EP0801670B1 - Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique - Google Patents
Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique Download PDFInfo
- Publication number
- EP0801670B1 EP0801670B1 EP95943262A EP95943262A EP0801670B1 EP 0801670 B1 EP0801670 B1 EP 0801670B1 EP 95943262 A EP95943262 A EP 95943262A EP 95943262 A EP95943262 A EP 95943262A EP 0801670 B1 EP0801670 B1 EP 0801670B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- gas
- transfer
- drum
- drums
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 52
- 238000002347 injection Methods 0.000 title claims description 49
- 239000007924 injection Substances 0.000 title claims description 49
- 238000004230 steam cracking Methods 0.000 title claims description 31
- 239000000843 powder Substances 0.000 title description 35
- 239000002245 particle Substances 0.000 claims description 241
- 239000007789 gas Substances 0.000 claims description 161
- 238000012546 transfer Methods 0.000 claims description 80
- 239000007787 solid Substances 0.000 claims description 53
- 238000011144 upstream manufacturing Methods 0.000 claims description 44
- 239000000571 coke Substances 0.000 claims description 39
- 230000008569 process Effects 0.000 claims description 38
- 238000005336 cracking Methods 0.000 claims description 34
- 230000003628 erosive effect Effects 0.000 claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 32
- 238000000926 separation method Methods 0.000 claims description 30
- 238000004939 coking Methods 0.000 claims description 23
- 238000005235 decoking Methods 0.000 claims description 23
- 239000003795 chemical substances by application Substances 0.000 claims description 21
- 238000011084 recovery Methods 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 17
- 230000004087 circulation Effects 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 239000002737 fuel gas Substances 0.000 claims description 15
- 238000002309 gasification Methods 0.000 claims description 15
- 238000004064 recycling Methods 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 11
- 239000011707 mineral Substances 0.000 claims description 11
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- 230000001737 promoting effect Effects 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052744 lithium Inorganic materials 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 238000011010 flushing procedure Methods 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 238000009434 installation Methods 0.000 description 59
- 238000010791 quenching Methods 0.000 description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000000197 pyrolysis Methods 0.000 description 15
- 239000012634 fragment Substances 0.000 description 12
- 238000001035 drying Methods 0.000 description 9
- 230000000171 quenching effect Effects 0.000 description 9
- 238000009833 condensation Methods 0.000 description 8
- 230000005494 condensation Effects 0.000 description 8
- 239000011269 tar Substances 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 238000005325 percolation Methods 0.000 description 5
- 238000012216 screening Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 241000132536 Cirsium Species 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010016275 Fear Diseases 0.000 description 1
- 206010061876 Obstruction Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000002738 anti-smoking effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 235000021110 pickles Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/002—Cooling of cracked gases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/14—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
- C10G9/16—Preventing or removing incrustation
Definitions
- the steam cracking process is the basic process of petrochemicals. It consists of thermally crack a mixture of hydrocarbons and water vapor to high temperatures of the order of 850 ° C. and then soaking the effluents in a indirect quenching exchanger generally designated by TLX or TLE (transfer line exchanger) and then to fractionate the cooled effluents.
- TLX transfer line exchanger
- the main operational problem of this process comes from parasitic deposits of coke in the pyrolysis tubes and those of the quench exchanger.
- ovens each comprising, in general, several quench exchangers (TLE) of effluents; for example, we can have 10 ovens each comprising two TLE, either a total of 20 TLEs operating in parallel.
- TLE quench exchangers
- silos For reasons of cost and maintenance, it is desirable to have only one very limited number of silos for receiving and storing the recovered powders (used powders), and / or possibly equipment for their treatment before recycling.
- a single reception and / or reception module will be chosen if possible. treatment of the recovered powders, common to the entire installation of steam cracking.
- the whole can be collected effluents from different TLEs, which is generally carried out in a conventional steam cracking installation without the injection of erosive powders, and separate the powders from the overall effluent from the steam cracking installation, to collect these powders at a single point.
- This variant process and installation therefore avoids installing a cyclone of very large capacity, inefficient, and often impossible to install on many existing steam crackers, but is however very expensive because it requires a large number of special large diameter valves (e.g. 20 valves for a steam cracker comprising 10 TLE).
- the connecting lines between the outputs of the different TLEs and the single cyclone are lines of diameter relatively large (250 to 300 mm also, in general), necessarily made of alloy steel because it typically carries cracked gases of high temperature 450 ° C to 530 ° C at the end of the cycle.
- a first objective of the method according to the invention, and of the installation is to offer a technical solution that is both reliable and not very expensive to this problem of collection at a single point of the powders circulating in the steam cracking effluents, when anti-coking agents such as erosive powders.
- a second objective of the method according to the invention, and of the corresponding installation, is to solve this same technical problem when injecting another type anti-coking agents, without significant erosive action, but also causing circulation of undesirable solid particles and fragments.
- the object of the invention is therefore to propose a steam cracking process, benefiting a general technical solution, reliable and economical, allowing to separate and recovering solid particles carried by cracked gases at a single point, generated by various types of anti-coking agents.
- the invention therefore proposes a process for steam cracking of hydrocarbons. in an installation comprising at least one steam cracking furnace, this installation comprising a plurality of cracking zones, and a plurality quenching exchangers (TLE) of cracked gases from these cracking zones, the method comprising online injection, at a plurality of points, of decoking generating the circulation of solid particles in the said heat exchangers quenching, and comprising the separation of at least part of these solid particles gases containing them and their transport at a single point to common collection means for this installation.
- TLE quenching exchangers
- the method also comprises the recovery, by gravity flow, of at least a portion of the particles thus separated from said primary separators, in a plurality of receiving canisters V1, ..., Vn, each can Vi being associated with at least a primary separator, and the transfer of at least most of the particles contained in the canisters Vi, to said common means of separation and collection by transfer pipes, by means of a transport gas whose flow rate q i for the evacuation of particles contained in a can Vi is less than or equal to 30% volume of the cracked gas flow passing through the primary separators associated with Vi.
- each of the receiving canisters Vi is isolated sequentially of the associated separator (s) and in that the transfer of particles to the common means of separation and collection is done using non-coking transport gas with an atmospheric dew point below 110 ° C.
- the particles are separated from the cracked gases which contain them or optionally a stream of water vapor alone in a plurality of separators gas / primary solids.
- the particles are no longer routed to the common means of collection by cracked gases but by a "clean" gas, not significantly coking noncondensable at medium temperatures.
- these particle transport lines can be lines relatively cold, not heat-insulated, usually carbon steel, without there are fears of coking problems or condensation of tars. These lines are therefore much less expensive than in the processes previously described. Furthermore, the risks of particle sticking in the presence of condensation of liquid, and clogging of the lines, which is a major advantage.
