EP0423160B1 - Drive arrangement for a camshaft in an internal combustion engine - Google Patents

Drive arrangement for a camshaft in an internal combustion engine Download PDF

Info

Publication number
EP0423160B1
EP0423160B1 EP89907114A EP89907114A EP0423160B1 EP 0423160 B1 EP0423160 B1 EP 0423160B1 EP 89907114 A EP89907114 A EP 89907114A EP 89907114 A EP89907114 A EP 89907114A EP 0423160 B1 EP0423160 B1 EP 0423160B1
Authority
EP
European Patent Office
Prior art keywords
camshaft
shift sleeve
drive wheel
drive
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89907114A
Other languages
German (de)
French (fr)
Other versions
EP0423160A1 (en
Inventor
Wilhelm Hannibal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi AG filed Critical Audi AG
Publication of EP0423160A1 publication Critical patent/EP0423160A1/en
Application granted granted Critical
Publication of EP0423160B1 publication Critical patent/EP0423160B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • F01L1/34406Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft the helically teethed sleeve being located in the camshaft driving pulley

Definitions

  • the invention relates to a camshaft drive according to the preamble of claim 1.
  • the drive wheel is fastened on a shaft which is mounted near the drive wheel in the cylinder head and at its end facing away from the drive wheel in a recess in the adjacent end face of the camshaft and which it takes in an end recess Gearshift sleeve, which is connected to the drive shaft at one end via an external helical toothing and at the other end via a spur toothing with the camshaft.
  • the shift sleeve is displaced in one direction by a spring which is arranged between the drive shaft and the shift sleeve, and in the other direction by the oil pressure effective in a pressure chamber, the pressure in this chamber being arranged by an axially displaceably arranged in the drive shaft Spool is variable, which controls a discharge opening from the pressure chamber depending on the speed.
  • This known camshaft drive is considerably larger in its axial extent than a normal camshaft drive without changing the valve timing. It is therefore practically not possible to provide a specific internal combustion engine either with a normal camshaft drive or with a camshaft drive with variable control times or to retrofit a camshaft with a normal camshaft drive to a camshaft with variable control times. If the internal combustion engine is intended for installation in motor vehicles, in particular passenger cars, accommodating an internal combustion engine, which is only slightly enlarged in any dimension, creates extraordinary problems due to the extremely restricted space in the engine compartment, which often force the body to be changed costly .
  • the drive wheel is rotatably mounted on the end of the camshaft and connected to a sleeve which protrudes into an end recess in the camshaft and carries an internal helical toothing which also has a corresponding outer helical toothing in this recess arranged switching sleeve cooperates.
  • the gearshift sleeve is also provided with an external spur toothing which interacts with a corresponding inner spur toothing in the aforementioned recess. In this case, the shift sleeve is moved in both directions by oil pressure.
  • the shift sleeve is connected via a universal joint to a double-acting shift piston which is arranged in a cylinder and divides the cylinder space into two working spaces, which alternatively use pressure oil can be pressurized or relieved of pressure, which enables a shifting of the shift sleeve in both directions and a corresponding change in position of the camshaft relative to the drive wheel.
  • This camshaft drive has a considerably larger axial dimension than a normal camshaft drive, so that it cannot be installed in its place.
  • the bearing point of the camshaft next to the drive wheel must be made with a considerably larger diameter than normal, since the diameter of the camshaft must be made larger than normal at this end in order to be able to accommodate the adjusting device.
  • the invention has for its object to provide a camshaft drive of the generic type that is so compact that it can be used without significant changes to the cylinder head instead of the usual camshaft drive without variable valve timing, so that there is the possibility of internal combustion engines of the same type with or without offer variable valve control.
  • the bearing point which lies between the last cam and the drive wheel in normal camshaft drive is made usable for mounting the hub of the drive wheel in that the camshaft ends after the cam adjacent to the drive wheel.
  • This bearing point can therefore be used unchanged both for the normal camshaft drive and for the camshaft drive with variable timing.
  • the bearing of the hub of the drive wheel on the other side in the cylinder head makes the bearing extremely stable compared to the usual flying one Bearing in the known designs, reached, the bending stress caused by the tensile force of the drive means being substantially reduced.
  • this spring can be arranged between a support surface in the recess in the camshaft and the adjacent end face of the shift sleeve. This results in a reduction in the axial extent of the device compared to the arrangement in said US-PS, in which the spring is supported on the one hand on the drive shaft and on the other hand on the gearshift sleeve, since the spring is arranged within the camshaft.
  • the shift sleeve is preferably shifted in one direction by oil pressure, while the shift in the other direction can be effected by spring force or also by the axial force component resulting from the helical toothing.
  • a pressure chamber is provided between an end face of the shift sleeve and a wall connected to the drive wheel in accordance with the aforementioned US Pat. No. 3,258,937 or also in accordance with DE-OS 33 16 162, in the inflow or outflow tract of which a slide valve is provided which is displaceable by an electromagnet and which is arranged coaxially in the shift sleeve.
  • the electromagnet be arranged coaxially to the shift sleeve in the cylinder head and protrude into the hub of the drive wheel, and that the control slide is connected directly to the armature of the electromagnet.
  • the control slide can be connected to the shift sleeve in a rotationally fixed manner, extends with a rod-shaped extension through the shift sleeve and carries a spring plate at its free end projecting from the shift sleeve.
  • a spring is arranged between this spring plate and the end face of the switching sleeve, which counteracts the movement of the control slide caused by the electromagnet.
  • a relative rotation between the spring plate and the switching sleeve is prevented by the rotationally fixed connection of the control slide and the switching sleeve, so that no axial bearing is required for supporting the spring.
  • a tubular extension can be provided on the wall delimiting the pressure chamber, which protrudes into a blind hole in the end face of the switching sleeve and picks up the spool.
  • the control slide can be connected in an articulated manner to the armature of the electromagnet in order to be able to allow a narrow air gap between the armature and the coil of the electromagnet.
  • Fig. 1 denotes the cylinder head of an internal combustion engine, in which a camshaft 2 with cams 3 is rotatably mounted.
  • Two bearing points 4 are shown in the drawing without the associated upper bearing caps or shells.
  • a drive sprocket 5 is also mounted coaxially to the camshaft 2 and is connected by screws 6 to a two-part hub 7, 8.
  • the hub part 7 is mounted in the cylinder head 1 in a bearing 9 which, in the case of a camshaft drive without variable valve control, serves to support the camshaft between the last cam 3a and the drive wheel then seated on the camshaft.
  • the camshaft 2 is cut off behind the last cam 3a, so that the bearing point 9 is available for mounting the drive wheel 5.
  • the hub part 8 is mounted in a further bearing 10 in the cylinder head 1. With 44 the threaded holes for the fastening screws of the bearing cover, not shown, are designated.
  • a shift sleeve 11 is used, which is axially displaceable in the hub part 7 and coaxial with the drive gear 5 and the camshaft 2 and has an external helical toothing 12, which has a corresponding inner helical toothing 13 in the second hub part 8 interacts.
  • the shift sleeve 11 extends into an axial bore 14 in the camshaft 2 and is provided at its end on the camshaft side with an external spur toothing 15 which engages in a corresponding spur toothing 16 in the wall of the bore 14.
  • a stop 17 is provided, on which a spring 18 is supported, which acts on the shift sleeve 11 and strives to push it to the left in the drawing.
  • the shift sleeve 11 is shifted to the right in the drawing against the force of the spring 18.
  • the helical toothing 12, 13 causes the selector sleeve 11 to rotate relative to the drive gear 5, and this twisting is transmitted to the camshaft 2 through the straight toothing 15, 16.
  • This shift of the shift sleeve 11 is in the embodiment by oil pressure, namely by the pressure of the lubrication of the bearings of the camshaft and the drive gear 5 serving lubricating oil.
  • a pressure chamber 22 is provided between the left end face 20 of the shift sleeve 11 and an end wall 21 connected to the hub part 8, to which pressure oil is supplied from a pressure oil bore 23 in the cylinder head 1.
  • the pressure oil flows through a radial channel 24 in the hub part 7 into a wide circumferential groove 25 in the circumferential surface of the shift sleeve 11 and from there into a transverse channel 26 which opens into a longitudinal bore 27 in the shift sleeve 11, in which a tubular control slide 28 is arranged.
  • the pressure oil can pass from the transverse channel 26 through a longitudinal slot 29 in the wall of the control slide 28 into its interior 30 and flow from there through openings 31 in the wall of the control slide 28 into the pressure chamber 22 when the control slide 28 in by a corresponding amount the drawing is shifted to the left, as shown in the lower half of FIG. 1.
  • This displacement of the control slide 28 is effected with the aid of an electromagnet 32, the armature 33 of which is connected to the control slide 28.
  • the electromagnet 32 is screwed onto the cylinder head 1 by screws 34 and extends into the hub part 8, whereby the overall length of the camshaft drive is kept as small as possible.
  • the control slide 28 extends with a rod-shaped extension 35 through an axial through bore 36 in the shift sleeve 11 and is provided at its free end projecting from the shift sleeve 11 with a spring plate 37.
  • a weak spring 38 which only has the task of returning the control slide 28 to the starting position shown in the upper half of FIG. 1 after the electromagnet 32 has been switched off, is arranged between the spring plate 37 and the adjacent front end of the switching sleeve 11.
  • the rod-shaped extension 35 is also non-rotatably connected by a radial pin 40 engaging in a longitudinal slot, but axially displaceably connected to the shift sleeve 11, so that there is no relative rotational movement between it and the shift sleeve 11 and the formation of the spring plate 37 as an axial bearing is unnecessary.
  • the electromagnet 32 is not energized and the shift sleeve 11 is pressed by the spring 18 into the left end position shown in the upper half of FIG. 1. If a change in the control times of the valves actuated by the cams 3 is desired in a certain operating range, the electromagnet 32 is energized and the armature 33 together with the control slide 28 is shifted to the left against the action of the spring 38, as is the case in the lower half 1 is shown.
  • the openings 31 in the wall of the control slide 27 come into connection with the pressure chamber 22 and pressure oil can flow out of the oil bore 23 through the bore 24, the circumferential groove 25, the transverse bore 26, the longitudinal slot 29, the interior 30 of the control slide 28 and the openings 31 flow into the pressure chamber 22.
  • the selector sleeve 11 Due to the pressure building up in this chamber 22, the selector sleeve 11 is shifted to the right against the action of the spring 18 in the drawing and, due to the helical teeth 12, 13, the selector sleeve 11 is twisted and, via the straight teeth 15, 16, a corresponding twist of the Camshaft 2 instead. If the electromagnet 32 is de-energized, the control slide 28 is moved back into that shown in the upper half of FIG.
  • This pressure chamber 22 is connected via the tooth gaps of the helical gears 12, 13 and a throttle bore 43 to the unpressurized space in the cylinder head 1, so that the pressure oil can escape from the pressure chamber 22 and the spring 18 can shift the switching sleeve 11 to the left, whereby the original left Position of the camshaft relative to the drive gear 5 is restored.
  • the throttle bore 43 is dimensioned such that it does not affect the pressure build-up in the pressure chamber 22 in the position of the control slide 28 shown in the lower half of FIG. 1, since in this position the pressure chamber 22 is constantly supplied with pressure oil.
  • the bearing 9 or 10 is used for mounting the camshaft between the last cam and the drive wheel fixedly attached to the end of the camshaft and the opening of the bearing 10 closed by a lid. Any changes to the cylinder head 1 are not necessary.
  • FIG. 2 differs from the embodiment according to FIG. 1 primarily by a much simpler control of the Pressure in the pressure chamber 22 '.
  • the end wall 21 ' which limits the pressure chamber 22', is provided with a central, tubular extension 50 which is closed at its end 51 and in the (shown in the upper half of Fig. 2) left end position of the switching sleeve 11 'with radial play in one central blind hole 52 in the end wall 20 'of the shift sleeve 11' protrudes.
  • the control slide 28 ' is arranged, which is connected to the armature 33' of the electromagnet 32 'by a radial flange 55 such that it can move in an angular manner.
  • the armature 33 'and with it the control slide 28' is pressed by a weak spring 38 'into the right rest position shown in the upper half of FIG. 1, in which the opening 54 is released from the control slide 28' and the pressure chamber 22 ' brings with an oil return space 56 outside the pressure chamber 22 'in connection.
  • a relatively large air gap between the armature 33 and the coil of the electromagnet 32 must be provided due to the mounting of the control slide 28 in the shift sleeve 11 and the rigid connection thereof with the armature 33 with regard to manufacturing tolerances, which is intended for The consequence is that a larger magnetic force and a correspondingly larger electromagnet is required, especially since the mass to be moved by the electromagnet (control slide 28, rod 35) is relatively large.
  • the mass of the control slide 28 ' is considerably smaller and there are fewer tolerances to be observed, as a result of which the air gap mentioned can be small and the electromagnet 32' can have smaller dimensions.
  • Another advantage of the embodiment according to FIG. 2 is that the entire end face 20 'of the shift sleeve 11' including the end face of the blind hole 52 is exposed to the oil pressure, so that larger adjusting forces can be exerted on the shift sleeve 11 '.
  • the pressure oil flows to the pressure chamber 22 70 (FIG. 4) through a channel 70 in the wall 21 ⁇ , which is connected to the radial channel 58 ⁇ in the hub part 8 ⁇ .
  • the wall 53 ⁇ of the extension 50 ⁇ has one Inflow opening 71 and a discharge opening 72, which communicates with the pressure chamber 22 ⁇ .
  • the control slide 28 ⁇ is provided with two axially and circumferentially offset overflow channels 74 and 75, of which the overflow channel 74 connects the inflow channel 70 with the inflow opening 71 when the control slide 28 ⁇ is in its left end position (FIG. 4) , and the overflow channel 75 connects the drain opening 72 with the oil return space 56 ⁇ when the control slide 28 ⁇ is in its right end position (FIG. 3).
  • the annular end face 62 ⁇ of the shift sleeve section 76 which carries the helical toothing 12 ⁇ , with the wall 77 of the hub part 7 ⁇ delimits a chamber 78, which via a channel 79 and the annular gap 80 between the peripheral surface of the thinner section 81 of the shift sleeve 11 ⁇ and the hub part 7 ⁇ is supplied with lubricating oil under pressure.
  • the pressure in the chamber 78 tends to move the shift sleeve 11 ⁇ in Fig. 3 to the left. This effort is supported by the spring 18 ⁇ .
  • the helical teeth 12äg, 13 ⁇ can be arranged in this case so that their axial thrust to the right acts on the shift sleeve 11 ⁇ , since the lubricating oil pressure acting on the annular end face 62 ⁇ is used for a movement to the left.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A drive arrangement for a camshaft (2) in an internal combustion engine comprises a device for rotating the camshaft (2) relative to a drive wheel (5). This device has a gear-change sleeve (11) coaxial with the camshaft (2) and axially mobile between two end positions, which is connected to the drive wheel (5) by a spiral gear (12, 13) and to the camshaft (2) by a straight gear (15, 16). To obtain a compact arrangement and to allow one and the same cylinder head to be fitted with either an ordinary camshaft or a camshaft drive with variable valve control times, the camshaft (2) ends in the direction of the drive wheel (5), after a cam (3a), and the support bearing (9), which in an ordinary camshaft serves to support the camshaft between the last cam and the drive wheel, is used to support the hub (7) of the drive wheel (5). The drive wheel (5) is supported on the other side by a second hub (8) in a bearing (10) in the cylinder head (1), the bearing opening of which is closed by a cover if an ordinary camshaft is used.

