EP0425718B1 - X-ray generator - Google Patents

X-ray generator Download PDF

Info

Publication number
EP0425718B1
EP0425718B1 EP89120143A EP89120143A EP0425718B1 EP 0425718 B1 EP0425718 B1 EP 0425718B1 EP 89120143 A EP89120143 A EP 89120143A EP 89120143 A EP89120143 A EP 89120143A EP 0425718 B1 EP0425718 B1 EP 0425718B1
Authority
EP
European Patent Office
Prior art keywords
ray generator
anode
anticathode
generator according
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89120143A
Other languages
German (de)
French (fr)
Other versions
EP0425718A1 (en
Inventor
Manfred Dr. Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker AXS Analytical X Ray Systems GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE58908218T priority Critical patent/DE58908218D1/en
Priority to EP89120143A priority patent/EP0425718B1/en
Priority to US07/604,951 priority patent/US5052034A/en
Publication of EP0425718A1 publication Critical patent/EP0425718A1/en
Application granted granted Critical
Publication of EP0425718B1 publication Critical patent/EP0425718B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/12Cooling non-rotary anodes
    • H01J35/13Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases

Definitions

  • the invention relates to an X-ray generator according to the preamble of patent claim 1.
  • US-A-2,665,390 describes an X-ray tube in which the electrons emitted by a hot cathode are focused on a metal that is liquid during operation with the aid of electrostatic lenses. In order to prevent evaporation of the metal serving as the anode, it is circulated in a closed circuit. In the area of the electron focus, the metal flows in a preferably tubular container, the wall of which is made of beryllium.
  • An X-ray tube with an anode consisting of a circulating metallic liquid, for example mercury, is known from DE-C-890 246.
  • the mercury is located in a pot-like anode body and is set in rotation by means of a rotating field generated by a stator. During operation, the circulating mercury forms a paraboloid of revolution, on the surface of which the electrons emitted by a hot cathode are focused.
  • the X-ray tube known from US-A-3,646,380 has a rotating anode, the axis of rotation of which includes an angle of 90 ° with the electron beam direction.
  • the X-ray tube is equipped with a perforated diaphragm located directly above the rotating anode.
  • X-ray tubes for fine structure examinations are known from J. Urlaub, X-ray analysis vol. 1, X-rays and detectors (Siemens, Düsseldorf 1974) pages 71 to 75.
  • the aim of the invention is to provide an X-ray generator of simple construction and having a high level of brilliance. This object is achieved by an X-ray generator according to claim 1.
  • the brilliance of an X-ray tube can generally be increased, since liquid anodes tolerate a higher electron beam power density (no crack formation, better heat dissipation by mixing).
  • the brilliance can also be increased selectively in terms of energy or wavelength by means of X-ray optical effects with a flat beam tap. The prerequisite for this, a smooth anode surface, is ideally met by liquid anodes.
  • claims 2 to 11 relate to configurations of the x-ray generator according to claim 1
  • claims 12 to 14 are directed to a method for operating an x-ray generator.
  • the X-ray generator shown schematically in FIG. 1 essentially consists of a housing formed by the metal wall 1, the beam exit windows 2, the anode support 3/4 and the glass high-voltage bushing 5, a filament 7 arranged as a cathode in the high vacuum of the housing and connected to voltage supply lines 6 a Wehnelt electrode 8 for focusing the electrons emitted by the incandescent filament 7 onto the anode 9 which is liquid during operation.
  • water 16 or another coolant is added via the im Fastening flange 10 existing channel 11 brought up to the anode support base 4 and derived via the channel 12.
  • the coolant circuit between the anode support base 4 and the mounting flange 10 is sealed by an O-ring 13.
  • the evaporation rate rises considerably at high tube outputs, so that the loss of material can no longer be neglected.
  • Strong cooling of the anode support 3/4 and simultaneous heating of the remaining tube housing, in particular the anode liquid supply 18 with the aid of the heating conductor 46, can ensure, however, that the vaporized anode liquid condenses again on the top 3 of the anode support.
  • There is a dynamic equilibrium between the evaporation rate and the condensation rate since the cooling effect increases with decreasing thickness of the anode liquid 9.
  • the heating and cooling capacity must be set so that the housing pressure does not exceed 10 (-9) bar during operation.
  • Metals with a low melting point FP and a high boiling point KP as well as low vapor pressure and high thermal conductivity are particularly suitable as anode materials, in particular gallium Ga, indium In, tin Sn and their alloys.
  • the melting and boiling points FP and KP of the metals Ga, In and Sn are given in Table 1.
  • the heating by the electron beam is generally so high that no additional heating devices are required to liquefy the anode material.
  • Liquids have a low surface roughness and, if vibrations are avoided, also a low ripple. Since the average roughness of liquids (thermally excited capillary waves) at temperatures that are not too high T ⁇ T KP is typically less than 1 nm, it is possible that of the Anode 9 emitted X-rays 14 at extremely flat angles ⁇ 2 ⁇ 1 °. This is particularly important for increasing the spectral brilliance of the X-ray generator.
  • Typical values for the exit limit angle ⁇ 2C are 0.5 °. Since in the present invention the X-ray optical properties of the anode surface in the area of extremely small tap angles (see Eq. (2)) are used to increase the brilliance, the flatness of the anode surface has to meet the highest requirements.
  • the ripple In order to ensure a defined tap angle ⁇ 2C in this angular range and to prevent beam expansion, the ripple must not exceed 0.1 ⁇ 2C . Too much ripple would cause the radiation on the differently inclined facets of the anode surface to refract into different ones Experiences exit directions. This would have a lubrication of the emerging X-ray intensity via the exit angle ⁇ 2 and thus a reduction in the increase in brilliance that can be achieved by flat beam tapping. In addition to the ripple that covers the long-wave, gently oscillating part of the anode unevenness, the roughness that describes the short-wave oscillations is also important. This roughness causes interference with both the transmitted and the reflected X-rays.
  • the gain in brilliance B E with a flat beam tap is based on a geometric effect (projective reduction of the emitting anode area) and an X-ray optical effect that makes the main contribution (solid angle concentration due to refraction at the anode-vacuum interface).
  • FIG. 4 shows an X-ray generator in which the electrons pass through a funnel-shaped constriction 17 between the filament 7 and the anti-cathode 9, which is liquid during operation.
  • This taper 17, which acts as a hollow anode also has the task of coating the top side 3 of the carrier again after the tube has been transported with the anti-cathode liquid 18 which collects on the tube bottom.
  • the tube is briefly turned over and straightened up again, so that the liquid 18 strikes the carrier top 3 arranged below the hollow anode and completely wets it.
  • the use of a border arranged on the upper side 3 of the support and projecting in the direction of the cathode 7 is out of the question since this would hinder the desired flat steel tap.
  • the exemplary embodiment according to FIG. 5 shows an X-ray generator in which the electrons emitted by the cathode 7 and accelerated in the direction of the hollow anode 17 pass through a window 20 which closes the housing 19 in a vacuum-tight manner, in order to dispose in the anti-cathode liquid arranged outside the housing 19 on the water-cooled upper side 3 of the carrier 9 to generate braking radiation and characteristic X-ray radiation 14.
  • the height d of the spacer 21 screwed to the housing 19, the anti-cathode support 3 and the fastening flange 10 can be selected to be very small (d ⁇ 1 mm), so that no appreciable electron absorption takes place in the atmosphere.
  • Electron exit window 20 also remains very small when using 0.5 ⁇ m thick quantum as window material (to be obtained from Kevex Cooperation, Foster City CA). Since a low vapor pressure does not have to be required for the materials which can be used as the anti-cathode, sodium and mercury can also be used as anti-cathode materials in addition to gallium, indium and tin.
  • the advantage of the beam generator described here is in particular that the low-energy spectral components can also be used experimentally.
  • FIG. 6 shows an X-ray generator, the anode of which is formed by an electrically conductive liquid 9 with a low vapor pressure.
  • a Faraday pump 23 is provided, the horseshoe magnet 24 of which generates a magnetic field oriented perpendicular to the desired flow direction 25.
  • An electrical current flowing between the electrodes 26 perpendicular to the magnetic field and flow direction 25 ensures the Lorentz force accelerating the anode liquid 9.
  • the heated anode liquid 9 is cooled in a heat exchanger 27.
  • the cooling water enters through the opening 28 in the heat exchanger 27 in order to flow off again at the outlet 29.
  • the nozzle 30 (Laval nozzle) provided in the channel of the anode liquid 9 is used to adapt the magnetic circulation pressure to the gas pressure p ⁇ 10 (-9) bar present in the housing, in order thereby to provide a smooth interface between the nozzle 30 and the point of impact 31 of the electron beam to ensure flowing anode liquid 9. As mentioned at the beginning, this is an essential prerequisite for tapping the X-rays at the critical angle of total reflection.
  • the arrangement consisting of the ceramic insulating body 22, the cathode 7 and the focusing unit 8 (Wehnelt electrode, focusing trough or Pierce electrode) is located in an evacuated housing (not shown), the vacuum-tight voltage and cooling water feedthroughs as well Window for the exit of the X-rays 14 tapped at an angle ⁇ 2.
  • the liquid 9 heated by the electron beam is exchanged very quickly and supplied to the cooling unit 27.
  • the comparatively low thermal conductivity of the anode materials used, gallium, indium and tin, does not have a disadvantageous effect, since the anode liquid 9 stores the heat and, as a result of the mixing in the backflow region, releases it very quickly.
  • the electron beam thus constantly strikes the liquid flowing in with cooling, as a result of which the permissible power density of the electron beam can be significantly increased compared to a liquid anode which has not been circulated.
  • the anode liquid 9 is circulated with the aid of a rotating drum 32.
  • An electric motor 36 which is rigidly connected to the evacuated housing 34/35 via the carrier 33, is used as the drive unit, a coupling 38 consisting of two opposite magnets 37 each transmitting the rotary movement of the outer cylinder 39 to the drum 32.
  • the rotating drum 32 with the paddle wheels 40 exerts a pressure on the anode liquid 9 flowing off at the open end faces, so that it starts to move in the pipeline 41. It flows through the heat exchanger 42 and the central tube 41 in order to exit again via the diffuser 43.
  • anode liquid 9 is gripped by the rotating drum 32 and pressed against the inner wall by the centrifugal force. It then flows off again via the paddle wheels 40, so that the pressure required for the recirculation builds up again.
  • the electrons emitted by the cathode 7 are accelerated by a high voltage supplied via the connections 44 and focused on the anode liquid 9 with the aid of a Pierce or Wehnelt electrode 8.
  • they generate brake radiation and characteristic X-rays 14, which can be picked up at a flat angle ⁇ 2 and through which Window 2 decouples.
  • a vacuum pump (not shown in FIG.
  • a turbomolecular pump in particular a turbomolecular pump, is used to evacuate the housing, which consists of two parts 34/35 and is rigidly connected to the motor mount by a screw connection, and which sucks off the residual gas via the connection piece 45.
  • a vacuum seal in particular a gold wire seal, is provided between the two housing parts 34 and 35.
  • the invention is of course not limited to the exemplary embodiments described. It is thus easily possible to replace the drum described above with a rotating disk, the anode liquid emerging from a hollow axis carrying the disk and wetting the disk surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)