- the gas flow conveying the particles is disconnected from the gas flow cracked, and can be much lower, for example 30% or even less 20% volume, which allows the use of very small diameter lines: 50 to 100 mm against 250 to 300 mm previously, and to remove the valves special large diameter of the previous process.
- the particles transferred from a Vi canister are extracted from this canister by means exclusively pneumatic.
- This extraction mode which performs an evacuation pneumatic of all the particles contained in the container (except possible large fragments mechanically blocked by a grid) by pressurizing the container and supplying transport gas at the outlet, is very high reliability, compared to mechanical screw extraction or lock, components that can be blocked by solid fragments of large dimension, or sometimes present flow problems of the "bridging" type, with formation of arches "of powders.
- Vi canisters as an airlock airlock, technique known to those skilled in the art in other industries, with handling of powders and evacuation of particles by the transport gas, increases so important the reliability of the process according to the invention, compared to the process previously described.
- the canisters Vi are heated by thermal means whose temperature level is between 110 ° C and 340 ° C, preferably between 150 and 250 ° C, this level remaining above the point dew of the transport gas at the maximum operating pressure of the canisters Vi.
- temperature level means the condensation temperature of the vapor, when using water vapor tracing, or the maximum level of temperature that can be maintained if using an electrical trace.
- the lower limit temperature of said thermal means (110 ° C in general and preferably 150 ° C) aims to avoid any condensation of dilution vapor (dragged with the powder) or fractions of pyrolysis gasoline.
- the heat capacity of these particles is small, and they are quickly cooled substantially to the temperature of the can Vi, which is determined by the temperature level of the thermal means of heating of Vi. So the particles are stored, temporarily, at a temperature below the melting temperature of pyrolysis tars.
- percolation of continuous particles can be carried out in a Vi canister, also using a non-coking gas with an atmospheric dew point below 110 ° C, before isolating the Vi canister and transferring the particles contained in Vi.
- This percolation (crossing of the bed of particles) by a "dry" gas makes it possible to “stripping” these particles and better eliminating traces of liquid possibly present.
- one can perform a final drying of the particles during their pneumatic transfer in in particular by maintaining the temperature of the particle / transport gas mixture, at the end of the pneumatic transfer, for example in the gas / solid separator secondary, at a value between 40 ° C and 180 ° C, and preferably 80 to 150 ° C.
- These temperatures can be used when using a transport gas noncondensable at room temperature (e.g. nitrogen or fuel gas), which is prefer. If steam is used as the transport gas, it should be noted these temperatures significantly above the condensation point of water vapor at the pressure of the secondary separator.
- This final drying in a fluidized bed circulating during the pneumatic transfer allows to further improve the flow quality of particles.
- the preferred transport gases are the incondensable gases at normal temperature and pressure, especially those selected from the group of nitrogen, methane, hydrogen, light hydrocarbons comprising from two to four carbon atoms, and mixtures of these compounds.
- Available gases such as nitrogen, or fuel gas from the steam cracker (variable mixture methane and hydrogen) are best suited. They allow the use of cold pneumatic transfer lines, generally not insulated.
- the decoking agents can be injected during phases where the supply of oil from the cracking zone upstream of a TLE is interrupted (water vapor circulation only).
- the preferred method variant involves injecting the decoking agents. during normal operation of the installation, i.e. during the steam cracking at normal rate, or possibly momentarily increased from 10 to 50% volume, in the case where erosive solid particles are introduced which wants to increase efficiency.
- the decoking agents comprise erosive solid particles, injected upstream of the quench exchangers, in especially in cracked gas transfer areas between the outlets cracking zones and quench exchangers.
- the average particle diameter can be between 0.02 and 4 mm, and preferably between 0.07 and 0.8 mm.
- the particle size must be reduced, less than 150 micrometers, to get closer to an erosive gas effect.
- larger particles can be used diameter, typically between 70 and 800 micrometers: indeed, the TLE does not have no bends or changes in direction, but only straight lengths, and there is no fear of impact concentration by particles which may cause local erosion.
- the usable particles are very variable, from the moment they have a erosive efficiency. For this reason, it is recommended to use at least 20% of angular (or very irregular) particles.
- the composition of these particles it is possible to use, for example, fluid cracking catalyst (FCC) spent, cement clinker, crushed ores, metallic particles, sand.
- FCC fluid cracking catalyst
- Particularly interesting particles are mineral particles hard and not very brittle such as silicon carbide, or simple oxides or mixed aluminum, silicon and zirconium.
- Other particles very interesting are coke particles, especially coke particles stabilized by calcination at 850 ° C or higher, carried out before or after their grinding. These coke particles are more fragile and less effective than mineral particles, and must be injected in increased quantities.
- a coke trap can be constituted by a sudden change in direction of the cracked gas flow, for example a simple, non-cyclonic deviation of the flow from an angle between 30 and 180 ° C, for the evacuation of at least most of the cracked gases, and a particle recovery chamber located at the change of direction abrupt, or downstream, connected by a narrowing to a container for receiving particles according to the invention.
- Particle injections are preferably carried out sequentially, i.e. say discontinuously.
- a dose of particles is injected fixed or variable intervals between 0.3 and 72 hours and preferably between 1 and 20 hours, successively before the various TLEs equipped according to the invention.
- the instantaneous quantity of particles, by ratio to cracked gases is between 0.5 and 25% by weight, especially between 1 and 10% by weight. If we compare the total amount of particles injected during of a steam cracking cycle to the total quantity of cracked gases during this cycle, the average levels of particles are then much lower, because we only injects particles for a small fraction of the time.
- the average level of solid particles injected during a steam cracking cycle, by compared to cracked gases is less than 3000 ppm, and generally between 20 and 1500 ppm.
- At least part is recycled particles recovered in common means of collection, by reintroducing these particles upstream of at least one of the quench exchangers, after having performed a screening operation, carried out at least on this so-called part of the particles recovered in common means.
- the screening operation can be carried out at atmospheric pressure and under an atmosphere essentially of nitrogen On could also screen the particles without depressurizing them and then recycling them, for example, using fuel oil.
- Particle recycling at least partially, has already been described previously; he reduces consumption of "new" particles.
- the disposition characteristic of the recycling process according to the invention consisting in carrying out after the pneumatic transfer of the particles by an incondensable gas, a step of screening at atmospheric pressure, under nitrogen, is of great interest:
- the invention allows, by this pneumatic transport, to achieve both a drying and cooling of the particles in a circulating fluidized bed.
- This makes possible the use of existing screens, economical and highly reliable, such as screens, also called screens, centrifuges, or preferably vibrant.