Description

Die Erfindung bezieht sich auf einen Nockenwellenantrieb entsprechend dem Oberbegriff des Anspruchs 1.The invention relates to a camshaft drive according to the preamble of claim 1.

Bei derartigen, beispielsweise aus der US-PS 32 58 937 oder der DE-OS 36 16 234 bekannten Nockenwellenantrieben wird zur Veränderung der Ventilsteuerzeiten die Schaltmuffe axial verschoben, wobei aufgrund der Schrägverzahnung eine Verdrehung der Schaltmuffe relativ zum Antriebsrad erfolgt. Diese Verdrehung wird über die Geradverzahnung an die Nockenwelle weitergegeben.In such, for example from US-PS 32 58 937 or DE-OS 36 16 234 known camshaft drives to change the valve timing, the shift sleeve is axially displaced, with the helical toothing causing a rotation of the shift sleeve relative to the drive wheel. This twist is passed on to the camshaft via the spur gear.

Bei der Vorrichtung gemäß der US-PS 32 58 937 ist das Antriebsrad auf einer Welle befestigt, die nahe des Antriebsrades im Zylinderkopf und an ihrem vom Antriebsrad abgewandten Ende in einer Ausnehmung in der benachbarten Stirnseite der Nockenwelle gelagert und sie nimmt in einer stirnseitigen Ausnehmung die Schaltmuffe auf, die am einen Ende über eine äußere Schrägverzahnung mit der Antriebswelle und am anderen Ende über eine Geradverzahnung mit der Nockenwelle in Antriebsverbindung steht. Die Verschiebung der Schaltmuffe erfolgt in der einen Richtung durch eine Feder, die zwischen der Antriebswelle und der Schaltmuffe angeordnet ist, und in der anderen Richtung durch den in einer Druckkammer wirksamen Öldruck, wobei der Druck in dieser Kammer durch einen axial verschiebbar in der Antriebswelle angeordneten Steuerschieber veränderbar ist, der eine Abflußöffnung aus der Druckkammer in Abhängigkeit von der Drehzahl steuert. Dieser bekannte Nockenwellenantrieb ist in seiner axialen Erstreckung erheblich größer als ein normaler Nockenwellenantrieb ohne Veränderung der Ventilsteuerzeiten. Es ist daher praktisch nicht möglich, eine bestimmte Brennkraftmaschine wahlweise mit einem normalen Nockenwellenantrieb oder mit einem Nockenwellenantrieb mit veränderlichen Steuerzeiten zu versehen oder eine Nockenwelle mit normalem Nockenwellenantrieb nachträglich auf eine Nockenwelle mit veränderlichen Steuerzeiten umzurüsten. Ist die Brennkraftmaschine für den Einbau in Kraftfahrzeuge, insbesondere Personenkraftwagen, bestimmt, so bereitet aufgrund der außerordentlich beengten Raumverhältnisse im Motorraum die Unterbringung einer Brennkraftmaschine, die in irgend einer Dimension nur geringfügig vergrößert ist, außerordentliche Probleme, die oftmals zu einer kostspieligen Änderung der Karosserie zwingen.In the device according to US Pat. No. 3,258,937, the drive wheel is fastened on a shaft which is mounted near the drive wheel in the cylinder head and at its end facing away from the drive wheel in a recess in the adjacent end face of the camshaft and which it takes in an end recess Gearshift sleeve, which is connected to the drive shaft at one end via an external helical toothing and at the other end via a spur toothing with the camshaft. The shift sleeve is displaced in one direction by a spring which is arranged between the drive shaft and the shift sleeve, and in the other direction by the oil pressure effective in a pressure chamber, the pressure in this chamber being arranged by an axially displaceably arranged in the drive shaft Spool is variable, which controls a discharge opening from the pressure chamber depending on the speed. This known camshaft drive is considerably larger in its axial extent than a normal camshaft drive without changing the valve timing. It is therefore practically not possible to provide a specific internal combustion engine either with a normal camshaft drive or with a camshaft drive with variable control times or to retrofit a camshaft with a normal camshaft drive to a camshaft with variable control times. If the internal combustion engine is intended for installation in motor vehicles, in particular passenger cars, accommodating an internal combustion engine, which is only slightly enlarged in any dimension, creates extraordinary problems due to the extremely restricted space in the engine compartment, which often force the body to be changed costly .