Description

Die Erfindung betrifft einen Röntgenstrahlerzeuger nach dem Oberbegriff des Patentanspruchs 1.The invention relates to an X-ray generator according to the preamble of patent claim 1.

Die US-A-2,665,390 beschreibt eine Röntgenröhre, bei der die von einer Glühkathode emittierten Elektronen mit Hilfe elektrostatischer Linsen auf ein während des Betriebes flüssiges Metall fokussiert werden. Um ein Verdampfen des als Anode dienenden Metalls zu verhindern, läßt man es in einem geschlossenen Kreislauf zirkulieren. Im Bereich des Elektronenfokus strömt das Metall hierbei in einem vorzugsweise röhrenförmigen Behältnis, dessen Wandung aus Beryllium besteht.US-A-2,665,390 describes an X-ray tube in which the electrons emitted by a hot cathode are focused on a metal that is liquid during operation with the aid of electrostatic lenses. In order to prevent evaporation of the metal serving as the anode, it is circulated in a closed circuit. In the area of the electron focus, the metal flows in a preferably tubular container, the wall of which is made of beryllium.

Eine Röntgenröhre mit einer aus einer umlaufenden metallischen Flüssigkeit, beispielsweise Quecksilber, bestehenden Anode ist aus der DE-C-890 246 bekannt. Das Quecksilber befindet sich in einem topfartigen Anodenkörper und wird mit Hilfe eines von einem Stator erzeugten Drehfeldes in Rotation versetzt. Während des Betriebes bildet das umlaufende Quecksilber ein Rotationsparaboloid, auf dessen Oberfläche man die von einer Glühkathode emittierten Elektronen fokussiert.An X-ray tube with an anode consisting of a circulating metallic liquid, for example mercury, is known from DE-C-890 246. The mercury is located in a pot-like anode body and is set in rotation by means of a rotating field generated by a stator. During operation, the circulating mercury forms a paraboloid of revolution, on the surface of which the electrons emitted by a hot cathode are focused.

Die aus der US-A-3,646,380 bekannte Röntgenröhre besitzt eine Drehanode, deren Rotationsachse einen Winkel von 90° mit der Elektronenstrahlrichtung einschließt. Um die Drehanode von der an der Glühkathode anliegenden Hochspannung abzuschirmen, ist die Röntgenröhre mit einer unmittelbar oberhalb der Drehanode angeordneten Lochblende ausgestattet.The X-ray tube known from US-A-3,646,380 has a rotating anode, the axis of rotation of which includes an angle of 90 ° with the electron beam direction. In order to shield the rotating anode from the high voltage applied to the hot cathode, the X-ray tube is equipped with a perforated diaphragm located directly above the rotating anode.

Röntgenröhren für die medizinische Diagnostik werden in der US-A-4,357,555, der EP-A-0 136 762 und in Philips Tech. Rev. 41, 1983/84 Nr. 4, Seite 126 bis 134 beschrieben.X-ray tubes for medical diagnostics are described in US-A-4,357,555, EP-A-0 136 762 and in Philips Tech. Rev. 41, 1983/84 No. 4, pages 126 to 134.

Röntgenröhren für Feinstrukturuntersuchungen sind aus J. Urlaub, Röntgenanalyse Bd. 1, Röntgenstrahlen und Detektoren (Siemens, Karlsruhe 1974) Seite 71 bis 75 bekannt.X-ray tubes for fine structure examinations are known from J. Urlaub, X-ray analysis vol. 1, X-rays and detectors (Siemens, Karlsruhe 1974) pages 71 to 75.

Zur Durchführung hochempfindlicher Röntgenanalyseverfahren (Totalreflexions-Röntgen-Fluoreszenzanalyse, Reflektometrie, Interferometrie, Diffraktometrie, usw.) werden Röntgenquellen mit einer hohen spektralen Brillianz benötigt. Da Synchrotrons als intensitätsstarke Röntgenquellen derzeit noch nicht als Laborquellen zur Verfügung stehen, versucht man, die Brillanz konventioneller Röntgenröhren durch Anwendung der folgenden Techniken zu erhöhen:

  • Verringerung der Größe des Elektronenfokus auf der Anode (Erhöhung der Leistungsdichte des Elektronenstrahls)
  • Verwendung einer Drehanode
    (Verteilung der thermischen Belastung auf die Mantelfläche einer schnell rotierenden Anode)
  • Verringerung der effektiven Röntgenemissionsfläche durch flachen Strahlabgriff
    (s. beispielsweise J. Urlaub, Röntgenanalyse Bd. 1, S. 96 bis 98).
To perform highly sensitive X-ray analysis methods (total reflection X-ray fluorescence analysis, reflectometry, interferometry, diffractometry, etc.), X-ray sources with a high spectral brilliance are required. Since synchrotrons as high-intensity X-ray sources are not yet available as laboratory sources, attempts are being made to increase the brilliance of conventional X-ray tubes by using the following techniques:
  • Reduction in the size of the electron focus on the anode (increase in the power density of the electron beam)
  • Use of a rotating anode
    (Distribution of the thermal load on the outer surface of a rapidly rotating anode)
  • Reduction of the effective x-ray emission area through flat beam tapping
    (See, for example, J. Urlaub, Röntgenanalyse Vol. 1, pp. 96 to 98).

