EP0801670B1 - Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique - Google Patents

Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique Download PDF

Info

Publication number
EP0801670B1
EP0801670B1 EP95943262A EP95943262A EP0801670B1 EP 0801670 B1 EP0801670 B1 EP 0801670B1 EP 95943262 A EP95943262 A EP 95943262A EP 95943262 A EP95943262 A EP 95943262A EP 0801670 B1 EP0801670 B1 EP 0801670B1
Authority
EP
European Patent Office
Prior art keywords
particles
gas
transfer
drum
drums
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95943262A
Other languages
German (de)
English (en)
Other versions
EP0801670A1 (fr
Inventor
Eric Lenglet
Paul Broutin
Jean-Pierre Burzynski
Hervé CAZOR
Roland Huin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procedes Petroliers et Petrochimiques
IFP Energies Nouvelles IFPEN
Original Assignee
Procedes Petroliers et Petrochimiques
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procedes Petroliers et Petrochimiques, IFP Energies Nouvelles IFPEN filed Critical Procedes Petroliers et Petrochimiques
Publication of EP0801670A1 publication Critical patent/EP0801670A1/fr
Application granted granted Critical
Publication of EP0801670B1 publication Critical patent/EP0801670B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/002Cooling of cracked gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/16Preventing or removing incrustation

