EP0425633B1 - Procede de vapocraquage d'hydrocarbures - Google Patents
Procede de vapocraquage d'hydrocarbures Download PDFInfo
- Publication number
- EP0425633B1 EP0425633B1 EP90907103A EP90907103A EP0425633B1 EP 0425633 B1 EP0425633 B1 EP 0425633B1 EP 90907103 A EP90907103 A EP 90907103A EP 90907103 A EP90907103 A EP 90907103A EP 0425633 B1 EP0425633 B1 EP 0425633B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- installation
- tubes
- solid particles
- particles
- coke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 44
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004230 steam cracking Methods 0.000 title claims abstract description 36
- 239000002245 particle Substances 0.000 claims abstract description 98
- 238000009434 installation Methods 0.000 claims abstract description 67
- 239000007787 solid Substances 0.000 claims abstract description 62
- 239000000571 coke Substances 0.000 claims abstract description 56
- 238000010791 quenching Methods 0.000 claims abstract description 21
- 230000003628 erosive effect Effects 0.000 claims abstract description 20
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 238000004064 recycling Methods 0.000 claims description 11
- 238000011144 upstream manufacturing Methods 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 244000182067 Fraxinus ornus Species 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 23
- 239000010410 layer Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000000171 quenching effect Effects 0.000 description 13
- 238000005336 cracking Methods 0.000 description 7
- 238000005235 decoking Methods 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 239000004576 sand Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000004939 coking Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/002—Cooling of cracked gases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/14—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
- C10G9/16—Preventing or removing incrustation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/28—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material
- C10G9/32—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material according to the "fluidised-bed" technique
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G1/00—Non-rotary, e.g. reciprocated, appliances
- F28G1/12—Fluid-propelled scrapers, bullets, or like solid bodies
Definitions
- the invention relates to a process for steam cracking of hydrocarbons, making it possible in particular to avoid or at least limit the coking of the steam cracking installation.
- Steam cracking of hydrocarbons consists in subjecting a charge of hydrocarbons mixed with steam to thermal cracking in an installation comprising in particular a tube furnace in which the charge is brought to a temperature of about 800 to 900 ° C. , then means for indirect quenching of the gaseous effluents leaving the furnace, making it possible to rapidly cool these effluents to stop the cracking reactions.
- the main drawback of this process lies in the gradual fouling of the installation by the coke which is deposited in the oven and in the indirect quenching means.
- Decoking processes have also been proposed which essentially consist in injecting solid particles into the steam cracking installation.
- a first method consists in circulating a stream of neutral gas, conveying metal particles of relatively large size (250-2500 ⁇ m) in the oven previously connected to the atmosphere.
- Another method proposes carrying out continuous sanding of the steam cracking installation, by injecting sand into the liquid hydrocarbon charge.
- the sand particles pass through the steam cracking furnace and the indirect quenching means and are finally trapped by the heavy oil used for the direct quenching of the gaseous effluents.
- the sand particles generally have an average diameter of the order of a millimeter, this results in significant erosion of the tubes in which the charge and the steam cracking effluents circulate.
- the subject of the invention is precisely a process for steam cracking of hydrocarbons which can be carried out continuously over very long periods, without it being necessary to stop the steam cracking in order to decoke the corresponding installation.
- the invention also relates to a process of this type, making it possible to prevent or at least very strongly limit the coking of the installation, without risk of damaging the components of this installation.
- the process according to the invention therefore makes it possible to carry out a continuous steam cracking of hydrocarbons, without it being necessary to stop this process in order to periodically decoke the steam cracking installation. Furthermore, the risks of deterioration of the components are avoided, thanks to the fact that the parts of these components, which are subjected to the action of erosive solid particles, are covered with a protective layer of a very hard material, which is advantageously constituted by the coke itself, and that it was left on purpose to form on the internal walls of the installation.
