SE500048C2 - Ways of manufacturing sintered carbonitride alloys - Google Patents

Ways of manufacturing sintered carbonitride alloys

Info

Publication number
SE500048C2
SE500048C2 SE9101799A SE9101799A SE500048C2 SE 500048 C2 SE500048 C2 SE 500048C2 SE 9101799 A SE9101799 A SE 9101799A SE 9101799 A SE9101799 A SE 9101799A SE 500048 C2 SE500048 C2 SE 500048C2
Authority
SE
Sweden
Prior art keywords
pressing
binder phase
ways
sintering
size
Prior art date
Application number
SE9101799A
Other languages
Swedish (sv)
Other versions
SE9101799D0 (en
SE9101799L (en
Inventor
Gerold Weinl
Aake Oestlund
Ulf Jutterstroem
Original Assignee
Sandvik Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Ab filed Critical Sandvik Ab
Priority to SE9101799A priority Critical patent/SE500048C2/en
Publication of SE9101799D0 publication Critical patent/SE9101799D0/en
Priority to EP92850139A priority patent/EP0518840A1/en
Publication of SE9101799L publication Critical patent/SE9101799L/en
Publication of SE500048C2 publication Critical patent/SE500048C2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

According to the present invention there is now provided a method of manufacturing a sintered body of titanium based carbonitride alloy comprising hard constituents in 525 % binder phase where the hard constituents contain, in addition to Ti, one or more of the metals Zr, Hf, V, Nb, Ta, Cr, Mo or W and the binder phase is based on cobalt and/or nickel with powder metallurgical methods, i.e., milling, pressing and sintering. If the powder to be compacted has a mean agglomerate size of 40-80 mu m and a span of <1.5 less porosity and lower compaction pressure is obtained.

Description

15 20 25 30 35 oo 048 2 Ni. Mängden bindefas är vanligen 5-25 vikt-%. Dessutom före- kommer ibland andra metaller, t ex Al, som ibland uppges härda bindefasen och ibland förbättra vätningen mellan hård- ämnen och bindefas, dvs underlätta sintringen. 15 20 25 30 35 oo 048 2 Ni. The amount of binder phase is usually 5-25% by weight. In addition, there are sometimes other metals, such as Al, which are sometimes said to harden the binder phase and sometimes to improve the wetting between hard substances and binder phase, ie to facilitate sintering.

Sintrade karbonitridlegeringar tillverkas liksom konventio- nell hàrdmetall medelst pulvermetallurgiska metoder malning, torkning, pressning och sintring. Malningen sker vanligen med en organisk malvätska och normalt tillsammans med ett pressmedel. Detta pressmedels uppgift är att verka smörjande vid den efterföljande verktygspressningen. Pressmedlet har emellertid även en annan uppgift, nämligen att skydda de färska ytor som uppkommer vid malningen för syreupptagning.Sintered carbonitride alloys are manufactured as well as conventional cemented carbide by means of powder metallurgical methods grinding, drying, pressing and sintering. The grinding is usually done with an organic grinding liquid and normally together with a pressing agent. The task of this pressing agent is to have a lubricating effect during the subsequent tool pressing. However, the pressing agent also has another task, namely to protect the fresh surfaces that arise during grinding for oxygen uptake.

Efter malningen avlägsnas malvätskan vanligen genom spray- torkning. Genom lämpligt val av parametrar vid torkningen erhålls sfäriska agglomerat med önskad storleksfördelning.After grinding, the grinding fluid is usually removed by spray drying. By suitable selection of parameters during drying, spherical agglomerates with the desired size distribution are obtained.

Dessa agglomerat täcks mer eller mindre fullständigt av pressmedlet. Nu kan man alltså förvänta sig att ju större agglomeratstorleken är, desto gynnsammare förhållande yta- volym uppvisar sådana agglomerat. Man kan alltså förvänta sig att material som är känsligt för syre bör ha så stor agglomeratkornstorlek som möjligt för att minimera denna icke önskade syreupptagning.These agglomerates are more or less completely covered by the pressing agent. Now it can be expected that the larger the agglomerate size, the more favorable the surface volume ratio of such agglomerates. It can thus be expected that materials which are sensitive to oxygen should have as large an agglomerate grain size as possible in order to minimize this undesired oxygen uptake.