- the flexible connecting cuffs of these devices made of elastomer possibly reinforced would be incompatible with very high particles temperature (400 ° C or more), which pass through the process filter previously described.
- this filtration step is essential to avoid the risk of clogging of recycled powder injectors that have a small diameter.
- the screening being performed at atmospheric pressure at moderate temperature and under nitrogen, the operations screen maintenance are easy and can be carried out quickly.
- the fragments (coke and foreign bodies) of diameter are eliminated. greater than 3 or 4 mm.
- the decoking agents include mineral salts catalysts for gasification of coke by steam of water, injected upstream of the cracking zones.
- these mineral salts can comprise at least one salt of an element included in the group of sodium, potassium, lithium, barium and strontium, this salt being active in promoting the gasification of coke.
- Very active mineral salts have been discovered to gasify the coke of pyrolysis tubes, comprising salts of alkali and alkaline earth elements, in particular of precursors of oxides or carbonates of these elements.
- mixtures with a melting point lowered below 750 ° C for example neighboring eutectic example
- sodium carbonate and potassium carbonate have a very effective decoking or coking prevention action.
- mixtures of acetates for example a mixture equimolar of sodium acetate, potassium acetate, lithium acetate and barium acetate.
- These compounds can catalyze the gasification reaction of coke (in particular the reaction of "gas to water ": C + H2O ⁇ CO + H2); they can be introduced in powder form or in the form of aqueous solutions, in particular very dilute solutions, atomized in a hot gas, and in particular in the dilution water vapor, or the steam / hydrocarbon mixture at the convection outlet (at a temperature high of the order of 500 to 650 ° C).
- the preferred injection method is injection during normal operation of the steam cracking; it is also possible to inject these mineral salts only during steam decoking alone, in particular to accelerate this decoking.
- the quantity required depends on many factors: nature of the compounds used and the load to crack, severity of cracking and skin temperature of the tubes pyrolysis.
- the most suitable amounts are typically between 2 and 200 ppm, and preferably between 5 and 100 ppm, counted by weight of alkaline elements and / or alkaline earth compared to cracked gases.
- the invention also relates to a steam cracking installation making it possible to implement the process. More specifically, this installation includes at least a steam cracking oven, a plurality of cracking zones, a plurality quenching exchangers for cracked gases from these cracking zones, this installation also comprising injection means at a plurality of points, decoking agents generating the circulation of solid particles in the quench exchangers, a plurality of gas / solid solids separators, for purifying the effluents from the quench exchangers, each primary separator being connected upstream to at least one quench exchanger associated therewith and comprising a purified gas outlet and an outlet for solid particles, and means for recovery of at least part of these solid particles, these means of recovery including common means of separation and collection gathered at a single point,
- the device is characterized in that it comprises sequential isolation means of each of the canisters Vi of the primary separator (s) associated therewith, that the means for the transfer, by the said transfer pipelines, of the most at least a large part of the particles contained in the Vi canisters thus isolated include means for supplying a non-coking and point transport gas atmospheric dew below 110 ° C.
- This installation therefore makes it possible to transfer the powders recovered by means of relatively low flow rates of non-fouling transport gas at temperature moderate.
- Primary separators individually have a unit capacity relatively low compared to the overall flow of cracked gases from the installation complete, and are therefore effective and easy to install. They carry out a purification effective cracked gases not only during particle injection phases solids, according to the method previously described, but also so permanent, and are therefore also effective against particulate emissions solids after injections of decoking agents. This is useful as well for residual particles circulating after particle injection phases erosives that remained in the dead zones, only when injecting the agents coke gasification chemicals.
- the common means of collection are typically constituted by a can allowing temporary or prolonged storage of particles, which can possibly include weighing means.
- a quench exchanger is said associated with a primary separator if this primary separator purifies the effluents from this quench exchanger.
- a primary separator is said to be associated with a receiving can Vi if Vi recovers, by gravity flow, a part at minus the particles separated in this primary separator. So a separator primary may be associated with one or more quench exchangers which it purifies effluents; a receiving can Vi can collect particles from one or more primary separators.
- the installation can in fact comprise at least two primary separators associated with the same receiving container, each of these primary separators being connected to this container by a pipe, and comprising control means for sequential shutter means of at least one of the pipes when the other of these pipes is open, the relative arrangement of these primary separators and the receiving container being such that the pipes have a inclination at least 60 degrees from the horizontal.
- This arrangement allows the use of a single Vi canister for reception and transfer of particles from several primary separators, and is therefore interesting economically, and from a maintenance point of view. Isolation sequential at least one of the pipes avoids the circulation of gas cracked via the Vi canister from one primary separator to the other, harmful for separation efficiency.
- the evacuation of the particles contained in a can Vi is carried out by means of drainage, connected to Vi, which are exclusively tires, and use at least one gas source from the group of nitrogen and fuel gas (methane or mixture of methane and hydrogen).
- gas source from the group of nitrogen and fuel gas (methane or mixture of methane and hydrogen).
- the transport gas flow rate for transferring the particles is only Not more than 30% of the gas flow rate passing through the primary separators associated with Vi during the same period, typically the normal gas flow cracked treated by the primary separator (s) whose particles fall in Vi.
- the transfer line is therefore much smaller in diameter than that of cracked gas lines (less than or equal to 100 mm against typically 250 to 400 mm).
- this transport gas is fuel gas or nitrogen, gases which are noncondensable at room temperature, and which will allow drying of the particles during their transfer.
- Vi cans are heated by thermal means whose level of temperature is between 110 and 340 ° C, and preferably between 150 and 250 ° C. This temperature level which corresponds to that of the temperature of condensation of the heat tracing, or of the temperature maintained by electrical means is indeed adequate for maintaining pyrolysis tars at solid state.
- the installation comprises means for scanning the gas. contained in Vi cans, by means of a non-coking gas source and point of atmospheric dew below 110 ° C.
- This scan which by technical equivalent can be constituted by a barrier gas, has the function of purging Vi of traces possible cracked gases, before evacuation and transfer of particles.
- the installation comprises means introduction of a non-coking gas and an atmospheric dew point below 110 ° C, within the particles contained in the Vi canisters, for the percolation of these particles before their evacuation from the canisters Vi.
- the decoking agents comprise erosive solid particles, and means for injecting these particles upstream quench exchangers, and in particular in the transfer zones between the zones cracking and quenching exchangers.
- all of the solid particles injected are in the zones transfer of cracked gases between the cracking zones and the quench exchangers, in particular in the inlet cones of these exchangers (considered to be part of the transfer areas).
- the common means of separation which achieve separation secondary solid particles / transport gas substantially non-condensable, include a purified transport gas outlet connected by a line of connection to a cracked gas circulation line, for the evacuation of this gas clean transport.