Bei der Ausführung gemäß der DE-OS 36 16 234 ist das Antriebsrad drehbar auf dem Ende der Nockenwelle gelagert und mit einer Hülse verbunden, die in eine stirnseitige Aussparung in der Nockenwelle hineinragt und eine innere Schrägverzahnung trägt, die mit einer entsprechenden äußeren Schrägverzahnung der ebenfalls in dieser Ausnehmung angeordneten Schaltmuffe zusammenwirkt. Die Schaltmuffe ist außerdem mit einer äußeren Geradverzahnung versehen, die mit einer entsprechenden inneren Geradverzahnung in der genannten stirnseitigen Ausnehmung zusammenwirkt. Die Verschiebung der Schaltmuffe erfolgt in diesem Fall in beiden Richtungen durch Öldruck. Zu diesem Zweck ist die Schaltmuffe über ein Kardangelenk mit einem doppelt wirkenden Schaltkolben verbunden, der in einem Zylinder angeordnet ist und dessen Zylinderraum in zwei Arbeitsräume teilt, die alternativ mit Drucköl beaufschlagt bzw. druckentlastet werden können, wodurch eine Verschiebung der Schaltmuffe in beiden Richtungen ermöglicht wird und eine entsprechende Lageänderung der Nockenwelle gegenüber dem Antriebsrad erfolgt. Dieser Nockenwellenantrieb hat eine erheblich größere axiale Abmessung als ein normaler Nockenwellenantrieb, so daß er nicht an dessen Stelle eingebaut werden kann. Außerdem muß auch die Lagerstelle der Nockenwelle neben dem Antriebsrad mit einem erheblich größeren Durchmesser als normal ausgeführt werden, da der Durchmesser der Nockenwelle an diesem Ende größer als normal ausgeführt werden muß, um die Verstelleinrichtung aufnehmen zu können.In the version according to DE-OS 36 16 234, the drive wheel is rotatably mounted on the end of the camshaft and connected to a sleeve which protrudes into an end recess in the camshaft and carries an internal helical toothing which also has a corresponding outer helical toothing in this recess arranged switching sleeve cooperates. The gearshift sleeve is also provided with an external spur toothing which interacts with a corresponding inner spur toothing in the aforementioned recess. In this case, the shift sleeve is moved in both directions by oil pressure. For this purpose, the shift sleeve is connected via a universal joint to a double-acting shift piston which is arranged in a cylinder and divides the cylinder space into two working spaces, which alternatively use pressure oil can be pressurized or relieved of pressure, which enables a shifting of the shift sleeve in both directions and a corresponding change in position of the camshaft relative to the drive wheel. This camshaft drive has a considerably larger axial dimension than a normal camshaft drive, so that it cannot be installed in its place. In addition, the bearing point of the camshaft next to the drive wheel must be made with a considerably larger diameter than normal, since the diameter of the camshaft must be made larger than normal at this end in order to be able to accommodate the adjusting device.

Der Erfindung liegt die Aufgabe zugrunde, einen Nockenwellenantrieb der gattungsgemäßen Art zu schaffen, der so kompakt ist, daß er ohne wesentliche Änderungen am Zylinderkopf anstelle des üblichen Nockenwellenantriebs ohne variable Ventilsteuerzeiten eingesetzt werden kann, so daß die Möglichkeit besteht, Brennkraftmaschinen gleichen Typs mit oder ohne variable Ventilsteuerung anzubieten.The invention has for its object to provide a camshaft drive of the generic type that is so compact that it can be used without significant changes to the cylinder head instead of the usual camshaft drive without variable valve timing, so that there is the possibility of internal combustion engines of the same type with or without offer variable valve control.

Diese Aufgabe wird erfindungsgemäß durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of claim 1.

Bei dem erfindungsgemäßen Vorschlag wird die Lagerstelle, die beim normalen Nockenwellenantrieb zwischen dem letzten Nocken und dem Antriebsrad liegt, zur Lagerung der Nabe des Antriebsrades verwendbar gemacht, indem die Nockenwelle nach dem dem Antriebsrad benachbarten Nocken endet. Diese Lagerstelle kann daher unverändert sowohl für den normalen Nockenwellenantrieb als auch für den Nockenwellenantrieb mit variablen Steuerzeiten verwendet werden. Durch die Lagerung der Nabe des Antriebsrades auf der anderen Seite im Zylinderkopf wird eine äußerst stabile Lagerung, verglichen mit der üblichen fliegenden Lagerung bei den bekannten Ausführungen, erreicht, wobei die durch die Zugkraft des Antriebsmittels hervorgerufene Biegebeanspruchung wesentlich verringert ist. Aufgrund des geringeren Biegemoments an der Antriebsstelle ergibt sich dort eine geringere Durchbiegung, wodurch die Gefahr eines Verklemmens der Schaltmuffe beseitigt ist und die Reibungskräfte bei der Axialverschiebung der Schaltmuffe verringert werden. Wird anstelle des Nockenwellenantriebs mit vAriabler Ventilsteuerung eine normale Nockenwelle eingesetzt, so kann, wie vorher ausgeführt, die eine Lagerstelle des Antriebsrades nun zur Lagerung der Nockenwelle verwendet werden. Die andere, nun nicht benötigte Lagerstelle des Antriebsrades wird durch einen Deckel verschlossen.In the proposal according to the invention, the bearing point which lies between the last cam and the drive wheel in normal camshaft drive is made usable for mounting the hub of the drive wheel in that the camshaft ends after the cam adjacent to the drive wheel. This bearing point can therefore be used unchanged both for the normal camshaft drive and for the camshaft drive with variable timing. The bearing of the hub of the drive wheel on the other side in the cylinder head makes the bearing extremely stable compared to the usual flying one Bearing in the known designs, reached, the bending stress caused by the tensile force of the drive means being substantially reduced. Due to the lower bending moment at the drive point, there is less deflection, which eliminates the risk of the shift sleeve jamming and reduces the frictional forces when the shift sleeve is axially displaced. If a normal camshaft is used instead of the camshaft drive with variable valve control, then, as previously stated, one bearing point of the drive wheel can now be used to mount the camshaft. The other, now not required bearing of the drive wheel is closed by a cover.

Erfolgt die Verschiebung der Schaltmuffe in der einen Richtung durch Federkraft, wie dies aus der genannten US-PS bekannt ist, so kann diese Feder zwischen einer Abstützfläche in der Ausnehmung in der Nockenwelle und der benachbarten Stirnfläche der Schaltmuffe angeordnet werden. Dadurch ergibt sich gegenüber der Anordnung bei der genannten US-PS, bei der die Feder sich einerseits an der Antriebswelle und andererseits an der Schaltmuffe abstützt, eine Verringerung der axialen Erstreckung der Einrichtung, da die Feder innerhalb der Nockenwelle angeordnet ist.If the shift sleeve is displaced in one direction by spring force, as is known from the aforementioned US patent, this spring can be arranged between a support surface in the recess in the camshaft and the adjacent end face of the shift sleeve. This results in a reduction in the axial extent of the device compared to the arrangement in said US-PS, in which the spring is supported on the one hand on the drive shaft and on the other hand on the gearshift sleeve, since the spring is arranged within the camshaft.

Die Verschiebung der Schaltmuffe erfolgt vorzugsweise in einer Richtung durch Öldruck, während die Verschiebung in der anderen Richtung durch Federkraft oder auch durch die aufgrund der Schrägverzahnung entstehende axiale Kraftkomponente erfolgen kann. Zur Verschiebung der Schaltmuffe durch Öldruck wird entsprechend der genannten US-PS 32 58 937 oder auch entsprechend der DE-OS 33 16 162 zwischen einer Stirnfläche der Schaltmuffe und einer mit dem Antriebsrad verbundenen Wand eine Druckkammer vorgesehen, in deren Zufluß- oder Abflußtrakt ein von einem Elektromagneten verschiebbarer Steuerschieber vorgesehen ist, der koaxial in der Schaltmuffe angeordnet ist. Zur möglichst raumsparenden Unterbringung des Elektromagneten wird vorgeschlagen, daß der Elektromagnet koaxial zur Schaltmuffe im Zylinderkopf angeordnet ist und in die Nabe des Antriebsrades hineinragt, und daß der Steuerschieber direkt mit dem Anker des Elektromagneten verbunden ist.The shift sleeve is preferably shifted in one direction by oil pressure, while the shift in the other direction can be effected by spring force or also by the axial force component resulting from the helical toothing. To shift the shift sleeve by oil pressure, a pressure chamber is provided between an end face of the shift sleeve and a wall connected to the drive wheel in accordance with the aforementioned US Pat. No. 3,258,937 or also in accordance with DE-OS 33 16 162, in the inflow or outflow tract of which a slide valve is provided which is displaceable by an electromagnet and which is arranged coaxially in the shift sleeve. To accommodate the electromagnet as space-saving as possible, it is proposed that the electromagnet be arranged coaxially to the shift sleeve in the cylinder head and protrude into the hub of the drive wheel, and that the control slide is connected directly to the armature of the electromagnet.