Definitions

  • the steam cracking process is the basic process of petrochemicals. It consists of thermally crack a mixture of hydrocarbons and water vapor to high temperatures of the order of 850 ° C. and then soaking the effluents in a indirect quenching exchanger generally designated by TLX or TLE (transfer line exchanger) and then to fractionate the cooled effluents.
  • TLX transfer line exchanger
  • the main operational problem of this process comes from parasitic deposits of coke in the pyrolysis tubes and those of the quench exchanger.
  • ovens each comprising, in general, several quench exchangers (TLE) of effluents; for example, we can have 10 ovens each comprising two TLE, either a total of 20 TLEs operating in parallel.
  • TLE quench exchangers
  • silos For reasons of cost and maintenance, it is desirable to have only one very limited number of silos for receiving and storing the recovered powders (used powders), and / or possibly equipment for their treatment before recycling.
  • a single reception and / or reception module will be chosen if possible. treatment of the recovered powders, common to the entire installation of steam cracking.
  • the whole can be collected effluents from different TLEs, which is generally carried out in a conventional steam cracking installation without the injection of erosive powders, and separate the powders from the overall effluent from the steam cracking installation, to collect these powders at a single point.
  • This variant process and installation therefore avoids installing a cyclone of very large capacity, inefficient, and often impossible to install on many existing steam crackers, but is however very expensive because it requires a large number of special large diameter valves (e.g. 20 valves for a steam cracker comprising 10 TLE).
  • the connecting lines between the outputs of the different TLEs and the single cyclone are lines of diameter relatively large (250 to 300 mm also, in general), necessarily made of alloy steel because it typically carries cracked gases of high temperature 450 ° C to 530 ° C at the end of the cycle.
  • a first objective of the method according to the invention, and of the installation is to offer a technical solution that is both reliable and not very expensive to this problem of collection at a single point of the powders circulating in the steam cracking effluents, when anti-coking agents such as erosive powders.
  • a second objective of the method according to the invention, and of the corresponding installation, is to solve this same technical problem when injecting another type anti-coking agents, without significant erosive action, but also causing circulation of undesirable solid particles and fragments.
  • the object of the invention is therefore to propose a steam cracking process, benefiting a general technical solution, reliable and economical, allowing to separate and recovering solid particles carried by cracked gases at a single point, generated by various types of anti-coking agents.
  • the invention therefore proposes a process for steam cracking of hydrocarbons. in an installation comprising at least one steam cracking furnace, this installation comprising a plurality of cracking zones, and a plurality quenching exchangers (TLE) of cracked gases from these cracking zones, the method comprising online injection, at a plurality of points, of decoking generating the circulation of solid particles in the said heat exchangers quenching, and comprising the separation of at least part of these solid particles gases containing them and their transport at a single point to common collection means for this installation.
  • TLE quenching exchangers
  • the method also comprises the recovery, by gravity flow, of at least a portion of the particles thus separated from said primary separators, in a plurality of receiving canisters V1, ..., Vn, each can Vi being associated with at least a primary separator, and the transfer of at least most of the particles contained in the canisters Vi, to said common means of separation and collection by transfer pipes, by means of a transport gas whose flow rate q i for the evacuation of particles contained in a can Vi is less than or equal to 30% volume of the cracked gas flow passing through the primary separators associated with Vi.
  • each of the receiving canisters Vi is isolated sequentially of the associated separator (s) and in that the transfer of particles to the common means of separation and collection is done using non-coking transport gas with an atmospheric dew point below 110 ° C.
  • the particles are separated from the cracked gases which contain them or optionally a stream of water vapor alone in a plurality of separators gas / primary solids.
  • the particles are no longer routed to the common means of collection by cracked gases but by a "clean" gas, not significantly coking noncondensable at medium temperatures.
  • these particle transport lines can be lines relatively cold, not heat-insulated, usually carbon steel, without there are fears of coking problems or condensation of tars. These lines are therefore much less expensive than in the processes previously described. Furthermore, the risks of particle sticking in the presence of condensation of liquid, and clogging of the lines, which is a major advantage.
  • the gas flow conveying the particles is disconnected from the gas flow cracked, and can be much lower, for example 30% or even less 20% volume, which allows the use of very small diameter lines: 50 to 100 mm against 250 to 300 mm previously, and to remove the valves special large diameter of the previous process.
  • the particles transferred from a Vi canister are extracted from this canister by means exclusively pneumatic.
  • This extraction mode which performs an evacuation pneumatic of all the particles contained in the container (except possible large fragments mechanically blocked by a grid) by pressurizing the container and supplying transport gas at the outlet, is very high reliability, compared to mechanical screw extraction or lock, components that can be blocked by solid fragments of large dimension, or sometimes present flow problems of the "bridging" type, with formation of arches "of powders.
  • Vi canisters as an airlock airlock, technique known to those skilled in the art in other industries, with handling of powders and evacuation of particles by the transport gas, increases so important the reliability of the process according to the invention, compared to the process previously described.
  • the canisters Vi are heated by thermal means whose temperature level is between 110 ° C and 340 ° C, preferably between 150 and 250 ° C, this level remaining above the point dew of the transport gas at the maximum operating pressure of the canisters Vi.
  • temperature level means the condensation temperature of the vapor, when using water vapor tracing, or the maximum level of temperature that can be maintained if using an electrical trace.
  • the lower limit temperature of said thermal means (110 ° C in general and preferably 150 ° C) aims to avoid any condensation of dilution vapor (dragged with the powder) or fractions of pyrolysis gasoline.
  • the heat capacity of these particles is small, and they are quickly cooled substantially to the temperature of the can Vi, which is determined by the temperature level of the thermal means of heating of Vi. So the particles are stored, temporarily, at a temperature below the melting temperature of pyrolysis tars.
  • percolation of continuous particles can be carried out in a Vi canister, also using a non-coking gas with an atmospheric dew point below 110 ° C, before isolating the Vi canister and transferring the particles contained in Vi.
  • This percolation (crossing of the bed of particles) by a "dry" gas makes it possible to “stripping” these particles and better eliminating traces of liquid possibly present.
  • one can perform a final drying of the particles during their pneumatic transfer in in particular by maintaining the temperature of the particle / transport gas mixture, at the end of the pneumatic transfer, for example in the gas / solid separator secondary, at a value between 40 ° C and 180 ° C, and preferably 80 to 150 ° C.
  • These temperatures can be used when using a transport gas noncondensable at room temperature (e.g. nitrogen or fuel gas), which is prefer. If steam is used as the transport gas, it should be noted these temperatures significantly above the condensation point of water vapor at the pressure of the secondary separator.
  • This final drying in a fluidized bed circulating during the pneumatic transfer allows to further improve the flow quality of particles.
  • the preferred transport gases are the incondensable gases at normal temperature and pressure, especially those selected from the group of nitrogen, methane, hydrogen, light hydrocarbons comprising from two to four carbon atoms, and mixtures of these compounds.
  • Available gases such as nitrogen, or fuel gas from the steam cracker (variable mixture methane and hydrogen) are best suited. They allow the use of cold pneumatic transfer lines, generally not insulated.
  • the decoking agents can be injected during phases where the supply of oil from the cracking zone upstream of a TLE is interrupted (water vapor circulation only).
  • the preferred method variant involves injecting the decoking agents. during normal operation of the installation, i.e. during the steam cracking at normal rate, or possibly momentarily increased from 10 to 50% volume, in the case where erosive solid particles are introduced which wants to increase efficiency.
  • the decoking agents comprise erosive solid particles, injected upstream of the quench exchangers, in especially in cracked gas transfer areas between the outlets cracking zones and quench exchangers.
  • the average particle diameter can be between 0.02 and 4 mm, and preferably between 0.07 and 0.8 mm.
  • the particle size must be reduced, less than 150 micrometers, to get closer to an erosive gas effect.
  • larger particles can be used diameter, typically between 70 and 800 micrometers: indeed, the TLE does not have no bends or changes in direction, but only straight lengths, and there is no fear of impact concentration by particles which may cause local erosion.
  • the usable particles are very variable, from the moment they have a erosive efficiency. For this reason, it is recommended to use at least 20% of angular (or very irregular) particles.
  • the composition of these particles it is possible to use, for example, fluid cracking catalyst (FCC) spent, cement clinker, crushed ores, metallic particles, sand.
  • FCC fluid cracking catalyst
  • Particularly interesting particles are mineral particles hard and not very brittle such as silicon carbide, or simple oxides or mixed aluminum, silicon and zirconium.
  • Other particles very interesting are coke particles, especially coke particles stabilized by calcination at 850 ° C or higher, carried out before or after their grinding. These coke particles are more fragile and less effective than mineral particles, and must be injected in increased quantities.
  • a coke trap can be constituted by a sudden change in direction of the cracked gas flow, for example a simple, non-cyclonic deviation of the flow from an angle between 30 and 180 ° C, for the evacuation of at least most of the cracked gases, and a particle recovery chamber located at the change of direction abrupt, or downstream, connected by a narrowing to a container for receiving particles according to the invention.
  • Particle injections are preferably carried out sequentially, i.e. say discontinuously.
  • a dose of particles is injected fixed or variable intervals between 0.3 and 72 hours and preferably between 1 and 20 hours, successively before the various TLEs equipped according to the invention.
  • the instantaneous quantity of particles, by ratio to cracked gases is between 0.5 and 25% by weight, especially between 1 and 10% by weight. If we compare the total amount of particles injected during of a steam cracking cycle to the total quantity of cracked gases during this cycle, the average levels of particles are then much lower, because we only injects particles for a small fraction of the time.
  • the average level of solid particles injected during a steam cracking cycle, by compared to cracked gases is less than 3000 ppm, and generally between 20 and 1500 ppm.
  • At least part is recycled particles recovered in common means of collection, by reintroducing these particles upstream of at least one of the quench exchangers, after having performed a screening operation, carried out at least on this so-called part of the particles recovered in common means.
  • the screening operation can be carried out at atmospheric pressure and under an atmosphere essentially of nitrogen On could also screen the particles without depressurizing them and then recycling them, for example, using fuel oil.
  • Particle recycling at least partially, has already been described previously; he reduces consumption of "new" particles.
  • the disposition characteristic of the recycling process according to the invention consisting in carrying out after the pneumatic transfer of the particles by an incondensable gas, a step of screening at atmospheric pressure, under nitrogen, is of great interest:
  • the invention allows, by this pneumatic transport, to achieve both a drying and cooling of the particles in a circulating fluidized bed.
  • This makes possible the use of existing screens, economical and highly reliable, such as screens, also called screens, centrifuges, or preferably vibrant.
  • the flexible connecting cuffs of these devices made of elastomer possibly reinforced would be incompatible with very high particles temperature (400 ° C or more), which pass through the process filter previously described.
  • this filtration step is essential to avoid the risk of clogging of recycled powder injectors that have a small diameter.
  • the screening being performed at atmospheric pressure at moderate temperature and under nitrogen, the operations screen maintenance are easy and can be carried out quickly.
  • the fragments (coke and foreign bodies) of diameter are eliminated. greater than 3 or 4 mm.
  • the decoking agents include mineral salts catalysts for gasification of coke by steam of water, injected upstream of the cracking zones.
  • these mineral salts can comprise at least one salt of an element included in the group of sodium, potassium, lithium, barium and strontium, this salt being active in promoting the gasification of coke.
  • Very active mineral salts have been discovered to gasify the coke of pyrolysis tubes, comprising salts of alkali and alkaline earth elements, in particular of precursors of oxides or carbonates of these elements.
  • mixtures with a melting point lowered below 750 ° C for example neighboring eutectic example
  • sodium carbonate and potassium carbonate have a very effective decoking or coking prevention action.
  • mixtures of acetates for example a mixture equimolar of sodium acetate, potassium acetate, lithium acetate and barium acetate.
  • These compounds can catalyze the gasification reaction of coke (in particular the reaction of "gas to water ": C + H2O ⁇ CO + H2); they can be introduced in powder form or in the form of aqueous solutions, in particular very dilute solutions, atomized in a hot gas, and in particular in the dilution water vapor, or the steam / hydrocarbon mixture at the convection outlet (at a temperature high of the order of 500 to 650 ° C).
  • the preferred injection method is injection during normal operation of the steam cracking; it is also possible to inject these mineral salts only during steam decoking alone, in particular to accelerate this decoking.
  • the quantity required depends on many factors: nature of the compounds used and the load to crack, severity of cracking and skin temperature of the tubes pyrolysis.
  • the most suitable amounts are typically between 2 and 200 ppm, and preferably between 5 and 100 ppm, counted by weight of alkaline elements and / or alkaline earth compared to cracked gases.
  • the invention also relates to a steam cracking installation making it possible to implement the process. More specifically, this installation includes at least a steam cracking oven, a plurality of cracking zones, a plurality quenching exchangers for cracked gases from these cracking zones, this installation also comprising injection means at a plurality of points, decoking agents generating the circulation of solid particles in the quench exchangers, a plurality of gas / solid solids separators, for purifying the effluents from the quench exchangers, each primary separator being connected upstream to at least one quench exchanger associated therewith and comprising a purified gas outlet and an outlet for solid particles, and means for recovery of at least part of these solid particles, these means of recovery including common means of separation and collection gathered at a single point,
  • the device is characterized in that it comprises sequential isolation means of each of the canisters Vi of the primary separator (s) associated therewith, that the means for the transfer, by the said transfer pipelines, of the most at least a large part of the particles contained in the Vi canisters thus isolated include means for supplying a non-coking and point transport gas atmospheric dew below 110 ° C.
  • This installation therefore makes it possible to transfer the powders recovered by means of relatively low flow rates of non-fouling transport gas at temperature moderate.
  • Primary separators individually have a unit capacity relatively low compared to the overall flow of cracked gases from the installation complete, and are therefore effective and easy to install. They carry out a purification effective cracked gases not only during particle injection phases solids, according to the method previously described, but also so permanent, and are therefore also effective against particulate emissions solids after injections of decoking agents. This is useful as well for residual particles circulating after particle injection phases erosives that remained in the dead zones, only when injecting the agents coke gasification chemicals.
  • the common means of collection are typically constituted by a can allowing temporary or prolonged storage of particles, which can possibly include weighing means.
  • a quench exchanger is said associated with a primary separator if this primary separator purifies the effluents from this quench exchanger.
  • a primary separator is said to be associated with a receiving can Vi if Vi recovers, by gravity flow, a part at minus the particles separated in this primary separator. So a separator primary may be associated with one or more quench exchangers which it purifies effluents; a receiving can Vi can collect particles from one or more primary separators.
  • the installation can in fact comprise at least two primary separators associated with the same receiving container, each of these primary separators being connected to this container by a pipe, and comprising control means for sequential shutter means of at least one of the pipes when the other of these pipes is open, the relative arrangement of these primary separators and the receiving container being such that the pipes have a inclination at least 60 degrees from the horizontal.
  • This arrangement allows the use of a single Vi canister for reception and transfer of particles from several primary separators, and is therefore interesting economically, and from a maintenance point of view. Isolation sequential at least one of the pipes avoids the circulation of gas cracked via the Vi canister from one primary separator to the other, harmful for separation efficiency.
  • the evacuation of the particles contained in a can Vi is carried out by means of drainage, connected to Vi, which are exclusively tires, and use at least one gas source from the group of nitrogen and fuel gas (methane or mixture of methane and hydrogen).
  • gas source from the group of nitrogen and fuel gas (methane or mixture of methane and hydrogen).
  • the transport gas flow rate for transferring the particles is only Not more than 30% of the gas flow rate passing through the primary separators associated with Vi during the same period, typically the normal gas flow cracked treated by the primary separator (s) whose particles fall in Vi.
  • the transfer line is therefore much smaller in diameter than that of cracked gas lines (less than or equal to 100 mm against typically 250 to 400 mm).
  • this transport gas is fuel gas or nitrogen, gases which are noncondensable at room temperature, and which will allow drying of the particles during their transfer.
  • Vi cans are heated by thermal means whose level of temperature is between 110 and 340 ° C, and preferably between 150 and 250 ° C. This temperature level which corresponds to that of the temperature of condensation of the heat tracing, or of the temperature maintained by electrical means is indeed adequate for maintaining pyrolysis tars at solid state.
  • the installation comprises means for scanning the gas. contained in Vi cans, by means of a non-coking gas source and point of atmospheric dew below 110 ° C.
  • This scan which by technical equivalent can be constituted by a barrier gas, has the function of purging Vi of traces possible cracked gases, before evacuation and transfer of particles.
  • the installation comprises means introduction of a non-coking gas and an atmospheric dew point below 110 ° C, within the particles contained in the Vi canisters, for the percolation of these particles before their evacuation from the canisters Vi.
  • the decoking agents comprise erosive solid particles, and means for injecting these particles upstream quench exchangers, and in particular in the transfer zones between the zones cracking and quenching exchangers.
  • all of the solid particles injected are in the zones transfer of cracked gases between the cracking zones and the quench exchangers, in particular in the inlet cones of these exchangers (considered to be part of the transfer areas).
  • the common means of separation which achieve separation secondary solid particles / transport gas substantially non-condensable, include a purified transport gas outlet connected by a line of connection to a cracked gas circulation line, for the evacuation of this gas clean transport.
  • the transport gas is then fuel gas, which avoids the consumption of nitrogen and its significant mixture with cracked gases.
  • the installation comprises recycling means at least part of the particles recovered in the common means of separation and collection.
  • the installation then comprises a vibrating screen operating under nitrogen pressure at substantially pressure atmospheric and at a temperature below 200 ° C, connected upstream to the means , separation and collection facilities and linked downstream to recycling means for particles.
  • the installation comprises means injection of decoking agents, comprising chemical compounds catalyzing gasification of coke with steam, upstream of the cracking zones.
  • decoking agents comprising chemical compounds catalyzing gasification of coke with steam, upstream of the cracking zones.
  • an installation can advantageously include means injection of a solution comprising at least one mineral salt of an element included in the group of sodium, potassium, lithium, barium and strontium, this salt being active in promoting the gasification of steam coke of water, this gasification weakening the coke and causing emissions of pieces of coke, which can be recovered and transferred according to the means of the invention.
  • the invention may understand means of sequential injection of erosive particles connected to said transfer zones, means of sequential isolation of each can Vi in outside the particle injection phases upstream of Vi, and means evacuation of particles recovered in the separator (s) associated with Vi in outside these injection phases, without passing through Vi.
  • the installation may typically include cans Wi for receiving particles recovered outside the injection phases of particles, and directional switches controlled at one input and two outputs, each switch being connected upstream to a primary separator, and downstream to a Vi receiving container, and a Wi receiving container.
  • Figure 1 shows schematically a steam cracking installation according to the invention, comprising several devices relating to different characteristic variants according to the invention.
  • FIG. 2 schematically represents part of an installation comprising a device characteristic of one of the variants of the invention.
  • FIG. 3 represents a part of an installation comprising another device characteristic, advantageous for carrying out the invention.
  • FIG. 1 where part of two kilns have been shown.
  • steam cracking (1) each comprising a feed (22) of a charge of hydrocarbons and a supply (23) of dilution water vapor.
  • Load overall is preheated, vaporized and superheated to a typical temperature of 500 to 650 ° C in the convection zones of these two ovens, then cracked in two cracking zones (2) constituted by coils of pyrolysis tubes.
  • the cracked gases pass through transfer zones (3) to two heat exchangers quenching (4), or "TLE" (Transfer Line Exchanger) allowing to lower suddenly their temperature at around 360 to 630 ° C, and very generally at approximately 360 to 500 ° C, this temperature being measured by indicators of temperature (24).
  • TLE Transfer Line Exchanger
  • These two streams of cracked cooled gas then pass through two primary gas / solid particle separators (5), for example two cyclones.
  • Each of these primary separators includes a purified gas outlet which joins a line (12) of circulation of cooled cracked gases, for their evacuation and their downstream treatment (primary fractionation, compression, desulfurization, drying, final fractionation).
  • the two primary separators (5) also each include an outlet for solid particles connected by a pipe (16) to a receiving container (6) maintained at temperature by thermal means (37), for recovery of these solid particles by gravity flow.
  • the two receiving containers (6) each include isolation means sequential: upstream a controlled valve (7) arranged on the line (16), and downstream a controlled valve (8). These two receiving containers (6) are connected in downstream, each by a transfer pipe (9), to common means of separation and collection of solid particles, comprising a cyclone of separation (10) and a collection container (13). Cyclone effluent gases (10) are introduced into line (12) by a line (11).
  • This collection container (13) is connected downstream by a line (32) to a screen.
  • vibrating (14) connected to the atmosphere by a line (ATM) operating substantially at atmospheric pressure, under a nitrogen atmosphere, and at moderate temperature compatible with flexible connection sleeves used for screens classic vibes.
  • the container (1) which includes upstream isolation valves and downstream, as well as unrepresented means of depressurization, fulfills the function of particle decompression airlock.
  • the exit of fine particles from the vibrating screen (14) (particles cleared by example large fragments larger than 3 mm) is connected to a container reception (15), equipped with upstream and downstream controlled valves, as well as means supply, not shown, of nitrogen group gas and fuel gas.
  • the vibrating screen (14) will be placed above the can (15), to allow the gravitational flow of powders (this is not the case in Figure 1 for simple drawing reasons).
  • the can (15) thus equipped can then operate in a pneumatic shipping lock, and constitutes a means of recycling erosive solid particles in the installation. It is connected upstream to a source of transport gas (33) (fuel gas, nitrogen or water vapor), and downstream to different injection means (19) (34) comprising controlled valves and injection pipes for solid particles.
  • the particles can be injected upstream of the cracking zones (2) by the lines (34) in dotted lines, or preferably by lines (19), in the areas of transfer of cracked gases (3), and in particular at the inlet cones of the quench exchangers, cones which by convention form part of the transfer zones (3).
  • a diffusing impactor (35) will preferably be installed at the interior of each inlet cone. This diffuser impactor has a double purpose: protect the tube plate in the heat exchanger against erosion, and distribute the injected particles more evenly, in the various exchanger tubes (4).
  • This diffusing impactor (35) advantageously consists of two levels of particle bounce surfaces, offset from each other, so that it is both gas permeable in a plurality of passages and substantially opaque seen from upstream.
  • the shipping hatch (15) has a particle discharge line (36) worn; we could also send the used particles to a storage silo thanks to a switch arranged on the line (32); a container (18) comprising controlled emptying means (screw or lock) allows to store particles "new", and to replace the used particles.
  • the installation described in Figure 1 finally includes a programmable controller (17) to control the sequential operation of the installation, in particular valves of the pressure relief airlock and pneumatic shipping airlocks.
  • She also includes injection means (20) upstream of the cracking zone (2) chemical compounds which catalyze the gasification of coke by steam, for example aqueous solutions of an equimolar mixture of sodium carbonate and potassium carbonate, or an equimolar mixture of sodium acetate, potassium acetate, lithium acetate and barium acetate.
  • FIG. 2 where two diagrams are represented quench exchangers (4), or "TLE” whose inlet cones each have a conduit (19) for injecting erosive solid particles.
  • These exchangers are connected downstream to two primary separators (5) connected by lines (16) comprising each a controlled isolation valve (7), with the same receiving container (6), which is one of the Vi canisters of the installation, and is therefore associated with the two primary separators (5) shown.
  • a transfer line (9), comprising a controlled valve (8) allows sequentially transfer the particles to common means (10), (13) separation and collection, themselves connected by other pipes of transfer (9), to other receiving canisters Vi, not shown.
  • Canister (6) works in pneumatic airlock, with pressurization of the airlock and removal of particles by a transport gas.
  • the arrangement of the two primary separators (5) is not any, but these dividers are installed sufficiently close together so that the connecting lines (16) with the receiving container single (6) are very inclined and form with the horizontal an angle a at least equal to 60 ° C.
  • FIG. 3 represents a quench exchanger (4) connected to a primary separator (5), itself connected to a receiving canister Vi (6).
  • This figure 3 also includes other technical elements already described previously and referenced in the same way.
  • a other container, Wi, (28) for receiving solid particles also connected to the primary separator (5), and a controlled directional switch (29) (flap, valve or equivalent technical device), allowing the particles to be oriented recovered in the primary separator (5), either to the canister Vi (6), or to the Wi bottle (28).
  • the coke of the quench exchangers is, surprisingly, much easier to erode than cracked areas. It is therefore possible to control the quantities of particles to be injected without realizing of preliminary tests, based on the outlet temperature of the heat exchangers quenching.
  • doses of fine particles are injected discontinuously erosive, each dose corresponding to a weight of particles typically understood between 5 and 150 kg, especially between 20 and 100 kg.
  • Two types of control injections are possible: according to the first type of control, we inject particles, at a given injection point, at a fixed time interval, for example every 3 hours. And we adjust the quantities injected (for example by weighing means, not shown in FIG. 1), so that the increase in the outlet temperature of the relevant quench exchanger located downstream of the point injection remains moderate, for example less than 100 ° C per month and preferably at 30 ° C per month or substantially zero.
  • the particles typically injected through a conduit (19) comprising typically at its end from 1 to 8 particle injectors in the inlet cone of a quenching exchanger (4) are entrained by cracked gases, rebound on the diffuser impactor (35), and are distributed in an improved manner in the different exchanger tubes (4), where they circulate at speeds included between 20 and 180 m / s and preferably between 35 and 120 m / s, and pickle a part coke or heavy tars deposited on the walls of these tubes.
  • the particles are then removed, in dense phase or in diluted phase, by the transfer line (9).
  • the flow qi of transport gas to achieve this transfer is according to the invention much lower than that of cracked gases passing through the primary separator (5).
  • the line (9) is therefore of small diameter, of same as the valves (7) and (8), because we realized, thanks to the gas change conveying the particles: cracked gas ⁇ dry clean gas (N2, fuel gas), a decoupling with the cracked gas flow, necessarily very high.
  • line (9) and the valves (7) and (8) are of smaller diameter or equal to 100 mm against 350 mm typically for transfer lines from particles of the process previously described.
  • line (9) is relatively cold, generally not traced and not insulated on at least part and can be made of carbon steel.
  • the transfer of the particles according to the invention is therefore particularly economical, and also reliable because it allows the particles to be dried in the Vi canister reception (6) then in a circulating bed, thanks to the transport gas, in the pipeline transfer (9).
  • This transfer pipeline allows to cool the particles (the heat exchanger with the cooler walls of the line (9) being favored by circulation in a fluidized bed).
  • the particles passing through the pipe (9) are therefore cooled to a typical preferred temperature of 80 to 150 ° C, compatible moderate temperature with the vibrating screen, but sufficient to carry out a possible drying complementary to particles.
  • These common means comprise a cyclone (10) for particle / gas separation. transport, and a container (13) for collecting particles.
  • the purified transport gas is returned by line (11) to line (12) for evacuating cracked gases cooled.
  • the collection container (13) is isolated from upstream, depressurized by means not shown, and drained via the evacuation line (32). This emptying, for example gravity, is facilitated by the fact that the particles are dry and not sticky.
  • the particles are then screened in the vibrating screen (14), which eliminates fragments larger than 3 mm, and fall into the receiving container (15) whose upstream valve is open and the downstream valve closed.
  • Fine sieving of the particles is necessary when recycling these particles to avoid clogging of the injectors at the end of the line (19), which are typically of small dimensions (for example 15 mm).
  • a first screening very coarse (15 to 20 mm mesh) can be made using a simple grid in the receiving containers (6) to avoid the risk of obstruction of transfer lines (9).
  • the sieved particles are in the can (15), we can then recycle them, by isolating the container (15) from upstream, and by injecting a pressurization gas and a transport gas, according to the same type of operation as the canister (6): evacuation by pneumatic shipping airlock according to several variants of realization, as well as for the airlock (6).
  • Preferred transportation gas is fuel gas, or nitrogen.
  • Controlled valves, included in the means (19) for injecting particles allow to select the injection site (s) chosen, for example those whose quench exchanger has the highest outlet temperature.
  • the container (15) also comprises means (16) for discharging particles worn, reduced erosive efficiency after a certain number of circulations. The dose of used particles is then replaced by new particles stored in the can (18), and conveyed by a supply of transport gas (33).
  • FIG. 1 also makes it possible to inject chemical agents decoking by means (20) which may include a reservoir for a solution active, and a metering pump. These compounds are injected continuously or in discontinuous, finely pulverized in cracked gases.
  • the installation also includes a control module (17 see Figure 2) such than a programmable controller allowing to operate all actions sequential automatically.
  • the device described in FIG. 3 operates as follows: During the particle injection phases, the directional switch (29) is oriented as shown in the figure to allow the recovery of erosive particles in the receiving canister Vi (6). Outside the injection phases, that is to say for most of the time, the switch is oriented in the opposite direction, so that the particles fall into the receiving Wi container (28). Thus, the particles of coke detached from the walls which can circulate spontaneously in the installation, or resulting from the embrittlement of the coke by the chemical compounds injected, do not mix with the erosive particles, recovered in the container (6). This improves the operation and reliability of the installation. We could also prevent the fall of unwanted particles in the container (6) by closing the valve (7) and then injecting a gas to expel the particles located above this valve.
  • the particles contained in the effluents of quench exchangers are conveyed by these effluents to the general network of treatment of cracked gases which comprises a single cyclone.
  • the general network of treatment of cracked gases which comprises a single cyclone.
  • each output of a quench exchanger includes two controlled valves to direct the effluents either to the downstream network for the treatment of cracked gases when does not inject particles, either towards common means of separation and collection.
  • This known installation makes it possible to transport the particles to a single point, by means of 20 additional cracked gas lines, 350 mm in diameter typical, and includes 20 x 2 i.e. 40 special large diameter valves capable direct the cracked gases towards the appropriate network.
  • the cyclone on the other hand, has a reasonable capacity of 10,000 kg / h and is easily implantable and effective.
  • the transfer pipes (9) are therefore of very small diameter (50 to 100 mm), and the cyclone (10) is also very small (capacity 1000 kg / h).
  • This installation makes it possible to inject erosive particles, for example doses 50 kg of angular coke, or angular silicon carbide, and recover these particles in a common place. It allows, thanks to these injections to be able to avoid fouling of quench exchangers and cracking charges not conventional (kerosene, diesel, condensate) with cycle times more than 1 month, which is not possible without injecting particles.
  • the most most of the particles recovered is the most most of the particles recovered.
  • Example 2 which also includes 20 separators primary (cyclone (5)), but only 10 receiving Vi tanks (6), arranged according to Figure 2, and 10 capacity transfer lines (9) 1000 kg / h of fuel gas per unit.
  • the invention therefore proposes a method and an installation, with several variants, making it possible to use decoking agents effective in authorizing cracking of charges which cannot be cracked in conventional conditions without excessive fouling, and to recover particles solids generated by this implementation, more economically and more reliably than in the processes and installations previously described.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

