EP0425061B1 - Hard metal based on titaniumcarbonitride - Google Patents

Hard metal based on titaniumcarbonitride Download PDF

Info

Publication number
EP0425061B1
EP0425061B1 EP90250269A EP90250269A EP0425061B1 EP 0425061 B1 EP0425061 B1 EP 0425061B1 EP 90250269 A EP90250269 A EP 90250269A EP 90250269 A EP90250269 A EP 90250269A EP 0425061 B1 EP0425061 B1 EP 0425061B1
Authority
EP
European Patent Office
Prior art keywords
hard
metals
hard material
phase
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90250269A
Other languages
German (de)
French (fr)
Other versions
EP0425061A2 (en
EP0425061A3 (en
Inventor
Volkmar Dr. Rer. Nat. Richter
Heinz Kotsch
Hans-Jörg Klauss
Heidrun Dr. Rer. Nat. Kubsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=5613187&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0425061(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0425061A2 publication Critical patent/EP0425061A2/en
Publication of EP0425061A3 publication Critical patent/EP0425061A3/en
Application granted granted Critical
Publication of EP0425061B1 publication Critical patent/EP0425061B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides

Definitions

  • the invention relates to auxiliary metal-bound carbonitride hard metals which are used as sintered molded parts, in particular for the machining of steel. It is also possible to use tools made from this alloy in metal forming technology.
  • Auxiliary metal-bonded carbonitride alloys based on (Ti, Mo) (C, N) as hardness carriers and a nickel-cobalt alloy as binders are known as an advantageous cutting material for steel processing (AT-PS 341 794).
  • AT-PS 341 794 Auxiliary metal-bonded carbonitride alloys based on (Ti, Mo) (C, N) as hardness carriers and a nickel-cobalt alloy as binders are known as an advantageous cutting material for steel processing (AT-PS 341 794).
  • U-PS 341 794 Auxiliary metal-bonded carbonitride alloys based on (Ti, Mo) (C, N) as hardness carriers and a nickel-cobalt alloy as binders are known as an advantageous cutting material for steel processing (AT-PS 341 794).
  • partial replacement of titanium with tantalum leads to an improvement in properties.
  • the well-known hard metals based on titanium carbonitride have proven themselves particularly in the field of fine machining. They are also used for light roughing work with feeds up to 0.5 mm / rev.
  • a disadvantage of these carbonitride alloys is that they are not suitable for heavy cuts and applications with severe cut interruptions.
  • the decisive reason for the limited range of application of the hard metals based on carbonitride, which are often referred to as "cermets" is to be seen in an unfavorable combination of the properties of hardness and fracture toughness. that is, they do not have a sufficiently high fracture toughness and hot hardness at the same time.
  • the aim of the invention is to modify hard metals on the basis of auxiliary metal-bonded carbonitride hard materials so that they are also suitable for roughing and the heavy interrupted cut.
  • the invention has for its object to improve the fracture toughness of the carbonitride hard metals without loss of hot hardness.
  • 1s5 and 1 thus mean the quantiles of the number-related cumulative frequency distribution of the hard material phase in the sintered alloy determined using the known method of linear analysis, ie 95% of all measured chord lengths are less than or equal to 1s5 and 50% less than or equal to 1so.
  • linear analysis electron microscopic imaging methods must be used to ensure sufficient magnification.
  • the hard material phase of titanium carbonitride hard metals generally consists of two phases, a titanium and nitrogen-rich a 'phase and an a "phase, in which the metals of the 6th subgroup of the PSE accumulate.
  • the proportion of the titanium-rich a' phase of the total volume of the hard material phase amount to at least 15 parts by volume, preferably at least 30 parts by volume It is advantageous for the cutting behavior of the hard metals to keep this part of the a'-phase as high as possible.
  • the hard metals according to the invention can be produced in various ways by processes which are known in principle, the processes being controlled in such a way that the narrow grain size distribution of the hard material phase described is obtained. It has proven to be advantageous to start from a hard material with a narrow crystallite size distribution.
  • hard metals based on carbonitrides have a fracture toughness that is up to 3 MPa / m higher when the particle size distribution of the hard material phase is narrowed and that the combination of properties of hot hardness and fracture toughness of WC-TiC-TaC-Co hard metals is achieved.
  • carbonitride hard metals according to the prior art a comparable increase in hot hardness is only possible by increasing the proportion of binder, which leads to a drop in hot hardness by up to 100 units.
  • the property improvements achieved by the particle size distribution of the hard material phase according to the invention lead to particularly favorable properties in the case of hard metals which have a solidification of the binder phase.
  • hard metals with a Ni-Co binder and with a lattice constant of the binder between 0.359 nm and 0.362 nm which indicates a high content of dissolved metals from the hard material phase (Ti, Mo, W, etc.) have proven to be advantageous. You get this high solution state especially for hard materials with reduced non-metal content (0.85 ⁇ z ⁇ 0.92) and increased nitrogen content (0.35 ⁇ y 0.5).
  • the hot hardness is measured at a temperature of 800 ° C in a Vickers vacuum with a load of 108 N and a load duration of 20 s.
  • the fracture toughness is measured at room temperature in accordance with ASTM standard E 399-74.
  • the alloys according to the invention achieve or exceed the commercial hard metals based on WC-TiC-TaC-Co for the application areas P10 / P20 or P30 / P40.
  • the test was carried out on indexable inserts of the form SNUM 150416-340 with a phase (0.15 mm width, 15 ° ) and rounded cutting edges.
  • the average wear mark width VB was measured to determine the progress of wear.
  • the wear was determined after each run, which corresponds to a complete revision of the end faces of the 4 rotating bolts.
  • the service life of the hard metals according to the invention until an average wear mark width of 0.4 mm is reached under test condition 1 in comparison to a commercial grade based on TiC 0.75 N 0.25 with a comparable binder volume fraction (grade A) and a commercial P30 / P40 -Type based on the toilet is shown in Table 3.
  • Tab 4 shows the cutting performance of the alloys under test condition 2.

