2. Thus, the fuel pressure difference between the upstream side and the downstream side of the orifice 26 is increased so that the negative pressure accommodating the flow rate of air flowing through the suction tube 2 is balanced with the fuel pressure difference.
  • Fig. 9 shows concrete structure of the fuel ejection control means used in a third embodiment of the present invention.
  • This embodiment is such that the fuel ejection valve 27a is configured at the lower end of the connecting member 27 to open and close the ejection port 24a of the fuel ejection chamber 24.
  • the fuel ejection valve 27a is actuated by the displacement of the second diaphragm 31 according to the negative pressure conducted into the depression chamber 21 for control of the amount of fuel injection.
  • Reference numeral 36 denotes a spring arranged opposite to the spring 28 across the first diaphragm 30 to urge the valve 27a in its opening direction and the difference of the resilient force between the springs 28 and 36 corresponds to Fs of the equation (1) mentioned above.
  • a bearing may be used to smooth the movement of the piston valve 7 in the air flow rate detecting means 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Claims (7)

  1. Kraftstoffsystem eines Einspritzvergasers mit einem ersten Kanal, umfassend eine erste Öffnung (26), mit einem zweiten Kanal, der stromabwärts der Öffnung (26) vom ersten Kanal abgezweigt ist und den Kraftstoff, der durch die Öffnung hindurchtritt, in ein Saugrohr eines Motors einspritzt, mit einem Luftdurchsatzdetektor (1), der dem Saugrohr (2) zugeordnet und in diesem angeordnet ist und den Durchsatz der in das Saugrohr (2) eingesaugten Luft als Druckdifferential zwischen dem atmosphärischen Druck und dem Druck der Luft im Saugrohr (2) erfaßt, mit einem Kraftstoff-Ejektions-Regler, der eine Kraftstoff-Druckkamer (23) stromaufwärts der Öffnung (26) aufweist, eine Kraftstoff-Ejektions-Kammer stromabwärts der Öffnung, wobei die Kraftstoffkammern durch eine erste Membran (25) voneinander getrennt sind, die mittels einer Stange (27) mit einer zweiten Membran (24) verbunden ist, die eine Unterdruckkammer (21) unterteilt, an welche der Unterdruck des Saugrohres (2) eines Motors angelegt ist, und mit einer atmosphärischen Kammer, die unter atmosphärischem Druck steht, wobei die negative Druckkammer und die atmosphärische Kammer derart angeordnet sind, daß eine Zunahme des Unterdruckes im Saugrohr die erste Membran (25) im Sinne einer Verminderung des Volumens der Kraftstoffkammer (23) bewegt,
    dadurch gekennzeichnet, daß das Kraftstoffzufuhrsystem einen Regler für konstanten Durchsatz aufweist, der lediglich Kraftstoff eines vorbestimmten Durchsatzes von dem von einer Kraftstoffzufuhrquelle kommenden Kraftstoffes zu dieser Kraftstoffzufuhrquelle durch die erste Öffnung (26) und den Regler konstanten Durchsatzes zurückführt, daß der Regler konstanten Durchsatzes in den ersten Kanal stromabwärts der Öffnung integriert ist, und daß der zweite Kanal, der die Kraftstoff-Ejektions-Kammer umfaßt, zwischen der Öffnung und dem Regler konstanten Durchsatzes abzweigt.
  2. Kraftstoffzufuhrsystem nach Anspruch 1, dadurch gekennzeichnet, daß der Regler (3) konstanten Durchsatzes eine Membran (15) aufweist, die eine Kraftstoff-Einlaßkammer (13) von einer Kraftstoff-Auslaßkammer (14) abteilt, daß ein Ventil (17) an die Membran (15) angeschlossen ist, um einen Einlaß der Kraftstoff-Einlaßkammer (13) zu öffnen und zu schließen, und daß eine zweite Öffnung (16) eine leitende Verbindung zwischen der Kraftstoff-Einlaßkammer (13) und der Kraftstoff-Auslaßkammer (14) herstellt und eine Feder (18) die Membran (15) in Öffnungsrichtung des Ventils (17) beaufschlagt.
  3. Kraftstoffzufuhrsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Luftdurchsatzdetektor (1) ein Kolbenventil (7) aufweist, das in das Saugrohr (2) hineinfährt oder herausfährt, je nach dem Durchsatz der in das Saugrohr (2) eingesaugten Luft, daß eine Feder (8) das Kolbenventil in einer Richtung beaufschlagt, in welcher das Kolbenventil (7) in das Saugrohr (2) einfährt, und daß ein Unterdruckkanal (11) in einer Innenwand des Saugrohres mündet, die gegen eine Stirnfläche des Kolbenventils (7) gerichtet ist, und ein Luftkanal in ein Lufthorn mündet.
