EP0422974A1 - Procédé et installation de production d'oxygène gazeux à débit variable par distillation d'air - Google Patents

Procédé et installation de production d'oxygène gazeux à débit variable par distillation d'air Download PDF

Info

Publication number
EP0422974A1
EP0422974A1 EP90402596A EP90402596A EP0422974A1 EP 0422974 A1 EP0422974 A1 EP 0422974A1 EP 90402596 A EP90402596 A EP 90402596A EP 90402596 A EP90402596 A EP 90402596A EP 0422974 A1 EP0422974 A1 EP 0422974A1
Authority
EP
European Patent Office
Prior art keywords
flow
air
oxygen
tank
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90402596A
Other languages
German (de)
English (en)
Other versions
EP0422974B1 (fr
Inventor
Bernard Darredeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9386209&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0422974(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to AT90402596T priority Critical patent/ATE85696T1/de
Publication of EP0422974A1 publication Critical patent/EP0422974A1/fr
Application granted granted Critical
Publication of EP0422974B1 publication Critical patent/EP0422974B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04193Division of the main heat exchange line in consecutive sections having different functions
    • F25J3/04206Division of the main heat exchange line in consecutive sections having different functions including a so-called "auxiliary vaporiser" for vaporising and producing a gaseous product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04472Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages
    • F25J3/04496Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist
    • F25J3/04503Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems
    • F25J3/04509Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line
    • F25J3/04515Simultaneously changing air feed and products output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/40One fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the present invention relates to the production of a variable flow rate of gaseous oxygen by air distillation. It relates firstly to a process of the type in which a variable quantity of oxygen is stored in liquid form in a first tank from which a variable flow of oxygen is taken and vaporized with, correspondingly, storage of another fluid in liquid form in a second reservoir.
  • the object of the invention is to provide a method which can be implemented more simply.
  • the subject of the invention is a method of the aforementioned type, characterized in that said fluid consists of a fraction of the air to be treated, in that a constant flow of liquid oxygen is sent into said first tank and a constant flow of liquefied air from said second tank into the distillation apparatus, and in that it is drawn from the first tank, depending on the oxygen demand gaseous, a variable flow of liquid oxygen which is vaporized by condensation of a corresponding variable flow of air to be treated.
  • the flow rates of each fluid introduced into the distillation apparatus and of each fluid withdrawn from this apparatus are kept constant, and the total air flow to be treated in the same way as the air flow condensed by oxygen vaporization.
  • the invention also relates to an installation intended for the implementation of such a method.
  • This installation of the type comprising a main air compressor, a double column distillation apparatus supplied by this compressor, a first storage tank for a variable quantity of liquid oxygen, a second storage tank for a variable quantity of another fluid in liquid form, and means for taking a variable flow of liquid oxygen in the first tank and vaporizing it and, approximately at the same time, adding said fluid in liquid form in the second tank, is characterized in that said vaporization means comprise a heat exchanger connected on the one hand to the outlet of the main compressor and on the other hand to the second tank, the lower part of the latter being also connected to the distillation apparatus, and in that the installation comprises means for passing a constant flow of liquid oxygen into the first tank, means for taking a variable flow of oxy liquid gene in this tank, means for varying the air flow rate sent to the heat exchanger, and means for send a constant flow of liquefied air from the second tank to the distillation apparatus.
  • FIGS. 1 and 2 schematically represent two embodiments of the installation according to the invention.
  • the installation shown in FIG. 1 essentially comprises a main air compressor 1 with variable flow rate, for example of the centrifugal type with movable blades, an adsorption purification device 2, a heat exchange line 3, a turbine 4 for keeping cold, an apparatus 5 for air distillation consisting of a double column itself comprising a medium pressure column 6 surmounted by a low pressure column 7 and a vaporizer-condenser 8, an auxiliary heat exchanger 9, a liquid oxygen tank 10 and a liquefied air tank 11.