- the quantities, dimensions and / or masses of the solid particles injected into the installation are determined so that the erosion of the coke layer by these particles is zero or substantially negligible, and the newly formed coke which becomes deposited on this layer of coke is eliminated as it is formed.
- the coke prelayer after a stay in the oven ranging from a few hours to a few days, at a temperature in the region of 1000 ° C. tends to harden by dehydrogenation and calcination, and is less easily erodable than the newly formed coke.
- this method consists in measuring the pressure drops of at least certain tubes of the furnace, in measuring the flow rate of the hydrocarbon or steam charge, in correcting the measured values of the pressure losses in the tubes as a function of the measured flow rate of the hydrocarbon or water vapor load, and to regulate these pressure losses by varying the quantities of solid particles injected into the installation.
- the average thickness of the hardened coke layer protecting the internal walls of the oven is preferably between approximately 0.5 and 4 mm.
- This protective coke precoat protects the walls of the furnace tubes. It is not essential to also maintain a coke precoat on the walls of the quenching boiler, the risks of tube erosion being limited to this level due to the much lower circulation speeds.
- this method also consists in increasing the hardness of said layer of coke, by subjecting it to a rise in temperature, possibly cyclic, for example between 20 and 140 ° C. This rise in temperature above its temperature during subsequent steam cracking results in fact in an increase in the hardness of the coke layer.
- the installation can also be operated with specific hydrocarbons different from those of the installation charge during the formation of this coke layer, for example with light hydrocarbons, of the C1 to C4 type, such as ethane. for example.
- This operation results in the formation of a harder layer of coke on the internal walls of the installation.
- the solid particles injected into the installation have an average diameter of less than approximately 250 ⁇ m, for example between 5 and 150 ⁇ m, the average flow rate of particles injected into the installation being less than 10% by weight of the flow of hydrocarbons and water vapor constituting the charge to be cracked.
- this process also consists in separating the solid particles from the gaseous effluents leaving the indirect quenching means, by means of gas-solid separation means of the cyclone type, in storing said solid particles in a tank. leaving the separation means, and periodically connecting this reservoir to a source of pressurized gas and to a pipe for injecting the particles into the installation, for recycling these particles.
- the method according to the invention also provides for injecting the solid particles into a supply manifold for the tubes of the steam cracking furnace, to distribute the solid particles in these tubes by means of nozzles mounted at the end of the tubes and projecting in the manifold, these nozzles having an inlet section oriented upstream of the manifold, and to standardize the distributions of solid particles in the tubes by taking at the downstream end of the manifold a fraction of the gas-solid particle flow circulating in the collector.
- gas-solid particle flow rate which is sampled at the downstream end of the manifold is advantageously recycled at the upstream end of this manifold.
- FIG. 1 The installation shown in FIG. 1 comprises an oven 10 with single-pass tubes 12 which are connected to a supply manifold 14 at one of their ends and which comprise, at their opposite ends, individual quenching boilers 16 connected to a outlet manifold 18.
- the load of hydrocarbons to be cracked is brought to the liquid state by a line 20 in a convection zone 22 of the furnace, allowing its heating and its vaporization.
- a pipe 24 for supplying steam is connected to pipe 20 in this zone 22 of the furnace 10.
- a preheating pipe 26 makes it possible to bring the mixture of vaporized hydrocarbons and steam to the manifold 14 supplying the tubes 12 of the oven.
- the outlet manifold 18 is connected to at least one cyclone 28 (or to several cyclones connected in series and / or in parallel), comprising an upper pipe 30 for the outlet of the gaseous effluents and a lower pipe 32 for the outlet of the solid particles.
- the lower duct 32 is connected by a stop valve 34 and a shutter valve 36 to two particle storage tanks 38, which are arranged in parallel.
- An isolation valve 40 is mounted between each tank 38 and the shutter valve 36.
- Each reservoir 38 comprises means, such as for example a vibrating screen, for separating and retaining coarse solid particles as well as an orifice for discharging these particles (inspection hatch).