Sowohl bei unbeweglichen Anoden als auch bei Drehanoden ist die mit diesen Techniken erreichbare Steigerung der Brillanz bereits bis zu den Materialgrenzwerten hin ausgeschöpft. Die Verwendung von Drehanoden bereitet darüberhinaus erhebliche technische Schwierigkeiten, da die zum Antrieb der Anode und zum Austausch des Kühlmittels erforderlichen Drehdurchführungen auch bei Drehzahlen von bis zu 6000 U/Min den Kühlmittelkreislauf und das evakuierte Röhrengehäuse noch sicher abdichten müssen. Trotz aufwendiger Konstruktionen führen Undichtigkeiten aber immer wieder zu Ausfällen. Außerdem bewirkt der Elektronenstrahl eine starke lokale Aufheizung der Anode, wodurch diese extremen mechanischen Spannungen unterworfen ist und deshalb sehr schnell altert. Mit zunehmender Betriebsdauer bilden sich Risse. Dies bewirkt wegen der stärkeren Selbstabsorption eine Verminderung der Brillanz. Durch Risse kann darüberhinaus Kühlmittel ins Röhreninnere gelangen. Die starke lokale Aufheizung der Anode kann auch ein Abdampfen von Anodenmaterial verursachen und bei den hohen elektrischen Feldstärken zu Überschlägen führen.With immobile anodes as well as with rotating anodes, the increase in brilliance that can be achieved with these techniques has already been exhausted up to the material limit values. The use of rotating anodes also presents considerable technical difficulties, since the rotary unions required to drive the anode and to replace the coolant still have to reliably seal the coolant circuit and the evacuated tube housing even at speeds of up to 6000 rpm. Despite complex constructions, leaks always lead to failures. In addition, the electron beam causes a strong local heating of the Anode, which is subject to extreme mechanical stresses and therefore ages very quickly. Cracks form with increasing operating time. This causes a reduction in the brilliance due to the stronger self-absorption. Cracks can also get coolant inside the tube. The strong local heating of the anode can also cause the anode material to evaporate and lead to flashovers in the case of the high electric field strengths.

Ziel der Erfindung ist die Schaffung eines einfach aufgebauten und eine hohe Brillanz aufweisenden Röntgenstrahlerzeugers. Diese Aufgabe wird erfindungsgemäß durch einen Röntgenstrahlerzeuger nach Patentanspruch 1 gelöst.The aim of the invention is to provide an X-ray generator of simple construction and having a high level of brilliance. This object is achieved by an X-ray generator according to claim 1.

Der mit der Erfindung erzielbare Vorteil besteht zum einen darin, daß sich die Brillanz einer Röntgenröhre generell steigern läßt, da flüssige Anoden eine höhere Elektronenstrahlleistungsdichte vertragen (keine Rißbildung, bessere Wärmeabfuhr durch Durchmischung). Zum anderen kann man die Brillanz durch röntgenoptische Effekte bei flachem Strahlabgriff zusätzlich energie- bzw. wellenlängenselektiv erhöhen. Die Voraussetzung hierfür, eine glatte Anodenoberfläche, wird von Flüssiganoden in idealer Weise erfüllt.The advantage that can be achieved with the invention is, on the one hand, that the brilliance of an X-ray tube can generally be increased, since liquid anodes tolerate a higher electron beam power density (no crack formation, better heat dissipation by mixing). On the other hand, the brilliance can also be increased selectively in terms of energy or wavelength by means of X-ray optical effects with a flat beam tap. The prerequisite for this, a smooth anode surface, is ideally met by liquid anodes.

Während die abhängigen Ansprüche 2 bis 11 Ausgestaltungen des Röntgenstrahlerzeugers nach Patentanspruch 1 betreffen, sind die Ansprüche 12 bis 14 auf ein Verfahren zum Betrieb eines Röntgenstrahlerzeugers gerichtet.While dependent claims 2 to 11 relate to configurations of the x-ray generator according to claim 1, claims 12 to 14 are directed to a method for operating an x-ray generator.

Die Erfindung wird im folgenden anhand der Zeichnungen erläutert. Hierbei zeigt:

Fig. 1
ein erstes Ausführungsbeispiel eines erfindungsgemäßen Röntgenstrahlerzeugers,
Fig. 2
die relative Brillanz eines Röntgenstrahlerzeugers in Abhängigkeit vom Abgriffswinkel α₂ und der Photonenenergie Eν ,
Fig. 3
die geometrischen Verhältnisse beim Austritt der Röntgenstrahlung in das Röhrenvakuum,
Fig. 4 bis 7
weitere Ausführungsbeispiele erfindungsgemäßer Röntgenstrahlerzeuger.
The invention is explained below with reference to the drawings. Here shows:
Fig. 1
a first embodiment of an X-ray generator according to the invention,
Fig. 2
the relative brilliance of an X-ray generator as a function of the tap angle α₂ and the photon energy E ν ,
Fig. 3
the geometrical relationships when the X-rays emit into the tube vacuum,
4 to 7
further exemplary embodiments of the X-ray generator according to the invention.

Der in Fig. 1 schematisch dargestellte Röntgenstrahlerzeuger besteht im wesentlichen aus einem von der Metallwandung 1, den Strahlaustrittsfenstern 2, dem Anodenträger 3/4 und der GlasHochspannungsdurchführung 5 gebildeten Gehäuse, einer im Hochvakuum des Gehäuses angeordneten, mit Spannungszuführungen 6 verbundenen Glühwendel 7 als Kathode sowie einer Wehneltelektrode 8 zur Fokusierung der von der Glühwendel 7 emittierten Elektronen auf die während des Betriebes flüssige Anode 9. Zur Kühlung der die Anodenträgeroberseite 3 vollständig benetzenden Anodenflüssigkeit 9 (ein Abfließen wird durch die Oberflächenspannung verhindert) wird Wasser 16 oder ein anderes Kühlmittel über den im Befestigungsflansch 10 vorhandenen Kanal 11 an den Anodenträgersockel 4 herangeführt und über den Kanal 12 abgeleitet. Die Abdichtung des Kühlmittelkreises zwischen dem Anodenträgersockel 4 und dem Befestigungsflansch 10 erfolgt durch einen O-Ring 13. Beim Betrieb des Röntgenstrahlerzeugers mit niedriger Leistung ist kein nennenswerter Schwund an Anodenflüssigkeit 9 durch Abdampfen zu befürchten, sofern man diese ausreichend kühlt. Die Abdampfrate steigt bei hohen Röhrenleistungen allerdings erheblich an, so daß der Materialverlust nicht mehr zu vernachlässigen ist. Durch starke Kühlung des Anodenträgers 3/4 und gleichzeitiges Erwärmen des übrigen Röhrengehäuses, insbesondere des Anodenflüssigkeitsvorrats 18 mit Hilfe des Heizleiters 46, kann man allerdings sicherstellen, daß die verdampfte Anodenflüssigkeit wieder auf der Anodenträgeroberseite 3 kondensiert. Es stellt sich ein dynamisches Gleichgewicht zwischen Abdampfrate und Kondensationsrate ein, da die Kühlwirkung mit abnehmender Dicke der Anodenflüssigkeit 9 zunimmt. Die Heiz- und Kühlleistung sind hierbei so einzustellen, daß der Gehäusedruck während des Betriebs 10 (-9) bar nicht übersteigt.The X-ray generator shown schematically in FIG. 1 essentially consists of a housing formed by the metal wall 1, the beam exit windows 2, the anode support 3/4 and the glass high-voltage bushing 5, a filament 7 arranged as a cathode in the high vacuum of the housing and connected to voltage supply lines 6 a Wehnelt electrode 8 for focusing the electrons emitted by the incandescent filament 7 onto the anode 9 which is liquid during operation. To cool the anode liquid 9 which completely wets the top of the anode support 3 (flow is prevented by the surface tension), water 16 or another coolant is added via the im Fastening flange 10 existing channel 11 brought up to the anode support base 4 and derived via the channel 12. The coolant circuit between the anode support base 4 and the mounting flange 10 is sealed by an O-ring 13. When the X-ray generator is operated at low power, there is no significant shrinkage fear of anode liquid 9 by evaporation, provided that it is sufficiently cooled. The evaporation rate rises considerably at high tube outputs, so that the loss of material can no longer be neglected. Strong cooling of the anode support 3/4 and simultaneous heating of the remaining tube housing, in particular the anode liquid supply 18 with the aid of the heating conductor 46, can ensure, however, that the vaporized anode liquid condenses again on the top 3 of the anode support. There is a dynamic equilibrium between the evaporation rate and the condensation rate, since the cooling effect increases with decreasing thickness of the anode liquid 9. The heating and cooling capacity must be set so that the housing pressure does not exceed 10 (-9) bar during operation.