- the transport gas is then fuel gas, which avoids the consumption of nitrogen and its significant mixture with cracked gases.
- the installation comprises recycling means at least part of the particles recovered in the common means of separation and collection.
- the installation then comprises a vibrating screen operating under nitrogen pressure at substantially pressure atmospheric and at a temperature below 200 ° C, connected upstream to the means , separation and collection facilities and linked downstream to recycling means for particles.
- the installation comprises means injection of decoking agents, comprising chemical compounds catalyzing gasification of coke with steam, upstream of the cracking zones.
- decoking agents comprising chemical compounds catalyzing gasification of coke with steam, upstream of the cracking zones.
- an installation can advantageously include means injection of a solution comprising at least one mineral salt of an element included in the group of sodium, potassium, lithium, barium and strontium, this salt being active in promoting the gasification of steam coke of water, this gasification weakening the coke and causing emissions of pieces of coke, which can be recovered and transferred according to the means of the invention.
- the invention may understand means of sequential injection of erosive particles connected to said transfer zones, means of sequential isolation of each can Vi in outside the particle injection phases upstream of Vi, and means evacuation of particles recovered in the separator (s) associated with Vi in outside these injection phases, without passing through Vi.
- the installation may typically include cans Wi for receiving particles recovered outside the injection phases of particles, and directional switches controlled at one input and two outputs, each switch being connected upstream to a primary separator, and downstream to a Vi receiving container, and a Wi receiving container.
- Figure 1 shows schematically a steam cracking installation according to the invention, comprising several devices relating to different characteristic variants according to the invention.
- FIG. 2 schematically represents part of an installation comprising a device characteristic of one of the variants of the invention.
- FIG. 3 represents a part of an installation comprising another device characteristic, advantageous for carrying out the invention.
- FIG. 1 where part of two kilns have been shown.
- steam cracking (1) each comprising a feed (22) of a charge of hydrocarbons and a supply (23) of dilution water vapor.
- Load overall is preheated, vaporized and superheated to a typical temperature of 500 to 650 ° C in the convection zones of these two ovens, then cracked in two cracking zones (2) constituted by coils of pyrolysis tubes.
- the cracked gases pass through transfer zones (3) to two heat exchangers quenching (4), or "TLE" (Transfer Line Exchanger) allowing to lower suddenly their temperature at around 360 to 630 ° C, and very generally at approximately 360 to 500 ° C, this temperature being measured by indicators of temperature (24).
- TLE Transfer Line Exchanger
- These two streams of cracked cooled gas then pass through two primary gas / solid particle separators (5), for example two cyclones.
- Each of these primary separators includes a purified gas outlet which joins a line (12) of circulation of cooled cracked gases, for their evacuation and their downstream treatment (primary fractionation, compression, desulfurization, drying, final fractionation).
- the two primary separators (5) also each include an outlet for solid particles connected by a pipe (16) to a receiving container (6) maintained at temperature by thermal means (37), for recovery of these solid particles by gravity flow.
- the two receiving containers (6) each include isolation means sequential: upstream a controlled valve (7) arranged on the line (16), and downstream a controlled valve (8). These two receiving containers (6) are connected in downstream, each by a transfer pipe (9), to common means of separation and collection of solid particles, comprising a cyclone of separation (10) and a collection container (13). Cyclone effluent gases (10) are introduced into line (12) by a line (11).
- This collection container (13) is connected downstream by a line (32) to a screen.
- vibrating (14) connected to the atmosphere by a line (ATM) operating substantially at atmospheric pressure, under a nitrogen atmosphere, and at moderate temperature compatible with flexible connection sleeves used for screens classic vibes.
- the container (1) which includes upstream isolation valves and downstream, as well as unrepresented means of depressurization, fulfills the function of particle decompression airlock.
- the exit of fine particles from the vibrating screen (14) (particles cleared by example large fragments larger than 3 mm) is connected to a container reception (15), equipped with upstream and downstream controlled valves, as well as means supply, not shown, of nitrogen group gas and fuel gas.
- the vibrating screen (14) will be placed above the can (15), to allow the gravitational flow of powders (this is not the case in Figure 1 for simple drawing reasons).
- the can (15) thus equipped can then operate in a pneumatic shipping lock, and constitutes a means of recycling erosive solid particles in the installation. It is connected upstream to a source of transport gas (33) (fuel gas, nitrogen or water vapor), and downstream to different injection means (19) (34) comprising controlled valves and injection pipes for solid particles.
- the particles can be injected upstream of the cracking zones (2) by the lines (34) in dotted lines, or preferably by lines (19), in the areas of transfer of cracked gases (3), and in particular at the inlet cones of the quench exchangers, cones which by convention form part of the transfer zones (3).
- a diffusing impactor (35) will preferably be installed at the interior of each inlet cone. This diffuser impactor has a double purpose: protect the tube plate in the heat exchanger against erosion, and distribute the injected particles more evenly, in the various exchanger tubes (4).
- This diffusing impactor (35) advantageously consists of two levels of particle bounce surfaces, offset from each other, so that it is both gas permeable in a plurality of passages and substantially opaque seen from upstream.
- the shipping hatch (15) has a particle discharge line (36) worn; we could also send the used particles to a storage silo thanks to a switch arranged on the line (32); a container (18) comprising controlled emptying means (screw or lock) allows to store particles "new", and to replace the used particles.
- the installation described in Figure 1 finally includes a programmable controller (17) to control the sequential operation of the installation, in particular valves of the pressure relief airlock and pneumatic shipping airlocks.
- She also includes injection means (20) upstream of the cracking zone (2) chemical compounds which catalyze the gasification of coke by steam, for example aqueous solutions of an equimolar mixture of sodium carbonate and potassium carbonate, or an equimolar mixture of sodium acetate, potassium acetate, lithium acetate and barium acetate.
- FIG. 2 where two diagrams are represented quench exchangers (4), or "TLE” whose inlet cones each have a conduit (19) for injecting erosive solid particles.
- These exchangers are connected downstream to two primary separators (5) connected by lines (16) comprising each a controlled isolation valve (7), with the same receiving container (6), which is one of the Vi canisters of the installation, and is therefore associated with the two primary separators (5) shown.
- a transfer line (9), comprising a controlled valve (8) allows sequentially transfer the particles to common means (10), (13) separation and collection, themselves connected by other pipes of transfer (9), to other receiving canisters Vi, not shown.
- Canister (6) works in pneumatic airlock, with pressurization of the airlock and removal of particles by a transport gas.
- the arrangement of the two primary separators (5) is not any, but these dividers are installed sufficiently close together so that the connecting lines (16) with the receiving container single (6) are very inclined and form with the horizontal an angle a at least equal to 60 ° C.