Der Steuerschieber kann drehfest mit der Schaltmuffe verbunden sein, erstreckt sich mit einem stangenförmigen Fortsatz durch die Schaltmuffe hindurch und trägt an seinem freien, aus der Schaltmuffe vorstehenden Ende einen Federteller. Zwischen diesem Federteller und der Stirnfläche der Schaltmuffe ist eine Feder angeordnet, welche der von dem Elektromagneten verursachten Bewegung des Steuerschiebers entgegenwirkt. Durch die drehfeste Verbindung von Steuerschieber und Schaltmuffe wird eine Relativdrehung zwischen dem Federteller und der Schaltmuffe verhindert, so daß für die Abstützung der Feder kein Axiallager erforderlich wird.The control slide can be connected to the shift sleeve in a rotationally fixed manner, extends with a rod-shaped extension through the shift sleeve and carries a spring plate at its free end projecting from the shift sleeve. A spring is arranged between this spring plate and the end face of the switching sleeve, which counteracts the movement of the control slide caused by the electromagnet. A relative rotation between the spring plate and the switching sleeve is prevented by the rotationally fixed connection of the control slide and the switching sleeve, so that no axial bearing is required for supporting the spring.

Um das Gewicht der von dem Elektromagneten zu bewegenden Teile so gering wie möglich zu halten und die Abmessungen des Elektromagneten möglichst klein zu halten, kann an der die Druckkammer begrenzenden Wand ein rohrförmiger Fortsatz vorgesehen werden, der in ein Sackloch in der Stirnfläche der Schaltmuffe hineinragt und den Steuerschieber aufnimmt. Der Steuerschieber kann gelenkig mit dem Anker des Elektromagneten verbunden sein, um einen engen Luftspalt zwischen dem Anker und der Spule des Elektromagneten zulassen zu können.In order to keep the weight of the parts to be moved by the electromagnet as low as possible and to keep the dimensions of the electromagnet as small as possible, a tubular extension can be provided on the wall delimiting the pressure chamber, which protrudes into a blind hole in the end face of the switching sleeve and picks up the spool. The control slide can be connected in an articulated manner to the armature of the electromagnet in order to be able to allow a narrow air gap between the armature and the coil of the electromagnet.

Drei Ausführungsbeispiele der Erfindung werden im folgenden unter Bezugnahme auf die Zeichnungen beschrieben. Es zeigt:

  • Fig. 1 eine Draufsicht eines Teiles eines Zylinderkopfes einer Hubkolben-Brennkraftmaschine, teilweise geschnitten, mit einer ersten Nockenwellen-Verstelleinrichtung, wobei die Schaltmuffe in der oberen Hälfte in der einen Endstellung und in der unteren Hälfte in der anderen Endstellung dargestellt ist,
  • Fig. 2 einen Schnitt ähnlich Fig. 1 eines zweiten Ausführungsbeispiels, wobei wiederum die Schaltmuffe in der oberen Hälfte in der einen Endstellung und in der unteren Hälfte in der anderen Endstellung dargestellt ist.
  • Fig. 3 eine Abwandlung der Ausführung gemäß Fig. 2, wobei die Schaltmuffe in der einen Endstellung dargestellt ist, und
  • Fig. 4 die Ausführung von Fig. 3 mit der Schaltmuffe in der anderen Endstellung.
Three embodiments of the invention are described below with reference to the drawings. It shows:
  • 1 is a plan view of part of a cylinder head of a reciprocating piston internal combustion engine, partly in section, with a first camshaft adjusting device, the shift sleeve being shown in the upper half in one end position and in the lower half in the other end position,
  • Fig. 2 shows a section similar to FIG. 1 of a second embodiment, the shift sleeve being shown in the upper half in one end position and in the lower half in the other end position.
  • Fig. 3 shows a modification of the embodiment of FIG. 2, wherein the shift sleeve is shown in one end position, and
  • Fig. 4 shows the embodiment of Fig. 3 with the shift sleeve in the other end position.

In Fig. 1 ist mit 1 der Zylinderkopf einer Brennkraftmaschine bezeichnet, in welchem eine Nockenwelle 2 mit Nocken 3 drehbar gelagert ist. Zwei Lagerstellen 4 sind in der Zeichnung ohne die dazugehörigen oberen Lagerdeckel oder -schalen dargestellt.In Fig. 1, 1 denotes the cylinder head of an internal combustion engine, in which a camshaft 2 with cams 3 is rotatably mounted. Two bearing points 4 are shown in the drawing without the associated upper bearing caps or shells.

Im Zylinderkopf 1 ist ferner koaxial zur Nockenwelle 2 ein Antriebskettenrad 5 gelagert, das durch Schrauben 6 mit einer zweiteiligen Nabe 7, 8 verbunden ist. Das Nabenteil 7 ist im Zylinderkopf 1 in einer Lagerstelle 9 gelagert, die bei einem Nockenwellenantrieb ohne variable Ventilsteuerung zur Lagerung der Nockenwelle zwischen dem letzten Nocken 3a und dem dann auf der Nockenwelle sitzenden Antriebsrad dient. Im vorliegenden Fall ist, wie ersichtlich, die Nockenwelle 2 hinter dem letzten Nocken 3a abgeschnitten, so daß die Lagerstelle 9 zur Lagerung des Antriebsrades 5 zur Verfügung steht. Auf der anderen Seite des Antriebszahnrades 5 ist das Nabenteil 8 in einer weiteren Lagerstelle 10 im Zylinderkopf 1 gelagert. Mit 44 sind die Gewindelöcher für die Befestigungsschrauben der nicht gezeigten Lagerdeckel bezeichnet.In the cylinder head 1, a drive sprocket 5 is also mounted coaxially to the camshaft 2 and is connected by screws 6 to a two-part hub 7, 8. The hub part 7 is mounted in the cylinder head 1 in a bearing 9 which, in the case of a camshaft drive without variable valve control, serves to support the camshaft between the last cam 3a and the drive wheel then seated on the camshaft. In the present case, as can be seen, the camshaft 2 is cut off behind the last cam 3a, so that the bearing point 9 is available for mounting the drive wheel 5. On the other side of the drive gear 5, the hub part 8 is mounted in a further bearing 10 in the cylinder head 1. With 44 the threaded holes for the fastening screws of the bearing cover, not shown, are designated.

Zur Übertragung der Drehkraft von dem Antriebszahnrad 5 auf die Nockenwelle 2 dient eine Schaltmuffe 11, die koaxial zum Antriebszahnrad 5 und zur Nockenwelle 2 axial verschiebbar im Nabenteil 7 gelagert ist und eine äußere Schrägverzahnung 12 aufweist, die mit einer entsprechenden inneren Schrägverzahnung 13 im zweiten Nabenteil 8 zusammenwirkt. Die Schaltmuffe 11 erstreckt sich in eine Axialbohrung 14 in der Nockenwelle 2 und ist an ihrem nockenwellenseitigen Ende mit einer äußeren Geradverzahnung 15 versehen, die in eine entsprechende Geradverzahnung 16 in der Wand der Bohrung 14 eingreift. In der Bohrung 14 ist ein Anschlag 17 vorgesehen, an den sich eine Feder 18 abstützt, welche auf die Schaltmuffe 11 wirkt und bestrebt ist, diese in der Zeichnung nach links zu drücken.To transfer the torque from the drive gear 5 to the camshaft 2, a shift sleeve 11 is used, which is axially displaceable in the hub part 7 and coaxial with the drive gear 5 and the camshaft 2 and has an external helical toothing 12, which has a corresponding inner helical toothing 13 in the second hub part 8 interacts. The shift sleeve 11 extends into an axial bore 14 in the camshaft 2 and is provided at its end on the camshaft side with an external spur toothing 15 which engages in a corresponding spur toothing 16 in the wall of the bore 14. In the bore 14, a stop 17 is provided, on which a spring 18 is supported, which acts on the shift sleeve 11 and strives to push it to the left in the drawing.