Als Anodenmaterialien kommen in erster Linie Metalle mit niedrigem Schmelzpunkt FP und hohem Siedepunkt KP sowie niedrigem Dampfdruck und hoher Wärmeleitfähigkeit in Betracht, insbesondere Gallium Ga, Indium In, Zinn Sn und deren Legierungen. Die Schmelz- und Siedepunkte FP bzw. KP der Metalle Ga, In und Sn sind in Tabelle 1 angegeben. Hierbei ist die Aufheizung durch den Elektronenstrahl im allgemeinen so hoch, daß keine zusätzlichen Heizeinrichtungen zur Verflüssigung des Anodenmaterials erforderlich sind. Tabelle 1 Ga : FP 29,5°C KP 2064°C In : FP 156,2°C KP 2050°C Sn : FP 231,8°C KP 2700°C Metals with a low melting point FP and a high boiling point KP as well as low vapor pressure and high thermal conductivity are particularly suitable as anode materials, in particular gallium Ga, indium In, tin Sn and their alloys. The melting and boiling points FP and KP of the metals Ga, In and Sn are given in Table 1. In this case, the heating by the electron beam is generally so high that no additional heating devices are required to liquefy the anode material. Table 1 Ga: FP 29.5 ° C KP 2064 ° C In: FP 156.2 ° C KP 2050 ° C Sn: FP 231.8 ° C KP 2700 ° C

Flüssigkeiten besitzen eine geringe Oberflächenrauhigkeit und, wenn man Vibrationen vermeidet, auch eine geringe Welligkeit. Da die mittlere Rauhigkeit von Flüsigkeiten (thermisch erregte Kapillarwellen) bei nicht zu hohen Temperaturen T<<TKP typischerweise unter 1 nm liegt, ist es möglich, die von der Anode 9 emittierte Röntgenstrahlung 14 unter extrem flachen Winkeln α₂ < 1° abzugreifen. Dies ist insbesondere für die Steigerung der spektralen Brillanz des Röntgenstrahlerzeugers von Bedeutung. Als spektrale Brillanz BE bezeichnet man hierbei die Größe

B E = d⁴N ν /(dt · dA₂· dΩ₂ · dE ν ) = Photonen/(s · mm² · mrad² · eV)   (1)

Figure imgb0001


die die Anzahl Nν der pro Zeitintervall dt, Raumwinkelelement dΩ₂ und Energieintervall dEν emittierten Photonen bezogen auf die effektive Größe dA₂ der Röntgenstrahlquelle angibt.Liquids have a low surface roughness and, if vibrations are avoided, also a low ripple. Since the average roughness of liquids (thermally excited capillary waves) at temperatures that are not too high T << T KP is typically less than 1 nm, it is possible that of the Anode 9 emitted X-rays 14 at extremely flat angles α₂ <1 °. This is particularly important for increasing the spectral brilliance of the X-ray generator. The size is referred to as spectral brilliance B E

B E = d⁴N ν / (dt · dA₂ · dΩ₂ · dE ν ) = Photons / (s · mm² · mrad² · eV) (1)
Figure imgb0001


which indicates the number N ν of the photons emitted per time interval dt, solid angle element dΩ₂ and energy interval dE ν based on the effective size dA₂ of the X-ray source.

Zur Steigerung der spektralen Brillanz BE des Röntgenstrahlerzeugers wird die in Jap. Journ. of Appl. Phys. Vol. 24, No. 6, 1985, S. L 387 - L 390 beschriebene Raumwinkelkonzentration der in oberflächennahen Schichten der Anode erzeugten und ins Vakuum austretenden Röntgenstrahlung 14 ausgenutzt. Da dieser durch Brechung hervorgerufene Effekt nur im Bereich des Austrittsgrenzwinkels α2C wirksam wird, sollte der durch die Blende 15 vorgegebene Abgriffswinkel α₂ die Beziehung

α 2C < α₂ < 3α 2C    (2)

Figure imgb0002


erfüllen. Der dem Grenzwinkel der Totalreflexion entsprechende, von der Photonenenergie Eν sowie dem verwendeten Anodenmaterial abhängige Austrittsgrenzwinkel α2C errechnet sich hierbei aus dem Dispersionsanteil des Brechungsindex

n = 1 - δ - i β   (3)
Figure imgb0003


gemäß der Formel

α 2C = (2δ(E ν )) 1/2 .   (4)
Figure imgb0004


Dabei hängt β über

µ = 4π E ν β /(hc)   (5)
Figure imgb0005


mit dem Absorptionskoeffizenten µ zusammen. Bei hohen Photonenenergien Eν > EAK (EAK: Energie der K-Schalen-Absorbtionskante) ist δ näherungsweise durch
Figure imgb0006

mit

ro
: klassischer Elektronenradius
NA
: Avogadro-Konstante
h
: Planck-Konstante
c
: Vakuumlichtgeschwindigkeit
e
: Elementarladung
ζ
: Dichte des Anodenmaterials
Z
: Kernladungszahl des Anodenmaterials
Ar
: relative Atommasse des Anodenmaterials
Eν
: Photonenenergie
gegeben.To increase the spectral brilliance B E of the X-ray generator, the one in Jap. Journ. of Appl. Phys. Vol. 24, No. 6, 1985, p. L 387 - L 390 described solid angle concentration of the X-ray radiation 14 generated in near-surface layers of the anode and emerging in a vacuum. Since this effect caused by refraction is only effective in the area of the exit limit angle α 2C , the tapping angle α₂ predetermined by the aperture 15 should relate to the relationship

α 2C <α₂ <3α 2C (2)
Figure imgb0002


fulfill. The exit angle α 2C , which corresponds to the critical angle of total reflection and is dependent on the photon energy E ν and the anode material used, is calculated here from the dispersion component of the refractive index

n = 1 - δ - i β (3)
Figure imgb0003


according to the formula

α 2C = (2δ (E ν )) 1/2 . (4)
Figure imgb0004


Here β overhangs

µ = 4π E ν β / (hc) (5)
Figure imgb0005


together with the absorption coefficient µ. At high photon energies E ν > E AK (E AK : energy of the K-shell absorption edge) δ is approximately through
Figure imgb0006

With
r o
: classic electron radius
N A
: Avogadro constant
H
: Planck constant
c
: Vacuum speed of light
e
: Elementary charge
ζ
: Density of the anode material
Z.
: Atomic number of the anode material
A r
: relative atomic mass of the anode material
E ν
: Photon energy
given.

Typische Werte für den Austrittsgrenzwinkel α2C liegen bei 0,5°. Da man in der vorliegenden Erfindung die röntgenoptischen Eigenschaften der Anodenoberfläche im Bereich extrem kleiner Abgriffswinkel (s. Gl. (2)) zur Brillanzsteigerung ausnutzt, sind an die Ebenheit der Anodenoberfläche höchste Anforderungen zu stellen.Typical values for the exit limit angle α 2C are 0.5 °. Since in the present invention the X-ray optical properties of the anode surface in the area of extremely small tap angles (see Eq. (2)) are used to increase the brilliance, the flatness of the anode surface has to meet the highest requirements.