- FIG. 3 represents a quench exchanger (4) connected to a primary separator (5), itself connected to a receiving canister Vi (6).
- This figure 3 also includes other technical elements already described previously and referenced in the same way.
- a other container, Wi, (28) for receiving solid particles also connected to the primary separator (5), and a controlled directional switch (29) (flap, valve or equivalent technical device), allowing the particles to be oriented recovered in the primary separator (5), either to the canister Vi (6), or to the Wi bottle (28).
- the coke of the quench exchangers is, surprisingly, much easier to erode than cracked areas. It is therefore possible to control the quantities of particles to be injected without realizing of preliminary tests, based on the outlet temperature of the heat exchangers quenching.
- doses of fine particles are injected discontinuously erosive, each dose corresponding to a weight of particles typically understood between 5 and 150 kg, especially between 20 and 100 kg.
- Two types of control injections are possible: according to the first type of control, we inject particles, at a given injection point, at a fixed time interval, for example every 3 hours. And we adjust the quantities injected (for example by weighing means, not shown in FIG. 1), so that the increase in the outlet temperature of the relevant quench exchanger located downstream of the point injection remains moderate, for example less than 100 ° C per month and preferably at 30 ° C per month or substantially zero.
- the particles typically injected through a conduit (19) comprising typically at its end from 1 to 8 particle injectors in the inlet cone of a quenching exchanger (4) are entrained by cracked gases, rebound on the diffuser impactor (35), and are distributed in an improved manner in the different exchanger tubes (4), where they circulate at speeds included between 20 and 180 m / s and preferably between 35 and 120 m / s, and pickle a part coke or heavy tars deposited on the walls of these tubes.
- the particles are then removed, in dense phase or in diluted phase, by the transfer line (9).
- the flow qi of transport gas to achieve this transfer is according to the invention much lower than that of cracked gases passing through the primary separator (5).
- the line (9) is therefore of small diameter, of same as the valves (7) and (8), because we realized, thanks to the gas change conveying the particles: cracked gas ⁇ dry clean gas (N2, fuel gas), a decoupling with the cracked gas flow, necessarily very high.
- line (9) and the valves (7) and (8) are of smaller diameter or equal to 100 mm against 350 mm typically for transfer lines from particles of the process previously described.
- line (9) is relatively cold, generally not traced and not insulated on at least part and can be made of carbon steel.
- the transfer of the particles according to the invention is therefore particularly economical, and also reliable because it allows the particles to be dried in the Vi canister reception (6) then in a circulating bed, thanks to the transport gas, in the pipeline transfer (9).
- This transfer pipeline allows to cool the particles (the heat exchanger with the cooler walls of the line (9) being favored by circulation in a fluidized bed).
- the particles passing through the pipe (9) are therefore cooled to a typical preferred temperature of 80 to 150 ° C, compatible moderate temperature with the vibrating screen, but sufficient to carry out a possible drying complementary to particles.
- These common means comprise a cyclone (10) for particle / gas separation. transport, and a container (13) for collecting particles.
- the purified transport gas is returned by line (11) to line (12) for evacuating cracked gases cooled.
- the collection container (13) is isolated from upstream, depressurized by means not shown, and drained via the evacuation line (32). This emptying, for example gravity, is facilitated by the fact that the particles are dry and not sticky.
- the particles are then screened in the vibrating screen (14), which eliminates fragments larger than 3 mm, and fall into the receiving container (15) whose upstream valve is open and the downstream valve closed.
- Fine sieving of the particles is necessary when recycling these particles to avoid clogging of the injectors at the end of the line (19), which are typically of small dimensions (for example 15 mm).
- a first screening very coarse (15 to 20 mm mesh) can be made using a simple grid in the receiving containers (6) to avoid the risk of obstruction of transfer lines (9).
- the sieved particles are in the can (15), we can then recycle them, by isolating the container (15) from upstream, and by injecting a pressurization gas and a transport gas, according to the same type of operation as the canister (6): evacuation by pneumatic shipping airlock according to several variants of realization, as well as for the airlock (6).
- Preferred transportation gas is fuel gas, or nitrogen.
- Controlled valves, included in the means (19) for injecting particles allow to select the injection site (s) chosen, for example those whose quench exchanger has the highest outlet temperature.
- the container (15) also comprises means (16) for discharging particles worn, reduced erosive efficiency after a certain number of circulations. The dose of used particles is then replaced by new particles stored in the can (18), and conveyed by a supply of transport gas (33).
- FIG. 1 also makes it possible to inject chemical agents decoking by means (20) which may include a reservoir for a solution active, and a metering pump. These compounds are injected continuously or in discontinuous, finely pulverized in cracked gases.
- the installation also includes a control module (17 see Figure 2) such than a programmable controller allowing to operate all actions sequential automatically.
- the device described in FIG. 3 operates as follows: During the particle injection phases, the directional switch (29) is oriented as shown in the figure to allow the recovery of erosive particles in the receiving canister Vi (6). Outside the injection phases, that is to say for most of the time, the switch is oriented in the opposite direction, so that the particles fall into the receiving Wi container (28). Thus, the particles of coke detached from the walls which can circulate spontaneously in the installation, or resulting from the embrittlement of the coke by the chemical compounds injected, do not mix with the erosive particles, recovered in the container (6). This improves the operation and reliability of the installation. We could also prevent the fall of unwanted particles in the container (6) by closing the valve (7) and then injecting a gas to expel the particles located above this valve.
- the particles contained in the effluents of quench exchangers are conveyed by these effluents to the general network of treatment of cracked gases which comprises a single cyclone.
- the general network of treatment of cracked gases which comprises a single cyclone.
- each output of a quench exchanger includes two controlled valves to direct the effluents either to the downstream network for the treatment of cracked gases when does not inject particles, either towards common means of separation and collection.
- This known installation makes it possible to transport the particles to a single point, by means of 20 additional cracked gas lines, 350 mm in diameter typical, and includes 20 x 2 i.e. 40 special large diameter valves capable direct the cracked gases towards the appropriate network.
- the cyclone on the other hand, has a reasonable capacity of 10,000 kg / h and is easily implantable and effective.
- the transfer pipes (9) are therefore of very small diameter (50 to 100 mm), and the cyclone (10) is also very small (capacity 1000 kg / h).
- This installation makes it possible to inject erosive particles, for example doses 50 kg of angular coke, or angular silicon carbide, and recover these particles in a common place. It allows, thanks to these injections to be able to avoid fouling of quench exchangers and cracking charges not conventional (kerosene, diesel, condensate) with cycle times more than 1 month, which is not possible without injecting particles.
- the most most of the particles recovered is the most most of the particles recovered.