Um eine Veränderung der Winkellage der Nockenwelle 2 relativ zum Antriebszahnrad 5 und damit eine Veränderung der Ventilsteuerzeiten zu erzielen, wird die Schaltmuffe 11 entgegen der Kraft der Feder 18 in der Zeichnung nach rechts verschoben. Durch die Schrägverzahnung 12, 13 erfolgt dabei eine Verdrehung der Schaltmuffe 11 relativ zu dem Antriebszahnrad 5, und diese Verdrehung wird durch die Geradverzahnung 15, 16 auf die Nockenwelle 2 übertragen. Diese Verschiebung der Schaltmuffe 11 wird im Ausführungsbeispiel durch Öldruck, und zwar durch den Druck des zur Schmierung der Lagerstellen der Nockenwelle und des Antriebszahnrades 5 dienenden Schmieröls, bewirkt. Zu diesem Zweck ist zwischen der linken Stirnseite 20 der Schaltmuffe 11 und einer mit dem Nabenteil 8 verbundenen Stirnwand 21 eine Druckkammer 22 vorgesehen, welcher Drucköl aus einer Druckölbohrung 23 im Zylinderkopf 1 zugeführt wird. Das Drucköl fließt durch einen radialen Kanal 24 im Nabenteil 7 in eine breite Umfangsnut 25 in der Umfangsfläche der Schaltmuffe 11 und von dort in einen Querkanal 26, der in einer Längsbohrung 27 in der Schaltmuffe 11 mündet, in welcher ein rohrförmiger Steuerschieber 28 angeordnet ist. Das Drucköl kann aus dem Querkanal 26 durch einen Längsschlitz 29 in der Wand des Steuerschiebers 28 in dessen Innenraum 30 gelangen und von dort aus durch Öffnungen 31 in der Wand des Steuerschiebers 28 in die Druckkammer 22 strömen, wenn der Steuerschieber 28 um einen entsprechenden Betrag in der Zeichnung nach links verschoben ist, wie dies in der unteren Hälfte der Fig. 1 dargestellt ist. Diese Verschiebung des Steuerschiebers 28 wird mit Hilfe eines Elektromagneten 32 bewirkt, dessen Anker 33 mit dem Steuerschieber 28 verbunden ist. Der Elektromagnet 32 ist durch Schrauben 34 an den Zylinderkopf 1 angeschraubt und erstreckt sich in das Nabenteil 8 hinein, wodurch die Baulänge des Nockenwellenantriebes so klein wie möglich gehalten wird.In order to achieve a change in the angular position of the camshaft 2 relative to the drive gear 5 and thus a change in the valve timing, the shift sleeve 11 is shifted to the right in the drawing against the force of the spring 18. The helical toothing 12, 13 causes the selector sleeve 11 to rotate relative to the drive gear 5, and this twisting is transmitted to the camshaft 2 through the straight toothing 15, 16. This shift of the shift sleeve 11 is in the embodiment by oil pressure, namely by the pressure of the lubrication of the bearings of the camshaft and the drive gear 5 serving lubricating oil. For this purpose, a pressure chamber 22 is provided between the left end face 20 of the shift sleeve 11 and an end wall 21 connected to the hub part 8, to which pressure oil is supplied from a pressure oil bore 23 in the cylinder head 1. The pressure oil flows through a radial channel 24 in the hub part 7 into a wide circumferential groove 25 in the circumferential surface of the shift sleeve 11 and from there into a transverse channel 26 which opens into a longitudinal bore 27 in the shift sleeve 11, in which a tubular control slide 28 is arranged. The pressure oil can pass from the transverse channel 26 through a longitudinal slot 29 in the wall of the control slide 28 into its interior 30 and flow from there through openings 31 in the wall of the control slide 28 into the pressure chamber 22 when the control slide 28 in by a corresponding amount the drawing is shifted to the left, as shown in the lower half of FIG. 1. This displacement of the control slide 28 is effected with the aid of an electromagnet 32, the armature 33 of which is connected to the control slide 28. The electromagnet 32 is screwed onto the cylinder head 1 by screws 34 and extends into the hub part 8, whereby the overall length of the camshaft drive is kept as small as possible.

Der Steuerschieber 28 erstreckt sich mit einem stangenförmigen Fortsatz 35 durch eine axiale Durchgangsbohrung 36 in der Schaltmuffe 11 hindurch und ist an seinem freien, von der Schaltmuffe 11 vorstehenden Ende mit einem Federteller 37 versehen. Eine schwache Feder 38, welche lediglich die Aufgabe hat, den Steuerschieber 28 nach Abschalten des Elektromagneten 32 in seine in der oberen Hälfte der Fig. 1 dargestellte Ausgangslage zurückzubringen, ist zwischen dem Federteller 37 und dem benachbarten stirnseitigen Ende der Schaltmuffe 11 angeordnet. Der stangenförmige Fortsatz 35 ist ferner durch einen radialen, in einen Längsschlitz eingereifenden Stift 40 drehfest, jedoch axial verschiebbar mit der Schaltmuffe 11 verbunden, so daß keine relative Drehbewegung zwischen ihm und der Schaltmuffe 11 stattfindet und sich eine Ausbildung des Federtellers 37 als Axiallager erübrigt.The control slide 28 extends with a rod-shaped extension 35 through an axial through bore 36 in the shift sleeve 11 and is provided at its free end projecting from the shift sleeve 11 with a spring plate 37. A weak spring 38, which only has the task of returning the control slide 28 to the starting position shown in the upper half of FIG. 1 after the electromagnet 32 has been switched off, is arranged between the spring plate 37 and the adjacent front end of the switching sleeve 11. The rod-shaped extension 35 is also non-rotatably connected by a radial pin 40 engaging in a longitudinal slot, but axially displaceably connected to the shift sleeve 11, so that there is no relative rotational movement between it and the shift sleeve 11 and the formation of the spring plate 37 as an axial bearing is unnecessary.

Die Wirkungsweise der dargestellten Einrichtung zur Veränderung der phasenlage zwischen Nockenwelle 2 und Antriebszahnrad 5 arbeitet wie folgt:The mode of operation of the device shown for changing the phase position between camshaft 2 and drive gear 5 works as follows:

Es sei angenommen, daß im Normalbetrieb der Elektromagnet 32 nicht erregt ist und die Schaltmuffe 11 durch die Feder 18 in die in der oberen Hälfte der Fig. 1 dargestellte linke Endstellung gedrückt ist. Wenn in einem bestimmten Betriebsbereich eine Veränderung der Steuerzeiten der von den Nocken 3 betätigten Ventile gewünscht wird, wird der Elektromagnet 32 erregt und dadurch der Anker 33 zusammen mit dem Steuerschieber 28 entgegen der Wirkung der Feder 38 nach links verschoben, wie dies in der unteren Hälfte der Fig. 1 dargestellt ist. Dadurch kommen die Öffnungen 31 in der Wand des Steuerschiebers 27 in Verbindung mit der Druckkammer 22 und Drucköl kann aus der Ölbohrung 23 durch die Bohrung 24, die Umfangsnut 25, die Querbohrung 26, den Längsschlitz 29, den Innenraum 30 des Steuerschiebers 28 und die Öffnungen 31 in die Druckkammer 22 einströmen. Durch den sich in dieser Kammer 22 aufbauenden Druck wird die Schaltmuffe 11 entgegen der Wirkung der Feder 18 in der Zeichnung nach rechts verschoben und es findet aufgrund der Schrägverzahnung 12, 13 eine Verdrehung der Schaltmuffe 11 und über die Geradverzahnung 15, 16 eine entsprechende Verdrehung der Nockenwelle 2 statt. Wird der Elektromagnet 32 entregt, so wird durch die Feder 38 der Steuerschieber 28 wieder in die in der oberen Hälfte der Fig. 1 dargestellte Lage zurückgeführt, in welcher die Druckölversorgung der Druckkammer 22 unterbrochen ist. Diese Druckkammer 22 ist über die Zahnlücken der Schrägverzahnung 12, 13 und eine Drosselbohrung 43 mit dem drucklosen Raum im Zylinderkopf 1 verbunden, so daß das Drucköl aus der Druckkammer 22 entweichen und die Feder 18 die Schaltmuffe 11 nach links verschieben kann, wodurch die ursprüngliche linke Lage der Nockenwelle relativ zum Antriebszahnrad 5 wieder hergestellt ist. Die Drosselbohrung 43 ist so bemessen, daß sie den Druckaufbau in der Druckkammer 22 in der in der unteren Hälfte der Fig. 1 dargestellten Stellung des Steuerschiebers 28 nicht beeinträchtigt, da in dieser Stellung die Druckkammer 22 ständig mit Drucköl versorgt wird.It is assumed that in normal operation the electromagnet 32 is not energized and the shift sleeve 11 is pressed by the spring 18 into the left end position shown in the upper half of FIG. 1. If a change in the control times of the valves actuated by the cams 3 is desired in a certain operating range, the electromagnet 32 is energized and the armature 33 together with the control slide 28 is shifted to the left against the action of the spring 38, as is the case in the lower half 1 is shown. As a result, the openings 31 in the wall of the control slide 27 come into connection with the pressure chamber 22 and pressure oil can flow out of the oil bore 23 through the bore 24, the circumferential groove 25, the transverse bore 26, the longitudinal slot 29, the interior 30 of the control slide 28 and the openings 31 flow into the pressure chamber 22. Due to the pressure building up in this chamber 22, the selector sleeve 11 is shifted to the right against the action of the spring 18 in the drawing and, due to the helical teeth 12, 13, the selector sleeve 11 is twisted and, via the straight teeth 15, 16, a corresponding twist of the Camshaft 2 instead. If the electromagnet 32 is de-energized, the control slide 28 is moved back into that shown in the upper half of FIG. 1 by the spring 38 Position returned in which the pressure oil supply to the pressure chamber 22 is interrupted. This pressure chamber 22 is connected via the tooth gaps of the helical gears 12, 13 and a throttle bore 43 to the unpressurized space in the cylinder head 1, so that the pressure oil can escape from the pressure chamber 22 and the spring 18 can shift the switching sleeve 11 to the left, whereby the original left Position of the camshaft relative to the drive gear 5 is restored. The throttle bore 43 is dimensioned such that it does not affect the pressure build-up in the pressure chamber 22 in the position of the control slide 28 shown in the lower half of FIG. 1, since in this position the pressure chamber 22 is constantly supplied with pressure oil.

Soll der Zylinderkopf 1 mit einer normalen Nockenwelle ohne eine Einrichtung zur Veränderung der Ventilsteuerzeiten versehen werden, so wird die Lagerstelle 9 oder 10 zur Lagerung der Nockenwelle zwischen dem letzten Nocken und dem drehfest auf dem Ende der Nockenwelle angebrachten Antriebsrad verwendet und die Öffnung der Lagerstelle 10 durch einen Deckel verschlossen. Irgendwelche Änderungen am Zylinderkopf 1 sind dabei nicht erforderlich.If the cylinder head 1 is to be provided with a normal camshaft without a device for changing the valve timing, the bearing 9 or 10 is used for mounting the camshaft between the last cam and the drive wheel fixedly attached to the end of the camshaft and the opening of the bearing 10 closed by a lid. Any changes to the cylinder head 1 are not necessary.