  • This installation is intended to produce a variable flow of gaseous oxygen via a line 12, at a pressure slightly higher than atmospheric pressure.
  • the nominal flow of air to be treated, compressed to 6 bars by the compressor 1, cooled to room temperature and purified in the device 2, is divided into two flows each having a constant flow: - A first flow is cooled in passages 13 of the exchange line; a part has left this exchange line after partial cooling, expanded to 1 bar in the turbine 4 and blown into the low pressure column 7 near its dew point; the rest continues to cool down to the vicinity of its dew point at 6 bars, then is injected at the bottom of the medium pressure column 6 via a pipe 14. - A second flow is cooled to the vicinity of its dew point in passages 15 of the exchange line and then condensed in the exchanger 9 and stored in liquid form in the tank 11.
  • a constant flow of liquefied air is withdrawn from the bottom of this tank and is divided into a first constant flow at 6 bars sent to the medium pressure column via a line 16, and a second constant relaxed flow to 1 bar in an expansion valve 17 then injected into the low pressure column 7.
  • the vaporizer-condenser 8 vaporizes a constant flow of liquid oxygen in the bottom of the low pressure column by condensing a roughly equal flow of nitrogen from the top of the medium pressure column.
  • "Rich liquid” oxygen-enriched air
  • "lean liquid” nitrogen almost pure taken from the top of the medium pressure column and expanded to around 1 bar in an expansion valve 19 is injected at the top of the low pressure column.
  • a constant flow of liquid oxygen corresponding to 20% of the incoming air flow, passes, via a line 20, into the tank 10.
  • a constant flow identical liquid oxygen is withdrawn from the bottom of this tank, vaporized in the exchanger 9, heated in passages 21 of the exchange line and supplied to the production line 12.
  • a constant flow of impure nitrogen drawn off from the top of the low pressure column, is heated in passages 22 of the exchange line and evacuated as waste via a pipe 23.
  • Fig. 2 The installation shown in Fig. 2 is intended to supply gaseous oxygen under pressure. it differs from the previous one only in that a variable flow pump 24 is mounted in the pipe which connects the bottom of the tank 10 to the exchanger 9, and that an air blower 25 with movable blades is mounted in the pipe which conveys the fraction of the compressed air flow to the passages 15 of the heat exchange line.
  • the nominal operation of the installation is the same as above, except that the liquid oxygen withdrawn from the tank 10 is brought by the pump 24 to the desired pressure, then is vaporized under this pressure in the exchanger 9. To be able to carry out this vaporization, the corresponding air flow is boosted to a pressure somewhat higher than the oxygen vaporization pressure by the booster 25, condensed in the exchanger 9, then expanded to 6 bars in an expansion valve 26 before being stored in the tank 11.
  • each variation in the demand for gaseous oxygen in the pipe 12 requires a corresponding variation in the flow rate of the pump 24, a variation of the same order in the flow rate of air boosted by the booster 25, and an identical variation in the flow of air compressed by the main compressor 1.
  • the invention is particularly suitable for imparting flexibility to oxygen production installations with oxygen demands which vary frequently and rapidly.
  • the invention also applies to the case where, the oxygen demand always being greater than a given minimum value, a constant flow of gaseous oxygen equal to this minimum value is withdrawn directly from the bottom of the column low pressure 7 via a line 27, as indicated in phantom in Figs. 1 and 2, then reheated in the exchange line.
  • This variant makes it possible to reduce the capacity of the tanks 10 and 11.
  • constant productions of liquid oxygen and / or nitrogen gas and / or liquid nitrogen can be ensured simultaneously by the double column, via pipes 28 and / or 29 and / or 30, also as shown in dashed lines in FIGS. 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Pour satisfaire à une demande variable d'oxygène gazeux, on fait passer un débit constant d'oxygène liquide de la double colonne de distillation (5) dans un réservoir (10), et on soutire de celui-ci un débit variable d'oxygène liquide, qui est vaporisé dans un échangeur de chaleur (9) par condensation d'un débit correspondant d'air entrant. L'air liquéfié est stocké dans un second réservoir (11), d'où un débit constant d'air liquéfié est envoyé dans la double colonne.