Abstract

Hard metal, titanium carbonitride, sintered shaped parts, cutting, steel, microstructure, particle size of hard material, fibre length distribution, median value The invention relates to a hard metal based on titanium carbonitride. Objects to which the invention relates are carbonitride hard metals which are bound with auxiliary metals and are used as sintered shaped parts, in particular for the cutting of steel. According to the invention, the microstructure of these hard metals has a narrow distribution of the grain size of the hard material, in which the fibre length distribution fulfils the condition 195/150 </= 2.5 and 0.2 mu m </= 150 </= 5 mu m is applicable for the median value 150 of this distribution and the content of titanium-rich alpha '-phase, based on the total volume of the hard material phase, is at least 15 parts by volume.

Description

Die Erfindung betrifft hilfsmetallgebundene Karbonitridhartmetalle, die als Sinterformeteile insbesondere für die spanende Bearbeitung von Stahl Anwendung finden. Ebenso ist der Einsatz aus Werkzeugen dieser Legierung in der Umformtechnik möglich.The invention relates to auxiliary metal-bound carbonitride hard metals which are used as sintered molded parts, in particular for the machining of steel. It is also possible to use tools made from this alloy in metal forming technology.

Hilfsmetallgebundene Karbonitridlegierungen auf der Basis von (Ti,Mo)(C,N) als Härteträger und einer Nickel-Kobalt-Legierung als Binder sind als vorteilhafter Schneidwerkstoff für die Stahlbearbeitung bekannt (AT-PS 341 794). Nach der US-PS 4 120 719 führt eine teilweise Ersetzung des Titans durch Tantal zu einer Verbesserung der Eigenschaften. Auch Zusätze von Vanadiumkarbid und Aluminium, das eine Verfestigung des Binders durch Mischkristallbildung und Ausscheidungshärtung bewirkt, werden beschrieben (DE 2652392).Auxiliary metal-bonded carbonitride alloys based on (Ti, Mo) (C, N) as hardness carriers and a nickel-cobalt alloy as binders are known as an advantageous cutting material for steel processing (AT-PS 341 794). According to US Pat. No. 4,120,719, partial replacement of titanium with tantalum leads to an improvement in properties. Additions of vanadium carbide and aluminum, which solidify the binder through mixed crystal formation and precipitation hardening, are also described (DE 2652392).

Die bekannten Hartmetalle auf der Basis von Titankarbonitrid bewähren sich vor allem auf dem Gebiet der Feinbarbeitung. Auch für leichte Schrupparbeiten mit Vorschüben bis 0,5 mm/U finden sie Anwendung. Ein Nachteil dieser Karbonitridlegierungen besteht darin, daß sie für schwere Schnitte und Einsatzfälle mit starken Schnittunterbrechungen nicht geeignet sind. Die entscheidende Ursache für den bislang eingeengten Anwendungsbereich der oft als "Cermets" bezeichneten Hartmetalle auf Karbonitridbasis ist in einer ungünstigen Kombination der Eigenschaften Warmhärte und Bruchzähigkeit zu sehen, d. h., daß nicht gleichzeitig eine hinreichend hohe Bruchzähigkeit und Warmhärte aufweisen.The well-known hard metals based on titanium carbonitride have proven themselves particularly in the field of fine machining. They are also used for light roughing work with feeds up to 0.5 mm / rev. A disadvantage of these carbonitride alloys is that they are not suitable for heavy cuts and applications with severe cut interruptions. The decisive reason for the limited range of application of the hard metals based on carbonitride, which are often referred to as "cermets", is to be seen in an unfavorable combination of the properties of hardness and fracture toughness. that is, they do not have a sufficiently high fracture toughness and hot hardness at the same time.