- each reservoir 38 in which the fine solid particles collect, is connected by a motorized rotating member 42 (of the screw or rotary lock type) and by an isolation valve 44 to a conduit 46 for recycling the solid particles. in the installation.
- a source 48 of pressurized gas supplies the conduit 46 with a gas flow at medium speed or relatively low (for example a flow of superheated water vapor circulating at 20 m / s).
- a system of valves 50 makes it possible to connect each reservoir 38, either to the source of pressurized gas 48, or to the conduit 30 by which the gaseous effluents leave the cyclone 28.
- An independent reservoir 52 filled with new solid particles of determined average particle size, allows, by means of a motorized rotating member and an isolation valve, to inject an addition of particles into the recycling conduit 46.
- upper part of the tank 52 is connected to the exit from this tank via a pipe carrying out pressure balancing.
- Each reservoir 38, or one of them, may comprise, in the lower part, a purge duct 54 making it possible to withdraw a certain quantity of spent solid particles.
- the recycling duct 46 is connected by shut-off valves at different points of the steam cracking installation, in particular at the inlet of the duct 26, at the inlet of the indirect quench boilers 16, and to the duct 26 for clean the charge vaporization duct located in part 22 of the furnace 10 (for example at the point where the hydrocarbon charge is completely vaporized).
- the installation of FIG. 1 also includes means 56 for measuring the actual pressure drops in some of the tubes 12 of the furnace, in order to know the increase in these pressure drops which is due to the deposition of coke on the internal walls of the tubes. .
- the means 56 for measuring the pressure drops are connected, by a correction circuit 58 associated with means 60 for measuring the flow rate of the hydrocarbon (or water vapor) charge, to a logic control circuit 62 allowing regulate the actual pressure drops in the furnace tubes to a value between approximately 130 and 300% of the value of these pressure losses in clean tubes, under the same operating conditions of the furnace (same load of hydrocarbons and same water vapor flow).
- the actual pressure drop in the furnace tubes, corrected according to the flow rate is maintained at a value between approximately 130 and 180% of the pressure drop in clean tubes.
- the operation of the installation is as follows: the load of hydrocarbons to be cracked is preheated, mixed with steam and vaporized in part 22 of the furnace, then it undergoes steam cracking in the tubes 12 with a very short residence time in these tubes.
- the gaseous steam cracking effluents then undergo indirect quenching in the boilers 16, pass through the cyclone 28 and gain means of direct quenching by injection of pyrolysis oil.
- the hardness of this coke layer can be increased by subjecting it to a rise in temperature, possibly cyclic, of between 20 and 140 ° C.
- a rise in temperature possibly cyclic, of between 20 and 140 ° C.
- the skin temperature of the tubes is allowed to increase either by reducing the flow rate of the charge to be cracked, or by increasing the heating of the oven. This results in appreciable hardening of the coke layer.
- an equivalent result is obtained by operating the installation with light hydrocarbons (of the C1 to C4 type) which are cracked at high temperature, or else by operating the installation with sulfur compounds.
- the coke which is formed by cracking of ethane, ethylene, proprane, propylene, or sulfur compounds has in fact a hardness higher than that of the coke formed by cracking of more conventional fillers, such as naphtha and gas oil.
- the quantities and dimensions and / or masses of the solid particles injected are determined to cause the elimination of the newly formed coke, while respecting the protective layer already deposited on the internal walls of the installation.
- erosive solid particles having an average diameter of less than 250 ⁇ m preferably between 5 and 150 ⁇ m.
- the flow rate of these particles is less than 10% by weight of the hydrocarbon and water vapor charge, and is between 0.1 and 8% by weight of this charge, preferably.
- a first type of particles having an average mass and a relatively small particle size (for example between 5 and 100 ⁇ m) the second type of particles comprising particles of greater mass.
- the heavier particles initiate the erosion of the newly deposited coke, while the finer and lighter particles propagate this erosion.