Description

  • La présente invention est relative à la production d'un débit variable d'oxygène gazeux par distillation d'air. Elle concerne en premier lieu un procédé du type dans lequel une quantité variable d'oxygène est stockée sous forme liquide dans un premier réservoir d'où un débit variable d'oxygène est prélevé et vaporisé avec, de façon correspondante, stockage d'un autre fluide sous forme liquide dans un second réservoir.
  • Dans un procédé connu de ce type, mis en oeuvre dans des installations réelles et connu sous l'appellation "procédé à bascule" la vaporisation et la condensation d'oxygène correspondent à une conden­sation et à une vaporisation d'azote, les échanges de chaleur étant effectués dans la double colonne qui constitue l'appareil de distillation d'air. Par suite, chaque modification du débit d'oxygène gazeux produit s'accompagne d'une modification du régime de marche de la double colonne, et en particulier de ses taux de chauffage et de reflux. Il en résulte des périodes de pertes d'efficacité de la distillation, d'autant plus importantes que les variations de régime sont rapprochées et rapides. De plus, une régulation complexe de l'installation est nécessaire.
  • L'invention a pour but de fournir un procédé pouvant être mis en oeuvre de manière plus simple.
  • A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que ledit fluide est constitué par une fraction de l'air à traiter, en ce qu'on envoie un débit constant d'oxy­gène liquide dans ledit premier réservoir et un débit constant d'air liquéfié dudit second réservoir dans l'appareil de distillation, et en ce qu on soutire du premier réservoir, en fonction de la demande d oxygène gazeux, un débit variable d'oxygène liquide que l'on vaporise par condensation d'un débit variable corres­pondant d'air à traiter.
  • Dans un mode de mise en oeuvre avantageux, lors d'une variation de la demande d'oxygène, on main­tient constants les débits de chaque fluide introduit dans l'appareil de distillation et de chaque fluide soutiré de cet appareil, et on fait varier le débit total d'air à traiter de la même façon que le débit d'air condensé par vaporisation d'oxygène.
  • L'invention a également pour objet une ins­tallation destinée à la mise en oeuvre d'un tel pro­cédé. Cette installation, du type comprenant un com­presseur principal d'air, un appareil de distillation à double colonne alimenté par ce compresseur, un premier réservoir de stockage d'une quantité variable d'oxygène liquide, un second réservoir de stockage d une quantité variable d'un autre fluide sous forme liquide, et des moyens pour prélever un débit variable d'oxygène liquide dans le premier réservoir et le va­poriser et, à peu près en même temps, ajouter dudit fluide sous forme liquide dans le second réservoir, est caractérisée en ce que lesdits moyens de vaporisa­tion comprennent un échangeur de chaleur relié d'une part à la sortie du compresseur principal et d'autre part au second réservoir, la partie inférieure de ce dernier étant par ailleurs reliée à l'appareil de dis­tillation, et en ce que l'installation comprend des moyens pour faire passer un débit constant d'oxygène liquide dans le premier réservoir, des moyens pour prélever un débit variable d'oxygène liquide dans ce réservoir, des moyens pour faire varier le débit d'air envoyé à l'échangeur de chaleur, et des moyens pour envoyer un débit constant d'air liquéfié du second réservoir dans l'appareil de distillation.
  • Des exemples de mise en oeuvre de l'inven­tion vont maintenant être décrits en regard du dessin annexé, sur lequel les Fig. 1 et 2 représentent sché­matiquement deux modes de réalisation de l'instal­lation conforme à l'invention.