Das Ziel der Erfindung ist es, Hartmetalle auf der Basis hilfsmetallgebundener Karbonitridhartstoffe so zu modifizieren, daß sie sich auch für Schrupparbeiten und den schweren unterbrochenen Schnitt eignen.The aim of the invention is to modify hard metals on the basis of auxiliary metal-bonded carbonitride hard materials so that they are also suitable for roughing and the heavy interrupted cut.

Der Erfindung liegt die Aufgabe zugrunde, die Bruchzähigkeit der Karbonitridhartmetalle ohne Einbuße von Warmhärte zu verbessern.The invention has for its object to improve the fracture toughness of the carbonitride hard metals without loss of hot hardness.

Erfindungsgemäß wird diese Aufgabe für Hartmetalle auf der Basis von Titankarbonitrid der allgemeinen Zusammensetzung TiuMevMe w(CxNy)z mit u + v + w =1, x + y = 1, 0,80 ≦ z < 1,03, u≧0,6; 0,2≦y≦0,6, wobei Me für die Metalle Zr, Hf, Nb, Ta, V und Me' für die Metalle W, Mo, Cr bzw. Mischungen dieser Metalle steht, und einem Anteil von 3 bis 25 Masse % Bindemetall bezogen auf das Hartmetall, wobei das Bindemetall ein Metall aus der Eisengruppe ist, Weldes neben den aus der Hartstoffphase in Lösung gegangenen Metallen weitere Elemente, wie z. B. W, Mo, Cr, Al, Si, Mn oder Cu in fester Lösung oder als intermetallische Verbindung in Form submikroskopischer Ausscheidungen, enthalten kann, dadurch gelöst, daß diese Hartmetalle ein Gefüge mit einer engen Verteilung der Hartstoffkorngröße aufweisen, bei der die Sehnenlängenverteilung die Bedingung 195/150 2,5, vorzugsweise 195/150 2,0 erfüllt und für den Medianwert 1so 0,2 um ≦ 150 5 5 µm, vorzugsweise 0,5 um ≦ 150 1,5 um gilt.According to the invention, this object is achieved for hard metals based on titanium carbonitride of the general composition Ti u Me v Me w ( Cx N y ) z with u + v + w = 1, x + y = 1, 0.80 ≦ z <1.03 , u ≧ 0.6; 0.2 ≦ y ≦ 0.6, where Me stands for the metals Zr, Hf, Nb, Ta, V and Me 'for the metals W, Mo, Cr or mixtures of these metals, and a proportion of 3 to 25 mass % Binding metal based on the hard metal, the binding metal being a metal from the iron group, Weldes in addition to the metals which have dissolved in the hard material phase, such as B. W, Mo, Cr, Al, Si, Mn or Cu in solid solution or as an intermetallic compound in the form of submicroscopic precipitates, solved, that these hard metals have a structure with a narrow distribution of the hard grain size, in which the chord length distribution condition 1 95/1 50 2.5, preferably 1 95/1 50 2.0 microns fulfilled and for the median 1so 0.2 to ≦ 5 1 50 5, preferably 0.5 to ≦ 1.5 1 50 applies to .

Dabei bedeuten 1s5 und 1so die Quantile der mit der bekannten Methode der Linearanalyse ermittelten anzahlbezogenen Summenhäufigkeitsverteilung der Hartstoffphase in der gesinterten Legierung, d. h. 95 % aller gemessenen Sehnenlängen sind kleiner oder gleich dem Wert 1s5 bzw. 50 % kleiner oder gleich 1so. Bei der Linearanalyse sind elektronenmikroskopische Abbildungsverfahren zur Sicherung einer hinreichenden Vergrößerung zu verwenden.1s5 and 1 thus mean the quantiles of the number-related cumulative frequency distribution of the hard material phase in the sintered alloy determined using the known method of linear analysis, ie 95% of all measured chord lengths are less than or equal to 1s5 and 50% less than or equal to 1so. In linear analysis, electron microscopic imaging methods must be used to ensure sufficient magnification.