Agglomeratens storlek och fördelning kan bestämmas genom siktanalys eller på annat sätt och kan karakteriseras genom medelagglomeratstorleken, C, och spannet definierad genom uttrycket (A-B)/C där A= den agglomeratstorlek under vilken det finns 90 % av alla agglomerat, B= den agglomeratstorlek under vilken det finns 10 % av alla agglomerat.The size and distribution of the agglomerates can be determined by sieve analysis or otherwise and can be characterized by the average agglomerate size, C, and the range defined by the expression (AB) / C where A = the agglomerate size below which there are 90% of all agglomerates, B = the agglomerate size below which there is 10% of all agglomerates.

För konventionell hàrdmetall har en medelagglomeratstorlek av 100-150/um med spann <2 visat sig vara lämplig. Det har nu överraskande visat sig att för titanbaserade karbonitrid- legeringar skall medelstorleken för agglomeraten vara 40-80/um, företrädesvis 40-60/um och spannet desvis <1.2. Härvid erhålls lägre presstryck och mindre porositet än om den för konventionell hárdmetall vanliga medelagglomeratstorleken används. 10 15 20 25 30 35 3 500 048 Högt presstryck är förenat med en ökad risk för uppkomst av såväl sprickor som ojämn densitetsfördelning i samband med pressningen. Förekomst av sprickor och ojämnheter i densi- tetsfördelningen kan leda till problem med sprickbildning såväl som till måttavvikelser i den sintrade karbonitrid- legeringen. Närvaro av porer kan också resultera i måttavvi- kelser och påverkan av mekaniska egenskaper i den färdiga legeringen.For conventional cemented carbide, an average agglomerate size of 100-150 .mu.m with a span <2 has been found to be suitable. It has now surprisingly been found that for titanium-based carbonitride alloys the average size of the agglomerates should be 40-80 .mu.m, preferably 40-60 .mu.m and the range is <1.2. This results in lower compression pressures and less porosity than if the average agglomerate size usual for conventional cemented carbide is used. 10 15 20 25 30 35 3 500 048 High press pressure is associated with an increased risk of both cracks and uneven density distribution in connection with pressing. The presence of cracks and irregularities in the density distribution can lead to problems with crack formation as well as to dimensional deviations in the sintered carbonitride alloy. The presence of pores can also result in dimensional deviations and the influence of mechanical properties in the finished alloy.

De ovan nämnda medelagglomeratstorlekarna för konventionell hårdmetall resp karboinitridbaserade legeringar visar sålun- da att för de senare är halva diametern eller radien lämp- lig. Det betyder att agglomeraten i detta fall har en volym av endast en åttondel av motsvarande hårdmetallagglomerat.The above-mentioned average agglomerate sizes for conventional cemented carbide or carboinitride-based alloys thus show that for the latter, half the diameter or radius is suitable. This means that the agglomerates in this case have a volume of only one eighth of the corresponding cemented carbide agglomerate.

Titanbaserade karbonitridlegeringar är i pulvertillstånd mycket känsliga för upptagning av syre vilket ställer till problem med interstitialbalansen i samband med sintringen.Titanium-based carbonitride alloys are in powder state very sensitive to oxygen uptake, which poses problems with the interstitial balance in connection with sintering.

Denna känslighet för syre är ett av de största problemen vid tillverkningen av karbonitridlegeringar som alltså är betyd- ligt mera svårtillverkade än konventionell kobolt-wolfram- karbid baserad hárdmetall. Upptagningen av syre är till mycket stor del direkt proportionell mot den specifika ytan.This sensitivity to oxygen is one of the biggest problems in the manufacture of carbonitride alloys, which are thus much more difficult to manufacture than conventional cobalt-tungsten carbide based cemented carbide. The uptake of oxygen is to a very large extent directly proportional to the specific surface.

Ju finkornigare ett material är, desto större är dess speci- fika yta, och ovan har nämnts att karbonitridlegeringar generellt sett är finkornigare än normal hárdmetall.The finer a material is, the larger its specific surface area, and it has been mentioned above that carbonitride alloys are generally finer than normal cemented carbide.