- the solid particles used can be substantially spherical particles, for example of silica-alumina, such as particles of already used cathalytic cracking catalyst. It is also possible to use particles of metal, for example iron, steel, nickel, a nickel-containing alloy, etc., and other harder and more erosive particles (for example of cracking catalyst or of '' a refractory and hard metal alloy).
- the solid particles circulating in the installation reach the cyclone (s) 28, where they are separated from the gaseous effluents with a very high efficiency, then leave each cyclone 28 by its lower duct 32 to gain alternately both tanks 38, the shutter valve 36 for selecting the tank in which the particles will be stored.
- the other tank 38 can be used to reinject these particles into the installation.
- the upper isolation valve 40 of this tank is closed, the upper part of the tank is isolated from the conduit 30 for the outlet of the gaseous effluents of the cyclone 28, and is connected to the source of pressurized gas 48, the rotating member 42 is rotated and the lower isolation valve 44 is open.
- this tank When this tank is empty, it can be used again for the storage of the particles, while the solid particles stored in the other tank 38 are recycled in the installation.
- FIG. 2 shows an alternative embodiment of the means for storing and recycling solid particles.
- the means shown in Figure 2 different from those of Figure 1 in that the two tanks 38 are mounted in series, and no longer in parallel.
- a three-way valve 64 makes it possible to connect the lower reservoir 38, either to the source of pressurized gas 48 by means of a stop valve 66 or to the pipe 30 for the outlet of the gaseous effluents from the cyclone 28 via another stop valve 66.
- a conduit 68 is also provided for supplying a barrier gas which opens into the upper part of the upper reservoir 38.
- This barrier gas is free of heavy aromatics and may be water vapor. It makes it possible to avoid coking of the upper reservoir 38 and of its filtering screen, by avoiding the presence of cracked gases.
- FIG. 3 represents means for uniform distribution of solid particles in the various tubes 12 of the steam cracking furnace.
- the manifold 14 for supplying the tubes 12 receives at its upstream end a charge of vaporized hydrocarbons and of water vapor which is, for example, at a temperature of the order of 550 ° C. and in which a small amount of solid particles.
- the tubes 12 of the furnace form one or more parallel rows and emerge at regular intervals into the collector 14.
- the latter has a section which decreases progressively from its upstream end to its downstream end relative to the direction of flow of the charge, to maintain a minimum speed of the mixture in the collector and avoid deposits of solid particles.
- each tube 12 opening into the manifold 14 comprises a supply nozzle 70 located in the manifold and the inlet section of which comprises an orifice 72 oriented towards the upstream end of the manifold.
- Each tube 12 comprises, immediately downstream of the supply nozzle 70, a section restriction 74 such as a neck or a venturi, making it possible to standardize and make the constants substantially constant. Gas flows in the tubes 12.
- a sonic venturi is used.
- a settling chamber 76 is provided upstream of the last tube 12 and below the collector 14, to receive solid particles progressing along the lower generatrix of the collector 14.
- the downstream end 78 of this manifold is connected by a duct 80 of suitable dimensions, to an ejector-compressor 82 comprising an axial duct 84 for supplying a flow of engine gas such as steam.
- a valve 86 makes it possible to adjust the flow rate of engine gas.
- the output of the ejector-compressor 82 is connected by a conduit 88 to the upstream end of the manifold 14 or to the conduit for supplying the hydrocarbon charge.
- valve 86 for adjusting the engine gas flow rates can be controlled by a system 90 comprising means for detecting the skin temperature of the first and last tubes 12 of the furnace, in order to control the flow of engine gas unlike these temperatures.
- This device works as follows: the mixture of vaporized hydrocarbons, water vapor and solid particles, flows with high turbulence in the manifold 14.
- the average flow speed in this manifold is between 20 and 120 m / s, for example between 30 and 80 m / s and is notably lower than the circulation speed in the tubes 12 which is between 130 and 300 m / s approximately (in particular between 160 and 270 m / s).