Le procédé de vapocraquage est le procédé de base de la pétrochimie. Il consiste à craquer thermiquement un mélange d'hydrocarbures et de vapeur d'eau à des températures élevées de l'ordre de 850 °C puis à tremper les effluents dans un échangeur de trempe indirecte généralement désigné par TLX ou TLE (transfer line exchanger) puis à fractionner les effluents refroidis.
Le problème opératoire principal de ce procédé provient des dépôts parasites de coke dans les tubes de pyrolyse et ceux de l'échangeur de trempe.
Pour limiter ou supprimer cet inconvénient, on a déjà proposé un procédé de vapocraquage avec injection de particules solides érosives (poudres), pour éliminer une partie au moins des dépôts de coke. Les particules sont injectées "en ligne" c'est à dire soit pendant le fonctionnement normal du vapocraquage, soit pendant des phases où l'on interrompt temporairement et brièvement (conventionnellement pendant une durée inférieure à deux heures) l'alimentation en hydrocarbures, les fours étant balayés par de la vapeur d'eau seule, et restant reliés aux sections aval de traitement des gaz craqués. Le mode de fonctionnement préféré consiste à injecter les particules pendant le fonctionnement normal du four, éventuellement en augmentant temporairement le débit volume des gaz craqués, au moment de l'injection des poudres, pour accroítre leur efficacité.
Généralement, et en particulier si l'on injecte des particules minérales, ou métalliques, qui ne sont pas constituées essentiellement par du coke, il est nécessaire de séparer les poudres injectées, en sortie des échangeurs de trempe, afin de ne pas polluer les sections aval de traitement des gaz craqués. Les poudres récupérées doivent alors être stockées, soit pour être évacuées si le procédé fonctionne sans recyclage, soit pour être recyclées, au moins en partie.
Dans une installation typique de vapocraquage, il y a une pluralité de fours, comportant chacun, en général, plusieurs échangeurs de trempe (TLE) des effluents ; par exemple, on peut avoir 10 fours comprenant chacun deux TLE, soit au total 20 TLE fonctionnant en parallèle.
Pour des raisons de coût et de maintenance, il est souhaitable de n'avoir qu'un nombre très limité de silos pour la réception et le stockage des poudres récupérées (poudres usées), et/ou éventuellement d'équipements pour leur traitement avant recyclage.
Par exemple, on pourra limiter à deux, au maximum, le nombre de silos de réception et/ou de modules de traitement des poudres récupérées pour leur recyclage.
De façon préférée, on choisira si possible un seul module de réception et /ou de traitement des poudres récupérées, commun à l'ensemble de l'installation de vapocraquage.
Selon une première variante déjà décrite du procédé, on peut collecter l'ensemble des effluents des différents TLE, ce qui est généralement réalisé dans une installation classique de vapocraquage sans injection de poudres érosives, et séparer les poudres de l'effluent global de l'installation de vapocraquage, pour récupérer ces poudres en un point unique. Ceci implique d'installer un cyclone de très grande capacité très difficile et onéreux à implanter pour traiter l'ensemble des effluents du vapocraqueur, et également de véhiculer des particules solides dans l'ensemble des circuits de collecte des gaz craqués.
Cette solution technique est onéreuse et présente des risques liés à l'érosion éventuelle des nombreux coudes des circuits de collecte ; de plus, l'efficacité d'un cyclone de très grande taille est très médiocre.
On a par ailleurs, déjà proposé une autre variante du procédé de vapocraquage avec injection de poudres érosives et récupération en un point unique de ces poudres, consistant à injecter séquentiellement des doses de poudres dans différentes parties de l'installation, par exemple successivement en amont des différents TLE et/ou serpentins de tubes de pyrolyse, et à orienter séquentiellement, et de façon coordonnée avec les injections de poudres les différents effluents chargés de particules vers un module de séparation gaz/solides unique.
Par exemple, on peut diriger séquentiellement les effluents de chacun des TLE, au moment de l'injection correspondante des poudres en amont du TLE considéré, vers un cyclone unique pour la récupération des particules véhiculées par les gaz craqués (poudres injectées et particules de coke érodé provenant des parois) ; ceci permet de n'installer qu'un cyclone unique de taille moyenne, dont la capacité de traitement correspond aux gaz craqués provenant d'un seul TLE et non de l'ensemble des TLE du vapocraqueur, mais nécessite l'installation de jeux de vannes de relativement grand diamètre permettant d'orienter les effluents de chacun des TLE soit vers les sections aval du vapocraqueur lorsqu'on n'injecte pas de poudres en amont de ce TLE, soit vers le cyclone unique lorsqu'on injecte des poudres en amont de ce TLE.
Ces vannes, qui doivent résister à l'érosion, sont très coûteuses pour des dimensions typiques nécessaires de 250 à 300 mm de diamètre de passage des gaz.
Cette variante de procédé et d'installation évite donc d'installer un cyclone de très grande capacité, peu efficace, et souvent impossible à installer sur de nombreux vapocraqueurs existants, mais est cependant très coûteuse, car elle requiert un grand nombre de vannes spéciales de grand diamètre (par exemple 20 vannes pour un vapocraqueur comprenant 10 TLE). De plus, les lignes de jonction entre les sorties des différents TLE et le cyclone unique sont des lignes de diamètre relativement important (250 à 300 mm également, en général), nécessairement en acier allié car véhiculant des gaz craqués de température élevée typiquement 450 °C à 530°C en fin de cycle.
Selon le brevet FR-A-2.706.479, il est décrit un procédé et un dispositif de vapocraquage comprenant l'injection de poudres en amont des TLE du vapocraqueur, et la séparation de ces poudres du gaz effluent craqué dans des cyclones primaires. Une partie du gaz effluent alimentant les cyclones primaires véhicule les poudres séparées jusqu'à un organe commun de récupération, puis jusqu'à un organe de stockage. La présence d'hydrocarbures condensables dans le gaz effluent craqué sous une faible pression empêche un bon transfert des poudres, ce qui risque de boucher l'installation. L'arrière plan technologique est de plus illustré par la demande de brevet WO-A-9012851.
Un premier objectif du procédé selon l'invention, et de l'installation correspondante, est de proposer une solution technique à la fois fiable et peu onéreuse à ce problème de collecte en un point unique des poudres circulant dans les effluents de vapocraquage, lorsque l'on injecte des agents anticokage du type des poudres érosives.
Un second objectif du procédé selon l'invention, et de l'installation correspondante, est de résoudre ce même problème technique lorsqu'on injecte un autre type d'agents anticokage, sans action érosive notable, mais provoquant eux aussi la circulation de particules et fragments solides indésirables.
On peut en effet introduire une famille de composés chimiques très actifs pour catalyser la gazéification du coke des tubes de pyrolyse par la vapeur d'eau .
Ces composés très actifs peuvent être injectés pendant des phases de décokage à la vapeur d'eau seule, pour accélérer fortement la vitesse de décokage, mais également pendant le vapocraquage, pour réduire la vitesse de cokage, ou stopper le cokage, en catalysant la gazéification du coke par la vapeur d'eau de dilution.
Or il est apparu que ces composés chimiques (donc sans capacité érosive notable) provoquaient un effritement, sans doute mécanique, généré par la circulation des gaz, du fait probablement d'une fragilisation du coke par les composés chimiques.
On peut d'ailleurs noter que ces fragments de coke effrité ont alors une action érosive qui n'est pas nulle sur le coke des échangeurs de trempe situés en aval. Ces fragments peuvent présenter des risques d'érosion des lignes en aval des TLE générer des problèmes de pollution de l'huile de trempe (bouchage des filtres, morceaux trop gros non combustibles dans un brûleur conventionnel), et sont donc indésirables.
L'objet de l'invention est donc de proposer un procédé de vapocraquage, bénéficiant d'une solution technique générale, fiable et économique, permettant de séparer et récupérer en un point unique des particules solides véhiculées par les gaz craqués, générées par divers types d'agents anticokage.
L'invention propose donc à cet effet un procédé de vapocraquage d'hydrocarbures dans une installation comprenant au moins un four de vapocraquage, cette installation comprenant une pluralité de zones de craquage, et une pluralité d'échangeurs de trempe (TLE) des gaz craqués issus de ces zones de craquage, le procédé comprenant l'injection en ligne, en une pluralité de points, d'agents de décokage générant la circulation de particules solides dans les dits échangeurs de trempe, et comprenant la séparation d'une partie au moins de ces particules solides des gaz qui les contiennent et leur acheminement en un point unique jusqu'à des moyens de collecte communs pour cette installation.
Le procédé comporte par ailleurs la récupération, par écoulement gravitaire, d'au moins une partie des particules ainsi séparées provenant desdits séparateurs primaires, dans une pluralité de bidons de réception V1, ..., Vn, chaque bidon Vi étant associé à au moins un séparateur primaire, et le transfert de la plus grande partie au moins des particules contenues dans les bidons Vi, vers lesdits moyens communs de séparation et de collecte par des canalisations de transfert, au moyen d'un gaz de transport dont le débit qi pour l'évacuation de particules contenues dans un bidon Vi est inférieur ou égal à 30 % volume du débit de gaz craqués traversant les séparateurs primaires associés à Vi.
Le procédé est caractérisé en ce que chacun des bidons de réception Vi est isolé séquentiellement du ou des séparateurs associés et en ce que le transfert des particules vers les moyens communs de séparation et de collecte est effectué à l'aide d'un gaz de transport non cokant et de point de rosée atmosphérique inférieur à 110°C.
Ce procédé, selon l'invention, présente des avantages très importants par rapport aux procédés antérieurement décrits:
D'une part, les particules sont séparées des gaz craqués qui les contiennent ou éventuellement un courant de vapeur d'eau seule dans une pluralité de séparateurs gaz/solides primaires.
Ces séparateurs primaires ont donc une capacité unitaire relativement faible, ce qui se traduit par des dimensions d'appareil réduites, facilitant leur implantation, ainsi qu'une efficacité accrue, l'efficacité d'un cyclone se dégradant rapidement avec la taille, de même que pour des séparateurs analogues.
D'autre part, les particules ne sont plus acheminées vers les moyens communs de collecte par les gaz craqués mais par un gaz "propre", non cokant sensiblement incondensable à des températures moyennes.
Il en résulte que ces lignes de transport de particules peuvent être des lignes relativement froides, non calorifugées, généralement en acier au carbone, sans que l'on puisse craindre de problèmes de cokage ou de condensation de goudrons. Ces lignes sont donc beaucoup moins onéreuses que dans les procédés antérieurement décrits. Par ailleurs on élimine les risques de collage de particules en présence de condensation de liquide, et de colmatage des lignes, ce qui est un avantage majeur.
Enfin, le débit de gaz acheminant les particules est déconnecté du débit de gaz craqués, et peut être beaucoup plus faible, par exemple 30 % ou même moins de 20 % volume, ce qui permet d'utiliser des lignes de diamètre très réduits : 50 à 100 mm contre 250 à 300 mm antérieurement, et de supprimer les vannes spéciales de grand diamètre du procédé antérieur.
Selon une variante préférée, caractéristique de l'invention, les particules transférées à partir d'un bidon Vi sont extraites de ce bidon par des moyens exclusivement pneumatiques. Ce mode d'extraction, qui réalise une évacuation pneumatique de la totalité des particules contenues dans le bidon (sauf des fragments éventuels de grande dimension bloqués mécaniquement par une grille) par mise en pression du bidon et alimentation de gaz de transport en sortie, est d'une très grande fiabilité, par comparaison avec une extraction mécanique par vis ou écluse, composants pouvant être bloqués par des fragments solides de grande dimension, ou présenter parfois des problèmes d'écoulement de type "pontage", avec formation d'arches" de poudres.
Ainsi, le fonctionnement des bidons Vi comme sas d'expédition pneumatique, technique connue de l'homme de l'art dans d'autres industries, avec manutention de poudres et évacuation des particules par le gaz de transport, augmente de façon importante la fiabilité du procédé selon l'invention, par rapport au procédé antérieurement décrit.
Selon une autre variante caractéristique, les bidons Vi sont chauffés par des moyens thermiques dont le niveau de température est compris entre 110 °C et 340 °C, de préférence entre 150 et 250 °C, ce niveau restant supérieur au point de rosée du gaz de transport à la pression maximale opératoire des bidons Vi. Par niveau de température, on entend la température de condensation de la vapeur, lorsqu'on utilise un traçage à la vapeur d'eau, ou le niveau maximum de température pouvant être maintenu si l'on utilise un traçage électrique.
Cette disposition préférée caractéristique du procédé, particulièrement utile lorsque l'on craque des charges lourdes telles que des gazoles lourds ou distillats sous vide, va à l'encontre des dispositions techniques antérieurement décrites, dans le brevet EP-A-447 527, dans lequel, pour notamment le craquage des charges lourdes, on porte les particules à haute température, supérieure à la température normale de sortie du TLE, par mélange des effluents du TLE les contenant avec une fraction de gaz craqués non refroidis provenant d'une dérivation autour du TLE, afin de vaporiser les traces de goudrons. On a en effet découvert, de façon surprenante, que des poudres ayant contacté des gaz craqués, y compris des gaz craqués de pyrolyse de charges très lourdes, riches en goudrons de pyrolyse, se trouvaient dans un état non aggloméré et très peu collant, lorsqu'elles étaient refroidies à des températures telles que celles décrites précédemment (inférieures à 340 °C et même de préférence à 250 °C). Cette observation inattendue, conduisant à refroidir les particules au lieu de les chauffer pour vaporiser les goudrons, provient probablement de la nature particulière des goudrons de pyrolyse : constitués de produits lourds composés essentiellement de composés polyaromatiques quasiment purs, ils ont, de façon inattendue, des points de fusion extrêmement élevés, et ils sont solides à des températures de l'ordre de 250°C.
La température limite basse des dits moyens thermiques (110 °C en général et de préférence 150 °C) vise à éviter toute condensation de vapeur de dilution (entraínée avec la poudre) ou de fractions d'essence de pyrolyse.
Les particules séparées dans un séparateur primaire, et qui sont, dans ce séparateur, à la température de sortie du TLE en amont, tombent dans un ballon de réception Vi, par écoulement gravitaire. Comme les débits moyens de particules sur un cycle de vapocraquage, selon les différentes variantes de procédé selon l'invention, sont toujours très faibles par rapport au débit de gaz craqués (moins de 1 % et généralement moins de 1 pour mille), la capacité calorifique de ces particules est faible, et elles sont rapidement refroidies sensiblement à la température du bidon Vi, qui est déterminée par le niveau de température des moyens thermiques de chauffage de Vi. Ainsi, les particules sont stockées, temporairement, à une température inférieure à la température de fusion des goudrons de pyrolyse.
Il peut cependant se produire que les particules récupérées entraínent avec elles, lors de leur chute, des composés gazeux contenant des vapeurs condensables, telles que des vapeurs d'essence lourde de pyrolyse. Pour éviter ces condensations pouvant provoquer une prise en masse des particules recueillies, on peut prévoir, de façon caractéristique, de balayer le gaz contenu dans un bidon Vi par un gaz non cokant de point de rosée atmosphérique (température de condensation initiale à la pression atmosphérique) inférieur à 110 °C, avant d'isoler Vi, puis de transférer les particules contenus dans Vi. Ce balayage selon l'invention peut être réalisé également par une introduction de gaz de barrage dans Vi ou juste en amont de Vi, ce qui est un équivalent technique du dit balayage.