Das Ausführungsbeispiel gemäß Fig. 2, bei dem gleiche oder gleichartige Teile mit den gleichen Bezugszeichen wie in Fig. 1, jedoch mit einem Strich, bezeichnet sind, unterscheidet sich von dem Ausführungsbeispiel gemäß Fig. 1 in erster Linie durch eine wesentlich einfacher aufgebaute Steuerung des Druckes in der Druckkammer 22′. Die Stirnwand 21′, welche die Druckkammer 22′ begrenzt, ist mit einem zentrischen, rohrförmigen Fortsatz 50 versehen, der an seinem Ende 51 geschlossen ist und in der (in der oberen Hälfte der Fig. 2 dargestellten) linken Endstellung der Schaltmuffe 11′ mit radialem Spiel in ein zentrales Sackloch 52 in der Stirnwand 20′ der Schaltmuffe 11′ hineinragt. In dem rohrförmigen Fortsatz 50, dessen Wand 53 mit einer Durchtrittsöffnung 54 versehen ist, ist der Steuerschieber 28′ angeordnet, der mit dem Anker 33′ des Elektromagneten 32′ durch einen radialen Flansch 55 winkelbeweglich verbunden ist. Der Anker 33′ und mit ihm der Steuerschieber 28′ wird durch eine schwache Feder 38′ in die in der oberen Hälfte der Fig. 1 dargestellte rechte Ruhelage gedrückt, in welcher die Öffnung 54 von dem Steuerschieber 28′ freigegeben ist und die Druckkammer 22′ mit einem Ölrückführraum 56 außerhalb der Druckkammer 22′ in Verbindung bringt. Die Druckölzuführung zu der Druckkammer 22′ erfolgt über die Lagerfläche 57 des Nabenteils 8′ und radiale Kanäle 58 im Nabenteil 8′ . In der in der oberen Hälfte der Fig. 2 gezeigten Stellung ist, wie erwähnt, die Öffnung 54 freigegeben und somit ist die Druckkammer 22′ druckentlastet. Die Bewegung der Schaltmuffe 11′ in ihre linke Endstellung erfolgt hierbei durch die von der Schrägverzahnung 12′, 13′ ausgeübte, nach links wirkende Axialkraft sowie durch den Öldruck in einer Ringkammer 59 zwischen der Umfangsfläche der Schaltmuffe 11′ und der Innenfläche des Nabenteils 7′, die von Dichtringen 59a begrenzt ist und der Schmieröl unter Druck durch einen Kanal 60 zugeführt wird. Der Öldruck wirkt auf die linke Stirnfläche 59b dieser Ringkammer 59 und ist somit bestrebt, die Schaltmuffe 11′ nach links zu schieben. Wird der Elektromagnet 32′ erregt und dadurch der Anker 33′ mit dem Steuerschieber 28′ nach links verschoben, wie dies in der unteren Hälfte der Fig. 2 dargestellt ist, so wird die Öffnung 54 durch den Steuerschieber 28′ abgesperrt und es kann sich nun in der Druckkammer 22′ ein Druck aufbauen, der auf die linke Stirnfläche 20′ der Schaltmuffe 11′ wirkt und diese entgegen der Axialkraft der Schrägverzahnung 12, 13 und dem Druck in der Ringkammer 59 nach rechts verschiebt. Die Entlüftung der Kammer 61 zwischen der rechten Stirnfläche 62 und dem Nabenteil 7′ erfolgt wie beim ersten Ausführungsbeispiel durch Bohrungen 43′.The embodiment according to FIG. 2, in which the same or similar parts are designated by the same reference numerals as in FIG. 1, but with a dash, differs from the embodiment according to FIG. 1 primarily by a much simpler control of the Pressure in the pressure chamber 22 '. The end wall 21 ', which limits the pressure chamber 22', is provided with a central, tubular extension 50 which is closed at its end 51 and in the (shown in the upper half of Fig. 2) left end position of the switching sleeve 11 'with radial play in one central blind hole 52 in the end wall 20 'of the shift sleeve 11' protrudes. In the tubular extension 50, the wall 53 of which is provided with a passage opening 54, the control slide 28 'is arranged, which is connected to the armature 33' of the electromagnet 32 'by a radial flange 55 such that it can move in an angular manner. The armature 33 'and with it the control slide 28' is pressed by a weak spring 38 'into the right rest position shown in the upper half of FIG. 1, in which the opening 54 is released from the control slide 28' and the pressure chamber 22 ' brings with an oil return space 56 outside the pressure chamber 22 'in connection. The pressure oil supply to the pressure chamber 22 'via the bearing surface 57 of the hub part 8' and radial channels 58 in the hub part 8 '. In the position shown in the upper half of Fig. 2, as mentioned, the opening 54 is released and thus the pressure chamber 22 'is relieved of pressure. The movement of the shift sleeve 11 'in its left end position takes place here by the helical toothing 12', 13 'exerted to the left acting axial force and by the oil pressure in an annular chamber 59 between the peripheral surface of the shift sleeve 11' and the inner surface of the hub part 7 ' , which is limited by sealing rings 59a and the lubricating oil is supplied under pressure through a channel 60. The oil pressure acts on the left end face 59b of this annular chamber 59 and thus endeavors to push the shift sleeve 11 'to the left. If the electromagnet 32 'excited and thereby the armature 33' with the control slide 28 'moved to the left, as shown in the lower half of Fig. 2, the opening 54 is blocked by the control slide 28' and it can now in the pressure chamber 22 'build up a pressure which acts on the left end face 20' of the selector sleeve 11 'and moves it against the axial force of the helical teeth 12, 13 and the pressure in the annular chamber 59 to the right. The venting of the Chamber 61 between the right end face 62 and the hub part 7 'takes place as in the first embodiment through holes 43'.

Bei der Ausführung gemäß Fig. 1 muß aufgrund der Lagerung des Steuerschiebers 28 in der Schaltmuffe 11 und der starren Verbindung desselben mit dem Anker 33 im Hinblick auf Fertigungstoleranzen ein verhältnismäßig großer Luftspalt zwischen dem Anker 33 und der Spule des Elektromagneten 32 vorgesehen werden, was zur Folge hat, daß eine größere magnetische Kraft und ein entsprechend größer bemessener Elektromagnet erforderlich ist, zumal die von dem Elektromagneten zu bewegende Masse (Steuerschieber 28, Stange 35) verhältnismäßig groß ist. Beim Ausführungsbeispiel gemäß Fig. 2 dagegen ist die Masse des Steuerschiebers 28′ erheblich geringer und es sind weniger Toleranzen zu beachten, wodurch der erwähnte Luftspalt klein sein und der Elektromagnet 32′ kleinere Abmessungen haben kann. Dies ist im Hinblick auf die äußerst beengten Raumverhältnisse insbesondere zur Lösung der Aufgabe, eine bestehende Brennkraftmaschine mit einer derartigen variablen Ventilsteuerung zu versehen, von großer Bedeutung. Ein weiterer Vorteil der Ausführung gemäß Fig. 2 besteht darin, daß die gesamte Stirnseite 20′ der Schaltmuffe 11′ einschließlich der Stirnfläche des Sackloches 52 dem Öldruck ausgesetzt ist, so daß größere Verstellkräfte auf die Schaltmuffe 11′ ausgeübt werden können.In the embodiment according to FIG. 1, a relatively large air gap between the armature 33 and the coil of the electromagnet 32 must be provided due to the mounting of the control slide 28 in the shift sleeve 11 and the rigid connection thereof with the armature 33 with regard to manufacturing tolerances, which is intended for The consequence is that a larger magnetic force and a correspondingly larger electromagnet is required, especially since the mass to be moved by the electromagnet (control slide 28, rod 35) is relatively large. In the exemplary embodiment according to FIG. 2, on the other hand, the mass of the control slide 28 'is considerably smaller and there are fewer tolerances to be observed, as a result of which the air gap mentioned can be small and the electromagnet 32' can have smaller dimensions. This is of great importance in view of the extremely cramped space conditions, in particular for solving the task of providing an existing internal combustion engine with such a variable valve control. Another advantage of the embodiment according to FIG. 2 is that the entire end face 20 'of the shift sleeve 11' including the end face of the blind hole 52 is exposed to the oil pressure, so that larger adjusting forces can be exerted on the shift sleeve 11 '.

Bei dem Ausführungsbeispiel gemäß Fig. 3 und 4, bei dem gleiche oder gleichartige Teile mit gleichen Bezugszeichen wie in Fig. 2, jedoch mit einem Doppelstrich, bezeichnet sind, erfolgt der Druckölzufluß zur Druckkammer 22˝ (Fig. 4) durch einen Kanal 70 in der Wand 21˝, der mit dem radialen Kanal 58˝ im Nabenteil 8˝ in Verbindung steht. Die Wand 53˝ des Fortsatzes 50˝ weist eine Zuflußöffnung 71 und eine Abflußöffnung 72 auf, die mit der Druckkammer 22˝ in Verbindung steht. Der Steuerschieber 28˝ ist mit zwei axial und in Umfangsrichtung versetzten Überströmkanäle 74 und 75 versehen, von denen der Uberströmkanal 74 den Zuflußkanal 70 mit der Zuflußöffnung 71 in Verbindung bringt, wenn sich der Steuerschieber 28˝ in seiner linken Endstellung (Fig. 4) befindet, und der Überströmkanal 75 die Abflußöffnung 72 mit dem Ölrückführraum 56˝ in Verbindung bringt, wenn sich der Steuerschieber 28˝ in seiner rechten Endstellung (Fig. 3) befindet.In the embodiment according to FIGS. 3 and 4, in which the same or similar parts are designated with the same reference numerals as in FIG. 2, but with a double line, the pressure oil flows to the pressure chamber 22 70 (FIG. 4) through a channel 70 in the wall 21˝, which is connected to the radial channel 58˝ in the hub part 8˝. The wall 53˝ of the extension 50˝ has one Inflow opening 71 and a discharge opening 72, which communicates with the pressure chamber 22˝. The control slide 28˝ is provided with two axially and circumferentially offset overflow channels 74 and 75, of which the overflow channel 74 connects the inflow channel 70 with the inflow opening 71 when the control slide 28˝ is in its left end position (FIG. 4) , and the overflow channel 75 connects the drain opening 72 with the oil return space 56˝ when the control slide 28˝ is in its right end position (FIG. 3).