Den typ av porositet som gärna uppkommer för karbonitridle- geringar som har en medelagglomeratstorlek motsvarande den för normal hårdmetall, d v s 100-150/um, är ofta s k agglo- meratporositet, d v s man ser de ursprungliga agglomeraten och det är mellan dessa kulor som material inte har flutit ut och uppfyllt tomrummet. Sådan porositet kan vara mycket förödande för materialet eftersom dessa porer dels är stora, dels kan vara spetsiga och ha kraftig anvisningsverkan.The type of porosity that often arises for carbonitride alloys that have an average agglomerate size corresponding to that of normal cemented carbide, ie 100-150 .mu.m, is often so-called agglomerate porosity, ie you see the original agglomerates and it is between these spheres that material does not has flowed out and filled the void. Such porosity can be very devastating for the material because these pores are both large and pointed and have a strong guiding effect.

Karbonitridlegeringar som sådana är generellt sett sprödare än hårdmetall och har svårare att stoppa upp eventuella sprickor. De är alltså betydligt mer anvisningskänsliga än vad hårdmetallen är. 500 048 4, 10 15 20 25 Föreliggande uppfinning avser alltså ett sätt att tillverka karbonitridlegeringar med användning av ett pulver med en medelagglomeratstorlek som är betydligt mindre än den stor- lek som visat lämplig för konventionell hàrdmetall. Trots de generella sambanden mellan syreupptagning och agglomerat- storlek leder denna sänkning av medelagglomeratstorleken till förbättrade egenskaper såsom lägre presstryck och mind- re porositet. Dessa egenskaper ärvs sedan av den pressade kroppen och ger som resultat en tätsintrad produkt med mind- re máttavvikelser.Carbonitride alloys as such are generally more brittle than cemented carbide and have a harder time stopping any cracks. They are thus significantly more sensitive to instructions than the cemented carbide is. The present invention thus relates to a method of making carbonitride alloys using a powder having an average agglomerate size which is considerably smaller than the size shown to be suitable for conventional cemented carbide. Despite the general correlations between oxygen uptake and agglomerate size, this reduction in the average agglomerate size leads to improved properties such as lower press pressure and less porosity. These properties are then inherited by the pressed body and result in a tightly sintered product with minor deviations in size.

Exempel En titanbaserad karbonitridlegering med följande sammansätt- ning i vikts-s 15 w, 39.2 Ti, 5.9 fra, 8.8 mo, 11.5 co, 1.7 Ni, 9.3 C, 2.6 N tillverkades dels med en agglomeratstorlek av 125/um, A, och spann 1.8 och dels med 55/um och spann 1.1, B, (enligt uppfinningen). Vid pressningen uppmättes presstrycket och efter sintringen bedömdes porositeten.Example A titanium-based carbonitride alloy having the following composition in weight s 15 w, 39.2 Ti, 5.9 fra, 8.8 mo, 11.5 co, 1.7 Ni, 9.3 C, 2.6 N was manufactured partly with an agglomerate size of 125 μm, A, and span 1.8 and partly with 55 μm and span 1.1, B, (according to the invention). During the pressing, the pressing pressure was measured and after the sintering, the porosity was assessed.

Sintringen skedde i vakuum vid l430°C i 90 min.The sintering was carried out in vacuo at 140 ° C for 90 minutes.

Resultat Presstryck, Porositet, enl ISO 4505 MPa A (känd teknik) 200 B04-B08,+porer >25/um B (enl uppf) 165 B00Result Pressure pressure, Porosity, according to ISO 4505 MPa A (prior art) 200 B04-B08, + pores> 25 / um B (according to ref) 165 B00

Claims (1)

1. 0 s 500 048 Krav l. Sätt att framställa en sinterkropp av titanbaserad karbo- nitridlegering bestående av hárdämnen i 5-25 % bindefas där hárdämnena innehåller, förutom Ti, en eller flera av metal- lerna Zr, Hf, V, Nb, Ta, Cr, Mo eller W och bindefasen är baserad på Ni och/eller Co med pulvermetallurgiska metoder dvs malning, pressning och sintring k ä n n e t e c k n a t av att pulvret vid pressningen har en medelagglomeratstorlek av 40-80/um och ett spann <1.5.1. 0 s 500 048 Requirements l. Method of producing a sintered body of titanium-based carbonitride alloy consisting of hair blanks in 5-25% binder phase where the hair blanks contain, in addition to Ti, one or more of the metals Zr, Hf, V, Nb, Ta, Cr, Mo or W and the binder phase is based on Ni and / or Co with powder metallurgical methods, ie grinding, pressing and sintering, characterized in that the powder during pressing has an average agglomerate size of 40-80 .mu.m and a span <1.5.
SE9101799A 1991-06-12 1991-06-12 Ways of manufacturing sintered carbonitride alloys SE500048C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SE9101799A SE500048C2 (en) 1991-06-12 1991-06-12 Ways of manufacturing sintered carbonitride alloys
EP92850139A EP0518840A1 (en) 1991-06-12 1992-06-10 Method of making sintered carbonitride alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE9101799A SE500048C2 (en) 1991-06-12 1991-06-12 Ways of manufacturing sintered carbonitride alloys