- the flow speed in the collector 14 is sufficient to avoid any gas-solid separation in the collector, except for certain particles heavy, which can progress along the lower generator of the collector.
- the supply of an engine gas flow rate, for example water vapor, into the ejector 82 makes it possible to take the desired fraction from the gas-solid flow rate in the manifold and to recompress this fraction for recycling by injection. at the upstream end of the manifold.
- the system 90 makes it possible to adjust the flow rate of engine gas by action on the valve 86, which makes it possible to adjust the supply of solid particles to the first tubes relative to that of the last tubes and therefore to correct any irregularity in distribution detected. by differences between the skin temperatures of these tubes.
- the section restrictions 74 formed at the upstream end of the tubes 12 have the effect of standardizing and making substantially constant the gas flow rates which circulate in these tubes. This results in a possibility of automatic regulation of the cleaning of these tubes by solid particles. Indeed, if a tube clogs abnormally, with partial obstruction by coke, the maintenance of the gas flow ensured by the restrictions 74 will lead to increasing the speed of circulation and therefore the erosive efficiency of the particles.
- the first tubes 12 are thus, from the aerodynamic point of view, in the same situation as the following tubes.
- the invention therefore makes it possible to make the operation of steam cracking installations continuous or substantially continuous, and is applicable to various types of ovens, in particular single-pass ovens, with straight tubes, and multi-pass ovens, with elbows at right angles.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8904986A FR2645873B1 (fr) | 1989-04-14 | 1989-04-14 | Procede de decokage d'une installation de vapocraquage d'hydrocarbures, et installation de vapocraquage correspondante |
FR8904986 | 1989-04-14 | ||
FR8909375A FR2649761B1 (fr) | 1989-07-12 | 1989-07-12 | Procede et dispositif de repartition d'un debit gazeux charge de particules solides |
FR8909375 | 1989-07-12 | ||
FR8913070 | 1989-10-06 | ||
FR8913070A FR2652817B1 (fr) | 1989-10-06 | 1989-10-06 | Procede et installation de vapocraquage d'hydrocarbures, a recyclage de particules solides erosives. |
PCT/FR1990/000273 WO1990012852A1 (fr) | 1989-04-14 | 1990-04-13 | Procede de vapocraquage d'hydrocarbures |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0425633A1 EP0425633A1 (fr) | 1991-05-08 |
EP0425633B1 true EP0425633B1 (fr) | 1994-07-27 |
Family
ID=27251860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90907103A Expired - Lifetime EP0425633B1 (fr) | 1989-04-14 | 1990-04-13 | Procede de vapocraquage d'hydrocarbures |
Country Status (8)
Country | Link |
---|---|
US (1) | US5177292A (ja) |
EP (1) | EP0425633B1 (ja) |
JP (1) | JP2768553B2 (ja) |
AT (1) | ATE109194T1 (ja) |
DE (1) | DE69011037T2 (ja) |
DK (1) | DK0425633T3 (ja) |
ES (1) | ES2063353T3 (ja) |
WO (1) | WO1990012852A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7776605B2 (en) | 2006-10-26 | 2010-08-17 | Abbott Laboratories | Assay for cardiac troponin autoantibodies |
US8183002B2 (en) | 2009-12-03 | 2012-05-22 | Abbott Laboratories | Autoantibody enhanced immunoassays and kits |
US8357495B2 (en) | 2006-10-26 | 2013-01-22 | Abbott Laboratories | Immunoassay of analytes in samples containing endogenous anti-analyte antibodies |
US8652788B2 (en) | 2009-12-02 | 2014-02-18 | Abbott Laboratories | Assay for diagnosis of cardiac myocyte damage |
US8835120B2 (en) | 2009-12-02 | 2014-09-16 | Abbott Laboratories | Assay for cardiac troponin-T (cTnT) |
US9371374B2 (en) | 2013-03-14 | 2016-06-21 | Abbott Laboratories | HCV core lipid binding domain monoclonal antibodies |