  • L'installation représentée à la Fig. 1 comprend essentiellement un compresseur d'air prin­cipal 1 à débit variable, par exemple du type cen­trifuge à aubages mobiles, un appareil d'épuration par adsorption 2, une ligne d'échange thermique 3, une turbine 4 de maintien en froid, un appareil 5 de dis­tillation d'air constitué par une double colonne comprenant elle-même une colonne moyenne pression 6 surmontée d'une colonne basse pression 7 et un vapo­riseur-condenseur 8, un échangeur de chaleur auxi­liaire 9, un réservoir d'oxygène liquide 10 et un réservoir d'air liquéfié 11 . Cette installation est destinée à produire un débit variable d'oxygène gazeux via une conduite 12, sous une pression légèrement supérieure à la pression atmosphérique.
  • Pour décrire le fonctionnement de cette installation, on supposera tout d'abord que la demande d'oxygène gazeux dans la conduite 12 est constante et égale à la production nominale, soit 20 % du débit d'air nominal comprimé par le compresseur 1. Dans tout le présent mémoire, des pressions indiquées sont des pressions absolues approximatives, et les débits sont des débits molaires.
  • Le débit nominal d'air à traiter, comprimé à 6 bars par le compresseur 1, refroidi à la température ambiante et épuré dans l'appareil 2, est divisé en deux flux ayant chacun un débit constant :
    - Un premier flux est refroidi dans des passages 13 de la ligne d'échange ; une partie est sortie de cette ligne d'échange après un refroidisse­ment partiel, détendue vers 1 bar dans la turbine 4 et insufflée dans la colonne basse pression 7 au voisinage de son point de rosée ; le reste poursuit son refroidissement jusqu'au voisinage de son point de rosée sous 6 bars, puis est injecté au bas de la colonne moyenne pression 6 via une conduite 14.
    - Un second flux est refroidi jusqu'au voisinage de son point de rosée dans des passages 15 de la ligne d'échange puis condensé dans l'échangeur 9 et stocké sous forme liquide dans le réservoir 11. Un débit constant d'air liquéfié est soutiré du fond de ce réservoir et est divisé en un premier débit cons­tant sous 6 bars envoyé dans la colonne moyenne pres­sion via une conduite 16, et un second débit constant détendu vers 1 bar dans une vanne de détente 17 puis injecté dans la colonne basse pression 7.
  • Le vaporiseur-condenseur 8 vaporise un débit constant d'oxygène liquide en cuve de la colonne basse pression par condensation d'un débit à peu près égal d'azote de tête de la colonne moyenne pression. Du "liquide riche" (air enrichi en oxygène) prélevé en cuve de la colonne moyenne pression et détendu vers 1 bar dans une vanne de détente 18 est injecté à un niveau intermédiaire de la colonne basse pression, et du "liquide pauvre" (azote à peu près pur) prélevé en tête de la colonne moyenne pression et détendu vers 1 bar dans une vanne de détente 19 est injecté au sommet de la colonne basse pression.
  • Un débit constant d'oxygène liquide, corres­pondant à 20 % du débit d'air entrant, passe, via une conduite 20, dans le réservoir 10. Un débit constant identique d'oxygène liquide est soutiré du fond de ce réservoir, vaporisé dans l'échangeur 9, réchauffé dans des passages 21 de la ligne d'échange et fourni à la conduite 12 de production. En outre, un débit constant d azote impur, soutiré du sommet de la colonne basse pression, est réchauffé dans des passages 22 de la ligne d'échange et évacué en tant que résiduaire via une conduite 23.
  • Toutes les conduites qui aboutissent à la double colonne 5 et toutes celles qui en partent sont équipées de moyens (non représentés) assurant un débit constant. Ainsi, lorsque la demande d'oxygène gazeux varie, le réglage de cette double colonne n'est pas modifié.
  • Par contre, dans ce cas, le débit d'air condensé dans l'échangeur 9 varie, et la position des aubages mobiles du compresseur 1 est modifiée de façon correspondante.