Die Hartstoffphase von Titankarbonitridhartmetallen besteht im allgemeinen aus zwei Phasen, einer titan- und stickstoffreichen a'-Phase und einer a"-Phase, in der sich die Metalle der 6. Nebengruppe des PSE anreichern. Erfindungsgemäß soll der Anteil der titanreichen a'-Phase am Gesamtvolumen der Hartstoffphase wenigstens 15 Volumenanteile, vorzugsweise wenigstens 30 Volumenanteile betragen. Für das Schneidverhalten der Hartmetalle ist es dabei vorteilhaft, diesen Anteil der a'-Phase so hoch wie möglich zu halten.The hard material phase of titanium carbonitride hard metals generally consists of two phases, a titanium and nitrogen-rich a 'phase and an a "phase, in which the metals of the 6th subgroup of the PSE accumulate. According to the invention, the proportion of the titanium-rich a' phase of the total volume of the hard material phase amount to at least 15 parts by volume, preferably at least 30 parts by volume It is advantageous for the cutting behavior of the hard metals to keep this part of the a'-phase as high as possible.

Die Herstellung der erfindungsgemäßen Hartmetalle kann auf verschiedene Weise nach prinzipiell bekannten Verfahren erfolgen, wobei die Prozesse so zu steuern sind, daß die beschriebene enge Korngrößenverteilung der Hartstoffphase erhalten wird. Als vorteilhaft hat es sich dabei erwiesen, von einem Hartstoff mit einer engen Kristallitgrößenverteilung auszugehen.The hard metals according to the invention can be produced in various ways by processes which are known in principle, the processes being controlled in such a way that the narrow grain size distribution of the hard material phase described is obtained. It has proven to be advantageous to start from a hard material with a narrow crystallite size distribution.

Überraschenderweise zeigt sich, daß Hartmetalle auf der Basis von Karbonitriden bei erfindungsgemäßer Einengung der Korngrößenverteilung der Hartstoffphase eine um bis zu 3 MPa /m höhere Bruchzähigkeit aufweisen und die Eigenschaftskombination Warmhärte-Bruchzähigkeit von WC-TiC-TaC-Co-Hartmetallen erreichen. Bei Karbonitridhartmetallen nach dem Stand der Technik ist eine vergleichbare Steigerung der Warmhärte nur durch eine Erhöhung des Binderanteils möglich, die zu einem Abfall der Warmhärte um bis zu 100 Einheiten führt.Surprisingly, it is found that hard metals based on carbonitrides have a fracture toughness that is up to 3 MPa / m higher when the particle size distribution of the hard material phase is narrowed and that the combination of properties of hot hardness and fracture toughness of WC-TiC-TaC-Co hard metals is achieved. In the case of carbonitride hard metals according to the prior art, a comparable increase in hot hardness is only possible by increasing the proportion of binder, which leads to a drop in hot hardness by up to 100 units.

Die durch die erfindungsgemäße Korngrößenverteilung der Hartstoffphase erzielten Eigenschaftsverbesserungen führen bei Hartmetallen, die ein Verfestigung der Binderphase aufweisen, zu besonders günstigen Eigenschaften. Vorteilhaft erwiesen sich beispielsweise Hartmetalle mit einem Ni-Co-Binder und mit einer Gitterkonstante des Binders zwischen 0,359 nm und 0,362 nm, die einen hohen Gehalt an gelösten Metallen aus der Hartstoffphase (Ti, Mo, W usw.) anzeigt. Diesen hohen Lösungszustand erhält man besonders bei Hartstoffen mit reduziertem Nichtmetallanteil (0,85 ≦ z < 0,92) und erhöhtem Stickstoffanteil (0,35 ≦ y 0,5).The property improvements achieved by the particle size distribution of the hard material phase according to the invention lead to particularly favorable properties in the case of hard metals which have a solidification of the binder phase. For example, hard metals with a Ni-Co binder and with a lattice constant of the binder between 0.359 nm and 0.362 nm, which indicates a high content of dissolved metals from the hard material phase (Ti, Mo, W, etc.), have proven to be advantageous. You get this high solution state especially for hard materials with reduced non-metal content (0.85 ≦ z <0.92) and increased nitrogen content (0.35 ≦ y 0.5).

Die Erfindung wir in den nachfolgenden Ausführungsbeispielen näher erläutert.The invention is explained in more detail in the following exemplary embodiments.