US10107826B2 (en) | 2011-05-20 | 2018-10-23 | Abbott Japan Co. Ltd. | Immunoassay methods and reagents for decreasing nonspecific binding |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2728582A1 (fr) * | 1994-12-26 | 1996-06-28 | Inst Francais Du Petrole | Installation et procede de vapocraquage a injection controlee de particules solides dans un echangeur de trempe |
FR2728578A1 (fr) * | 1994-12-26 | 1996-06-28 | Inst Francais Du Petrole | Procede de vapocraquage flexible et installation de vapocraquage correspondante |
JP3889045B2 (ja) * | 1995-06-07 | 2007-03-07 | アボツト・ラボラトリーズ | Hivを検出するためのペプチド |
FR2750140B1 (fr) * | 1996-06-25 | 1998-08-07 | Inst Francais Du Petrole | Installation de vapocraquage avec moyens de protection contre l'erosion |
FR2750139B1 (fr) * | 1996-06-25 | 1998-08-07 | Inst Francais Du Petrole | Installation et procede de vapocraquage a injection unique controlee de particules solides dans un echangeur de trempe |
US20050202499A1 (en) | 1996-10-31 | 2005-09-15 | Billing-Medel Patricia A. | Reagents and methods useful for detecting diseases of the breast |
US6846905B2 (en) | 1997-08-15 | 2005-01-25 | Abbott Laboratories | Antigen constructs useful in the detection and differentiation of antibodies to HIV |
JP4647206B2 (ja) * | 2001-06-19 | 2011-03-09 | シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー・ウント・コ | 粒状材料を処理する方法及び装置 |
US20040024193A1 (en) | 2002-07-26 | 2004-02-05 | Williams Gregg T. | Method of detecting and quantifying hepatitis C virus |
EP1540011B1 (en) | 2002-07-26 | 2010-01-06 | Abbott Laboratories | Method of detecting and quantifying hepatitis c virus |
US7998281B2 (en) * | 2006-12-05 | 2011-08-16 | Exxonmobil Chemical Patents Inc. | Apparatus and method of cleaning a transfer line heat exchanger tube |
US20110136141A1 (en) | 2009-12-03 | 2011-06-09 | Abbott Laboratories | Peptide reagents and method for inhibiting autoantibody antigen binding |
CA2798441A1 (en) | 2010-05-07 | 2011-11-10 | Abbvie Inc. | Methods for predicting sensitivity to treatment with a targeted tyrosine kinase inhibitor |
US20120190563A1 (en) | 2010-05-07 | 2012-07-26 | Abbott Laboratories | Methods for predicting sensitivity to treatment with a targeted tyrosine kinase inhibitor |
US20120009196A1 (en) | 2010-07-08 | 2012-01-12 | Abbott Laboratories | Monoclonal antibodies against hepatitis c virus core protein |
WO2012125582A1 (en) | 2011-03-11 | 2012-09-20 | Board Of Regents Of The University Of Nebraska | Biomarker for coronary artery disease |
US10641768B2 (en) | 2011-07-08 | 2020-05-05 | Abbott Japan Co. Ltd. | Methods and kits for decreasing interferences from leukocytes in specific binding assays |
JP7012523B2 (ja) * | 2017-12-11 | 2022-02-14 | 旭化成株式会社 | (メタ)アクリロニトリルの製造方法 |
EP4093839A1 (en) * | 2020-01-22 | 2022-11-30 | Nova Chemicals (International) S.A. | High gas velocity start-up of an ethylene cracking furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4046670A (en) * | 1975-04-30 | 1977-09-06 | Kureha Kagaku Kogyo Kabushiki Kaisha | Method for the treatment of heavy petroleum oil |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1939112A (en) * | 1932-09-08 | 1933-12-12 | Adam J Eulberg | Process and apparatus for removing carbon from still tubes |
US2864587A (en) * | 1953-05-15 | 1958-12-16 | Ekstroems Maskinaffaer Ab | Cleaning the gas-swept heating surfaces of heat exchangers |
US3764634A (en) * | 1969-04-23 | 1973-10-09 | Mitsui Shipbuilding Eng | Process and apparatus for preparing lower olefins |
NL7016475A (en) * | 1970-11-11 | 1971-02-25 | Descaling reactors used for cracking hydro - carbons | |
US4203778A (en) * | 1978-05-17 | 1980-05-20 | Union Carbide Corporation | Method for decoking fired heater tubes |