Um in diesem Winkelbereich einen definierten Abgriffswinkel α2C zu gewährleisten und eine Strahlaufweitung zu verhindern, darf die Welligkeit 0.1α2C nicht übersteigen. Eine zu starke Welligkeit würde bewirken, daß die Strahlung an den verschieden geneigten Facetten der Anodenoberfläche Brechung in unter-schiedliche Austrittsrichtungen erfährt. Dies hätte eine Ausschmierung der austretenden Röntgenstrahlintensität über den Austrittswinkel α₂ und damit eine Verminderung der durch flachen Strahlabgriff erzielbaren Brillanzsteigerung zur Folge. Neben der Welligkeit, die den langwelligen, sanft oszillierenden Teil der Anodenunebenheit erfaßt, ist auch die die kurzwelligen Oszillationen beschreibende Rauhigkeit von Bedeutung. Diese Rauhigkeit bewirkt eine Interferenz sowohl bei den transmittierten als auch bei den reflektierten Röntgenstrahlen. Dadurch vermindert sich die Intensität der in die Anode zurückreflektierten Strahlung und in gleichem Maße erhöht sich die Intensität der transmittierten Strahlung. Die Erhöhung der transmittierten Intensität erfolgt jedoch zum Teil in Form von diffuser Strahlung, die nichts zur Brillanzsteigerung beiträgt. Insgesamt ist der Einfluß der Rauhigkeit auf die transmittierte Intensität aufgrund der mäßigen Reflektivität gering, wenn die mittlere Rauhigkeit σ der Anodenoberfläche der Bedingung

σ ≾ λ /(4π √ sinα₁ · sinα₂ ¯ )   (7)

Figure imgb0007


genügt (λ: Wellenläge λ = hc/Eν). Diese Bedingung läßt sich aus den Arbeiten von B. Vidal und P. Vincent, Applied Optics, 23 No 11 (1984) S. 1794 - 1801 und S. K. Sinha, E.B. Sirota, S. Garoff und H.B. Stanley, Phys. Rev. B38 No 4 (1988) S. 2297 - 2311 herleiten. Für Ga-Kα-Strahlung aus einer flüssigen Ga-Anode bedeutet dies für α₂ = 1,5α 2C = 1,5 0,28°:σ ≾ 2nm
Figure imgb0008
. Eine solche Anforderung ist mit Flüssiganoden zu erfüllen.In order to ensure a defined tap angle α 2C in this angular range and to prevent beam expansion, the ripple must not exceed 0.1α 2C . Too much ripple would cause the radiation on the differently inclined facets of the anode surface to refract into different ones Experiences exit directions. This would have a lubrication of the emerging X-ray intensity via the exit angle α₂ and thus a reduction in the increase in brilliance that can be achieved by flat beam tapping. In addition to the ripple that covers the long-wave, gently oscillating part of the anode unevenness, the roughness that describes the short-wave oscillations is also important. This roughness causes interference with both the transmitted and the reflected X-rays. This reduces the intensity of the radiation reflected back into the anode and increases the intensity of the transmitted radiation to the same extent. However, the transmitted intensity is increased in part in the form of diffuse radiation, which does nothing to increase the brilliance. Overall, the influence of the roughness on the transmitted intensity is slight due to the moderate reflectivity when the average roughness σ of the anode surface of the condition

σ ≾ λ / (4π √ sinα₁ · sinα₂ ¯ ) (7)
Figure imgb0007


is sufficient (λ: wavelength λ = hc / E ν ). This condition can be derived from the work of B. Vidal and P. Vincent, Applied Optics, 23 No 11 (1984) pp. 1794-1801 and SK Sinha, EB Sirota, S. Garoff and HB Stanley, Phys. Rev. B38 No 4 (1988) pp. 2297 - 2311. For Ga-Kα radiation from a liquid Ga anode, this means for α₂ = 1.5α 2C = 1.5 0.28 °: σ ≾ 2nm
Figure imgb0008
. Such a requirement must be met with liquid anodes.

Der Gewinn an Brillanz BE bei flachem Strahlabgriff beruht auf einem geometrischen Effekt (projektive Verkleinerung des emittierenden Anodenbereichs) und einem den Hauptbeitrag liefernden röntgenoptischen Effekt (Raumwinkelkonzentration durch Brechung an der Grenzfläche Anode-Vakuum). Wie Fig. 2 zeigt (dargestellt ist die relative Brillanz B E (E ν , α₂)/B E (E ν ,α₂ = 90°)

Figure imgb0009
für eine konventionelle Cu-Anode in Abhängigkeit von der Photonenenergie Eν und dem Abgriffswinkel α₂ für eine Elektronenenergie Ee = 30 keV), läßt sich beispielsweise die Brillanz der Cu-Kα-Linie um einen Faktor 3 steigern, wenn man die Strahlung, nicht wie bisher üblich, bei einem Winkel α₂ = 6°, sondern bei einem Winkel α₂ = 0,8° (Austrittsgrenzwinkel für Cu-Kα-Strahlung in Cu:α2C = 0,4°) abgreift. Im Bereich der hochenergetischen Grenze des Bremsstrahlungskontinuums fällt der Gewinn an Brillanz für einen extrem flachen Abgriffswinkel von α₂ = 0,2° noch deutlich höher aus (Faktor 30 gegenüber dem Abgriff bei α₂ = 6°). Außerdem ist zu erkennen, daß man den Photonenfluß durch geeignete Wahl des Winkels α₂ spektralselektiv verstärken oder schwächen kann. Dies ist ein entscheidender Vorteil gegenüber konventionellen Röntgenröhren, in denen der Photonenfluß durch Verwendung der das Signal- Untergrundverhältnis verbessernden primär- oder sekundärseitigen Monochromatoren, Filter und Blenden winkel- oder spektralselektiv geschwächt, jedoch nie erhöht wird.The gain in brilliance B E with a flat beam tap is based on a geometric effect (projective reduction of the emitting anode area) and an X-ray optical effect that makes the main contribution (solid angle concentration due to refraction at the anode-vacuum interface). As FIG. 2 shows (the relative brilliance is shown B E (E ν , α₂) / B E (E ν , α₂ = 90 °)
Figure imgb0009
for a conventional Cu anode depending on the photon energy E ν and the Tap angle α₂ for an electron energy E e = 30 keV), for example, the brilliance of the Cu-Kα line can be increased by a factor of 3 if the radiation is not at an angle α₂ = 6 °, but as usual, but at one Angle α₂ = 0.8 ° (exit limit angle for Cu-K α radiation in Cu: α 2C = 0.4 °). In the area of the high-energy limit of the brake radiation continuum, the gain in brilliance is even higher for an extremely flat tap angle of α₂ = 0.2 ° (factor 30 compared to the tap at α₂ = 6 °). In addition, it can be seen that you can spectrally selectively amplify or weaken the photon flux by suitable choice of the angle. This is a decisive advantage over conventional X-ray tubes, in which the photon flow is weakened by angle or spectrally selectively, but never increased, by using the primary or secondary monochromators, filters and diaphragms which improve the signal-background ratio.