AusführungsbeispieleEmbodiments

  • 1. Als Härteträger wird ein titankarbonitrid der Zusammensetzung TiC0,75N0,25 eingesetzt, dessen Kristallite eine Sehnenlängenverteilung mit den folgenden Markmalen liefern: Medianwert 1so = 0,8 um, 1s5 = 2,0 um, 110 = 0,3 um. Die Messung der Sehnenlängenverteilung erfolgte nach Einbettung des Pulvers in Kupfer an einer Schlifffläche. Dieses Karbonitrid wird mit Molybdän nach TGL 13791, Nickel nach TGL 12175/01, Kobalt, Sorte 1 nach TGL 24326/0 in den in Tab. 1 angegebenen Anteilen gemischt und unter Zusatz von 5 % Hartparaffin in VR nach TGL 21766 als Preßhilfsmittel in einer Schwingmühle in Leichbenzin 48 h gemahlen. Die Mischung wird im Vakuum getrocknet und anschließend homogenisiert. Die mit einem Preßdruck von 300 MPa hergestellten Biegebruchstäbe und Wendeschneidplatten werden entwachst und im Vakuum bei 1450 ° C und 30 min dichtgesintert. Die an diesen Legierungen der Bezeichnung 1-4 ermittelten Gefügekennwerte und mechanischen Eigenschaften gibt Tab. 2 wieder.1. A titanium carbonitride with the composition TiC 0.75 N 0.25 is used as the hardness carrier, the crystallites of which provide a chord length distribution with the following characteristics: median value 1so = 0.8 µm, 1s5 = 2.0 µm, 1 10 = 0.3 around. The chord length distribution was measured after the powder was embedded in copper on a ground surface. This carbonitride is mixed with molybdenum according to TGL 13791, nickel according to TGL 12175/01, cobalt, grade 1 according to TGL 24326/0 in the proportions given in Table 1 and with the addition of 5% hard paraffin in VR according to TGL 21766 as a pressing aid in one Vibration mill ground in mineral spirits for 48 h. The mixture is dried in vacuo and then homogenized. The bending fracture bars and indexable inserts produced with a pressure of 300 MPa are dewaxed and densely sintered in a vacuum at 1450 ° C for 30 minutes. The structural parameters and mechanical properties determined on these alloys with the designation 1-4 are shown in Table 2.

Dabei erfolgt die Messung der Warmhärte bei einer Temperatur von 800 ° C im Vakuum nach Vickers mit einer Last von 108 N und einer Belastungsdauer von 20 s. Die Messung der Bruchzähigkeit wird bei Raumtemperatur nach der ASTM-Norm E 399-74 durchgeführt. Der Vergleich mit den Legierungen 5 und 6, die nach dem in der AT-PS 341 794 angegebenen Verfahren mit der Zusammensetzung von Legierung 3 hergestellt wurden, illustriert die durch die erfindungsgemäße Einengung der Korngröße des gesinterten Hartmetalls erzielbaren Eigenschaftsverbesserungen. In der Kombination Warmhärte-Bruchzähigkeit erreichen bzw. übertreffen die erfindungsgemäßen Legierungen die kommerzieller Hartmetalle auf der Basis WC-TiC-TaC-Co für die Anwendungsbereiche P10/P20 bzw. P30/P40.

Figure imgb0001
Figure imgb0002
The hot hardness is measured at a temperature of 800 ° C in a Vickers vacuum with a load of 108 N and a load duration of 20 s. The fracture toughness is measured at room temperature in accordance with ASTM standard E 399-74. The comparison with alloys 5 and 6, which were produced by the process specified in AT-PS 341 794 with the composition of alloy 3, illustrates the property improvements which can be achieved by narrowing the grain size of the sintered hard metal according to the invention. In the combination of hot hardness and fracture toughness, the alloys according to the invention achieve or exceed the commercial hard metals based on WC-TiC-TaC-Co for the application areas P10 / P20 or P30 / P40.
Figure imgb0001
Figure imgb0002

Entsprechend der Zielstellung erfolgte die Prüfung der Schneidleistung unter den folgenden Bedingungen des schweren Schnitts an Stahl C60N:

  • Prüfbedingung 1: Glatter, trockner Schnitt
    Figure imgb0003
  • Prüfbedingung 2: Glatter, trockner Schnitt
    Figure imgb0004
  • Prüfbedingung 3: Bolzendrehversuch (unterbrochener Schnitt)
    Figure imgb0005
In accordance with the objective, the cutting performance was checked under the following conditions of heavy cutting on steel C60N:
  • Test condition 1: Smooth, dry cut
    Figure imgb0003
  • Test condition 2: Smooth, dry cut
    Figure imgb0004
  • Test condition 3: bolt turning test (interrupted cut)
    Figure imgb0005