- Example 2 which also includes 20 separators primary (cyclone (5)), but only 10 receiving Vi tanks (6), arranged according to Figure 2, and 10 capacity transfer lines (9) 1000 kg / h of fuel gas per unit.
- the invention therefore proposes a method and an installation, with several variants, making it possible to use decoking agents effective in authorizing cracking of charges which cannot be cracked in conventional conditions without excessive fouling, and to recover particles solids generated by this implementation, more economically and more reliably than in the processes and installations previously described.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
- une pluralité de bidons Vi pour la récupération par écoulement gravitaire d'une partie au moins des particules séparées dans les séparateurs primaires, chaque bidon Vi étant connecté à au moins une sortie de particules solides d'au moins un séparateur primaire associé à Vi,
- une pluralité de canalisations de transfert de particules solides, chacune de ces canalisations étant reliée en amont à l'un des bidons Vi et en aval aux dits moyens communs de séparation et de collecte, et des moyens de transfert de particules par un gaz de transport.
A- Injection de particules solides érosives. On réalise des injections intermittentes de particules érosives dans l'installation, par les moyens (19) : vannes commandées et conduits d'injection. Lorsque l'on craque une charge bien connue et constante, on peut injecter des particules par les lignes (34) en amont des zones de craquage (2) ; lorsque l'on craque des charges variables dans des conditions flexibles on injecte principalement, ou exclusivement, les particules dans les zones de transfert (3) au niveau des cônes d'entrée des échangeurs de trempe ; on a en effet trouvé que des conditions variables au niveau des charges pouvaient conduire à des vitesses de cokage des tubes de pyrolyse difficilement prévisibles et peu appropriées à un contrôle des injections de particules dans les zones de craquage. Au contraire, l'encrassement des échangeurs de trempe, qui s'est révélé de manière inattendue être le seul facteur limitant dans le choix des charges, en particulier des charges lourdes telles que gazoles et distillats sous vide, peut être connu de manière simple et fiable par simple mesure de la température de sortie de cet échangeur.
Lors des phases d'injection de particules, l'aiguillage directionnel (29) est orienté comme indiqué sur la figure pour permettre la récupération des particules érosives dans le bidon Vi de réception (6). En dehors des phases d'injection, c'est à dire pendant la plus grande partie du temps, l'aiguillage est orienté de façon inverse, pour que les particules tombent dans le bidon Wi de réception (28). Ainsi, les particules de coke détaché des parois pouvant circuler spontanément dans l'installation, ou résultant de la fragilisation du coke par les composés chimiques injectés, ne se mélangent pas avec les particules érosives, récupérées dans le bidon (6). Ceci améliore le fonctionnement et la fiabilité de l'installation. On pourrait également empêcher la chute de particules indésirables dans le bidon (6) en fermant la vanne (7) puis en injectant un gaz pour chasser les particules situées au-dessus de cette vanne.
Claims (25)
- Procédé de vapocraquage d'hydrocarbures dans une installation comprenant au moins un four de vapocraquage, cette installation comprenant une pluralité de zones de craquage (2), et une pluralité d'échangeurs de trempe (4), (TLE), des gaz craqués issus des zones de craquage, le procédé comprenant l'injection en une pluralité de points, d'agents de décokage générant la circulation de particules solides dans lesdits échangeurs de trempe, le procédé comprenant la séparation d'une partie au moins desdites particules, des effluents des échangeurs de trempe, dans une pluralité de séparateurs gaz/solides primaires (5), et la récupération en aval de ces échangeurs de trempe d'une partie au moins de ces particules solides dans des moyens communs de séparation et de collecte rassemblés en un point unique, le procédé comportant :la récupération, par écoulement gravitaire, d'au moins une partie des particules ainsi séparées provenant desdits séparateurs primaires, dans une pluralité de bidons de réception V1, ..., Vn, chaque bidon Vi étant associé à au moins un séparateur primaire, etle transfert de la plus grande partie au moins des particules contenues dans les bidons Vi, vers lesdits moyens communs de séparation et de collecte par des canalisations de transfert, au moyen d'un gaz de transport dont le débit qi pour l'évacuation de particules contenues dans un bidon Vi est inférieur ou égal à 30 % volume du débit de gaz craqués traversant les séparateurs primaires associés à Vi,
- Procédé selon la revendication 1, caractérisé en ce que les particules transférées à partir d'un bidon Vi sont extraites de ce bidon par des moyens exclusivement pneumatiques.
- Procédé selon l'une des revendications 1 et 2 dans lequel les bidons de réception Vi sont chauffés par des moyens thermiques dont le niveau de température est compris entre 110 °C et 340 °C, et de préférence entre 150 et 250 °C, et est supérieur au point de rosée du gaz de transport à la pression maximale opératoire des bidons Vi.
- Procédé selon l'une des revendications 1 à 3, dans lequel on effectue un balayage du gaz contenu dans un bidon Vi, par un gaz non cokant de point de rosée atmosphérique inférieur à 110 °C, avant d'isoler ce bidon Vi puis de transférer les particules contenues dans Vi.
- Procédé selon l'une des revendications 1 à 4, dans lequel on réalise une percolation des particules contenues dans un bidon Vi, au moyen d'un gaz non cokant de point de rosée atmosphérique inférieur à 110 °C, avant d'isoler ce bidon Vi puis de transférer les particules contenues dans Vi.
- Procédé selon l'une des revendications 1 à 5, dans lequel le gaz de transport est un gaz incondensable à température et pression normales, choisi dans le groupe de l'azote, du méthane, de l'hydrogène, des hydrocarbures légers comprenant de deux à quatre atomes de carbone, et des mélanges de ces composés.
- Procédé selon l'une des revendications 1 à 6, dans lequel on injecte une partie au moins des agents de décokage pendant le fonctionnement normal de l'installation.
- Procédé selon l'une des revendications 1 à 7, dans lequel les agents de décokage comprennent des particules solides érosives, injectées en amont des échangeurs de trempe, en particulier dans des zones dites de transfert (3) comprises entre les sorties des zones de craquage (2) et les échangeurs de trempe (4).
- Procédé selon l'une des revendications 1 à 8, dans lequel on recycle au moins une partie des particules récupérées dans les moyens communs de collecte, en amont d'au moins un des échangeurs de trempe, après avoir réalisé une opération de criblage effectuée au moins sur ladite partie des particules récupérées dans les moyens communs, l'opération de criblage étant réalisée à pression atmosphérique, et sous une atmosphère essentiellement d'azote.
- Procédé selon l'une des revendications 1 à 9, dans lequel les composés anticokage comprennent des sels minéraux catalyseurs de gazéification du coke par la vapeur d'eau, injectés en amont des zones de craquage (2).