Publications (3)

Publication Number Publication Date
SE9101799D0 SE9101799D0 (en) 1991-06-12
SE9101799L SE9101799L (en) 1992-12-13
SE500048C2 true SE500048C2 (en) 1994-03-28

Family

ID=20383013

Family Applications (1)

Application Number Title Priority Date Filing Date
SE9101799A SE500048C2 (en) 1991-06-12 1991-06-12 Ways of manufacturing sintered carbonitride alloys

Country Status (2)

Country Link
EP (1) EP0518840A1 (en)
SE (1) SE500048C2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340652C2 (en) * 1993-11-30 2003-10-16 Widia Gmbh Composite and process for its manufacture
US10731237B1 (en) * 2016-09-23 2020-08-04 United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Ultra high temperature ceramic coatings and ceramic matrix composite systems
CN109576545B (en) * 2018-12-12 2020-09-25 南京航空航天大学 Ti (C, N) -based metal ceramic with mixed crystal structure and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971656A (en) * 1973-06-18 1976-07-27 Erwin Rudy Spinodal carbonitride alloys for tool and wear applications
JPH02131803A (en) * 1988-11-11 1990-05-21 Mitsubishi Metal Corp Cutting tool made of abrasion resistant cermet excelling in chipping resistance
DD288623A5 (en) * 1989-10-23 1991-04-04 ��@���������@�������k�� HARDMETAL BASED ON TITANKARBONITRIDE

Also Published As

Publication number Publication date
SE9101799D0 (en) 1991-06-12
EP0518840A1 (en) 1992-12-16
SE9101799L (en) 1992-12-13

Similar Documents

Publication Publication Date Title
EP2337874B1 (en) Metal powder containing molybdenum for producing hard metals based on tungstene carbide
US5482670A (en) Cemented carbide
US5778301A (en) Cemented carbide
EP0995525B1 (en) Process for producing sintered product
US5543235A (en) Multiple grade cemented carbide articles and a method of making the same
CN101702922B (en) Cemented carbide with ultra-low thermal conductivity
CN101195163B (en) Method of making a sintered body, a powder mixture and a sintered body
JPH02232334A (en) Dispersion alloyed hard metallic complex
KR20140091557A (en) Method of making a cemented carbide or cermet powder by using a resonant acoustic mixer
CN104032153B (en) A kind of manufacture method of high tough crystallite hard alloy
SE511834C2 (en) Fully dense products made by uniaxial high speed metal powder pressing
JP2003328067A (en) Cemented carbide structure member having structure showing gradual transition
DE69028598T2 (en) Sintered carbide cutting insert
SE500048C2 (en) Ways of manufacturing sintered carbonitride alloys
FR2481166A1 (en) PROCESS FOR THE PRODUCTION OF A METAL TABLET FROM A PRACTICALLY INCOMPRESSIBLE METAL POWDER, AND METAL POWDER
CN116275167B (en) Bionic cutting knife based on sea urchin tooth self-sharpening structure and preparation method thereof
NO159773B (en) CARBID MATERIALS AND PROCEDURES FOR THE MANUFACTURE AND USE OF THIS.
CN114932235B (en) Near-net-shape preparation method of controllable metal-based framework for powder metallurgy
US11759857B2 (en) Material obtained by compaction and densification of metallic powder(s)
RU2365465C1 (en) Method of determining best composition of hard alloy
KR101629530B1 (en) Cermet
WO2005081640A2 (en) Method of molding metal powder
JP5157300B2 (en) Cermet having composite surface layer and method for producing the same
US20100260641A1 (en) Method of making a cemented carbide powder with low sintering shrinkage and the powder obtained
CN110983265B (en) Preparation method of special-shaped ruthenium product

Legal Events

Date Code Title Description
NUG Patent has lapsed