Die Prüfung erfolgte an Wendeschneidplatten der Form SNUM 150416-340 mit einer Phase (0,15 mm Breite, 15°) und gerundeten Schneidkanten. Zur Ermittlung des Verschleißfortschritts wurde die mittlere Verschleißmarkenbreite VB gemessen. Beim Bolzendrehversuch wurde der Verschleiß nach jedem Durchgang, der jeweils einer vollen Überarbeitung der Stirnflächen der 4 rotierenden Bolzen entspricht, ermittelt. Die Standzeit der erfindungsgemäßen Hartmetalle bis zum erreichen einer mittleren Verschleißmarkenbreite von 0,4 mm unter Prüfbedingung 1 im Vergleich zu einer kommerziellen Sorte auf der Basis von TiC0,75N0,25 mit vergleichbarem Bindervolumenanteil (Sorte A) sowie einer kommerziellen P30/P40-Sorte auf WC-Basis zeigt Tab. 3.

Figure imgb0006
The test was carried out on indexable inserts of the form SNUM 150416-340 with a phase (0.15 mm width, 15 ° ) and rounded cutting edges. The average wear mark width VB was measured to determine the progress of wear. In the bolt turning test, the wear was determined after each run, which corresponds to a complete revision of the end faces of the 4 rotating bolts. The service life of the hard metals according to the invention until an average wear mark width of 0.4 mm is reached under test condition 1 in comparison to a commercial grade based on TiC 0.75 N 0.25 with a comparable binder volume fraction (grade A) and a commercial P30 / P40 -Type based on the toilet is shown in Table 3.
Figure imgb0006

In Tab 4 ist die Schneidleistung der Legierungen unter der Prüfbedingung 2 dargestellt.

Figure imgb0007
Tab 4 shows the cutting performance of the alloys under test condition 2.
Figure imgb0007

Die Schneidleistungen im schweren unterbrochenen Schnitt (Prüfbedingung 3) zeigt Tab. 5.

Figure imgb0008
The cutting performance in the heavy interrupted cut (test condition 3) is shown in Table 5.
Figure imgb0008

Die Versuche belegen, daß durch die erfindungsgemäße Modifizierung des Gefüges eine Verbesserung der Schneidleistung bewirkt wird.

  • 2. Ein Titankarbonitrid der Zusammensetzung TiCo,6No,4, dessen Kristallitgrößenverteilung bei linearanalytischer Bewertung durch die folgenden Kenngrößen beschrieben wird: 1so = 0,74 um, 195 = 1,1 µm, 110 = 0,4 um, wird mit Masseanteilen Molybdän, Nickel und Kobald, wie in Tab. 6 angegeben, auf den im Beispiel 1 angegebenen Weg vermischt und zu Preßlingen verarbeitet, die nach dem Entwachsen im Vakuum bei 1475 ° C und 30 min Sinterzeit dichtgesintert werden.
    Figure imgb0009
The tests prove that the modification of the structure according to the invention brings about an improvement in the cutting performance.
  • 2. A titanium carbonitride with the composition TiC o , 6 N o , 4 , the crystallite size distribution of which is described by linear analytical evaluation by the following parameters: 1so = 0.74 µm, 1 95 = 1.1 µm, 1 10 = 0.4 µm, is mixed with mass fractions of molybdenum, nickel and cobalt, as indicated in Tab. 6, in the way indicated in Example 1 and processed into compacts, which are densely sintered after dewaxing in vacuo at 1475 ° C. and 30 min sintering time.
    Figure imgb0009

Die Gefüge der so erhaltenen Legierungen 7 bis 10 und ihre mechanischen Kennwerte sind in Tab. 7 beschrieben.

Figure imgb0010
Wie ein Vergleich der Werte von Tab. 2 und Tab. 7 zeigt, führt die Einengung der Korngrößenverteilung der Hartstoffphase auf Werte 195/150 2 trotz sinkender mittlerer Korngröße zu einer weiteren Zähigkeitssteigerung. Der erhöhte Stickstoffgehalt der Hartstoffphase führt in Verbindung mit Molybdän zu einer Steigerung der Warmhärte, die durch Abdrängen von Molybdän in den Binder zu erklären ist. Der erhöhte Lösungszustand der Legierung 9 und 10, die sich durch eine besonders vorteilhafte Kombination von Warmhärte und Bruchzähigkeit auszeichnen, wird durch die Gitterkonstanten des Binders von 0,362 nm angezeigt.The structure of the alloys 7 to 10 thus obtained and their mechanical characteristics are described in Table 7.
Figure imgb0010
As a comparison of the values from Tab. 2 and Tab. 7 shows, the narrowing of the grain size distribution of the hard material phase to values 1 95/1 50 2 leads to a further increase in toughness despite a falling average grain size. The increased nitrogen content of the hard material phase in combination with molybdenum leads to an increase in the hardness, which can be explained by pushing molybdenum into the binder. The increased solution state of alloy 9 and 10, which are distinguished by a particularly advantageous combination of hot hardness and fracture toughness, is indicated by the lattice constants of the binder of 0.362 nm.