Die spektrale Brillanz BE (Eν , α₂) für die aus einer Anode bei Anregung mit einem monoenergetischen Elektronenstrahl austretende Röntgenstrahlung ergibt sich aus folgender Beziehung:

Figure imgb0010

  • (I)
    Figure imgb0011
    einfallende Elektronenstromdichte,
    Ne:
    Anzahl der Elektronen,
    dt:
    Zeitintervall,
    A₁:
    Strahlquerschnitt des Elektronenstrahls.
    je sin γ Anzahl der Elektronen pro Zeiteinheit und pro Flächeneinheit der Anodenoberfläche Ao.
  • (II)
    Figure imgb0012
    beschreibt die Verkleinerung der Quellfläche in der Projektion des Strahlabgriffs gemäß: A₂ = Ao sinα₂.
  • (III)
    Φ(z, Eν) Photonenproduktion als Funktion der Entstehungstiefe z und der Photonenenergie Eν. Sie gibt die Anzahl der Photonen der Energie Eν an, die pro einfallendem Elektron der Energie Ee in der Tiefe z pro.Tiefenintervall dz erzeugt werden. Als Parameter gehen noch die Kernladungszahl Z und die Dichte ζ der Anode sowie der Elektroneneinschlußwinkel γ ein (J.I. Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis; Plenum Press, New York, 1981 S. 355 ff.)
  • (IV)
    exp(-z|Im k1z|) Schwächungsfaktor der Strahlungsflußdichte der austretenden Photonen innerhalb der Anode.
    Figure imgb0013
  • (V)
    Figure imgb0014
    Transmissionsgrad der Photonen durch die Anodenoberfläche.
    n₁:
    Brechungsindex des Anodenmaterials,

    n₁ = 1 - δ - iβ ,
    Figure imgb0015

    n₂:
    Brechungsindex des Vakuums, n₂ = 1,
    T₁₂:
    Transmissionskoeffizient


    |T₁₂|² = 0,5 |T 12⊥ |² + 0,5|T 12∥ |²   (10)
    Figure imgb0016


    T 12⊥ = 2n₁ sinα₁/(n₁ sinα₁ + n₂ sinα₂)   (11)
    Figure imgb0017


    T 12∥ = 2n₁ sinα₁/(n₁ sinα₂ + n₂ sinα₁)   (12)
    Figure imgb0018

  • (VI)
    Figure imgb0019
    Raumwinkelkonzentration;
    Verhältnis des Raumwinkelelements im Anodenmaterial dΩ₁= dα₁dτ zum Raumwinkelelement im Vakuum dΩ₂ = dα₂dτ . dτ
    Figure imgb0020
    beschreibt die Ausdehnung des Strahlenbündels senkrecht zu dα₁ bzw. dα₂.
The spectral brilliance B E (E ν , α₂) for the X-rays emerging from an anode when excited with a monoenergetic electron beam results from the following relationship:
Figure imgb0010
  • (I)
    Figure imgb0011
    incident electron current density,
    N e :
    Number of electrons,
    dt:
    Time interval,
    A₁:
    Beam cross section of the electron beam.
    j e sin γ number of electrons per unit time and per unit area of the anode surface A o .
  • (II)
    Figure imgb0012
    describes the reduction of the source area in the projection of the beam tap according to: A₂ = A o sinα₂.
  • (III)
    Φ (z, E ν ) photon production as a function of the depth of origin z and the photon energy E ν . It specifies the number of photons of energy E ν that are generated per incident electron of energy E e at depth z per depth interval dz. The nuclear charge number Z and the density ζ of the anode and the electron inclusion angle γ are also taken into account as parameters (JI Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis; Plenum Press, New York, 1981 pp. 355 ff.)
  • (IV)
    exp (-z | Im k 1z |) attenuation factor of the radiation flux density of the emerging photons within the anode.
    Figure imgb0013
  • (V)
    Figure imgb0014
    Transmittance of the photons through the anode surface.
    n₁:
    Refractive index of the anode material,

    n₁ = 1 - δ - iβ,
    Figure imgb0015

    n₂:
    Refractive index of the vacuum, n₂ = 1,
    T₁₂:
    Transmission coefficient


    | T₁₂ | ² = 0.5 | T 12⊥ | ² + 0.5 | T 12∥ | ² (10)
    Figure imgb0016


    T 12⊥ = 2n₁ sinα₁ / (n₁ sinα₁ + n₂ sinα₂) (11)
    Figure imgb0017


    T 12∥ = 2n₁ sinα₁ / (n₁ sinα₂ + n₂ sinα₁) (12)
    Figure imgb0018

  • (VI)
    Figure imgb0019
    Solid angle concentration;
    Ratio of the solid angle element in the anode material dΩ₁ = dα₁dτ to the solid angle element in a vacuum dΩ₂ = dα₂dτ. dτ
    Figure imgb0020
    describes the expansion of the beam perpendicular to dα₁ or dα₂.

In Fig. 3 sind die Strahlgeometrie und die zugehörigen Größen dargestellt.3 shows the beam geometry and the associated variables.

Die Fig. 4 zeigt einen Röntgenstrahlerzeuger, bei dem die Elektronen zwischen der Glühwendel 7 und der während des Betriebes flüssigen Antikathode 9 eine trichterförmige Verengung 17 durchlaufen. Diese als Hohlanode wirkende Verjüngung 17 hat darüberhinaus die Aufgabe, die Trägeroberseite 3 nach dem Transport der Röhre wieder mit der sich am Röhrenboden ansammelnden Antikathodenflüssigkeit 18 zu beschichten. Um dies zu erreichen, wird die Röhre kurz umgedreht und wieder aufgerichtet, so daß die Flüssigkeit 18 auf die unterhalb der Hohlanode angeordnete Trägeroberseite 3 auftrifft und diese vollständig benetzt. Die Verwendung einer auf der Trägeroberseite 3 angeordneten, in Richtung der Kathode 7 überstehenden Berandung kommt nicht in Betracht, da diese den angestrebten flachen Stahlabgriff behindern würde.FIG. 4 shows an X-ray generator in which the electrons pass through a funnel-shaped constriction 17 between the filament 7 and the anti-cathode 9, which is liquid during operation. This taper 17, which acts as a hollow anode, also has the task of coating the top side 3 of the carrier again after the tube has been transported with the anti-cathode liquid 18 which collects on the tube bottom. In order to achieve this, the tube is briefly turned over and straightened up again, so that the liquid 18 strikes the carrier top 3 arranged below the hollow anode and completely wets it. The use of a border arranged on the upper side 3 of the support and projecting in the direction of the cathode 7 is out of the question since this would hinder the desired flat steel tap.

Das Ausführungsbeispiel nach Fig. 5 zeigt einen Röntgenstrahlerzeuger, bei dem die von der Kathode 7 emittierten und in Richtung der Hohlanode 17 beschleunigten Elektronen ein das Gehäuse 19 vakuumdicht abschließendes Fenster 20 durchlaufen, um in der außerhalb des Gehäuses 19 auf der wassergekühlten Trägeroberseite 3 angeordneten Antikathodenflüssigkeit 9 Bremsstrahlung und charakteristische Röntgenstrahlung 14 zu erzeugen. Aufgrund des flachen Strahlabgriffs kann man die Höhe d des mit dem Gehäuse 19, dem Antikathodenträger 3 und dem Befestigungsflansch 10 verschraubten Distanzstücks 21 sehr klein wählen (d ≾ 1mm), so daß in der Atmosphäre keine nennenswerte Elektronenabsorption stattfindet. Die Absorption im Elektronenaustrittsfenster 20 bleibt bei Verwendung von 0, 5 µm dickem Quantum als Fenstermaterial (zu beziehen durch Kevex Cooperation, Foster City CA) ebenfalls sehr gering. Da für die als Antikathode in Frage kommenden Materialen kein niedriger Dampfdruck gefordert werden muß, kommen neben Gallium, Indium und Zinn auch Natrium und Quecksilber als Antikathodenmaterialen in Betracht. Der Vorteil des hier beschriebenen Strahlerzeugers besteht insbesondere darin, daß auch die niederenergetischen Spektralanteile experimentiell genutzt werden können.The exemplary embodiment according to FIG. 5 shows an X-ray generator in which the electrons emitted by the cathode 7 and accelerated in the direction of the hollow anode 17 pass through a window 20 which closes the housing 19 in a vacuum-tight manner, in order to dispose in the anti-cathode liquid arranged outside the housing 19 on the water-cooled upper side 3 of the carrier 9 to generate braking radiation and characteristic X-ray radiation 14. Due to the flat beam tap, the height d of the spacer 21 screwed to the housing 19, the anti-cathode support 3 and the fastening flange 10 can be selected to be very small (d ≾ 1 mm), so that no appreciable electron absorption takes place in the atmosphere. The absorption in Electron exit window 20 also remains very small when using 0.5 μm thick quantum as window material (to be obtained from Kevex Cooperation, Foster City CA). Since a low vapor pressure does not have to be required for the materials which can be used as the anti-cathode, sodium and mercury can also be used as anti-cathode materials in addition to gallium, indium and tin. The advantage of the beam generator described here is in particular that the low-energy spectral components can also be used experimentally.