Bei dieser Ausführung begrenzt die ringförmige Stirnfläche 62˝ des Schaltmuffenabschnittes 76, der die Schrägverzahnung 12˝ trägt, mit der Wand 77 des Nabenteils 7˝ eine Kammer 78, die über einen Kanal 79 und den Ringspalt 80 zwischen der Umfangsfläche des dünneren Abschnittes 81 der Schaltmuffe 11˝ und dem Nabenteil 7˝ mit Schmieröl unter Druck versorgt wird. Der Druck in der Kammer 78 ist bestrebt, die Schaltmuffe 11˝ in Fig. 3 nach links zu bewegen. Diese Bestrebung wird unterstützt durch die Feder 18˝.In this embodiment, the annular end face 62˝ of the shift sleeve section 76, which carries the helical toothing 12˝, with the wall 77 of the hub part 7˝ delimits a chamber 78, which via a channel 79 and the annular gap 80 between the peripheral surface of the thinner section 81 of the shift sleeve 11˝ and the hub part 7˝ is supplied with lubricating oil under pressure. The pressure in the chamber 78 tends to move the shift sleeve 11˝ in Fig. 3 to the left. This effort is supported by the spring 18˝.

Die Wirkungsweise dieser Ausführung ist folgende:
In Fig. 4 ist der Steuerschieber 28˝ in seiner linken Endstellung, in welcher der Druckölzuflußkanal 70 mit der Druckkammer 22˝ in Verbindung steht. Da die Stirnfläche 20˝ der Schaltmuffe 11˝ größer ist als die Ringfläche 62˝, wird die Schaltmuffe 11˝ entgegen dem Druck in der Kammer 78 und entgegen der Wirkung der Feder 18˝ nach rechts in die Stellung gemäß Fig. 4 bewegt. Dabei findet aufgrund der Schrägverzahnung 12˝, 13˝ eine entsprechende Verdrehung der Nockenwelle 2˝ relativ zum Antriebszahnrad 5˝ statt, wie dies im Zusammenhang mit Fig. 1 beschrieben wurde. Wird der Steuerschieber 28˝ nach Entregung des Elektromagneten 32˝ durch die Feder 38˝ nach rechts bewegt, wie dies in Fig. 3 dargestellt ist, so verbindet der Überströmkanal 75 über die Abflußöffnung 72 die Druckkammer 22˝ mit dem Ölrückführraum 56˝, während der Zuflußkanal 70 abgesperrt ist. Der in der Kammer 78 wirkende Öldruck kann nun zusammen mit der Feder 18˝ die Schaltmuffe 11˝ nach links bewegen, wodurch die Verdrehung der Nockenwelle 2˝ wieder rückgängig gemacht wird. Diese Ausführung hat gegenüber der Ausführung gemäß Fig. 1 den zusätzlichen Vorteil, daß der Schaltmuffenabschnitt 76 auf beiden Seiten mit dem gleichen Öldruck beaufschlagt ist, so daß keine Leckage über die Verzahnung 12˝, 13˝ eintritt und eine Dichtung zwischen der Schaltmuffe 11 bzw. 11′ und dem Nabenteil 7 bzw. 7′ entfallen kann, wie ein Vergleich der Fig. 1 und 2 mit Fig. 3 zeigt. Dadurch wird wiederum platz in axialer Richtung eingespart.
The operation of this version is as follows:
In Fig. 4, the control slide 28˝ in its left end position, in which the pressure oil inflow channel 70 is in communication with the pressure chamber 22˝. Since the end face 20˝ of the shift sleeve 11˝ is larger than the annular surface 62˝, the shift sleeve 11˝ is moved to the right against the pressure in the chamber 78 and against the action of the spring 18˝ in the position shown in FIG. 4. Due to the helical teeth 12˝, 13˝ there is a corresponding rotation of the camshaft 2˝ relative to the drive gear 5˝, as was described in connection with FIG. 1. If the control slide 28˝ is moved to the right by the spring 38˝ after de-energization of the electromagnet 32˝, 3, the overflow channel 75 connects the pressure chamber 22˝ to the oil return space 56˝ via the outlet opening 72, while the inflow channel 70 is shut off. The oil pressure acting in the chamber 78 can now move the shift sleeve 11˝ to the left together with the spring 18˝, as a result of which the rotation of the camshaft 2˝ is reversed again. This embodiment has the additional advantage over the embodiment according to FIG. 1 that the shift sleeve section 76 is acted upon on both sides with the same oil pressure so that no leakage occurs via the toothing 12˝, 13˝ and a seal between the shift sleeve 11 or 11 'and the hub part 7 or 7' can be omitted, as a comparison of FIGS. 1 and 2 with Fig. 3 shows. This in turn saves space in the axial direction.

Die Schrägverzahnung 12˝, 13˝ kann in diesem Fall so angeordnet werden, daß ihre axiale Schubkraft nach rechts auf die Schaltmuffe 11˝ wirkt, da für eine Bewegung nach links der auf die ringförmige Stirnfläche 62˝ wirkende Schmieröldruck ausgenutzt wird.The helical teeth 12äg, 13˝ can be arranged in this case so that their axial thrust to the right acts on the shift sleeve 11˝, since the lubricating oil pressure acting on the annular end face 62˝ is used for a movement to the left.

Claims (10)

1. A drive arrangement for a camshaft (2) of an internal combustion engine, with a device for rotating the camshaft (2), which runs on bearings in the cylinder head (1) of the internal combustion engine, relative to a coaxial drive wheel (5), with a shift sleeve (11) which is disposed coaxially to the camshaft (2), can be shifted axially between two end positions and is non-rotatably connected, on the one hand to the drive wheel (5) and on the other hand to the camshaft (2) by a spiral gear (12, 13) and by a straight gear (15, 16() respectively, that is diposed axially next to the shift sleeve (11), which sleeve protrudes with its one end into a recess (14) in the end of the camshaft (2) adjacent to the drive wheel (5), characterized in that the drive wheel (5) is disposed on a hub (7, 8), which runs on bearings in the cylinder head (1) on either side of the drive wheel (5), and that the camshaft (2) ends between the cam (3a) adjacent to the drive wheel (5) and the cylinder head bearing adjacent to this cam.
2. The drive arrangement of claim 1, characterized in that the hub (7, 8) of the drive wheel (5) has an internal spiral gearing (13), which is symmetrical to the drive wheel (5) and engages a corresponding external spiral gearing (12) on the outer surface of the shift sleeve (11).
3. The drive arrangement of claim 1, in which the shift sleeve is shifted in one direction by the force of a spring, characterized in that the spring (18) is disposed between a supporting surface (17) in the recess (14) in the camshaft (2) and the adjacent front surface of the shift sleeve (11).
4. The drive arrangement of one of the claims 1 to 3, in which the shift sleeve (11) is shifted in one direction by oil pressure, characterized by
a) a pressure chamber (22) between a front surface (20) of the shift sleeve (11) and a cover (21), which closes off the hollow hub (7, 8) of the drive wheel (5) on one side,
b) a slide valve (28), which is diposed coaxially to the shift sleeve (11) for controlling the flow into and/or out of the pressure chamber, and
c) an electromagnet (32), which is diposed coaxially to the shift sleeve (11) in the cylinder head (1) and protrudes into the hub of the drive wheel, and the armature (33) of which is connected directly with the slide valve (28).
5. The drive arrangement of claim 4, characterized in that the slide valve (28) in non-rotatably connected to the shift sleeve (11) and extends with a rod-shaped extension (35) through the shift sleeve (11), that the free end of the extension (35) which protrudes beyond the shift sleeve (11) carries a spring plate (37), and that a spring (38) is disposed between this spring plate (37) and the front surface of the shift sleeve (11) and counteracts the motion of the slide valve (28) caused by the electromagnet (32).
6. The drive arrangement of claim 4, characterized in that the wall (21′, 21˝) has a central tubular extension (50, 50˝) the end of which is closed, that the front surface (20′, 20˝) of the shift sleeve (11′, 11˝) has a central blind hole (52) for at least intermittent accommodation of the extension (50, 50˝), that the slide valve (28′, 28˝) is disposed in the extension and that oil inflow and/or outflow openings (54 and 71, 72 respectively) which are controlled by the slide valve (28′, 28˝) and connected with the pressure chamber (22′, 222) are provided in the wall (53, 53˝) of the extension (50).
7. The drive arrangement of claim 6, characterized in that at least one oil inflow duct (58) which is permanently connected with the chamber (22′) is provided in the hub (7′, 8′) of the drive wheel and at least one oil outflow opening (54) which is connected on the one hand with the pressure chamber (22′) and on the other hand with an oil recycling space (56), is provided in the wall (53) of the extension (50).
8. The drive arrangement of claim 6, characterized in that an oil inflow duct (70) is provided in the wall (21˝), that an inflow opening (71) and an outflow opening (72) are provided in the wall (53˝) of the extension (50˝), and that the slide valve (28˝) has two overflow ducts (74, 75), which are offset to one another axially and in the circumferential direction, whereby depending on the position of the slide valve, either the one overflow duct (74) is connected to the inflow duct (70) and the inflow opening (71) or the other overflow duct (75) is connected to the outflow opening (72) and to an oil return space (56˝) outside of the pressure chamber (22˝).
9. The drive arrangement of one of the claims 4 to 8, characterized in that the slide valve (28′, 28˝) is hinged to the armature (33′, 33˝) of the electromagnet (32′, 32˝).
10. The drive arrangement of one of the claims 4 to 9, characterized in that the section (76) of the shift (11˝), which carries the external gearing (12˝) that is in engagement with the internal gearing (13˝) of the drive wheel hub, directly adjoins the front surface (20˝) of the shift sleeve (11) and has a larger diameter than the thereon adjoining section (81) which is guided in the hub, and that the thereby formed annular front surface (62˝) of the shift sleeve section (76) which is provided with the external gearing, defines together with a structural part (7˝)connected to the drive wheel (5˝), a chamber (78), which is connected to the same source of oil pressure as the pressure chamber (22˝).
EP89907114A 1988-07-15 1989-06-06 Drive arrangement for a camshaft in an internal combustion engine Expired - Lifetime EP0423160B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3824062 1988-07-15
DE3824062 1988-07-15

Publications (2)

Publication Number Publication Date
EP0423160A1 EP0423160A1 (en) 1991-04-24
EP0423160B1 true EP0423160B1 (en) 1992-03-25

Family

ID=6358776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89907114A Expired - Lifetime EP0423160B1 (en) 1988-07-15 1989-06-06 Drive arrangement for a camshaft in an internal combustion engine

Country Status (4)

Country Link
US (1) US5111780A (en)
EP (1) EP0423160B1 (en)
DE (1) DE58901050D1 (en)
WO (1) WO1990000670A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533617A (en) * 1991-07-31 1993-02-09 Atsugi Unisia Corp Valve timing controller for internal combustion engine
JPH06129271A (en) * 1992-10-16 1994-05-10 Yamaha Motor Co Ltd Four-cycle engine
DE4240075C2 (en) * 1992-11-28 2002-08-29 Bosch Gmbh Robert Hydraulic actuator
WO1994023772A2 (en) * 1993-04-06 1994-10-27 Minnesota Mining And Manufacturing Company Deagglomerators for dry powder inhalers
DE4321003C2 (en) * 1993-06-24 2001-05-03 Schaeffler Waelzlager Ohg Device for changing the timing of an internal combustion engine
US5860328A (en) * 1995-06-22 1999-01-19 Chrysler Corporation Shaft phase control mechanism with an axially shiftable splined member
US5673659A (en) * 1995-06-22 1997-10-07 Chrysler Corporation Lead screw driven shaft phase control mechanism
DE19645688C2 (en) * 1996-11-06 2002-09-26 Ina Schaeffler Kg Device for changing the timing of an internal combustion engine
AT407282B (en) * 1997-09-19 2001-02-26 Tcg Unitech Ag DEVICE FOR ADJUSTING A CAMSHAFT
US5862783A (en) * 1998-03-12 1999-01-26 Lewis; Henry E. Variable angle camshaft
JP4036401B2 (en) * 1998-03-27 2008-01-23 ヤマハ発動機株式会社 4-cycle engine with variable valve timing system
DE19848706A1 (en) * 1998-10-22 2000-04-27 Schaeffler Waelzlager Ohg Arrangement for relative movement of camshaft to combustion engine crankshaft has control element as fixed part of adjustable hydraulic valve protruding into hollow chamber
US6167854B1 (en) 1999-04-01 2001-01-02 Daimlerchrysler Corporation Two-part variable valve timing mechanism
US6199522B1 (en) 1999-08-27 2001-03-13 Daimlerchrysler Corporation Camshaft phase controlling device
US6216654B1 (en) 1999-08-27 2001-04-17 Daimlerchrysler Corporation Phase changing device
JP3318292B2 (en) * 1999-09-03 2002-08-26 本田技研工業株式会社 Storage chamber structure of endless flexible member for driving camshaft of internal combustion engine
US6202611B1 (en) 1999-12-23 2001-03-20 Daimlerchrysler Corporation Camshaft drive device for an internal combustion engine
JP2001342812A (en) 2000-05-31 2001-12-14 Sanshin Ind Co Ltd Four cycle engine for outboard motor
US6910450B2 (en) * 2000-05-31 2005-06-28 Yamaha Marine Kabushiki Kaisha Variable valve timing structure for outboard motor engine
US6672283B2 (en) 2000-06-09 2004-01-06 Yamaha Marine Kabushiki Kaisha Four-cycle engine for marine drive
JP2003003870A (en) * 2001-06-21 2003-01-08 Sanshin Ind Co Ltd Valve timing controller for four-cycle engine for outboard motor
JP2003003898A (en) 2001-06-22 2003-01-08 Sanshin Ind Co Ltd Device of controlling four-cycle engine for outboard motor
JP2003013759A (en) 2001-06-29 2003-01-15 Sanshin Ind Co Ltd Valve timing control device for four cycle engine for outboard motor
JP2003013760A (en) 2001-07-02 2003-01-15 Sanshin Ind Co Ltd Valve timing control device for four cycle engine for outboard motor
JP2003013761A (en) 2001-07-02 2003-01-15 Sanshin Ind Co Ltd Valve timing control device for four cycle engine for outboard motor
JP2003020964A (en) 2001-07-04 2003-01-24 Sanshin Ind Co Ltd Valve timing control device of 4-stroke cycle engine for outboard motor
JP2003035156A (en) 2001-07-25 2003-02-07 Sanshin Ind Co Ltd Four-cycle engine for outboard motor
JP2003035179A (en) 2001-07-25 2003-02-07 Sanshin Ind Co Ltd Four-cycle engine for outboard motor
WO2006047099A2 (en) 2004-10-26 2006-05-04 George Louie Continuously variable valve timing device
CN108915814B (en) * 2018-08-28 2023-10-20 河南柴油机重工有限责任公司 Cam shaft driving device of common rail diesel engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1201546A (en) * 1957-04-17 1959-12-30 Daimler Benz Ag Device for adjusting the start of injection for reversible injection internal combustion engines
JPS58162708A (en) * 1982-03-24 1983-09-27 Toyota Motor Corp Valve timing control device for internal-combustion engine
DE3247916A1 (en) * 1982-12-24 1984-06-28 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR CONTROLLING THE VALVES OF AN INTERNAL COMBUSTION ENGINE OVER A CAMSHAFT
DE3616234A1 (en) * 1986-05-14 1987-11-19 Bayerische Motoren Werke Ag DEVICE FOR THE RELATIVE TURNING CHANGE OF TWO DRIVELY CONNECTED SHAFTS, ESPECIALLY BETWEEN A CRANKSHAFT AND CAMSHAFT BEARING IN A MACHINE HOUSING OF AN INTERNAL COMBUSTION ENGINE
DE3825074C1 (en) * 1988-07-23 1989-10-19 Daimler-Benz Aktiengesellschaft, 7000 Stuttgart, De
US4976229A (en) * 1990-02-12 1990-12-11 Siemens Automotive L.P. Engine camshaft phasing

Also Published As

Publication number Publication date
DE58901050D1 (en) 1992-04-30
EP0423160A1 (en) 1991-04-24
US5111780A (en) 1992-05-12
WO1990000670A1 (en) 1990-01-25

Similar Documents

Publication Publication Date Title
EP0423160B1 (en) Drive arrangement for a camshaft in an internal combustion engine
DE3810804C2 (en)
EP0469332B1 (en) Method for changing valve timing in an internal combustion engine
EP0352436B1 (en) Device for the relative angular displacement between a driving and a driven shaft
DE19817319A1 (en) Camshaft setter for internal combustion engine
EP0469334B1 (en) Method for changing the angular position of shafts for an internal combustion engine
WO2008067935A2 (en) Regulating device
EP0033372A1 (en) Braking gear for valve controlled internal combustion engines
WO2001021938A1 (en) Camshaft adjuster for internal combustion engines
DE68925342T2 (en) Valve drive device for internal combustion engines
DE4406738A1 (en) VCT system with control valve preload at low pressures and non-preloaded control at normal operating pressures
DE69404767T2 (en) Starter for internal combustion engines
EP0593908B1 (en) Engine brake with exhaust throttle
EP0500622B1 (en) Drive arrangement for a camshaft fitted in the cylinder head of an internal combustion engine
DE4038242C2 (en)
DE19632242C2 (en) Device for changing the phase position of a camshaft relative to a driving part in an internal combustion engine
DE19702670A1 (en) Variable timing valve drive for motor vehicle internal combustion engine
DE3918361A1 (en) Drive arrangement for a camshaft of an internal combustion engine
DE69127941T2 (en) Rotary piston drive with inner valve
EP0326562A1 (en) Rotary gate valve for hydraulic servo-assisted steering systems.
DE4440133A1 (en) Switchable cam follower
DE1176000B (en) Auxiliary switching device working with pressure medium for motor vehicle gearboxes
DE1600808C (en) Actuating device operated by pressure medium for the drive shaft of a valve
WO1999028601A1 (en) Disengageable valve arm or oscillating lever
DE102019008823A1 (en) Camshaft adjusting device for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19910521

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 58901050

Country of ref document: DE

Date of ref document: 19920430

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980612

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990525

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990616

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000606

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050606