Die Schneidleistungen unter der Prüfbedingung (siehe Beispiel 1) gibt Tab. 8 wieder.

Figure imgb0011
The cutting performance under the test condition (see example 1) is shown in Table 8.
Figure imgb0011

Bei den erfindungsgemäßen Hartmetallen trat unter diesen Spanungsbedingungen weder ein Plattenbruch auf noch wurden Schneidkantenausbrüche beobachet. Die Legierungen 8, 9 und 10 wiesen gegenüber der P30/P40-Sorte eine deutliche verbesserte Standzeit auf.

  • 3. Das Titankarbonitridharstoffpulver aus Beispiel 1 wird mit 10 Masseanteilen Molybdän, 5 Masseanteilen Ni und 5 Masseanteilen Co nach dem in Beispiel 1 angegebenen Weg zu Hartmetall verarbeitet. Das Gefüge des dichtgesinterten Hartmetalls weist die folgenden Kennwerte auf: 195/150 = 2,12, 1so = 0,71 µm.

Für Warmhärte und Bruchzähigkeit wurde ermittelt:
  • HV11-20 (800 ° C) = 630, K1c = 8,6 MPa √m. Eine Legierung gleicher Zusammensetzung, die nach dem in der AT-PS 341 794 angegebenen Verfahren hergestellt wird, weist dagegen die folgenden Kennwerte auf: 195/150 = 2,67, 150 = 0,8 µm, HV11-20 (800 °C) = 640, K1c = 7,2 MPa √m.
In the case of the hard metals according to the invention, there was neither a plate break nor cutting edge breakouts observed under these tension conditions. Alloys 8, 9 and 10 had a significantly improved service life compared to the P30 / P40 grade.
  • 3. The titanium carbonitride urea powder from Example 1 is processed with 10 parts by mass of molybdenum, 5 parts by mass of Ni and 5 parts by mass of Co according to the route given in Example 1 to hard metal. The structure of the densely sintered cemented carbide has the following characteristics: 1 95/1 50 = 2.12, 1SO = 0.71 microns.

The following was determined for hot hardness and fracture toughness:
  • HV 11-20 (800 ° C) = 630, K 1c = 8.6 MPa √m. On the other hand, an alloy of the same composition, which is produced according to the process specified in AT-PS 341 794, has the following characteristic values: 1 95/1 50 = 2.67, 1 50 = 0.8 μm, HV 11-20 ( 800 ° C) = 640, K 1c = 7.2 MPa √m.

Claims (4)

1. Hard alloy based on titanium carbonitride of the general composition TiuMevMe w (CxNy)z with u + v + w = 1, x + y = 1, 0.80 ≦ z < 1.03; u ≧ 0.6: 0.2 ≦ y ≦ 0.6, wherein Me represents the metals Zr, Hf, Nb, Ta, V and Me` represents the metals W, Mo, Cr or mixtures of these metals, and a proportion of from 3 to 25% by mass of binder metal referred to the hard alloy, wherein the binder metal is a metal of the iron group, which contains metals that have passed out of the hard material phase into solution and may also contain further elements as well, such as for example, W, Mo, Cr, Al, Si, Mn or Cu in solid solution or as intermetallic compound in the form of submicroscopic deposits, characterised in that the structure has a narrow distribution of hard material particle sizes, wherein the particle diameter distribution fulfils the condition I95/I50 2.5; the median value 150 of this distribution is in the range 0.2 ≦ I50 5 ≦ µm and the proportion of titanium-rich- a-phase of the total volume of the hard material phase is at least 15% by volume.
2. Hard alloy according to claim 1, characterised in that the particle diameter distribution of the hard material phase fulfils the condition I95/I50 2.
3. Hard alloy according to claim 1, characterised in that the median value of the particle diameter distribution 150 is in the range 0.5 µm ≦ I50 1.5.
4. Hard alloy according to claim 1, characterised in that the proportion of the titanium-rich a-phase of the total volume of the hard material phase is at least 30 parts by volume.
EP90250269A 1989-10-23 1990-10-22 Hard metal based on titaniumcarbonitride Expired - Lifetime EP0425061B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD333806 1989-10-23
DD89333806A DD288623A5 (en) 1989-10-23 1989-10-23 HARDMETAL BASED ON TITANKARBONITRIDE