US4297147A (en) * | 1978-05-17 | 1981-10-27 | Union Carbide Corporation | Method for decoking fired heater tubes |
US4482392A (en) * | 1982-05-13 | 1984-11-13 | Union Carbide Corporation | Conduit cleaning process |
US4572744A (en) * | 1982-09-23 | 1986-02-25 | Union Carbide Corporation | Process for cleaning the interior of a conduit having bends |
US4579596A (en) * | 1984-11-01 | 1986-04-01 | Union Carbide Corporation | In-situ removal of oily deposits from the interior surfaces of conduits |
-
1990
- 1990-04-13 AT AT90907103T patent/ATE109194T1/de active
- 1990-04-13 EP EP90907103A patent/EP0425633B1/fr not_active Expired - Lifetime
- 1990-04-13 DK DK90907103.7T patent/DK0425633T3/da active
- 1990-04-13 WO PCT/FR1990/000273 patent/WO1990012852A1/fr active IP Right Grant
- 1990-04-13 US US07/623,881 patent/US5177292A/en not_active Expired - Fee Related
- 1990-04-13 JP JP2506630A patent/JP2768553B2/ja not_active Expired - Lifetime
- 1990-04-13 DE DE69011037T patent/DE69011037T2/de not_active Expired - Fee Related
- 1990-04-13 ES ES90907103T patent/ES2063353T3/es not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4046670A (en) * | 1975-04-30 | 1977-09-06 | Kureha Kagaku Kogyo Kabushiki Kaisha | Method for the treatment of heavy petroleum oil |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7776605B2 (en) | 2006-10-26 | 2010-08-17 | Abbott Laboratories | Assay for cardiac troponin autoantibodies |
US8173382B2 (en) | 2006-10-26 | 2012-05-08 | Abbott Laboratories | Assay for cardiac troponin autoantibodies |
US8357495B2 (en) | 2006-10-26 | 2013-01-22 | Abbott Laboratories | Immunoassay of analytes in samples containing endogenous anti-analyte antibodies |
US8652788B2 (en) | 2009-12-02 | 2014-02-18 | Abbott Laboratories | Assay for diagnosis of cardiac myocyte damage |
US8835120B2 (en) | 2009-12-02 | 2014-09-16 | Abbott Laboratories | Assay for cardiac troponin-T (cTnT) |
US8183002B2 (en) | 2009-12-03 | 2012-05-22 | Abbott Laboratories | Autoantibody enhanced immunoassays and kits |
US8304201B2 (en) | 2009-12-03 | 2012-11-06 | Abbott Laboratories | Autoantibody enhanced immunoassays and kits |
US8574858B2 (en) | 2009-12-03 | 2013-11-05 | Abbott Laboratories | Autoantibody enhanced immunoassays and kits |
US10107826B2 (en) | 2011-05-20 | 2018-10-23 | Abbott Japan Co. Ltd. | Immunoassay methods and reagents for decreasing nonspecific binding |
US9371374B2 (en) | 2013-03-14 | 2016-06-21 | Abbott Laboratories | HCV core lipid binding domain monoclonal antibodies |
Also Published As
Publication number | Publication date |
---|---|
DE69011037T2 (de) | 1994-11-24 |
WO1990012852A1 (fr) | 1990-11-01 |
ATE109194T1 (de) | 1994-08-15 |
JPH03505605A (ja) | 1991-12-05 |
JP2768553B2 (ja) | 1998-06-25 |
ES2063353T3 (es) | 1995-01-01 |
DK0425633T3 (da) | 1994-11-28 |
EP0425633A1 (fr) | 1991-05-08 |
DE69011037D1 (de) | 1994-09-01 |
US5177292A (en) | 1993-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0425633B1 (fr) | Procede de vapocraquage d'hydrocarbures | |
EP0419643B1 (fr) | Procede et appareillage pour le decokage d'une installation de vapocraquage | |
FR2956666A1 (fr) | Procede de fabrication de noir de carbone en utilisant une charge d'alimentation chauffee et dispositif correspondant | |
FR3003263A1 (fr) | Procede pour produire du noir de carbone en utilisant un fluide de charge | |
EP0489726B1 (fr) | Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee | |
EP0800564B1 (fr) | Procede de vaprocraquage flexible et installation de vapocraquage correspondante | |
FR2647804A1 (fr) | Procede et installation de vapocraquage d'hydrocarbures | |
FR2652817A1 (fr) | Procede et installation de vapocraquage d'hydrocarbures, a recyclage de particules solides erosives. | |
EP0801670B1 (fr) | Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique | |
WO1997049783A1 (fr) | Procede et dispositif de vapocraquage comprenant l'injection de particules en amont d'un echangeur de trempe secondaire | |
EP0291408A1 (fr) | Procédé de vapocraquage dans une zone réactionnelle en lit fluide | |
EP0800565B1 (fr) | Installation et procede de vapocraquage a injection controlee de particules solides dans un echangeur de trempe | |
FR2728581A1 (fr) | Procede et installation de vapocraquage flexible avec limitation du cokage des lignes de transfert de gaz craques | |
WO1996020258A1 (fr) | Procede et installation de vapocraquage a injection, recuperation et recyclage de particules erosives | |
FR2649761A1 (fr) | Procede et dispositif de repartition d'un debit gazeux charge de particules solides | |
FR2750139A1 (fr) | Installation et procede de vapocraquage a injection unique controlee de particules solides dans un echangeur de trempe | |
WO1991003527A1 (fr) | Procede et dispositif de vapocraquage d'hydrocarbures en phase fluidisee | |
FR2653779A1 (fr) | Procede de decokage d'une installation de vapocraquage d'hydrocarbures et installation correspondante. | |
FR2645873A1 (fr) | Procede de decokage d'une installation de vapocraquage d'hydrocarbures, et installation de vapocraquage correspondante | |
FR2645874A1 (fr) | Procede de decokage d'une installation de vapocraquage d'hydrocarbures | |
FR2649717A1 (fr) | Procede et dispositif de decokage d'une installation de vapocraquage d'hydrocarbures | |
BE663317A (ja) | ||
BE534641A (ja) | ||
BE544733A (ja) | ||
FR2645875A1 (fr) | Procede et dispositif de captation et de recyclage de particules solides dans une installation de vapocraquage d'hydrocarbures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19901206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19920717 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 109194 Country of ref document: AT Date of ref document: 19940815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69011037 Country of ref document: DE Date of ref document: 19940901 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940819 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2063353 Country of ref document: ES Kind code of ref document: T3 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 90907103.7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20000320 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000323 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000407 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20000417 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20000418 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20000419 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20000421 Year of fee payment: 11 Ref country code: AT Payment date: 20000421 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000427 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000428 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20000613 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010413 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010413 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010413 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010414 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010414 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20010430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010512 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010512 |
|
BERE | Be: lapsed |
Owner name: LENGLET ERIC Effective date: 20010430 Owner name: PROCEDES PETROLIERS ET PETROCHIMIQUES Effective date: 20010430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011101 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90907103.7 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20011101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050413 |