  4. Kraftstoffzufuhrsystem nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der Kraftstoff-Ejektions-Regler eine Kraftstoffmembran aufweist, die eine Kraftstoff-Druckkammer mit einem Einlaß (13a) von einer KraftstoffEjektions-Kammer abtrennt, die eine Kraftstoff-Ejektions-Öffnung aufweist, daß eine Unterdruckmembran eine Unterdruckkammer gegen eine atmosphärische Kammer abtrennt, daß ein Verbindungselement zwischen der Kraftstoffmembran und der Unterdruckmembran vorgesehen ist, mit einem Kraftstoff-Ejektions-Ventil zum Öffnen und Schließen der Kraftstoff-Ejektions-Öffnung, mit einer Feder, die auf das Kraftstoff-Ejektions-Ventil im Sinne von dessen Öffnung einwirkt, und daß das Kraftstoff-Ejektions-Ventil der Kraftstoff-Ejektions-Öffnung zugeordnet ist, derart, daß Kraftstoff eines Durchsatzes entsprechend dem Druckdifferential mit atmosphärischem Druck, der vom Luftdurchsatzdetektor erfaßt wird, von der Kraftstoff-Ejektions-Öffnung ausgestoßen wird.
  5. Kraftstoffzufuhrsystem nach den Ansprüchen 1, 2 oder 3, wobei der Kraftstoff-Ejektions-Regler eine erste Membran aufweist, die eine Kraftstoff-Druckkammer mit einem Kraftstoff-Einlaß von einer atmosphärischen Kammer abtrennt, mit einer zweiten Membran, die eine Kraftstoff-Ejektions-Kammer mit einer Kraftstoff-Ejektions-Öffnung von einer Unterdruckkammer abtrennt, mit einem Verbindungselement, das zwischen der ersten Membran und der zweiten Membran angeordnet ist und das ein Ventil aufweist, das dem Kraftstoff-Einlaß zugeordnet ist, mit einer Feder, die auf das Ventil im Sinne des Öffnens dieses Ventiles drückt, mit einer Kraftstoff-Ejektions-Düse, die mit der Kraftstoff-Ejektions-Öffnung verbunden ist und die Kraftstoff in das Saugrohr auswirft, wobei das Ventil den Durchsatz des der Kraftstoff-Druckkammer zuzuführenden Kraftstoffes entsprechend der Druckdifferenz mit dem atmosphärischen Druck regelt, der vom Luftdurchsatzdetektor erfaßt wird.
  6. Kraftstoffzufuhrsystem nach Anspruch 1, 2 oder 3, wobei der Kraftstoff-Ejektions-Regler eine erste Membran aufweist, die eine Kraftstoff-Druckkammer mit einem Kraftstoffeinlaß von einer atmosphärischen Kammer abtrennt, mit einer zweiten Membran, die eine Kraftstoff-Ejektions-Kammer mit einer Kraftstoff-Ejektions-Öffnung von einer Unterdruckkammer abtrennt, mit einem Verbindungselement, das zwischen der ersten und der zweiten Membran angeordnet ist, mit einem Kraftstoff-Ejektions-Ventil zum Öffnen und Schließen der Kraftstoff-Ejektions-Öffnung, und mit einer Feder, die auf das Kraftstoff-Ejektions-Ventil in einer Richtung zu dessen Schließen wirkt, wobei das Kraftstoff-Ejektions-Ventil der Kraftstoff-Ejektions-Öffnung zugeordnet ist, so daß Kraftstoff mit einem Durchsatz entsprechend der Druckdifferenz mit der atmosphärischen Kammer, erfaßt durch den Luftdurchsatzdetektor, aus der Kraftstoff-Ejektions-Öffnung ausgedrückt wird.
  7. Kraftstoffzufuhrsystem nach einem der Ansprüche 2 bis 6, wobei Mittel zum Justieren der Federkraft der Feder vorgesehen sind.
EP89120361A 1989-10-23 1989-11-03 Kraftstoffzufuhrsystem für Einspritzvergaser Expired - Lifetime EP0425730B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP92105908A EP0497386B1 (de) 1989-10-23 1989-11-03 Kraftstoffzufuhrsystem für Einspritzvergaser
DE1989617482 DE68917482T2 (de) 1989-11-03 1989-11-03 Kraftstoffzufuhrsystem für Einspritzvergaser.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/425,015 US5031596A (en) 1989-10-23 1989-10-23 Fuel supply system for injection carburetors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP92105908.5 Division-Into 1992-04-06

Publications (2)

Publication Number Publication Date
EP0425730A1 EP0425730A1 (de) 1991-05-08
EP0425730B1 true EP0425730B1 (de) 1993-08-11

Family

ID=23684794

Family Applications (2)

Application Number Title Priority Date Filing Date
EP89120361A Expired - Lifetime EP0425730B1 (de) 1989-10-23 1989-11-03 Kraftstoffzufuhrsystem für Einspritzvergaser
EP92105908A Expired - Lifetime EP0497386B1 (de) 1989-10-23 1989-11-03 Kraftstoffzufuhrsystem für Einspritzvergaser

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP92105908A Expired - Lifetime EP0497386B1 (de) 1989-10-23 1989-11-03 Kraftstoffzufuhrsystem für Einspritzvergaser

Country Status (3)