En plus de ce balayage, selon une disposition technique préférée et caractéristique, on peut réaliser une percolation des particules continues dans un bidon Vi, au moyen également d'un gaz non cokant de point de rosée atmosphérique inférieur à 110 °C, avant d'isoler le bidon Vi et de transférer les particules contenues dans Vi.
Cette percolation (traversée du lit de particules) par un gaz "sec", permet de réaliser un "strippage" de ces particules et de mieux éliminer les traces de liquide éventuellement présentes. De manière particulièrement avantageuse, on peut réaliser un séchage final des particules au cours de leur transfert pneumatique, en particulier en maintenant la température du mélange particules/gaz de transport, à l'issue du transfert pneumatique par exemple dans le séparateur gaz/solide secondaire, à une valeur comprise entre 40 °C et 180 °C, et de préférence 80 à 150 °C. Ces températures sont utilisables lorsque l'on utilise un gaz de transport incondensable à température ambiante (par exemple azote ou fuel gaz), ce qui est préféré. Si l'on utilise de la vapeur d'eau comme gaz de transport, il faut relever ces températures notablement au-dessus du point de condensation de la vapeur d'eau à la pression du séparateur secondaire.
Ce séchage final en lit fluidisé circulant lors du transfert pneumatique, permet d'améliorer encore jusqu'à un très haut niveau la qualité d'écoulement des particules.
Il sera très avantageusement utilisé lorsque l'on recycle les particules, au moins en partie.
Comme on l'a dit, les gaz de transport préférés sont les gaz incondensables à température et pression normales, en particulier ceux choisis dans le groupe de l'azote, du méthane, de l'hydrogène, des hydrocarbures légers comprenant de deux à quatre atomes de carbone, et des mélanges de ces composés.
Les gaz disponibles tel que l'azote, ou le fuel gaz du vapocraqueur (mélange variable de méthane et d'hydrogène) sont les mieux adaptés. Ils permettent d'utiliser des lignes de transfert pneumatique froides, généralement non calorifugées.
Les agents de décokage peuvent être injectés pendant des phases où l'alimentation en hydrocarbures de la zone de craquage en amont d'un TLE est interrompue (circulation de vapeur d'eau seule).
Cependant, la variante de procédé préférée consiste à injecter les agents de décokage pendant le fonctionnement normal de l'installation, c'est-à-dire pendant la phase de vapocraquage à débit normal, ou éventuellement accru momentanément de 10 à 50 % volume, dans le cas où l'on introduit des particules solides érosives dont on veut accroítre l'efficacité.
Pour ce qui concerne la nature des agents de décokage, deux types principaux d'agents efficaces peuvent être utilisés :
Selon une première variante du procédé, les agents de décokage comprennent des particules solides érosives, injectées en amont des échangeurs de trempe, en particulier dans les zones de transfert de gaz craqués comprises entre les sorties des zones de craquage et les échangeurs de trempe.
Le diamètre moyen des particules peut être compris entre 0.02 et 4 mm, et de préférence entre 0,07 et 0,8 mm. Lorsqu'on injecte des particules à l'entrée des zones de craquage, la dimension des particules doit être réduite, inférieure à 150 micromètres, pour se rapprocher d'un effet de gaz érosif. Lorsqu'on injecte au contraire les particules à l'entrée des TLE, pour décaper le coke de ces TLE et obtenir une flexibilité très importante des charges de craquage allant des charges très légères aux charges très lourdes, on peut utiliser des particules de plus grand diamètre, typiquement compris entre 70 et 800 micromètres : en effet, les TLE ne comportent pas de coudes ou changements de direction, mais seulement des longueurs droites, et l'on ne craint pas de concentration d'impacts par des particules risquant de provoquer une érosion locale.
Les particules utilisables sont très variables, à partir du moment où elles ont une efficacité érosive. Pour cette raison, on préconise d'utiliser au moins 20 % de particules angulaires (ou très irrégulières). En ce qui concerne la composition de ces particules, on peut utiliser par exemple du catalyseur de craquage fluide (FCC) usé, du clinker de cimenterie, des minerais broyés, des particules métalliques, du sable. Des particules particulièrement intéressantes sont des particules minérales dures et peu fragiles telles que du carbure de silicium, ou des oxydes simples ou mixtes de l'aluminium, du silicium et du zirconium. D'autres particules très intéressantes sont des particules de coke, notamment des particules de coke stabilisées par une calcination à 850 °C ou plus, réalisée avant ou après leur broyage. Ces particules de coke sont plus fragiles et moins efficaces que les particules minérales, et doivent être injectées en quantités accrues. Par contre, ces particules étant combustibles, les risques de pollution des sections aval, et notamment en définitive de pollution du fuel de pyrolyse, sont considérablement réduits et permettent d'envisager dans certains cas (notamment pour le craquage de charges légères et moyennes telles que du kérosène) une récupération simplifiée de ces particules (récupération moins efficace, mais plus économique qu'un cyclone), par exemple un "piège à coke". Un tel piège à coke peut être constitué par un changement de direction brusque de l'écoulement de gaz craqués, par exemple une déviation simple, non cyclonique, de l'écoulement d'un angle compris entre 30 et 180 °C, pour l'évacuation de la plus grande partie au moins des gaz craqués, et une chambre de récupération des particules située au niveau du changement de direction brusque, ou en aval, reliée par un rétrécissement à un bidon de réception des particules selon l'invention.
Les injections de particules sont de préférence réalisées séquentiellement, c'est à dire de façon discontinue. De préférence on injecte une dose de particules à intervalles fixes ou variables compris entre 0.3 et 72 heures et de préférence entre 1 et 20 heures, successivement en amont des différents TLE équipés selon l'invention. Au moment de l'injection, la quantité de particules instantanée, par rapport aux gaz craqués est comprise entre 0.5 et 25 % poids, notamment entre 1 et 10 % poids. Si l'on compare la quantité totale de particules injectées au cours d'un cycle de vapocraquage à la quantité totale de gaz craqués au cours de ce cycle, les taux moyens de particules sont alors beaucoup plus faibles, du fait que l'on n'injecte des particules que pendant une faible fraction du temps. Typiquement, le taux moyen de particules solides injectées au cours d'un cycle de vapocraquage, par rapport aux gaz craqués, est inférieur à 3000 ppm, et généralement compris entre 20 et 1500 ppm.
Selon une variante caractéristique de l'invention, on recycle au moins une partie des particules récupérées dans les moyens communs de collecte, en réintroduisant ces particules en amont d'au moins un des échangeurs de trempe, après avoir réalisé une opération de criblage, effectuée au moins sur cette dite partie des particules récupérées dans les moyens communs. L'opération de criblage peut être réalisée à pression atmosphérique et sous atmosphère essentiellement d'azote On pourrait également cribler les particules sans les dépressuriser puis les recycler, par exemple, grâce à du fuel gaz.
Le recyclage des particules, au moins partiel, a déjà été décrit antérieurement ; il permet de réduire les consommations de particules "neuves". La disposition caractéristique du procédé avec recyclage selon l'invention, consistant à réaliser après le transfert pneumatique des particules par un gaz incondensable, une étape de criblage à pression atmosphérique, sous azote, est d'un très grand intérêt :
En effet l'invention permet, par ce transport pneumatique, de réaliser à la fois un séchage et un refroidissement des particules en lit fluidisé circulant. Ceci rend possible l'utilisation de cribles existants, économiques et de grande fiabilité, tels que des cribles, appelés également tamiseurs, centrifuges, ou de préférence vibrants. En effet, les manchettes souples de liaison de ces appareils, en élastomère éventuellement renforcé seraient incompatibles avec les particules à très haute température (400 °C ou plus), qui traversent le filtre du procédé antérieurement décrit.
Or cette étape de filtration est essentielle pour éviter les risques de bouchage des injecteurs de poudre recyclée qui ont un faible diamètre. De plus, le criblage étant réalisé à pression atmosphérique température modérée et sous azote, les opérations de maintenance du crible sont aisées et peuvent être conduites rapidement.
Typiquement, on élimine les fragments (coke et corps étrangers) de diamètre supérieur à 3 ou 4 mm.
Selon une autre variante caractéristique de l'invention, les agents de décokage comprennent des sels minéraux catalyseurs de gazéification du coke par la vapeur d'eau, injectés en amont des zones de craquage.
En particulier ces sels minéraux peuvent comprendre au moins un sel d'un élément compris dans le groupe du sodium, du potassium, du lithium, du baryum et du strontium, ce sel étant actif pour promouvoir la gazéification du coke.
On a en effet découvert des sels minéraux très actifs pour gazéifier le coke des tubes de pyrolyse, comprenant des sels d'éléments alcalins et d'alcalino-terreux, en particulier de précurseurs d'oxydes ou de carbonates de ces éléments.
En particulier, des mélanges à point de fusion abaissé en dessous de 750 °C (par exemple voisin d'eutectiques) de carbonate de sodium et de carbonate de potassium ont une action de décokage ou de prévention du cokage très efficace.
On peut également utiliser des mélanges d'acétates, par exemple un mélange équimolaire d'acétate de sodium, d'acétate de potassium, d'acétate de lithium et d'acétate de baryum. Ces composés, dont la liste n'est pas limitative, peuvent catalyser la réaction de gazéification du coke (notamment la réaction du "gaz à l'eau" : C + H2O → CO + H2) ; ils peuvent être introduits sous forme de poudre ou sous forme de solutions aqueuses, en particulier de solutions très diluées, atomisées dans un gaz chaud, et en particulier dans la vapeur d'eau de dilution, ou le mélange vapeur d'eau / hydrocarbures en sortie de convection (à une température élevée de l'ordre de 500 à 650 °C).
Le mode d'injection préféré est l'injection pendant le fonctionnement normal du vapocraquage ; on peut également n'injecter ces sels minéraux que lors de phases de décokage à la vapeur d'eau seule, en particulier pour accélérer ce décokage. La quantité requise dépend de nombreux facteurs : nature des composés utilisés et de la charge à craquer, sévérité de craquage et température de peau des tubes de pyrolyse.
Les quantités les plus appropriées sont typiquement comprises entre 2 et 200 ppm, et de préférence entre 5 et 100 ppm, comptabilisés en poids d'éléments alcalins et/ou alcalino-terreux par rapport aux gaz craqués.
L'invention concerne également une installation de vapocraquage permettant de mettre en oeuvre le procédé. Plus précisément, cette installation comprend au moins un four de vapocraquage, une pluralité de zones de craquage, une pluralité d'échangeurs de trempe des gaz craqués issus de ces zones de craquage, cette installation comprenant également des moyens d'injection en une pluralité de points, d'agents de décokage générant la circulation de particules solides dans les échangeurs de trempe, une pluralité de séparateurs gaz/solides primaires, pour l'épuration des effluents des échangeurs de trempe, chaque séparateur primaire étant relié en amont à au moins un échangeur de trempe qui lui est associé et comprenant une sortie de gaz épurés et une sortie de particules solides, et des moyens de récupération d'une partie au moins de ces particules solides, ces moyens de récupération comprenant des moyens communs de séparation et de collecte rassemblés en un point unique,
L'installation comporte par ailleurs :
  • une pluralité de bidons Vi pour la récupération par écoulement gravitaire d'une partie au moins des particules séparées dans les séparateurs primaires, chaque bidon Vi étant connecté à au moins une sortie de particules solides d'au moins un séparateur primaire associé à Vi,
  • une pluralité de canalisations de transfert de particules solides, chacune de ces canalisations étant reliée en amont à l'un des bidons Vi et en aval aux dits moyens communs de séparation et de collecte, et des moyens de transfert de particules par un gaz de transport.
Le dispositif est caractérisé en ce qu'il comprend des moyens d'isolement séquentiel de chacun des bidons Vi du ou des séparateurs primaires qui lui sont associés, en ce que les moyens pour le transfert, par les dítes canalisations de transfert, de la plus grande partie au moins des particules contenues dans les bidons Vi ainsi isolés comprennent des moyens d'alimentation d'un gaz de transport non cokant et de point de rosée atmosphérique inférieur à 110 °C.
Cette installation permet donc de transférer les poudres récupérées au moyen de débits relativement faibles de gaz de transport non encrassants, à température modérée. Les séparateurs primaires, ont individuellement une capacité unitaire relativement faible par rapport au débit global de gaz craqués de l'installation complète, et sont donc efficaces et faciles à implanter. Ils réalisent une épuration efficace des gaz craqués non seulement pendant les phases d'injection de particules solides, selon le procédé antérieurement décrit, mais également de manière permanente, et sont donc également efficaces vis à vis des émissions de particules solides après des phases d'injection d'agents de décokage. Ceci est utile aussi bien pour les particules résiduelles circulant après des phases d'injection de particules érosives qui sont restées dans les zones mortes, que lorsque l'on injecte les agents chimiques de gazéification du coke. Cette installation, qui ne comprend, pour ce qui concerne la partie récupération et collecte centralisée des particules, aucune vanne additionnelle de grand diamètre, typiquement supérieur à 150 mm, est donc à la fois plus efficace (récupération), plus fiable (risques d'encrassement) et plus économique du fait de l'utilisation de lignes de transfert de faible diamètre, de température modérée, et de l'absence de vannes spéciales de grand diamètre compatibles avec des particules solides. Par isolement séquentiel, on entend une alternance de phases où un bidon de réception Vi est en communication avec l'amont, et de phases où il est isolé de l'amont pour permettre une évacuation vers l'aval , vers les moyens communs de séparation et de collecte. Ceci sera de préférence, mais non impérativement, fait de manière coordonnée pour les différents bidons Vi, chacun de ces bidons pouvant être isolé successivement, de manière à échelonner les transferts. Il est en effet également possible de vidanger plusieurs bidons Vi simultanément.
Les moyens communs de collecte sont typiquement constitués par un bidon permettant de stocker de manière transitoire ou prolongée les particules, pouvant éventuellement comprendre des moyens de pesée. Un échangeur de trempe est dit associé à un séparateur primaire si ce séparateur primaire épure les effluents de cet échangeur de trempe. De même, un séparateur primaire est dit associé à un bidon de réception Vi si Vi récupère, par écoulement gravitaire, une partie au moins des particules séparées dans ce séparateur primaire. Ainsi, un séparateur primaire pourra être associé à un ou plusieurs échangeurs de trempe dont il épure les effluents ; un bidon de réception Vi pourra recueillir des particules provenant d'un ou de plusieurs séparateurs primaires. Selon une disposition caractéristique préférée de l'invention, l'installation peut comprendre en effet au moins deux séparateurs primaires associés à un même bidon de réception, chacun de ces séparateurs primaires étant relié à ce bidon par une conduite, et comprenant des moyens de commande de moyens d'obturation séquentielle d'au moins l'une des conduites lorsque l'autre de ces conduites est ouverte, la disposition relative de ces séparateurs primaires et du bidon de réception étant telle que les conduites ont une inclinaison au moins égale à 60 degrés par rapport à l'horizontale.