  • Ainsi, si la demande en oxygène gazeux augmente, un plus grand débit d'oxygène est vaporisé dans l'échangeur 9. Ceci augmente le débit d'air condensé dans cet échangeur, ce qui crée un appel d'air supplémentaire vers cet échangeur, dans les passages 15 de cette ligne d'échange. Le réglage des aubages du compresseur 1 est alors modifié de façon à admettre ce débit d'air supplémentaire. Le niveau du liquide dans le réservoir 10 baisse, et il monte dans le réservoir 11.
  • Inversement, si la demande en oxygène gazeux diminue, un débit réduit d'oxygène est vaporisé dans l'échangeur 9. Ceci réduit le débit d'air condensé dans cet échangeur, et donc également le débit d'air circulant dans les passages 15 de la ligne d'échange. Le réglage des aubages du compresseur 1 est alors modifié de manière à diminuer d'autant le débit d'air atmosphérique aspiré.
  • On voit donc que l'on peut répondre à la variation de la demande d'oxygène gazeux par une simple modification du réglage des aubages du com­presseur 1, ce qui peut s'effectuer simplement et quasi-instantanément, sans perturber aucunement le fonctionnement de l'appareil de distillation 5. De plus, cette souplesse est obtenue sans qu'aucun produit de la séparation de l'air soit perdu lors des variations du débit d'oxygène gazeux produit.
  • L'installation représentée à la Fig.2 est destinée à fournir l'oxygène gazeux sous pression. elle ne diffère de la précédente que par le fait qu'une pompe 24 à débit variable est montée dans la conduite qui relie le fond du réservoir 10 à l'échan­geur 9, et qu'un surpresseur d'air 25 à aubages mobi­les est monté dans la conduite qui véhicule la frac­tion du débit d'air comprimé jusqu'aux passages 15 de la ligne d'échange thermique.
  • Le fonctionnement nominal de l'installation est le même que précédemment, à ceci près que l'oxy­gène liquide soutiré du réservoir 10 est amené par la pompe 24 à la pression désirée, puis est vaporisé sous cette pression dans l'échangeur 9. Pour pouvoir effec­tuer cette vaporisation, le débit correspondant d'air est surpressé à une pression quelque peu supérieure à la pression de vaporisation de l'oxygène par le sur­presseur 25, condensé dans l'échangeur 9, puis détendu à 6 bars dans une vanne de détente 26 avant d'être stocké dans le réservoir 11.
  • Dans ce cas, chaque variation de la demande d'oxygène gazeux dans la conduite 12 nécessite une variation correspondante du débit de la pompe 24, une variation du même ordre du débit d'air surpressé par le surpresseur 25, et une variation identique du débit d'air comprimé par le compresseur principal 1.
  • Ces modifications du réglage des machines tournantes sont de nouveau simples à obtenir et quasi-­instantanées, et elles n'induisent aucune perturbation du fonctionnement de la double colonne ni aucune perte de produit.
  • De par sa simplicité et son efficacité, l'invention convient particulièrement bien pour con­férer de la souplesse à des installations de produc­tion d'oxygène avec des demandes d'oxygène qui varient fréquemment et rapidement.
  • Il est à noter que l'invention s'applique également au cas où, la demande d'oxygène étant tou­jours supérieure à une valeur minimale donnée, un débit d'oxygène gazeux constant égal à cette valeur minimale est soutiré directement du bas de la colonne basse pression 7 via une conduite 27, comme indiqué en trait mixte sur les Fig. 1 et 2, puis réchauffé dans la ligne d'échange. Cette variante permet de réduire la capacité des réservoirs 10 et 11. De même, des produc­tions constantes d'oxygène liquide et/ou d'azote ga­zeux et/ou d'azote liquide peuvent être assurées si­multanément par la double colonne, via des conduites 28 et/ou 29 et/ou 30, également comme indiqué en trait mixte sur les Fig. 1 et 2.