- Procédé selon la revendication 10, caractérisé en ce que les dits sels minéraux comprennent au moins un sel d'un élément compris dans le groupe du sodium, du potassium, du lithium, du baryum et du strontium, le sel étant actif pour promouvoir la gazéification du coke.
- Installation de vapocraquage, comprenant au moins un four de vapocraquage (1), une pluralité de zones de craquage (2), une pluralité d'échangeurs de trempe (4) des gaz craqués issus de ces zones de craquage, cette installation comprenant également des moyens d'injection en une pluralité de points, d'agents de décokage générant la circulation de particules solides dans les échangeurs de trempe, une pluralité de séparateurs gaz/solides primaires (5), pour l'épuration des effluents des échangeurs de trempe, chaque séparateur primaire étant relié en amont à au moins un échangeur de trempe qui lui est associé, et comprenant une sortie de gaz épurés et une sortie de particules solides, et des moyens de récupération d'une partie au moins de ces particules solides, ces moyens de récupération comprenant des moyens communs de séparation et de collecte rassemblés en un point unique, l'installation comportant :une pluralité de bidons Vi pour la récupération par écoulement gravitaire d'une partie au moins des particules séparées dans les séparateurs primaires, chaque bidon Vi étant connecté à au moins une sortie de particules solides d'au moins un séparateur primaire associé à Vi,une pluralité de canalisations de transfert de particules solides, chacune des canalisations étant reliée en amont à l'un des bidons Vi et en aval aux dits moyens communs de séparation et de collecte, et des moyens de transfert des particules par un gaz de transport,des moyens d'isolement séquentiel de chacun des bidons Vi du ou des séparateurs primaires qui lui sont associés, et en ce que les moyens pour le transfert, par les dites canalisations de transfert, de la plus grand partie au moins des particules contenues dans les bidons Vi ainsi isolés, comprennent des moyens d'alimentation d'un gaz de transport non cokant et de point de rosée atmosphérique inférieur à 110 °C.
- Installation selon la revendication 12, caractérisée en ce que chacun des bidons Vi est relié à des moyens d'évacuation des particules, lesdits moyens étant exclusivement pneumatiques et utilisant au moins une source de gaz de transport du groupe de l'azote et du fuel gaz.
- Installation selon l'une des revendications 12 et 13, comprenant des moyens thermiques pour le chauffage des bidons Vi.
- Installation selon l'une des revendications 12 à 14, comprenant des moyens de balayage du gaz contenu dans les bidons Vi, au moyen d'une source de gaz non cokant et de point de rosée atmosphérique inférieur à 110 °C.
- Installation selon la revendication 14, comprenant des moyens d'introduction d'un gaz non cokant et de point de rosée atmosphérique inférieur à 110 °C, au sein des particules contenues dans les bidons Vi, pour la percolation de ces particules avant leur évacuation des bidons Vi.
- Installation selon l'une des revendications 12 à 16, dans laquelle les agents de décokage comprennent des particules solides érosives, l'installation comprenant des moyens d'injection desdites particules en amont des échangeurs de trempe, et notamment dans les zones de transfert entre les zones de craquage et les échangeurs de trempe.
- Installation selon la revendication 17, dans laquelle la totalité des particules solides injectées le sont dans les zones de transfert (3) de gaz craqués entre les zones de craquage (2) et les échangeurs de trempe (4), en particulier dans les cônes d'entrée des échangeurs de trempe.
- Installation selon l'une des revendications 12 à 17, dans laquelle les moyens commun de séparation (10), (13) comprennent une sortie de gaz de transport épuré reliée par une ligne (11) à une ligne (12) de circulation de gaz craqués, pour l'évacuation du gaz de transport épuré.
- Installation selon l'une des revendications 12 à 19, comprenant des moyens de recyclage d'une partie au moins des particules récupérées dans les moyens communs de séparation et de collecte connectés aux zones de transfert (3).
- Installation selon la revendication 20, comprenant un crible vibrant (14) fonctionnant sous atmosphère d'azote à pression sensiblement atmosphérique et température inférieure à 200 °C, relié en amont aux moyens communs (10), (13) de séparation et de collecte et relié en aval aux moyens (15), (19) de recyclage de particules.
- Installation selon l'une des revendications 12 à 21, comprenant au moins deux séparateurs primaires (5) associés à un même bidon de réception (6), chacun des séparateurs primaires associés audit bidon de réception (6) étant relié audit bidon par une conduite (16), et comprenant des moyens de commande (17) de moyens (7) d'obturation séquentielle d'au moins l'une des conduites (16) lorsque l'autre de ces conduites est ouverte, la disposition relative de ces séparateurs primaires (5) et du bidon de réception (6) étant telle que les conduites (16) ont une inclinaison au moins égale à 60 degrés par rapport à l'horizontale.
- Installation selon l'une des revendications 12 à 22, comportant des moyens d'injection d'agents de décokage comprenant des composés chimiques catalyseurs de gazéification du coke à la vapeur d'eau, en amont des zones de craquage (2).
- Installation selon l'une des revendications 12 à 23, comprenant des moyens d'injection séquentielle de particules érosives connectés auxdites zones de transfert (3), des moyens d'isolement séquentiel de chaque bidon Vi en dehors des phases d'injection de particules en amont de Vi, et des moyens d'évacuation des particules récupérées dans le ou les séparateurs (5) associés à Vi, en dehors de ces phases d'injection, sans transiter par Vi.