Publications (3)

Publication Number Publication Date
EP0425061A2 EP0425061A2 (en) 1991-05-02
EP0425061A3 EP0425061A3 (en) 1991-08-14
EP0425061B1 true EP0425061B1 (en) 1994-07-13

Family

ID=5613187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90250269A Expired - Lifetime EP0425061B1 (en) 1989-10-23 1990-10-22 Hard metal based on titaniumcarbonitride

Country Status (4)

Country Link
EP (1) EP0425061B1 (en)
AT (1) ATE108493T1 (en)
DD (1) DD288623A5 (en)
DE (1) DE59006418D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE500048C2 (en) * 1991-06-12 1994-03-28 Sandvik Ab Ways of manufacturing sintered carbonitride alloys
KR20100009532A (en) * 2008-05-20 2010-01-27 이비덴 가부시키가이샤 Honeycomb structure
CN111519115B (en) * 2020-03-25 2021-12-28 成都美奢锐新材料有限公司 High-toughness high-wear-resistance titanium carbonitride based cermet material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971656A (en) * 1973-06-18 1976-07-27 Erwin Rudy Spinodal carbonitride alloys for tool and wear applications
SE392482B (en) * 1975-05-16 1977-03-28 Sandvik Ab ON POWDER METALLURGIC ROAD MANUFACTURED ALLOY CONSISTING OF 30-70 VOLUME PERCENT
US4120719A (en) * 1976-12-06 1978-10-17 Sumitomo Electric Industries, Ltd. Cemented carbonitride alloys containing tantalum

Also Published As

Publication number Publication date
DE59006418D1 (en) 1994-08-18
ATE108493T1 (en) 1994-07-15
EP0425061A2 (en) 1991-05-02
EP0425061A3 (en) 1991-08-14
DD288623A5 (en) 1991-04-04

Similar Documents

Publication Publication Date Title
DE2621472C2 (en) Use of a hard alloy for cutting, shearing or deforming tools
EP0689617B1 (en) Cermet and method of producing it
DE69818138T2 (en) Cold work tool steel particles with high impact strength from metal powder and process for its production
DE69734515T2 (en) SINTERED HARD ALLOY
DE10135790A1 (en) Fine-grain cemented carbide, process for its production and use
EP0330913B1 (en) Process for preparing a sintered hard metal, and sintered hard metal obtained thereby
DE19907749A1 (en) Sintered hard metal body useful as cutter insert or throwaway cutter tip has concentration gradient of stress-induced phase transformation-free face-centered cubic cobalt-nickel-iron binder
DE2429075A1 (en) Carbonitrides of titanium alloys - for use as cutting tools in machining of metals
WO2008125525A1 (en) Tool
DE10356470A1 (en) Zirconium and niobium-containing cemented carbide bodies and process for its preparation
DE19757681C2 (en) Sintered material based on cubic boron nitride and process for its production
DE19618109A1 (en) Producing sintered hard metal components
EP0448572B1 (en) Hard metal composite body and process for producing it
EP0214679B1 (en) Oxidation-resistant hard metal alloy
DE2560567C2 (en)
EP0425061B1 (en) Hard metal based on titaniumcarbonitride
DE10102706B4 (en) Cubic boron nitride based sintered material and process for its preparation
DE19845376C5 (en) Hard metal or cermet body
DE3301839A1 (en) METAL CERAMICS WITH HIGH TOUGHNESS ON A TITANIUM NITRIDE BASE
DE3309237C2 (en) Process for the production of highly wear-resistant cemented carbides based on titanium nitride
DE19708197A1 (en) Sintered sliding or sliding element and method for its production
WO2020074241A1 (en) Hard metal having toughness-increasing microstructure
DE112021005360T5 (en) PULVERIZING/STIRRING/MIXING/KNEADING MACHINE COMPONENT
DE2840935C2 (en) Process for producing a cemented carbide
DE19629993B4 (en) Alumina-based mixed ceramics, process for their preparation and their use

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901119

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB LU SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB LU SE

17Q First examination report despatched

Effective date: 19930506

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB LU SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940713

Ref country code: FR

Effective date: 19940713

REF Corresponds to:

Ref document number: 108493

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59006418

Country of ref document: DE

Date of ref document: 19940818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941031

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19941013

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940713

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Free format text: DATE CORRECTED TO 940713

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: WIDIA GMBH

Effective date: 19950403

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19980518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060914

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080501