Das Ausführungsbeispiel nach Fig. 6 zeigt einen Röntgenstrahlerzeuger, dessen Anode von einer elektrisch leitenden Flüssigkeit 9 mit niedrigem Dampfdruck gebildet wird. Zur Umwälzung dieser in einem Isolierkörper 22 geführten Anodenflüssigkeit 9 ist eine Faradaypumpe 23 vorgesehen, deren Hufeisenmagnet 24 ein senkrecht zur gewünschten Strömungsrichtung 25 orientiertes Magnetfeld erzeugt. Ein zwischen den Elektroden 26 senkrecht zur Magnetfeld- und Strömungsrichtung 25 fließender elektrischer Strom sorgt für die die Anodenflüssigkeit 9 beschleunigende Lorentzkraft. Im Rückströmbereich wird die aufgeheizte Anodenflüssigkeit 9 in einem Wärmetauscher 27 gekühlt. Das Kühlwasser tritt hierbei durch die Öffnung 28 in dem Wärmetauscher 27 ein, um am Auslaß 29 wieder abzufließen. Die im Kanal der Anodenflüssigkeit 9 vorgesehen Düse 30 (Laval-Düse) dient der Anpassung des magnetischen Umwälzdrucks an den im Gehäuse vorhandenen Gasdruck p<10(-9) bar, um dadurch eine glatte Grenzfläche der aus der Düse 30 zum Auftreffpunkt 31 des Elektronenstrahls strömenden Anodenflüssigkeit 9 zu gewährleisten. Wie eingangs erwähnt, ist dies eine unabdingbare Voraussetzung für den Abgriff der Röntgenstrahlung am Grenzwinkel der Totalreflexion.The embodiment of FIG. 6 shows an X-ray generator, the anode of which is formed by an electrically conductive liquid 9 with a low vapor pressure. To circulate this anode liquid 9, which is guided in an insulating body 22, a Faraday pump 23 is provided, the horseshoe magnet 24 of which generates a magnetic field oriented perpendicular to the desired flow direction 25. An electrical current flowing between the electrodes 26 perpendicular to the magnetic field and flow direction 25 ensures the Lorentz force accelerating the anode liquid 9. In the backflow area, the heated anode liquid 9 is cooled in a heat exchanger 27. The cooling water enters through the opening 28 in the heat exchanger 27 in order to flow off again at the outlet 29. The nozzle 30 (Laval nozzle) provided in the channel of the anode liquid 9 is used to adapt the magnetic circulation pressure to the gas pressure p <10 (-9) bar present in the housing, in order thereby to provide a smooth interface between the nozzle 30 and the point of impact 31 of the electron beam to ensure flowing anode liquid 9. As mentioned at the beginning, this is an essential prerequisite for tapping the X-rays at the critical angle of total reflection.

Die aus dem keramischen Isolierkörper 22, der Kathode 7 und der Fokussierungseinheit 8 (Wehnelt-Elektrode, Fokussierungsmulde oder Pierce-Elektrode) bestehende Anordnung befindet sich in einem evakuierten Gehäuse (nicht dargestellt), das vakuumdichte Spannungs- und Kühlwasserdurchführungen sowie Fenster zum Austritt der unter einem Winkel α₂ abgegriffenen Röntgenstrahlung 14 aufweist.The arrangement consisting of the ceramic insulating body 22, the cathode 7 and the focusing unit 8 (Wehnelt electrode, focusing trough or Pierce electrode) is located in an evacuated housing (not shown), the vacuum-tight voltage and cooling water feedthroughs as well Window for the exit of the X-rays 14 tapped at an angle α₂.

In dem gezeigten Ausführungsbeispiel wird die vom Elektronenstrahl aufgeheizte Flüssigkeit 9 sehr schnell ausgetauscht und der Kühleinheit 27 zugeführt. Die vergleichsweise geringe Wärmeleitfähigkeit der verwendeten Anodenmaterialen Gallium, Indium und Zinn wirkt sich nicht nachteilig aus, da die Anodenflüssigkeit 9 die Wärme speichert und diese infolge der Durchmischung im Rückströmbereich sehr schnell wieder abgibt. Der Elektronenstrahl trifft somit ständig auf die gekühlt zuströmende Flüssigkeit, wodurch sich die zulässige Leistungsdichte des Elektronenstrahls, verglichen mit einer nicht umgewälzten Flüssigkeitsanode, wesentlich steigern läßt.In the exemplary embodiment shown, the liquid 9 heated by the electron beam is exchanged very quickly and supplied to the cooling unit 27. The comparatively low thermal conductivity of the anode materials used, gallium, indium and tin, does not have a disadvantageous effect, since the anode liquid 9 stores the heat and, as a result of the mixing in the backflow region, releases it very quickly. The electron beam thus constantly strikes the liquid flowing in with cooling, as a result of which the permissible power density of the electron beam can be significantly increased compared to a liquid anode which has not been circulated.

Bei dem in Fig. 7 dargestellten Ausführungsbeispiel wird die Anodenflüssigkeit 9 mit Hilfe einer rotierenden Trommel 32 umgewälzt. Als Antriebseinheit findet ein über den Träger 33 starr mit dem evakuierten Gehäuse 34/35 verbundener Elektromotor 36 Verwendung, wobei eine aus jeweils zwei gegenüberliegenden Magneten 37 bestehende Kupplung 38 die Drehbewegung des äußeren Zylinders 39 auf die Trommel 32 überträgt. Nach dem Prinzip der Kreiselpumpe übt die rotierende Trommel 32 mit den Schaufelrädern 40 einen Druck auf die an den offenen Stirnflächen abfließende Anodenflüssigkeit 9 aus, so daß diese sich in der Rohrleitung 41 in Bewgung setzt. Sie durchströmt den Wärmetauscher 42 und das zentrale Rohr 41, um über den Diffusor 43 wieder auszutreten. Hier wird die Anodenflüssigkeit 9 von der rotierenden Trommel 32 erfaßt und durch die Zentrifugalkraft an die Innenwand gedrückt. Sie fließt anschließend wieder über die Schaufelräder 40 ab, so daß sich erneut der für die Umwälzung erforderliche Druck aufbaut. Die von der Kathode 7 emittierten Elektronen werden durch eine über die Anschlüsse 44 zugeführte Hochspannung beschleunigt und mit Hilfe einer Pierce- oder Wehneltelektrode 8 auf die Anodenflüssigkeit 9 fokussiert. Hier erzeugen sie Bremsstrahlung und charakteristische Röntgenstrahlung 14, die man wieder unter einem flachen Winkel α₂ abgreift und durch das Fenster 2 auskoppelt. Zur Evakuierung des aus zwei Teilen 34/35 bestehenden, durch eine Verschraubung starr mit dem Motorträger verbundenen Gehäuses wird eine in Fig. 7 nicht dargestellte Vakuumpumpe, insbesondere eine Turbomolekularpumpe verwendet, die das Restgas über den Stutzen 45 absaugt. Zwischen den beiden Gehäuseteilen 34 bzw. 35 ist eine Vakuumdichtung, insbesondere eine Golddrahtdichtung, vorgesehen.In the embodiment shown in FIG. 7, the anode liquid 9 is circulated with the aid of a rotating drum 32. An electric motor 36, which is rigidly connected to the evacuated housing 34/35 via the carrier 33, is used as the drive unit, a coupling 38 consisting of two opposite magnets 37 each transmitting the rotary movement of the outer cylinder 39 to the drum 32. According to the principle of the centrifugal pump, the rotating drum 32 with the paddle wheels 40 exerts a pressure on the anode liquid 9 flowing off at the open end faces, so that it starts to move in the pipeline 41. It flows through the heat exchanger 42 and the central tube 41 in order to exit again via the diffuser 43. Here the anode liquid 9 is gripped by the rotating drum 32 and pressed against the inner wall by the centrifugal force. It then flows off again via the paddle wheels 40, so that the pressure required for the recirculation builds up again. The electrons emitted by the cathode 7 are accelerated by a high voltage supplied via the connections 44 and focused on the anode liquid 9 with the aid of a Pierce or Wehnelt electrode 8. Here they generate brake radiation and characteristic X-rays 14, which can be picked up at a flat angle α₂ and through which Window 2 decouples. A vacuum pump (not shown in FIG. 7), in particular a turbomolecular pump, is used to evacuate the housing, which consists of two parts 34/35 and is rigidly connected to the motor mount by a screw connection, and which sucks off the residual gas via the connection piece 45. A vacuum seal, in particular a gold wire seal, is provided between the two housing parts 34 and 35.