- Installation selon la revendication 24, comprenant des bidons Wi de réception des particules récupérées en dehors des phases d'injection de particules, et des aiguillages directionnels commandés à une entrée et deux sorties, chaque aiguillage étant relié en amont à un séparateur primaire, et en aval à un bidon de réception Vi, et à un bidon de réception WI.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9415746 | 1994-12-26 | ||
FR9415746A FR2728580A1 (fr) | 1994-12-26 | 1994-12-26 | Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique |
PCT/FR1995/001718 WO1996020256A1 (fr) | 1994-12-26 | 1995-12-22 | Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0801670A1 EP0801670A1 (fr) | 1997-10-22 |
EP0801670B1 true EP0801670B1 (fr) | 2000-03-15 |
Family
ID=9470313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95943262A Expired - Lifetime EP0801670B1 (fr) | 1994-12-26 | 1995-12-22 | Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique |
Country Status (7)
Country | Link |
---|---|
US (1) | US5820747A (fr) |
EP (1) | EP0801670B1 (fr) |
DE (1) | DE69515700T2 (fr) |
ES (1) | ES2145323T3 (fr) |
FR (1) | FR2728580A1 (fr) |
TW (1) | TW309539B (fr) |
WO (1) | WO1996020256A1 (fr) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2748273B1 (fr) * | 1996-05-06 | 1998-06-26 | Inst Francais Du Petrole | Procede et dispositif de conversion thermique d'hydrocarbures en hydrocarbures aliphatiques plus insatures que les produits de depart, combinant une etape de vapocraquage et une etape de pyrolyse |
FR2750139B1 (fr) * | 1996-06-25 | 1998-08-07 | Inst Francais Du Petrole | Installation et procede de vapocraquage a injection unique controlee de particules solides dans un echangeur de trempe |
US6210560B1 (en) * | 1999-06-11 | 2001-04-03 | Exxon Research And Engineering Company | Mitigation of fouling by thermally cracked oils (LAW852) |
IT1308228B1 (it) * | 1999-09-22 | 2001-12-10 | Technip Italy S P A | Apparato e procedimentio per l'abbattimento del polverino di cokedagli effluenti durante le fasi di decoking dei forni di cracking di |
US6585883B1 (en) * | 1999-11-12 | 2003-07-01 | Exxonmobil Research And Engineering Company | Mitigation and gasification of coke deposits |
US20030234171A1 (en) * | 2002-06-19 | 2003-12-25 | Owen Steven A. | Cracking furnace antifoulant injection system |
EP1652569A1 (fr) * | 2004-11-02 | 2006-05-03 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Procédé utilisant des particules mobiles |
US7857995B2 (en) * | 2006-04-11 | 2010-12-28 | Thermo Technologies, Llc | Methods and apparatus for solid carbonaceous materials synthesis gas generation |
US7513260B2 (en) * | 2006-05-10 | 2009-04-07 | United Technologies Corporation | In-situ continuous coke deposit removal by catalytic steam gasification |
ES2441691B1 (es) | 2013-10-21 | 2014-08-11 | Eqtec Iberia S.L. | Procedimiento para el acondicionamiento de una corriente de gas proveniente de un gasificador, craqueo termico de alquitranes y reformado con vapor y reactor empleado |
EP3839011A1 (fr) * | 2019-12-19 | 2021-06-23 | Linde GmbH | Procédé et système de fabrication d'hydrocarbures |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0419643B1 (fr) * | 1989-04-14 | 1994-11-30 | Procedes Petroliers Et Petrochimiques | Procede et appareillage pour le decokage d'une installation de vapocraquage |
FR2652817B1 (fr) * | 1989-10-06 | 1993-11-26 | Procedes Petroliers Petrochimiqu | Procede et installation de vapocraquage d'hydrocarbures, a recyclage de particules solides erosives. |
FR2706479B1 (fr) * | 1993-06-09 | 1995-09-15 | Inst Francais Du Petrole | Installation de craquage comportant des moyens communs et des moyens propres à chaque réacteur de séparation et de recyclage de particules solides et son utilisation. |
-
1994
- 1994-12-26 FR FR9415746A patent/FR2728580A1/fr active Granted
-
1995
- 1995-12-22 DE DE69515700T patent/DE69515700T2/de not_active Expired - Fee Related
- 1995-12-22 ES ES95943262T patent/ES2145323T3/es not_active Expired - Lifetime
- 1995-12-22 WO PCT/FR1995/001718 patent/WO1996020256A1/fr active IP Right Grant
- 1995-12-22 EP EP95943262A patent/EP0801670B1/fr not_active Expired - Lifetime
- 1995-12-22 US US08/836,147 patent/US5820747A/en not_active Expired - Fee Related
- 1995-12-26 TW TW084113871A patent/TW309539B/zh active
Also Published As
Publication number | Publication date |
---|---|
EP0801670A1 (fr) | 1997-10-22 |
TW309539B (fr) | 1997-07-01 |
FR2728580A1 (fr) | 1996-06-28 |
ES2145323T3 (es) | 2000-07-01 |
DE69515700T2 (de) | 2000-07-06 |
WO1996020256A1 (fr) | 1996-07-04 |
FR2728580B1 (fr) | 1997-02-07 |
US5820747A (en) | 1998-10-13 |
DE69515700D1 (de) | 2000-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2030790C (fr) | Procede et appareillage pour le decokage d'une installation de vapocraquage | |
EP0801670B1 (fr) | Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique | |
EP2758711B1 (fr) | Procédé de combustion en boucle chimique avec élimination des cendres et fines dans la zone de réduction et installation utilisant un tel procédé | |
EP0425633B1 (fr) | Procede de vapocraquage d'hydrocarbures | |
EP2697315B1 (fr) | Methode d'obtention de noir de carbone a partir de dechets de caoutchouc et son dispositif | |
CA2985016C (fr) | Dispositif de production de gaz methane et utilisation d'un tel dispositif | |
EP0800564B1 (fr) | Procede de vaprocraquage flexible et installation de vapocraquage correspondante | |
WO2006087310A1 (fr) | Installation de production d'hydrogene ou de gaz de synthese par gazeification | |
EP0485255B1 (fr) | Procédé et dispositif de production d'un combustible solide à partir de déchets combustibles | |
US11767475B2 (en) | System and process for heavy fuel oil pyrolysis | |
EP1093506B1 (fr) | Four de thermolyse a depoussierage de la sortie du flux gazeux resultant de la thermolyse | |
EP0727253B1 (fr) | Procédé et installation de régénération d'absorbants utilisés pour traiter les produits de combustion dans des chaudières thermiques | |
WO1996020258A1 (fr) | Procede et installation de vapocraquage a injection, recuperation et recyclage de particules erosives | |
EP1235889B1 (fr) | Procede de gazeification de composes carbones | |
LU85050A1 (fr) | Procede pour la combustion du coke present sur des particules solides et pour la production de chaleur recuperable a partir de particules contenant des hydrocarbures et appareil pour la mise en oeuvre de ce procede | |
FR2706479A1 (fr) | Installation de craquage comportant des moyens communs et des moyens propres à chaque réacteur de séparation et de recyclage de particules solides et son utilisation. | |
EP3853525B1 (fr) | Dispositif et procede de combustion en boucle chimique avec separateur de particules muni d'une conduite d'admission inclinee | |
EP3827201B1 (fr) | Installation clc comportant un separateur solide/solide avec des moyens de repartition d'un melange gaz-solide | |
FR2728581A1 (fr) | Procede et installation de vapocraquage flexible avec limitation du cokage des lignes de transfert de gaz craques | |
EP0265346B1 (fr) | Dispositif d'incinération des déchets industriels | |
FR2649717A1 (fr) | Procede et dispositif de decokage d'une installation de vapocraquage d'hydrocarbures | |
BE602648A (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970728 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19971209 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69515700 Country of ref document: DE Date of ref document: 20000420 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000410 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2145323 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20000929 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20001127 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20001229 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20001231 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010112 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011222 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020702 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20011222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020830 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020701 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021223 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051222 |