Cette disposition permet d'utiliser un unique bidon Vi pour la réception et le transfert de particules provenant de plusieurs séparateurs primaires, et est donc intéressante économiquement, et du point de vue maintenance. L'isolement séquentiel d'au moins l'une des conduites permet d'éviter la circulation de gaz craqués via le bidon Vi d'un séparateur primaire vers l'autre, néfaste pour l'efficacité de séparation.
De façon préférée, l'évacuation des particules contenues dans un bidon Vi est réalisée grâce à des moyens de vidange, reliés à Vi, qui sont exclusivement pneumatiques, et utilisent au moins une source de gaz du groupe de l'azote et du fuel gaz (méthane ou mélange de méthane et d'hydrogène). Ces moyens de vidange pneumatique, par "sas d'expédition pneumatique", ou "bidon pressurisé", et qui comprennent typiquement une pressurisation du bidon Vi par rapport aux conditions en aval de la conduite de transfert pneumatique et une injection de gaz de transport en sortie de Vi, sont en effet très intenses, et permettent d'évacuer des poudres présentant des difficultés d'écoulement ; ils sont plus efficaces que les moyens d'évacuation du procédé antérieurement décrit.
Le débit de gaz de transport permettant de transférer les particules n'est que de 30 % volume au plus du débit de gaz traversant les séparateurs primaires associés à Vi pendant la même période, soit typiquement le débit normal de gaz craqués traités par le ou les séparateurs primaires dont les particules tombent dans Vi. La canalisation de transfert est donc de diamètre beaucoup plus faible que celui des canalisations de gaz craqués (inférieur ou égal à 100 mm contre typiquement 250 à 400 mm).
De façon préférée, ce gaz de transport est du fuel gaz ou de l'azote, gaz qui sont incondensables à température ambiante, et qui vont permettre un séchage des particules au cours de leur transfert. Les bidons Vi, selon une caractéristique préférée de l'invention, sont chauffés par des moyens thermiques dont le niveau de température est compris entre 110 et 340 °C, et de préférence entre 150 et 250 °C. Ce niveau de température qui correspond à celui de la température de condensation de la vapeur de traçage, ou de la température maintenue par des moyens électriques est en effet adéquat pour le maintien de goudrons de pyrolyse à l'état solide.
De façon caractéristique l'installation comprend des moyens de balayage du gaz contenu dans les bidons Vi, au moyen d'une source de gaz non cokant et de point de rosée atmosphérique inférieur à 110 °C. Ce balayage, qui par équivalent technique peut être constitué par un gaz de barrage, a pour fonction de purger Vi de traces éventuelles de gaz craqués, avant l'évacuation et le transfert des particules. Selon une variante caractéristique préférée, l'installation comprend des moyens d'introduction d'un gaz non cokant et de point de rosée atmosphérique inférieur à 110 °C, au sein des particules contenues dans les bidons Vi, pour la percolation de ces particules avant leur évacuation des bidons Vi.
Ceci permet de réaliser un premier séchage des particules favorisant leur évacuation, avant celui réalisé au cours du transfert lui-même.
Selon une première variante caractéristique, les agents de décokage comprennent des particules solides érosives, et des moyens d'injection de ces particules en amont des échangeurs de trempe, et notamment dans les zones de transfert entre les zones de craquage et les échangeurs de trempe.
De façon préférée, la totalité des particules solides injectées le sont dans les zones de transfert de gaz craqués entre les zones de craquage et les échangeurs de trempe, en particulier dans les cônes d'entrée de ces échangeurs (considérés comme faisant partie des zones de transfert).
Avantageusement, les moyens communs de séparation qui réalisent une séparation secondaire particules solides/gaz de transport sensiblement incondensable, comprennent une sortie de gaz de transport épuré reliée par une ligne de raccordement à une ligne de circulation de gaz craqués, pour l'évacuation de ce gaz de transport épuré.
Ce rebouclage de l'ensemble des sorties de gaz de transport épuré vers une ligne de circulation de gaz craqués permet de rester sous pression, et dans un réseau "hydrocarbures", pour l'ensemble des différents transferts de particules vers les moyens communs de séparation et de collecte, ce qui est intéressant vis à vis des problèmes de sécurité par comparaison avec une mise à l'atmosphère des gaz de transport épurés.
De façon préférée, le gaz de transport est alors du fuel gaz, ce qui évite la consommation d'azote et son mélange en quantité notable avec les gaz craqués.
Selon une variante caractéristique, l'installation comprend des moyens de recyclage d'une partie au moins des particules récupérées dans les moyens communs de séparation et de collecte.
Selon une disposition également caractéristique, l'installation comprend alors un crible vibrant fonctionnant sous atmosphère d'azote à pression sensiblement atmosphérique et à température inférieure à 200 °C, relié en amont aux moyens communs, de séparation et de collecte et relié en aval aux moyens de recyclage de particules.
Selon une autre variante caractéristique, l'installation comporte des moyens d'injection d'agents de décokage, comprenant des composés chimiques catalyseurs de gazéification du coke à la vapeur d'eau, en amont des zones de craquage. En particulier une telle installation peut avantageusement comprendre des moyens d'injection d'une solution comprenant au moins un sel minéral d'un élément compris dans le groupe du sodium, du potassium, du lithium, du baryum et du strontium, ce sel étant actif pour promouvoir la gazéification du coke à la vapeur d'eau, cette gazéification fragilisant le coke et provoquant des émissions de morceaux de coke, qui peuvent être récupérés et transférés selon les moyens de l'invention.
Lorsque l'on injecte des particules solides érosives, ceci est réalisé très généralement lors de phases d'injection de courte durée, ne représentant qu'une faible partie du temps.
En dehors de ces courtes périodes d'injection, il peut circuler d'autres types de particules comme des fragments grossiers de coke (fragments pouvant se détacher des parois, naturellement, à l'occasion par exemple de chocs thermiques, ou favorisés par des injections de composés chimiques catalyseurs de gazéification).
Pour éviter le mélange des deux populations de particules, l'invention pourra comprendre des moyens d'injection séquentielle de particules érosives connectés auxdites zones de transfert, des moyens d'isolement séquentiel de chaque bidon Vi en dehors des phases d'injection de particules en amont de Vi, et des moyens d'évacuation des particules récupérées dans le ou les séparateurs associés à Vi en dehors de ces phases d'injection, sans transiter par Vi.
En particulier l'installation pourra comprendre de façon caractéristique des bidons Wi de réception des particules récupérées en dehors des phases d'injection de particules, et des aiguillages directionnels commandés à une entrée et deux sorties, chaque aiguillage étant relié en amont à un séparateur primaire, et en aval à un bidon de réception Vi, et à un bidon de réception Wi.
L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages apparaítront plus clairement à la lecture de la description qui suit faite à titre d'exemple en référence aux dessins annexés dans lesquels : la figure 1 représente schématiquement une installation de vapocraquage selon l'invention, comportant plusieurs dispositifs relatifs à différentes variantes caractéristiques selon l'invention.
La figure 2 représente schématiquement une partie d'une installation comportant un dispositif caractéristique de l'une des variantes de l'invention.
La figure 3 représente une partie d'une installation comportant un autre dispositif caractéristique, avantageux pour la réalisation de l'invention.
On se réfère d'abord à la figure 1, où l'on a représenté, en partie, deux fours de vapocraquage (1) comprenant chacun une alimentation (22) d'une charge d'hydrocarbures et une alimentation (23) de vapeur d'eau de dilution. La charge globale est préchauffée, vaporisée et surchauffée à une température typique de 500 à 650 °C dans les zones de convection de ces deux fours, puis craquée dans deux zones de craquage (2) constitués par des serpentins de tubes de pyrolyse. A la sortie de ces zones de craquage (sortie de l'enceinte du four), les gaz craqués transitent par l'intermédiaire de zones de transfert (3) vers deux échangeurs de trempe (4), ou "TLE" (Transfer Line Exchanger) permettant de baisser brutalement leur température à environ 360 à 630 °C, et très généralement à environ 360 à 500 °C, cette température étant mesurée par des indicateurs de température (24). Ces deux courants de gaz craqués refroidis traversent alors deux séparateurs primaires gaz/particules solides (5), par exemple deux cyclones. Chacun de ces séparateurs primaires comprend une sortie de gaz épurés qui rejoint une ligne (12) de circulation de gaz craqués refroidis, pour leur évacuation et leur traitement aval (fractionnement primaire, compression, désulfuration, séchage, fractionnement final).
Les deux séparateurs primaires (5) comprennent également chacun une sortie de particules solides reliée par une conduite (16) à un bidon de réception (6) maintenu en température par des moyens thermiques (37), pour la récupération de ces particules solides par écoulement gravitaire.
Les deux bidons de réception (6) comprennent chacun des moyens d'isolement séquentiel : en amont une vanne commandée (7) disposée sur la ligne (16), et en aval une vanne commandée (8). Ces deux bidons de réception (6) sont reliés en aval, chacun par une canalisation de transfert (9), à des moyens communs de séparation et de collecte de particules solides, comprenant un cyclone de séparation (10) et un bidon de collecte (13). Les gaz effluents du cyclone (10) sont introduits dans la ligne (12) par une ligne (11).
Ce bidon de collecte (13) est relié en aval par une ligne (32) à un crible vibrant (14) relié à l'atmosphère par une ligne (ATM) fonctionnant sensiblement à pression atmosphérique, sous atmosphère d'azote, et à température modérée compatible avec des manchettes de liaison souples utilisées pour des cribles vibrants classiques. Le bidon (1), qui comporte des vannes d'isolement amont et aval, ainsi que des moyens non représentés de dépressurisation, remplit la fonction de sas de décompression des particules.
La sortie des fines particules du crible vibrant (14) (particules débarrassées par exemple des gros fragments de dimension supérieure à 3 mm) est reliée à un bidon de réception (15), équipé de vannes commandées amont et aval, ainsi que de moyens d'alimentation, non représentés, de gaz du groupe de l'azote et du fuel gaz. Dans la pratique, le crible vibrant (14) sera disposé au dessus du bidon (15), pour permettre l'écoulement gravitaire des poudres (ce n'est pas le cas sur la figure 1 pour de simples raisons de dessin).
Le bidon (15) ainsi équipé peut alors fonctionner en sas d'expédition pneumatique, et constitue un moyen de recyclage de particules solides érosives dans l'installation. Il est relié en amont à une source de gaz de transport (33) (fuel gaz, azote ou vapeur d'eau), et en aval à différents moyens d'injection (19) (34) comprenant des vannes commandées et des conduits d'injection de particules solides. Les particules peuvent être injectées en amont des zones de craquage (2) par les lignes (34) en pointillé, ou de préférence, par les lignes (19), dans les zones de transfert de gaz craqués (3), et notamment au niveau des cônes d'entrée des échangeurs de trempe, cônes qui par convention font partie des zones de transfert (3). Dans ce cas, on installera préférentiellement un impacteur diffuseur (35) à l'intérieur de chaque cône d'entrée. Cet impacteur diffuseur a un double but : protéger la plaque tubulaire dans l'échangeur de trempe contre l'érosion, et distribuer de façon plus régulière les particules injectées, dans les différents tubes de l'échangeur (4).
Cet impacteur diffuseur (35) est avantageusement constitué de deux niveaux de surfaces de rebond des particules, décalés l'un par rapport à l'autre, de telle sorte qu'il est à la fois perméable aux gaz selon une pluralité de passages et sensiblement opaque vu de l'amont.
Le sas d'expédition (15) comporte une ligne (36) d'évacuation de particules usées ; on pourrait également envoyer les particules usées vers un silo de stockage grâce à un aiguillage disposé sur la ligne (32) ; un bidon (18) comportant des moyens de vidange contrôlée (vis ou écluse) permet de stocker des particules "neuves", et de remplacer les particules usées.
L'installation comprend également des moyens pneumatiques permettant de réaliser les transferts de particules depuis les bidons Vi (6) jusqu'aux moyens communs de séparation et de collecte, par l'intermédiaire des canalisations de transfert (9) : une source (31) de gaz non cokant, de point de rosée à la pression atmosphérique inférieur à 110 °C : vapeur d'eau ou de préférence azote ou fuel gaz, permet :
  • a) d'injecter un gaz de barrage en amont de la vanne (7), pour s'opposer à la venue de gaz craqués dans le bidon de réception (6),
  • b) d'injecter grâce à la vanne (25) un tel gaz non cokant et de point de rosée atmosphérique inférieur à 110 °C pour vidanger le gaz contenu dans le bidon de réception Vi (6), avant l'évacuation et le transfert des particules, et de pressuriser le bidon (6) au cours du transfert pneumatique des particules.
  • c) d'injecter grâce à la vanne (26) un tel gaz au sein même des particules solides, pour réaliser un séchage au moins partiel des traces de liquide éventuelles, par percolation au moyen d'un gaz sec,
  • d) d'injecter grâce à la vanne (27) un débit contrôlé d'un tel gaz de transport au cours de transfert pneumatique des particules.
  • L'installation décrite à la figure 1 comprend enfin un automate programmable (17) pour commander le fonctionnement séquentiel de l'installation, en particulier des vannes du sas de décompression et des sas d'expédition pneumatique. Elle comprend également des moyens (20) d'injection en amont de la zone de craquage (2) de composés chimiques catalyseurs de gazéification du coke à la vapeur d'eau, par exemple de solutions aqueuses d'un mélange équimolaire de carbonate de sodium et de carbonate de potassium, ou un mélange équimolaire d'acétate de sodium, d'acétate de potassium, d'acétate de lithium et d'acétate de baryum.
    Ces composés ont en effet une efficacité surprenante anticokage au niveau des zones de craquage (2).
    On se réfère maintenant à la figure 2, où sont représentés schématiquement deux échangeurs de trempe (4), ou "TLE" dont les cônes d'entrée comportent chacun un conduit (19) d'injection de particules solides érosives. Ces échangeurs sont reliés en aval à deux séparateurs primaires (5) reliés par des lignes (16) comprenant chacune une vanne d'isolement commandée (7), à un même bidon de réception (6), qui constitue l'un des bidons Vi de l'installation, et est donc associé aux deux séparateurs primaires (5) représentés. En aval du bidon de réception, une canalisation de transfert (9), comportant une vanne commandée (8) permet de transférer séquentiellement les particules vers des moyens communs (10), (13) de séparation et de collecte, eux-mêmes reliés par d'autres canalisations de transfert (9), à d'autres bidons Vi de réception, non représentés. Le bidon (6) fonctionne en sas d'expédition pneumatique, avec pressurisation du sas et évacuation des particules par un gaz de transport.
    Sur la figure 2, la disposition des deux séparateurs primaires (5) n'est pas quelconque, mais ces séparateurs sont installés de manière suffisamment rapprochée pour que les lignes de liaison (16) avec le bidon de réception unique (6) soient très inclinées et forment avec l'horizontale un angle a au moins égal à 60 °C.
    On se réfère maintenant à la figure 3, qui représente un échangeur de trempe (4) relié à un séparateur primaire (5), lui-même relié à un bidon Vi de réception (6). Cette figure 3 comporte également d'autres éléments techniques déjà décrits antérieurement et référencés de la même façon. Par ailleurs, on a représenté un autre bidon, Wi, (28) de réception de particules solides, relié également au séparateur primaire (5), et un aiguillage directionnel commandé (29) (volet, clapet ou dispositif technique équivalent), permettant d'orienter les particules récupérées dans le séparateur primaire (5), soit vers le bidon Vi (6), soit vers le bidon Wi (28).