Claims (7)

1. Procédé de production d'oxygène gazeux à débit variable par distillation d'air, du type dans lequel une quantité variable d oxygène est stockée sous forme liquide dans un premier réservoir (10) d'où un débit variable d'oxygène est prélevé et vaporisé avec, de façon correspondante, stockage d'un autre fluide sous forme liquide dans un second réservoir (11), caractérisé en ce que ledit fluide est constitué par une fraction de l'air à traiter, en ce qu on en­voie un débit constant d oxygène liquide dans ledit premier réservoir (10) et un débit constant d'air li­quéfié dudit second réservoir (11) dans l'appareil de distillation (5), et en ce qu'on soutire du premier réservoir (10), en fonction de la demande d'oxygène gazeux, un débit variable d'oxygène liquide que l'on vaporise par condensation d'un débit variable correspondant d'air à traiter.
2. Procédé suivant la revendication 1, caractérisé en ce que, lors d'une variation de la de­mande d'oxygène, on maintient constants les débits de chaque fluide introduit dans l'appareil de distilla­tion (5) et de chaque fluide soutiré de cet appareil, et on fait varier le débit total d'air à traiter de la même façon que le débit d'air condensé par vaporisa­tion d'oxygène.
3. Procédé suivant l'une des revendications 1 et 2, pour la production d'oxygène gazeux sous pression, caractérisé en ce qu on amène par pompage (en 24) ledit débit variable d'oxygène liquide à la pression de production, et on surpresse (en 25) le débit d'air à liquéfier correspondant.
4. Procédé suivant l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit débit variable d'oxygène liquide correspond à la demande d'oxygène gazeux.
5. Installation de production d oxygène gazeux à débit variable par distillation d'air, du type comprenant un compresseur principal d'air (1) , un appareil de distillation (5) à double colonne alimenté par ce compresseur, un premier réservoir (10) de stockage d'une quantité variable d'oxygène liquide, un second réservoir (11) de stockage d'une quantité va­riable d'un autre fluide sous forme liquide, et des moyens (9, 12) pour prélever un débit variable d'oxygè­ne liquide dans le premier réservoir (10) et le vaporiser et, à peu près en même temps, ajouter dudit fluide sous forme liquide dans le second réservoir (11), caractérisée en ce que lesdits moyens de vaporisation (9) comprennent un échangeur de chaleur relié d'une part à la sortie du compresseur principal (1) et d'autre part au second réservoir (11), la par­tie inférieure de ce dernier étant par ailleurs reliée à l'appareil de distillation (5), et en ce que l'ins­tallation comprend des moyens pour faire passer un débit constant d'oxygène liquide dans le premier ré­servoir (10), des moyens pour prélever un débit varia­ble d oxygène liquide dans ce réservoir, des moyens pour faire varier le débit d'air envoyé à l'échangeur de chaleur (9), et des moyens pour envoyer un débit constant d'air liquéfié du second réservoir (11) dans l'appareil de distillation (5).
6. Installation suivant la revendication 5, caractérisée en ce qu'elle comprend des moyens pour faire varier le débit total d'air à traiter de la même façon que le débit d'air envoyé à l'échangeur de cha­leur (9)
7. Installation suivant l'une des revendi­cations 5 et 6, caractérisée en ce qu'elle comprend un pompe à débit variable (24) montée entre la sortie du premier réservoir (10) et l'échangeur de chaleur (9), et un surpresseur d'air à débit variable (25) monté entre la sortie du compresseur d'air principal (1) et cet échangeur de chaleur.
EP90402596A 1989-10-09 1990-09-20 Procédé et installation de production d'oxygène gazeux à débit variable par distillation d'air Revoked EP0422974B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90402596T ATE85696T1 (de) 1989-10-09 1990-09-20 Verfahren und apparat zur herstellung von sauerstoffgas mit variablen mengen durch lufttrennung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8913159 1989-10-09
FR8913159A FR2652887B1 (fr) 1989-10-09 1989-10-09 Procede et installation de production d'oxygene gazeux a debit variable par distillation d'air.

Publications (2)

Publication Number Publication Date
EP0422974A1 true EP0422974A1 (fr) 1991-04-17
EP0422974B1 EP0422974B1 (fr) 1993-02-10

Family

ID=9386209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90402596A Revoked EP0422974B1 (fr) 1989-10-09 1990-09-20 Procédé et installation de production d'oxygène gazeux à débit variable par distillation d'air

Country Status (10)

Country Link
US (1) US5082482A (fr)
EP (1) EP0422974B1 (fr)
JP (1) JP3117702B2 (fr)
AT (1) ATE85696T1 (fr)
AU (1) AU625950B2 (fr)
CA (1) CA2027071C (fr)
DE (1) DE69000903T2 (fr)
ES (1) ES2037535T3 (fr)
FR (1) FR2652887B1 (fr)
ZA (1) ZA908000B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556861A1 (fr) * 1992-02-21 1993-08-25 Praxair Technology, Inc. Système de séparation cryogénique d'air pour la production d'oxygène gazeuse
FR2751737A1 (fr) * 1996-07-25 1998-01-30 Air Liquide Procede et installation de production d'un gaz de l'air a debit variable
EP0952417A2 (fr) * 1998-04-09 1999-10-27 The BOC Group plc Séparation d'air
FR2929697A1 (fr) * 2008-04-07 2009-10-09 Air Liquide Procede de production d'azote gazeux variable et d'oxygene gazeux variable par distillation d'air