Country Link
US (1) US5031596A (de)
EP (2) EP0425730B1 (de)
DE (1) DE68908412T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725443A (zh) * 2008-10-29 2010-06-09 安德烈亚斯.斯蒂尔两合公司 用于燃油定量装置注满的方法和装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843345A (en) * 1995-12-22 1998-12-01 Briggs & Stratton Corporation Pneumatic accelerator for low emission charge forming devices
US6434474B1 (en) * 2001-06-19 2002-08-13 Ford Global Technologies, Inc. Upstream gauge sensor, downstream absolute pressure sensor system
US7320313B1 (en) * 2007-01-30 2008-01-22 Gm Global Technology Operations, Inc. Differential pressure regulator for fuel systems
JP4732429B2 (ja) * 2007-12-18 2011-07-27 愛三工業株式会社 調圧弁及び燃料供給装置
US9074540B2 (en) * 2012-04-19 2015-07-07 Cummins Inc. Exhaust gas recirculation systems with variable venturi devices

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25672E (en) * 1964-10-27 Fuel injection system
USRE25492E (en) * 1963-12-03 Charge forming means
US1955037A (en) * 1930-05-01 1934-04-17 Zenith Carburateurs Soc Gen Device for controlling the fuel supply of internal combustion engines
US2404081A (en) * 1938-11-30 1946-07-16 Bendix Aviat Corp Charge forming device
US2447266A (en) * 1939-11-03 1948-08-17 Bendix Aviat Corp Fuel control device
US2378036A (en) * 1941-07-07 1945-06-12 Reggio Ferdinando Carlo Fuel metering device
US2374844A (en) * 1942-11-18 1945-05-01 H M Hobson Aircraft & Motor Co Regulating device for controlling the supply of fuel to internalcombustion engines
US2957467A (en) * 1958-08-25 1960-10-25 Chrysler Corp Fuel metering system
US3549132A (en) * 1967-10-09 1970-12-22 Elmer A Haase Combustion engine fuel control
DE2349616B2 (de) * 1973-10-03 1977-12-08 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzanlage fuer brennkraftmaschinen
US4228777A (en) * 1979-02-01 1980-10-21 The Bendix Corporation Fuel control
US4539960A (en) * 1982-05-14 1985-09-10 Colt Industries Operating Corp Fuel pressure regulator
JPS6069253A (ja) * 1983-09-26 1985-04-19 Nissan Motor Co Ltd 内燃機関の燃料供給装置
IT1173366B (it) * 1984-02-23 1987-06-24 Alfa Romeo Auto Spa Regolatore di pressione per un impianto di iniezione benzina
US4632788A (en) * 1985-06-25 1986-12-30 Jones James S Carburetor fuel feed system with bidirectional passage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101725443A (zh) * 2008-10-29 2010-06-09 安德烈亚斯.斯蒂尔两合公司 用于燃油定量装置注满的方法和装置
CN101725443B (zh) * 2008-10-29 2013-07-10 安德烈亚斯.斯蒂尔两合公司 用于燃油定量装置注满的方法和装置

Also Published As

Publication number Publication date
EP0497386B1 (de) 1994-08-10
DE68908412D1 (de) 1993-09-16
DE68908412T2 (de) 1993-12-09
US5031596A (en) 1991-07-16
EP0497386A3 (en) 1992-11-04
EP0425730A1 (de) 1991-05-08
EP0497386A2 (de) 1992-08-05

Similar Documents

Publication Publication Date Title
US3930481A (en) Fuel injection system for internal combustion engines
US3900014A (en) Fuel metering device for internal combustion engines
EP0425730B1 (de) Kraftstoffzufuhrsystem für Einspritzvergaser
US4090487A (en) Fuel injection system
US4018200A (en) Fuel injection system with fuel pressure control valve
US3477699A (en) Metering means
US4083338A (en) Apparatus for controlling the fuel-air mixture of an internal combustion engine
US3983856A (en) Fuel injection system
US3970063A (en) Fuel injection system
US4694808A (en) Method and fuel injection system for fuel supply to a mixture-compressing internal combustion engine having externally supplied ignition
GB2209800A (en) Multi-outlet liquid valve
US4175528A (en) Fuel supply device for internal combustion engine
US5119787A (en) Fuel supply system for injection carburetors
GB1585944A (en) Mixture-compressing internal combustion engines with external ignition and continuous fuel ignition
US3302935A (en) Fuel system
US4341192A (en) Fuel injection system
US4170204A (en) Fuel injection system
US4326487A (en) Fuel injection system
US4227502A (en) Fuel injection system
US4364361A (en) Fuel injection system
US4090486A (en) Fuel injection system
US4200073A (en) Electronic throttle body fuel injection system
EP0297546B1 (de) Kraftstoffdruckregler für Brennkraftmaschinen
US4220129A (en) Fuel injection system
US4549515A (en) Fuel injection system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910809

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 92105908.5 EINGEREICHT AM 03/11/89.

REF Corresponds to:

Ref document number: 68908412

Country of ref document: DE

Date of ref document: 19930916

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931021

Year of fee payment: 5

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931108

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940124

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103