    L'installation décrite à la figure 1 fonctionne de la façon suivante :
    A- Injection de particules solides érosives. On réalise des injections intermittentes de particules érosives dans l'installation, par les moyens (19) : vannes commandées et conduits d'injection. Lorsque l'on craque une charge bien connue et constante, on peut injecter des particules par les lignes (34) en amont des zones de craquage (2) ; lorsque l'on craque des charges variables dans des conditions flexibles on injecte principalement, ou exclusivement, les particules dans les zones de transfert (3) au niveau des cônes d'entrée des échangeurs de trempe ; on a en effet trouvé que des conditions variables au niveau des charges pouvaient conduire à des vitesses de cokage des tubes de pyrolyse difficilement prévisibles et peu appropriées à un contrôle des injections de particules dans les zones de craquage. Au contraire, l'encrassement des échangeurs de trempe, qui s'est révélé de manière inattendue être le seul facteur limitant dans le choix des charges, en particulier des charges lourdes telles que gazoles et distillats sous vide, peut être connu de manière simple et fiable par simple mesure de la température de sortie de cet échangeur.
    Par ailleurs, le coke des échangeurs de trempe est, de façon surprenante, beaucoup plus facile à éliminer par érosion que celui des zones de craquage. Il est donc possible de contrôler les quantités de particules devant être injectées sans réaliser d'essais préalables, en se basant sur la température de sortie des échangeurs de trempe.
    De façon préférée, on injecte de façon discontinue des doses de fines particules érosives, chaque dose correspondant à un poids de particules compris typiquement entre 5 et 150 kg, notamment entre 20 et 100 kg. Deux types de contrôle des injections sont possibles : selon le premier type de contrôle, on injecte des particules, en un point d'injection donné, à intervalle de temps fixe, par exemple toutes les 3 heures. Et l'on ajuste les quantités injectées (par exemple par des moyens de pesée, non représentés sur la figure 1), pour que l'augmentation de la température de sortie de l'échangeur de trempe concerné situé en aval du point d'injection reste modérée, par exemple inférieure à 100 °C par mois et de préférence à 30 °C par mois ou bien sensiblement nulle.
    Selon l'autre type de contrôle, on injecte des doses de quantités constantes de particules, mais à intervalles de temps variable, pour limiter ou annuler l'augmentation de la température de sortie de l'échangeur de trempe.
    Les particules, injectées typiquement par un conduit (19) comprenant typiquement à son extrémité de 1 à 8 injecteurs de particules dans le cône d'entrée d'un échangeur de trempe (4) sont entraínées par les gaz craqués, rebondissent sur l'impacteur diffuseur (35), et se répartissent de façon améliorée dans les différents tubes de l'échangeur (4), où elles circulent à des vitesses comprises entre 20 et 180 m/s et de préférence entre 35 et 120 m/s, et décapent une partie du coke ou des goudrons lourds déposée sur les parois de ces tubes.
    Ces particules sont alors séparées dans le cyclone (5), et tombent par l'intermédiaire de la ligne (16) dans le bidon Vi de réception (6) maintenu typiquement à 150 °C par des moyens thermiques (37). La vanne commandée (7) est donc ouverte pendant l'injection de ces particules, pour permettre leur récupération dans le bidon (6) ; par contre la vanne commandée (8) est fermée pendant cette période. Après l'injection des particules, qui sont donc stockées temporairement dans le bidon (6) correspondant, on injecte par les lignes (25) et (26) du gaz "propre" et sec, par exemple du fuel gaz ou de l'azote provenant d'une alimentation (31). Ceci permet de réaliser un premier séchage des particules (qui peuvent contenir éventuellement des traces de liquide), ainsi qu'un balayage du gaz contenu dans le bidon Vi pour éliminer des traces éventuelles de gaz craqués. On peut alors fermer la vanne commandée (7) pour isoler le bidon (6) de l'amont, et transférer pneumatiquement les particules, en pressurisant le ballon (6) par exemple par la vanne (25), en ouvrant la vanne de sortie (8) et en injectant un débit contrôlé de gaz de transport propre et sec par la vanne (27). Ce fonctionnement du ballon (6) en sas d'expédition pneumatique peut être, sans sortir du cadre de l'invention réalisé selon plusieurs variantes, connues de l'homme de l'art, par exemple en fluidisant les particules, en ouvrant la vanne 8 et injectant du gaz de transport avant la pressurisation du ballon, en utilisant une vanne de sortie (8) sur tuyauterie par exemple horizontale, inclinée, verticale montante.
    Les particules sont alors évacuées, en phase dense ou en phase diluée, par la canalisation de transfert (9). Le débit qi de gaz de transport pour réaliser ce transfert est selon l'invention beaucoup plus faible que celui des gaz craqués traversant le séparateur primaire (5). La ligne (9) est donc de petit diamètre, de même que les vannes (7) et (8), car on a réalisé, grâce au changement de gaz véhiculant les particules : gaz craqués → gaz propre sec (N2, fuel gaz), un découplage avec le débit de gaz craqués, nécessairement très élevé.
    Typiquement, la ligne (9) et les vannes (7) et (8) sont de diamètre inférieur ou égal à 100 mm contre 350 mm typiquement pour les lignes de transfert de particules du procédé antérieurement décrit. De plus, la ligne (9) est relativement froide, généralement non tracée et non calorifugée sur une partie au moins et peut être réalisée en acier carbone.
    Le transfert des particules selon l'invention est donc particulièrement économique, et également fiable car il permet de sécher les particules, dans le bidon Vi de réception (6) puis en lit circulant, grâce au gaz de transport, dans la canalisation de transfert (9).
    Cette canalisation de transfert, dont la longueur est de plusieurs mètres au minimum, par exemple entre 5 et 100 m permet de refroidir les particules (l'échangeur thermique avec les parois plus froides de la ligne (9) étant favorisé par la circulation en lit fluidisé). Ceci est un autre avantage de l'invention : en effet cela va permettre de pouvoir utiliser en aval un crible vibrant classique, très fiable et éprouvé, comportant des manchettes souples de liaison qui n'auraient pas été compatibles avec les températures initiales des particules au niveau du séparateur primaire (5).
    Les particules transitant dans la canalisation (9) sont donc refroidies à une température préférée typique de 80 à 150 °C, température modérée compatible avec le crible vibrant, mais suffisante pour réaliser un séchage éventuel complémentaire des particules.
    Ces particules rejoignent par la canalisation de transfert (9) les moyens communs de séparation et de collecte.
    Ces moyens communs comprennent un cyclone (10) de séparation particules/gaz de transport, et un bidon (13) de collecte des particules. Le gaz de transport épuré est renvoyé par la ligne (11) vers la ligne (12) d'évacuation des gaz craqués refroidis.
    De façon séquentielle, après récupération d'une dose de particules ou de plusieurs doses de particules, le bidon de collecte (13) est isolé de l'amont, dépressurisé par des moyens non représentés, et vidangé par l'intermédiaire de la ligne d'évacuation (32). Cette vidange, par exemple gravitaire, est facilitée par le fait que les particules sont sèches et non collantes. Les particules sont alors tamisées dans le crible vibrant (14), qui élimine les fragments de dimension supérieure à 3 mm, et tombent dans le bidon de réception (15) dont la vanne amont est ouverte et la vanne aval fermée.
    Le tamisage fin des particules est nécessaire lorsqu'on recycle ces particules pour éviter le bouchage des injecteurs à l'extrémité de la ligne (19), qui sont typiquement de faibles dimensions (par exemple 15 mm). Un premier criblage très grossier (maille de 15 à 20 mm) peut être réalisé au moyen d'une simple grille dans les bidons de réception (6) pour éviter les risques d'obstruction des canalisations de transfert (9).
    Lorsque les particules tamisées sont dans le bidon (15), on peut alors les recycler, en isolant le bidon (15) de l'amont, et en injectant un gaz de pressurisation et un gaz de transport, selon le même type de fonctionnement que le bidon (6) : l'évacuation par sas d'expédition pneumatique selon plusieurs variantes de réalisation, de même que pour le sas (6). Le gaz de transport préféré est le fuel gaz, ou l'azote.
    Des vannes commandées, comprises dans les moyens (19) d'injection de particules permettent de sélectionner le ou les points d'injection choisis, par exemple ceux dont l'échangeur de trempe a la température de sortie la plus élevée. Le bidon (15) comprend également des moyens (16) d'évacuation de particules usées, d'efficacité érosive diminuée après un certain nombre de circulations. La dose de particules usées est alors remplacée par des particules neuves stockées dans le bidon (18), et véhiculées par une alimentation de gaz de transport (33).
    L'installation de la figure 1 permet également d'injecter des agents chimiques de décokage par les moyens (20) pouvant comporter un réservoir d'une solution active, et une pompe doseuse. Ces composés sont injectés en continu ou en discontinu, de façon finement pulvérisée dans les gaz craqués.
    L'installation comprend également un module de contrôle (17 voir figure 2) tel qu'un automate programmable permettant d'opérer l'ensemble des actions séquentielles de façon automatique.
    Le dispositif décrit à la figure 2 fonctionne comme celui de la figure 1. Les deux vannes (7) ne sont cependant jamais ouvertes simultanément pour éviter une circulation parasite entre les deux cyclones (5), par l'intermédiaire des lignes (16). On injecte donc les particules dans les deux échangeurs (4) lors de phase différentes, la vanne (7) correspondante étant seule ouverte au cours d'une injection. L'angle minimum a d'au moins 60° permet d'assurer l'écoulement gravitaire des particules récupérées.
    Le dispositif décrit à la figure 3 fonctionne de la façon suivante :
    Lors des phases d'injection de particules, l'aiguillage directionnel (29) est orienté comme indiqué sur la figure pour permettre la récupération des particules érosives dans le bidon Vi de réception (6). En dehors des phases d'injection, c'est à dire pendant la plus grande partie du temps, l'aiguillage est orienté de façon inverse, pour que les particules tombent dans le bidon Wi de réception (28). Ainsi, les particules de coke détaché des parois pouvant circuler spontanément dans l'installation, ou résultant de la fragilisation du coke par les composés chimiques injectés, ne se mélangent pas avec les particules érosives, récupérées dans le bidon (6). Ceci améliore le fonctionnement et la fiabilité de l'installation. On pourrait également empêcher la chute de particules indésirables dans le bidon (6) en fermant la vanne (7) puis en injectant un gaz pour chasser les particules situées au-dessus de cette vanne.
    Exemples : Exemple 1 (comparatif) :
    On considère une installation de vapocraquage comprenant 10 fours et 20 échangeurs de trempe de capacité unitaire de 10 000 kg/h de gaz craqués, cette installation étant équipée de moyens d'injection de particules érosives de coke en amont des échangeurs.
    Selon une première variante, les particules contenues dans les effluents des échangeurs de trempe sont véhiculées par ces effluents vers le réseau général de traitement des gaz craqués qui comporte un cyclone unique. Dans cette installation, il y a 20 lignes de sortie de gaz craqués qui véhiculent les particules vers le cyclone commun.
    Il y a donc 20 lignes de grand diamètre (350 mm par exemple) avec circulation de particules, chacune de ces lignes étant de capacité unitaire de 10 000 kg/h de gaz craqués. Le cyclone commun a une capacité de 20 x 10 000 kg/h soit 200 000 kg/h. Il est donc de taille considérable, très difficile à implanter et peu efficace. Cette variante n'est pas conforme à l'invention.
    Selon une deuxième variante, déjà décrite antérieurement, chaque sortie d'un échangeur de trempe comprend deux vannes commandées permettant d'orienter les effluents soit vers le réseau aval de traitement des gaz craqués lorsque l'on n'injecte pas de particules, soit vers des moyens communs de séparation et de collecte.
    Cette installation connue permet de véhiculer les particules vers un point unique, au moyen de 20 lignes de gaz craqués supplémentaires, de 350 mm de diamètre typique, et comprend 20 x 2 soit 40 vannes spéciales de grand diamètre capables d'orienter les gaz craqués vers le réseau adéquat.
    Le cyclone est par contre de capacité raisonnable 10 000 kg/h et est facilement implantable et efficace.
    Cette installation onéreuse n'est pas conforme à l'invention.
    Exemple 2, conforme à l'invention :
    On considère également une installation de vapocraquage comportant 10 fours et 20 échangeurs de trempe de capacité unitaire 10 000 kg/h. Cette installation comprend 20 cyclones primaires (5), chacun équipé d'un bidon de réception (6). Ces cyclones primaires ont une capacité unitaire de 10 000 kg/h et sont donc efficaces et faciles à installer. Chacun des 20 bidons de réception (6) est relié par une canalisation de transfert (9) vers un cyclone commun (10). Il y a donc 20 canalisation de transfert. Comme le débit unitaire choisi pour le gaz de transport est de 1000 kg/h de fuel gaz successivement pour chacune des canalisations (9), ce débit est beaucoup plus faible que le débit de 10 000 kg/h de gaz craqués traversant un séparateur primaire, conformément à l'invention.
    Les canalisations de transfert (9) sont donc de très petit diamètre (50 à 100 mm), et le cyclone (10) est également très petit (capacité 1000 kg/h).
    Cette installation permet d'injecter des particules érosives, par exemple des doses de 50 kg de coke angulaire, ou de carbure de silicium angulaire, et de récupérer ces particules en un lieu commun. Elle permet, grâce à ces injections de pouvoir éviter l'encrassement des échangeurs de trempe et de craquer des charges non conventionnelles (kérosène, gazole, condensats) avec des durées de cycle supérieures à 1 mois, ce qui n'est pas réalisable sans injection de particules.
    De préférence, en particulier pour des particules minérales, on recycle la plus grande partie des particules récupérées.
    Exemple 3 :
    On considère l'installation de l'exemple 2, qui comprend également 20 séparateurs primaires (cyclone (5)), mais seulement 10 bidons Vi de réception (6), disposés conformément à la figure 2, et 10 canalisations de transfert (9) de capacité unitaire 1000 kg/h de fuel gaz.
    Cette installation, conforme à l'invention, est plus économique que celle de l'exemple 2.
    Exemple 4 :
    On considère toujours la même installation de vapocraquage, dans laquelle on installe non pas 20 mais 10 séparateurs primaires (5), chaque séparateur regroupant les effluents de deux échangeurs de trempe (1 four). On utilise 10 bidons de réception Vi et 10 canalisations de transfert (9) de capacité unitaire 1000 kg/h de fuel gaz. Cette installation a une efficacité de récupération des particules légèrement plus faible que celle des exemples 2 et 3, mais est économiquement peu onéreuse.
    Exemple 5 :
    On considère l'installation de l'exemple 4, complétée par des moyens (20) d'injection de 15 à 100 ppm de composés chimiques (en poids de sodium plus potassium) par rapport aux gaz craqués, en solution aqueuse à 96 % d'eau, de composition équimolaire de carbonate de sodium et de carbonate de potassium. Ces composés favorisent la gazéification du coke des zones de craquage, et provoquent également une fragilisation de ce coke et des émissions de fragments détachés des parois.
    Pour ne pas mélanger ces fragments de coke avec les particules érosives injectées (par exemple de carbure de silicium), on installe 10 aiguillages (29) et 10 bidons Wi de réception (28) conformément à la figure 3.
    De façon générale, l'invention propose donc un procédé et une installation, avec plusieurs variantes, permettant de mettre en oeuvre des agents de décokage efficaces pour autoriser le craquage de charges impossible à craquer dans des conditions classiques sans encrassement excessif, et de récupérer les particules solides générées par cette mise en oeuvre, de façon plus économique et plus fiable que dans les procédés et installations antérieurement décrits.

    Claims (25)

    1. Procédé de vapocraquage d'hydrocarbures dans une installation comprenant au moins un four de vapocraquage, cette installation comprenant une pluralité de zones de craquage (2), et une pluralité d'échangeurs de trempe (4), (TLE), des gaz craqués issus des zones de craquage, le procédé comprenant l'injection en une pluralité de points, d'agents de décokage générant la circulation de particules solides dans lesdits échangeurs de trempe, le procédé comprenant la séparation d'une partie au moins desdites particules, des effluents des échangeurs de trempe, dans une pluralité de séparateurs gaz/solides primaires (5), et la récupération en aval de ces échangeurs de trempe d'une partie au moins de ces particules solides dans des moyens communs de séparation et de collecte rassemblés en un point unique, le procédé comportant :
      la récupération, par écoulement gravitaire, d'au moins une partie des particules ainsi séparées provenant desdits séparateurs primaires, dans une pluralité de bidons de réception V1, ..., Vn, chaque bidon Vi étant associé à au moins un séparateur primaire, et
      le transfert de la plus grande partie au moins des particules contenues dans les bidons Vi, vers lesdits moyens communs de séparation et de collecte par des canalisations de transfert, au moyen d'un gaz de transport dont le débit qi pour l'évacuation de particules contenues dans un bidon Vi est inférieur ou égal à 30 % volume du débit de gaz craqués traversant les séparateurs primaires associés à Vi,
      le procédé étant caractérisé en ce que chacun des bidons de réception Vi est isolé séquentiellement du ou des séparateurs associés et en ce que le transfert des particules vers les moyens communs de séparation et de collecte est effectué à l'aide d'un gaz de transport non cokant et de point de rosée atmosphérique inférieur à 110°C.
    2. Procédé selon la revendication 1, caractérisé en ce que les particules transférées à partir d'un bidon Vi sont extraites de ce bidon par des moyens exclusivement pneumatiques.
    3. Procédé selon l'une des revendications 1 et 2 dans lequel les bidons de réception Vi sont chauffés par des moyens thermiques dont le niveau de température est compris entre 110 °C et 340 °C, et de préférence entre 150 et 250 °C, et est supérieur au point de rosée du gaz de transport à la pression maximale opératoire des bidons Vi.
    4. Procédé selon l'une des revendications 1 à 3, dans lequel on effectue un balayage du gaz contenu dans un bidon Vi, par un gaz non cokant de point de rosée atmosphérique inférieur à 110 °C, avant d'isoler ce bidon Vi puis de transférer les particules contenues dans Vi.
    5. Procédé selon l'une des revendications 1 à 4, dans lequel on réalise une percolation des particules contenues dans un bidon Vi, au moyen d'un gaz non cokant de point de rosée atmosphérique inférieur à 110 °C, avant d'isoler ce bidon Vi puis de transférer les particules contenues dans Vi.
    6. Procédé selon l'une des revendications 1 à 5, dans lequel le gaz de transport est un gaz incondensable à température et pression normales, choisi dans le groupe de l'azote, du méthane, de l'hydrogène, des hydrocarbures légers comprenant de deux à quatre atomes de carbone, et des mélanges de ces composés.
    7. Procédé selon l'une des revendications 1 à 6, dans lequel on injecte une partie au moins des agents de décokage pendant le fonctionnement normal de l'installation.
    8. Procédé selon l'une des revendications 1 à 7, dans lequel les agents de décokage comprennent des particules solides érosives, injectées en amont des échangeurs de trempe, en particulier dans des zones dites de transfert (3) comprises entre les sorties des zones de craquage (2) et les échangeurs de trempe (4).
    9. Procédé selon l'une des revendications 1 à 8, dans lequel on recycle au moins une partie des particules récupérées dans les moyens communs de collecte, en amont d'au moins un des échangeurs de trempe, après avoir réalisé une opération de criblage effectuée au moins sur ladite partie des particules récupérées dans les moyens communs, l'opération de criblage étant réalisée à pression atmosphérique, et sous une atmosphère essentiellement d'azote.
    10. Procédé selon l'une des revendications 1 à 9, dans lequel les composés anticokage comprennent des sels minéraux catalyseurs de gazéification du coke par la vapeur d'eau, injectés en amont des zones de craquage (2).
    11. Procédé selon la revendication 10, caractérisé en ce que les dits sels minéraux comprennent au moins un sel d'un élément compris dans le groupe du sodium, du potassium, du lithium, du baryum et du strontium, le sel étant actif pour promouvoir la gazéification du coke.
    12. Installation de vapocraquage, comprenant au moins un four de vapocraquage (1), une pluralité de zones de craquage (2), une pluralité d'échangeurs de trempe (4) des gaz craqués issus de ces zones de craquage, cette installation comprenant également des moyens d'injection en une pluralité de points, d'agents de décokage générant la circulation de particules solides dans les échangeurs de trempe, une pluralité de séparateurs gaz/solides primaires (5), pour l'épuration des effluents des échangeurs de trempe, chaque séparateur primaire étant relié en amont à au moins un échangeur de trempe qui lui est associé, et comprenant une sortie de gaz épurés et une sortie de particules solides, et des moyens de récupération d'une partie au moins de ces particules solides, ces moyens de récupération comprenant des moyens communs de séparation et de collecte rassemblés en un point unique, l'installation comportant :
      une pluralité de bidons Vi pour la récupération par écoulement gravitaire d'une partie au moins des particules séparées dans les séparateurs primaires, chaque bidon Vi étant connecté à au moins une sortie de particules solides d'au moins un séparateur primaire associé à Vi,
      une pluralité de canalisations de transfert de particules solides, chacune des canalisations étant reliée en amont à l'un des bidons Vi et en aval aux dits moyens communs de séparation et de collecte, et des moyens de transfert des particules par un gaz de transport,
      le dispositif étant caractérisé en ce qu'il comporte :
      des moyens d'isolement séquentiel de chacun des bidons Vi du ou des séparateurs primaires qui lui sont associés, et en ce que les moyens pour le transfert, par les dites canalisations de transfert, de la plus grand partie au moins des particules contenues dans les bidons Vi ainsi isolés, comprennent des moyens d'alimentation d'un gaz de transport non cokant et de point de rosée atmosphérique inférieur à 110 °C.
    13. Installation selon la revendication 12, caractérisée en ce que chacun des bidons Vi est relié à des moyens d'évacuation des particules, lesdits moyens étant exclusivement pneumatiques et utilisant au moins une source de gaz de transport du groupe de l'azote et du fuel gaz.
    14. Installation selon l'une des revendications 12 et 13, comprenant des moyens thermiques pour le chauffage des bidons Vi.
    15. Installation selon l'une des revendications 12 à 14, comprenant des moyens de balayage du gaz contenu dans les bidons Vi, au moyen d'une source de gaz non cokant et de point de rosée atmosphérique inférieur à 110 °C.
    16. Installation selon la revendication 14, comprenant des moyens d'introduction d'un gaz non cokant et de point de rosée atmosphérique inférieur à 110 °C, au sein des particules contenues dans les bidons Vi, pour la percolation de ces particules avant leur évacuation des bidons Vi.
    17. Installation selon l'une des revendications 12 à 16, dans laquelle les agents de décokage comprennent des particules solides érosives, l'installation comprenant des moyens d'injection desdites particules en amont des échangeurs de trempe, et notamment dans les zones de transfert entre les zones de craquage et les échangeurs de trempe.
    18. Installation selon la revendication 17, dans laquelle la totalité des particules solides injectées le sont dans les zones de transfert (3) de gaz craqués entre les zones de craquage (2) et les échangeurs de trempe (4), en particulier dans les cônes d'entrée des échangeurs de trempe.
    19. Installation selon l'une des revendications 12 à 17, dans laquelle les moyens commun de séparation (10), (13) comprennent une sortie de gaz de transport épuré reliée par une ligne (11) à une ligne (12) de circulation de gaz craqués, pour l'évacuation du gaz de transport épuré.
    20. Installation selon l'une des revendications 12 à 19, comprenant des moyens de recyclage d'une partie au moins des particules récupérées dans les moyens communs de séparation et de collecte connectés aux zones de transfert (3).
    21. Installation selon la revendication 20, comprenant un crible vibrant (14) fonctionnant sous atmosphère d'azote à pression sensiblement atmosphérique et température inférieure à 200 °C, relié en amont aux moyens communs (10), (13) de séparation et de collecte et relié en aval aux moyens (15), (19) de recyclage de particules.
    22. Installation selon l'une des revendications 12 à 21, comprenant au moins deux séparateurs primaires (5) associés à un même bidon de réception (6), chacun des séparateurs primaires associés audit bidon de réception (6) étant relié audit bidon par une conduite (16), et comprenant des moyens de commande (17) de moyens (7) d'obturation séquentielle d'au moins l'une des conduites (16) lorsque l'autre de ces conduites est ouverte, la disposition relative de ces séparateurs primaires (5) et du bidon de réception (6) étant telle que les conduites (16) ont une inclinaison au moins égale à 60 degrés par rapport à l'horizontale.
    23. Installation selon l'une des revendications 12 à 22, comportant des moyens d'injection d'agents de décokage comprenant des composés chimiques catalyseurs de gazéification du coke à la vapeur d'eau, en amont des zones de craquage (2).
    24. Installation selon l'une des revendications 12 à 23, comprenant des moyens d'injection séquentielle de particules érosives connectés auxdites zones de transfert (3), des moyens d'isolement séquentiel de chaque bidon Vi en dehors des phases d'injection de particules en amont de Vi, et des moyens d'évacuation des particules récupérées dans le ou les séparateurs (5) associés à Vi, en dehors de ces phases d'injection, sans transiter par Vi.
    25. Installation selon la revendication 24, comprenant des bidons Wi de réception des particules récupérées en dehors des phases d'injection de particules, et des aiguillages directionnels commandés à une entrée et deux sorties, chaque aiguillage étant relié en amont à un séparateur primaire, et en aval à un bidon de réception Vi, et à un bidon de réception WI.
    EP95943262A 1994-12-26 1995-12-22 Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique Expired - Lifetime EP0801670B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9415746 1994-12-26
    FR9415746A FR2728580A1 (fr) 1994-12-26 1994-12-26 Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique
    PCT/FR1995/001718 WO1996020256A1 (fr) 1994-12-26 1995-12-22 Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique

    Publications (2)

    Publication Number Publication Date
    EP0801670A1 EP0801670A1 (fr) 1997-10-22
    EP0801670B1 true EP0801670B1 (fr) 2000-03-15

    Family

    ID=9470313

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95943262A Expired - Lifetime EP0801670B1 (fr) 1994-12-26 1995-12-22 Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique

    Country Status (7)

    Country Link
    US (1) US5820747A (fr)
    EP (1) EP0801670B1 (fr)
    DE (1) DE69515700T2 (fr)
    ES (1) ES2145323T3 (fr)
    FR (1) FR2728580A1 (fr)
    TW (1) TW309539B (fr)
    WO (1) WO1996020256A1 (fr)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2748273B1 (fr) * 1996-05-06 1998-06-26 Inst Francais Du Petrole Procede et dispositif de conversion thermique d'hydrocarbures en hydrocarbures aliphatiques plus insatures que les produits de depart, combinant une etape de vapocraquage et une etape de pyrolyse
    FR2750139B1 (fr) * 1996-06-25 1998-08-07 Inst Francais Du Petrole Installation et procede de vapocraquage a injection unique controlee de particules solides dans un echangeur de trempe
    US6210560B1 (en) * 1999-06-11 2001-04-03 Exxon Research And Engineering Company Mitigation of fouling by thermally cracked oils (LAW852)
    IT1308228B1 (it) * 1999-09-22 2001-12-10 Technip Italy S P A Apparato e procedimentio per l'abbattimento del polverino di cokedagli effluenti durante le fasi di decoking dei forni di cracking di
    US6585883B1 (en) * 1999-11-12 2003-07-01 Exxonmobil Research And Engineering Company Mitigation and gasification of coke deposits
    US20030234171A1 (en) * 2002-06-19 2003-12-25 Owen Steven A. Cracking furnace antifoulant injection system
    EP1652569A1 (fr) * 2004-11-02 2006-05-03 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Procédé utilisant des particules mobiles
    US7857995B2 (en) * 2006-04-11 2010-12-28 Thermo Technologies, Llc Methods and apparatus for solid carbonaceous materials synthesis gas generation
    US7513260B2 (en) * 2006-05-10 2009-04-07 United Technologies Corporation In-situ continuous coke deposit removal by catalytic steam gasification
    ES2441691B1 (es) 2013-10-21 2014-08-11 Eqtec Iberia S.L. Procedimiento para el acondicionamiento de una corriente de gas proveniente de un gasificador, craqueo termico de alquitranes y reformado con vapor y reactor empleado
    EP3839011A1 (fr) * 2019-12-19 2021-06-23 Linde GmbH Procédé et système de fabrication d'hydrocarbures

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0419643B1 (fr) * 1989-04-14 1994-11-30 Procedes Petroliers Et Petrochimiques Procede et appareillage pour le decokage d'une installation de vapocraquage
    FR2652817B1 (fr) * 1989-10-06 1993-11-26 Procedes Petroliers Petrochimiqu Procede et installation de vapocraquage d'hydrocarbures, a recyclage de particules solides erosives.
    FR2706479B1 (fr) * 1993-06-09 1995-09-15 Inst Francais Du Petrole Installation de craquage comportant des moyens communs et des moyens propres à chaque réacteur de séparation et de recyclage de particules solides et son utilisation.

    Also Published As

    Publication number Publication date
    EP0801670A1 (fr) 1997-10-22
    TW309539B (fr) 1997-07-01
    FR2728580A1 (fr) 1996-06-28
    ES2145323T3 (es) 2000-07-01
    DE69515700T2 (de) 2000-07-06
    WO1996020256A1 (fr) 1996-07-04
    FR2728580B1 (fr) 1997-02-07
    US5820747A (en) 1998-10-13
    DE69515700D1 (de) 2000-04-20

    Similar Documents

    Publication Publication Date Title
    CA2030790C (fr) Procede et appareillage pour le decokage d'une installation de vapocraquage
    EP0801670B1 (fr) Procede et installation de vapocraquage comportant l'injection de poudres collectees en un point unique
    EP2758711B1 (fr) Procédé de combustion en boucle chimique avec élimination des cendres et fines dans la zone de réduction et installation utilisant un tel procédé
    EP0425633B1 (fr) Procede de vapocraquage d'hydrocarbures
    EP2697315B1 (fr) Methode d'obtention de noir de carbone a partir de dechets de caoutchouc et son dispositif
    CA2985016C (fr) Dispositif de production de gaz methane et utilisation d'un tel dispositif
    EP0800564B1 (fr) Procede de vaprocraquage flexible et installation de vapocraquage correspondante
    WO2006087310A1 (fr) Installation de production d'hydrogene ou de gaz de synthese par gazeification
    EP0485255B1 (fr) Procédé et dispositif de production d'un combustible solide à partir de déchets combustibles
    US11767475B2 (en) System and process for heavy fuel oil pyrolysis
    EP1093506B1 (fr) Four de thermolyse a depoussierage de la sortie du flux gazeux resultant de la thermolyse
    EP0727253B1 (fr) Procédé et installation de régénération d'absorbants utilisés pour traiter les produits de combustion dans des chaudières thermiques
    WO1996020258A1 (fr) Procede et installation de vapocraquage a injection, recuperation et recyclage de particules erosives
    EP1235889B1 (fr) Procede de gazeification de composes carbones
    LU85050A1 (fr) Procede pour la combustion du coke present sur des particules solides et pour la production de chaleur recuperable a partir de particules contenant des hydrocarbures et appareil pour la mise en oeuvre de ce procede
    FR2706479A1 (fr) Installation de craquage comportant des moyens communs et des moyens propres à chaque réacteur de séparation et de recyclage de particules solides et son utilisation.
    EP3853525B1 (fr) Dispositif et procede de combustion en boucle chimique avec separateur de particules muni d'une conduite d'admission inclinee
    EP3827201B1 (fr) Installation clc comportant un separateur solide/solide avec des moyens de repartition d'un melange gaz-solide
    FR2728581A1 (fr) Procede et installation de vapocraquage flexible avec limitation du cokage des lignes de transfert de gaz craques
    EP0265346B1 (fr) Dispositif d'incinération des déchets industriels
    FR2649717A1 (fr) Procede et dispositif de decokage d'une installation de vapocraquage d'hydrocarbures
    BE602648A (fr)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970728

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE ES FR GB IT NL

    17Q First examination report despatched

    Effective date: 19971209

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT NL

    REF Corresponds to:

    Ref document number: 69515700

    Country of ref document: DE

    Date of ref document: 20000420

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000410

    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2145323

    Country of ref document: ES

    Kind code of ref document: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20000929

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20001127

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20001229

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20001231

    Year of fee payment: 6

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20010112

    Year of fee payment: 6

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011222

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020702

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20011222

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020830

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20020701

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021223

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030113

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051222