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670278B1 (fr) * 1990-12-06 1993-01-22 Air Liquide Procede et installation de distillation d'air en regime variable de production d'oxygene gazeux.
GB2274407B (en) * 1993-01-22 1996-06-12 Boc Group Plc The separation of gas mixtures
FR2706195B1 (fr) * 1993-06-07 1995-07-28 Air Liquide Procédé et unité de fourniture d'un gaz sous pression à une installation consommatrice d'un constituant de l'air.
US5471843A (en) * 1993-06-18 1995-12-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and installation for the production of oxygen and/or nitrogen under pressure at variable flow rate
FR2706595B1 (fr) * 1993-06-18 1995-08-18 Air Liquide Procédé et installation de production d'oxygène et/ou d'azote sous pression à débit variable.
US5379598A (en) * 1993-08-23 1995-01-10 The Boc Group, Inc. Cryogenic rectification process and apparatus for vaporizing a pumped liquid product
FR2723184B1 (fr) * 1994-07-29 1996-09-06 Grenier Maurice Procede et installation de production d'oxygene gazeux sous pression a debit variable
US5666823A (en) 1996-01-31 1997-09-16 Air Products And Chemicals, Inc. High pressure combustion turbine and air separation system integration
GB9925097D0 (en) * 1999-10-22 1999-12-22 Boc Group Plc Air separation
US6253576B1 (en) * 1999-11-09 2001-07-03 Air Products And Chemicals, Inc. Process for the production of intermediate pressure oxygen
US6233970B1 (en) 1999-11-09 2001-05-22 Air Products And Chemicals, Inc. Process for delivery of oxygen at a variable rate
FR2842124B1 (fr) * 2002-07-09 2005-03-25 Air Liquide Procede de conduite d'une installation de production de gaz alimentee en electricite et cette installation de production
GB0219415D0 (en) * 2002-08-20 2002-09-25 Air Prod & Chem Process and apparatus for cryogenic separation process
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
US20100192628A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Apparatus and air separation plant
US8726691B2 (en) * 2009-01-30 2014-05-20 Praxair Technology, Inc. Air separation apparatus and method
US20100192629A1 (en) * 2009-01-30 2010-08-05 Richard John Jibb Oxygen product production method
FR2949845B1 (fr) * 2009-09-09 2011-12-02 Air Liquide Procede d'operation d'au moins un appareil de separation d'air et d'une unite de combustion de combustibles carbones
FR2961586B1 (fr) * 2010-06-18 2014-02-14 Air Liquide Installation et procede de separation d'air par distillation cryogenique
US20130098106A1 (en) * 2010-07-05 2013-04-25 Benoit Davidian Apparatus and process for separating air by cryogenic distillation
JP6464399B2 (ja) * 2014-10-03 2019-02-06 神鋼エア・ウォーター・クライオプラント株式会社 空気分離装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1250848B (de) * 1967-09-28 Linde Aktiengesellschaft, Wiesbaden Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft bei Sauerstoffabnahmeschwankungen
GB1178006A (en) * 1966-03-25 1970-01-14 Air Liquide Process for the production of a Gas in the Gaseous State under Pressure in Variable Quantities, and in the Liquid State
FR2335809A1 (fr) * 1975-12-19 1977-07-15 Linde Ag Procede de separation de l'air

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2846853A (en) * 1954-06-01 1958-08-12 Union Carbide Corp High pressure scrubber liquefier in air separation systems
NL207488A (fr) * 1955-05-31
USRE25193E (en) * 1957-08-16 1962-07-03 Method and apparatus for separating gaseous mixtures
GB864855A (en) * 1958-05-19 1961-04-12 Air Prod Inc Improvements in and relating to methods and apparatus for fractionating gaseous mixtures
US3174293A (en) * 1960-11-14 1965-03-23 Linde Eismasch Ag System for providing gas separation products at varying rates
DE1112997B (de) * 1960-08-13 1961-08-24 Linde Eismasch Ag Verfahren und Einrichtung zur Gaszerlegung durch Rektifikation bei tiefer Temperatur
GB2080929B (en) * 1980-07-22 1984-02-08 Air Prod & Chem Producing gaseous oxygen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1250848B (de) * 1967-09-28 Linde Aktiengesellschaft, Wiesbaden Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft bei Sauerstoffabnahmeschwankungen
GB1178006A (en) * 1966-03-25 1970-01-14 Air Liquide Process for the production of a Gas in the Gaseous State under Pressure in Variable Quantities, and in the Liquid State
FR2335809A1 (fr) * 1975-12-19 1977-07-15 Linde Ag Procede de separation de l'air