Die Erfindung ist selbstverständlich nicht auf die beschriebenen Ausführungsbeispiele beschränkt. so ist es ohne weiteres möglich, die oben beschriebene Trommel durch eine rotierende Scheibe zu ersetzen, wobei die Anodenflüssigkeit aus einer die Scheibe tragenden Hohlachse austritt und die Scheibenoberfläche benetzt.The invention is of course not limited to the exemplary embodiments described. it is thus easily possible to replace the drum described above with a rotating disk, the anode liquid emerging from a hollow axis carrying the disk and wetting the disk surface.

Claims (14)

  1. X-ray generator having a cathode (7) disposed in an evacuated housing (1 to 5, 19), an anticathode (9) comprising an electrically conductive fluid and a device (8) for focusing the particles emitted by the cathode (7) onto the anticathode (9), characterized by a shielding system (15) to define a tab angle α₂ for the X-radiation (14) generated at a surface of the anticathode (9) where α₂ satisfies the condition

    α 2c < α₂ < 3α 2c
    Figure imgb0023


    and α2c designates the critical angle of total reflection of the X-radiation (14) at the surface of the anticathode (9).
  2. X-ray generator according to Claim 1, characterized by an anticathode (9) comprising a metallic melt.
  3. X-ray generator according to Claim 1 or 2, characterized in that the housing (19) exhibits a window (20) which is transmissive for the particles emitted by the cathode (7), and in that the anticathode (9) is disposed outside the housing (19).
  4. X-ray generator according to one of Claims 1 to 3, characterized by an anode (17) disposed inside the housing (1 to 5, 19) between cathode (7) and anticathode (9).
  5. X-ray generator according to Claim 4, characterized in that the anode (17) is designed as a hollow anode.
  6. X-ray generator according to one of Claims 1 to 5, characterized by a device (23, 32, 36, 37) to circulate the electrically conductive fluid.
  7. X-ray generator according to Claim 6, characterized by a Faraday pump as device to circulate the electrically conductive fluid.
  8. X-ray generator according to Claim 6 or 7, characterized in that the electrically conductive fluid is guided in a closed circuit.
  9. X-ray generator according to one of Claims 1 to 5, characterized in that the electrically conductive fluid is disposed on a cooled carrier device (3, 4).
  10. X-ray generator according to one of Claims 1 to 5, characterized by a drum (32), which is rotatable about an axis and the internal wall of which is wetted with the electrically conductive fluid.
  11. X-ray generator according to Claim 10, characterized in that a motor (36) and a magnetic coupling (38) are provided to rotate the drum (32) about the axis.
  12. Method for operating an X-ray generator which exhibits a cathode (7) disposed in an evacuated housing (1 to 5, 19), an anticathode (9) comprising an electrically conductive fluid and a device (8) for focusing the particles emitted by the cathode (7) onto the anticathode (9), characterized in that the X-radiation (14) generated at a surface of the anticathode (9) is tapped at an angle α₂ satisfying the condition

    α 2c < α₂ < 3α 2c
    Figure imgb0024


    where α2c designates the critical angle of the total reflection at the surface of the anticathode (9).
  13. Method according to Claim 12, characterized in that the electrically conductive fluid is brought to a temperature which is lower than the temperature of the housing (1 to 5, 19).
  14. Method according to Claim 12 or 13, characterized in that the electrically conductive fluid is circulated.
EP89120143A 1989-10-30 1989-10-30 X-ray generator Expired - Lifetime EP0425718B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE58908218T DE58908218D1 (en) 1989-10-30 1989-10-30 X-ray generator.
EP89120143A EP0425718B1 (en) 1989-10-30 1989-10-30 X-ray generator
US07/604,951 US5052034A (en) 1989-10-30 1990-10-29 X-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89120143A EP0425718B1 (en) 1989-10-30 1989-10-30 X-ray generator

Publications (2)

Publication Number Publication Date
EP0425718A1 EP0425718A1 (en) 1991-05-08
EP0425718B1 true EP0425718B1 (en) 1994-08-17

Family

ID=8202077

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89120143A Expired - Lifetime EP0425718B1 (en) 1989-10-30 1989-10-30 X-ray generator

Country Status (2)

Country Link
EP (1) EP0425718B1 (en)
DE (1) DE58908218D1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015590B4 (en) * 2004-03-30 2008-10-09 GE Homeland Protection, Inc., Newark Anode module for a liquid metal anode X-ray source and X-ray source with an anode module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE890246C (en) * 1940-03-03 1953-09-17 Heinrich Dr Med Chantraine Roentgenroehre with a circulating metallic liquid, z. B. mercury, existing anode
NL88347C (en) * 1951-08-18
NL6912349A (en) * 1968-08-17 1970-02-19
FR2108149A1 (en) * 1970-07-29 1972-05-19 Alsacienne Atom Liquid metal-cooled cell - for equipment receiving a continuous heat flux
JPH0787082B2 (en) * 1987-07-24 1995-09-20 株式会社日立製作所 Rotating anode target for X-ray tube

Also Published As

Publication number Publication date
DE58908218D1 (en) 1994-09-22
EP0425718A1 (en) 1991-05-08

Similar Documents

Publication Publication Date Title
EP1102302B1 (en) Monochromatic x-ray source
US8406378B2 (en) Thick targets for transmission x-ray tubes
US5052034A (en) X-ray generator
DE102013004297B4 (en) Target for X-ray generator, method of manufacturing the same and X-ray generator
DE69814574T2 (en) Device for preventing the window of an X-ray tube from overheating
EP0815582B1 (en) Microfocus x-ray device
DE112009001604B4 (en) Thermionic emitter for controlling the electron beam profile in two dimensions
EP0584871A1 (en) X-ray tube with anode in transmission mode
DE19957559A1 (en) X-ray system, for computer tomography, fluoroscopy, mammography, mobile radiography and medical, dental and industrial radiography, has a heat storage device between the cathode and anode for absorbing waste energy from the anode
DE202005017496U1 (en) Target for a microfocus or nanofocus X-ray tube
DE102015015738B4 (en) X-ray tube arrangement
DE2154888A1 (en) ROENTINE PIPE
EP0777255A1 (en) X-ray tube, in particular microfocus X-ray tube
DE112019004478T5 (en) SYSTEM AND PROCEDURE FOR X-RAY ANALYSIS WITH SELECTABLE DEPTH
DE112019003777T5 (en) X-RAY REFLECTION SOURCE WITH HIGH BRIGHTNESS
DE2803347C2 (en) X-ray source for a tomography facility
EP0425718B1 (en) X-ray generator
DE3871913T2 (en) X-RAY TUBES WITH A MOLYBDA PLATE.
DE60033374T2 (en) X-RAY MICROSCOPE WITH X-RAY SOURCE FOR SOFT X-RAYS
DE10056623A1 (en) X-ray tube for producing X-rays has an anode structure with a surface layer containing a rare earth metal for producing X-ray radiation
WO2014177308A1 (en) X-ray source and imaging system
DE483337C (en) Glow cathode tubes, especially X-ray tubes
DE102012011309A1 (en) Transmission type x-ray tube, comprises target and filter material where target has minimum one element as excited producing x-rays
EP1028449B1 (en) X-ray tube
Machlett An Improved X‐Ray Tube for Diffraction Analysis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 19930705

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 58908218

Country of ref document: DE

Date of ref document: 19940922

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941024

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: BRUKER AXS ANALYTICAL X-RAY SYSTEMS GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011026

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011029

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021030

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051018

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051025

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070501