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0556861A1 (fr) * 1992-02-21 1993-08-25 Praxair Technology, Inc. Système de séparation cryogénique d'air pour la production d'oxygène gazeuse
FR2751737A1 (fr) * 1996-07-25 1998-01-30 Air Liquide Procede et installation de production d'un gaz de l'air a debit variable
WO1998004877A1 (fr) * 1996-07-25 1998-02-05 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede et installation de production d'un gaz de l'air a debit variable
US6062044A (en) * 1996-07-25 2000-05-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and plant for producing an air gas with a variable flow rate
EP0952417A2 (fr) * 1998-04-09 1999-10-27 The BOC Group plc Séparation d'air
EP0952417A3 (fr) * 1998-04-09 2000-04-12 The BOC Group plc Séparation d'air
US6170291B1 (en) 1998-04-09 2001-01-09 The Boc Group Plc Separation of air
FR2929697A1 (fr) * 2008-04-07 2009-10-09 Air Liquide Procede de production d'azote gazeux variable et d'oxygene gazeux variable par distillation d'air

Also Published As

Publication number Publication date
CA2027071A1 (fr) 1991-04-10
DE69000903D1 (de) 1993-03-25
FR2652887B1 (fr) 1993-12-24
ES2037535T3 (es) 1993-06-16
ZA908000B (en) 1991-08-28
US5082482A (en) 1992-01-21
AU625950B2 (en) 1992-07-16
FR2652887A1 (fr) 1991-04-12
CA2027071C (fr) 2000-07-18
DE69000903T2 (de) 1993-07-01
EP0422974B1 (fr) 1993-02-10
JPH03134481A (ja) 1991-06-07
JP3117702B2 (ja) 2000-12-18
AU6388290A (en) 1991-04-11
ATE85696T1 (de) 1993-02-15

Similar Documents

Publication Publication Date Title
EP0422974B1 (fr) Procédé et installation de production d'oxygène gazeux à débit variable par distillation d'air
EP0576314B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP1447634B1 (fr) Procédé et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote par distillation cryogénique de l'air
EP0504029A1 (fr) Procédé de production d'oxygène gazeux sous pression
EP0694746B1 (fr) Procédé de production d'un gaz sous pression à débit variable
EP1711765B1 (fr) Procédé et installationde de séparation d'air par distillation cryogénique
EP0618415B1 (fr) Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation d'air
EP0789208A1 (fr) Procédé et installation de production d'oxygène gazeux sous haute pression
FR2681415A1 (fr) Procede et installation de production d'oxygene gazeux sous haute pression par distillation d'air.
EP0914584B1 (fr) Procede et installation de production d'un gaz de l'air a debit variable
EP0677713B1 (fr) Procédé et installation pour la production de l'oxygène par distillation de l'air
FR2697620A1 (fr) Procédé et installation de production d'azote gazeux à débit variable.
CA2125944C (fr) Procede et installation de production d'oxygene et/ou d'azote sous pression a debit variable
FR2929697A1 (fr) Procede de production d'azote gazeux variable et d'oxygene gazeux variable par distillation d'air
FR2915271A1 (fr) Procede et appareil de separation des gaz de l'air par distillation cryogenique
FR2701553A1 (fr) Procédé et installation de production d'oxygène sous pression.
EP1409937B1 (fr) Procede de production de vapeur d'eau et de distillation d'air
FR2864213A1 (fr) Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air
JP2004197981A (ja) 空気分離装置及び該装置を用いた製品ガス製造方法
FR2685460A1 (fr) Procede et installation de production d'oxygene gazeux sous pression par distillation d'air.
FR2827186A1 (fr) Procede et installation de distillation d'air et de production de vapeur d'eau
FR2844864A1 (fr) Procede et installation de vaporisation d'un liquide cryogenique
FR2811712A1 (fr) Installation de distillation d'air et de production d'electricite et procede correspondant
FR2947042A1 (fr) Echangeur principal d'un appareil de separation d'air et procede de refroidissement d'air utilisant un tel echangeur
FR2842589A1 (fr) Procede et installation de separation d'air par distillation cryogenique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17Q First examination report despatched

Effective date: 19920409

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930210

REF Corresponds to:

Ref document number: 85696

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 69000903

Country of ref document: DE

Date of ref document: 19930325

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930305

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2037535

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19931110

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AG.

EAL Se: european patent in force in sweden

Ref document number: 90402596.2

APCC Communication from the board of appeal sent

Free format text: ORIGINAL CODE: EPIDOS OBAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990807

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990816

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990818

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990819

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990823

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990825

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990907

Year of fee payment: 10

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19990930

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 990930

NLR2 Nl: decision of opposition
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO