EP0419789A1 - Shape memory alloy - Google Patents

Shape memory alloy Download PDF

Info

Publication number
EP0419789A1
EP0419789A1 EP90114034A EP90114034A EP0419789A1 EP 0419789 A1 EP0419789 A1 EP 0419789A1 EP 90114034 A EP90114034 A EP 90114034A EP 90114034 A EP90114034 A EP 90114034A EP 0419789 A1 EP0419789 A1 EP 0419789A1
Authority
EP
European Patent Office
Prior art keywords
shape memory
memory alloy
temperature
alloys
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90114034A
Other languages
German (de)
French (fr)
Other versions
EP0419789B1 (en
Inventor
Jürgen Dr. rer. nat. Peterseim
Wolfgang Dr. Rer. Nat. Schlump
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Industietechnik GmbH
Original Assignee
Krupp Industietechnik GmbH
Fried Krupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Industietechnik GmbH, Fried Krupp AG filed Critical Krupp Industietechnik GmbH
Publication of EP0419789A1 publication Critical patent/EP0419789A1/en
Application granted granted Critical
Publication of EP0419789B1 publication Critical patent/EP0419789B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention relates to a shape memory alloy for repeated applications, which contains no precious metals.
  • NiTi shape memory alloys are known to have excellent properties. With an almost stoichiometric composition, they are characterized by a particularly high amount of reversible deformation in the one-way and two-way effect, by high tensile strength and ductility and by very good corrosion resistance. In addition, these shape memory alloys have an excellent stability of the effect size against thermal cycles. In addition, they can be heated relatively far above the temperature A f (temperature at the end of the austenite formation) without harmful irreversible structural changes occurring, which reduce the size of the shape memory effect or inadvertently shift the transformation temperature.
  • a f temperature at the end of the austenite formation
  • the A s temperature (temperature at the start of austenite formation) should be relatively high, for example at temperatures above 100 ° C. However, the maximum A s temperatures that can be achieved with NiTi shape memory alloys for repeated applications are below 100 ° C. In the following there will be considered as coming A s temperature that A s temperature indicated that appears after several thermal cycles.
  • the invention has for its object to propose a shape memory alloy based on NiTi, which has good values for the two-way effect, elongation at break, overheatability and reversible deformation at an A s temperature of more than 100 ° C.
  • the object is achieved by a shape memory alloy with A s temperatures above 100 ° C., which consists of 41.5 to 54 at.% Ni, 24 to 42.5 at.% Ti and 7.5 to 22 at.% Zr exists.
  • This shape memory alloy can advantageously be further developed in that it still contains up to 8.5 at.% Cu (ie between 0 and 8.5 at.% Cu).
  • the shape memory alloys in question are obtained in a known manner from suitable starting melts or master alloys by remelting in a vacuum induction furnace under an argon atmosphere in graphite crucibles; the starting melts or master alloys are composed such that a reaction with the graphite crucible is largely suppressed. Contrary to expectations, it was found that shape memory alloys in the composition range mentioned have shape memory properties with significantly higher transition temperatures than binary NiTi shape memory alloys.
  • the shape memory alloys are ductile and can be deformed at room temperature, provided that their composition has a single-phase structure.
  • shape memory alloys with advantageous properties can also be designed in such a way that they range from 24 to 34 at.% Ti and 16 to 22 at.% Zr (claim 3) or 24 to 30 at% Ti and 20 to 22 at% Zr (claim 4).
  • the A s temperature is above 120 ° C, with a Zr content of 20 at% above 145 ° C.
  • the shape memory alloy according to claims 1 and 2 can advantageously be further developed in that the (Ni + Cu) content 47 to 50 at.% (Claim 5) or 48 to 49.5 at.% (Claim 6) or 48.5 to 49 at% (claim 7).
  • the Zr content can be modified in such a way that it is between 10 and 19 at% (claim 8) or between 14 and 18 at% ( Claim 9) is.
  • a shape memory alloy with particularly favorable properties can be produced by dimensioning the composition ranges in the manner described by claims 1, 7 and 9.
  • Such a shape memory alloy therefore has the following composition: 48.5 to 49 at.% Ni; 24 to 42.5 at% Ti and 14 to 18 at% Zr.
  • Tables 1 and 2 below list, by way of example, shape memory alloys according to the invention with their A s temperatures.
  • Table 2 also shows an example of a binary NiTi shape memory alloy whose A s temperature is expected to be below 100 ° C.
  • the exemplary embodiments in Tables 1 and 2 show that the A s temperatures increase with increasing Zr content: with more than 16 at.% Zr, the A s temperature is above 120 ° C., with more than 20 at. -% Zr higher than 150 ° C.
  • the size of the shape memory effect ie the extent of the reversible deformation, is another important feature. Since the shape memory effect decreases with increasing Zr content, the shape memory alloys given in the tables only have Zr contents in the order of 20 at%, taking into account the opposite tendency of the properties.
  • Master alloys of the claimed composition are created in the button furnace and remelted in the vacuum induction furnace under argon atmosphere in graphite crucibles to cylindrical samples.
  • the transition temperatures A s and A f given in the tables were determined calorimetrically on the samples in the as-cast state after several thermal cycles.

Abstract

The invention relates to a shape memory alloy for repeated applications, which contains no noble metals. <??>NiTiZr and NiTiZrCu shape memory alloys whose As temperature is above 100 DEG C are described. Such shape memory alloys have the following composition: 41.5 to 54 atom % of Ni, 24 to 42.5 atom % of Ti and 7.5 to 22 atom % of Zr and optionally up to 8.5 atom % of Cu.

Description

Die Erfindung bezieht sich auf eine Formgedächtnislegierung für wiederholte Anwendungen, die keine Edelmetalle enthält.The invention relates to a shape memory alloy for repeated applications, which contains no precious metals.

Für kommerzielle Anwendungen, welche durch den Verzicht auf Edelmetalle als Legierungsbestandteile gekennzeichnet sind, stehen bisher im allgemeinen nur Formgedächtnislegierungen der Systeme NiTi, CuZnAl und CuAlNi zur Verfügung.To date, only shape memory alloys of the NiTi, CuZnAl and CuAlNi systems are generally available for commercial applications, which are characterized by the absence of precious metals as alloy components.

NiTi-Formgedächtnislegierungen haben bekanntlich hervorragende Eigenschaften. Sie zeichnen sich bei nahezu stöchiometrischer Zusammensetzung durch einen besonders hohen Betrag der reversiblen Verformung im Einweg- und Zweiwegeffekt, durch eine hohe Zugfestigkeit und Duktilität sowie durch eine sehr gute Korrosionsbeständigkeit aus. Außerdem besitzen diese Formgedächtnislegierungen eine hervorragende Stabilität der Effektgröße gegenüber thermischen Zyklen. Zusätzlich können sie verhältnismäßig weit über die Temperatur Af (Temperatur des Abschlusses der Austenitbildung) erhitzt werden, ohne daß schädliche irreversible Gefügeänderungen eintreten, welche die Größe des Formgedächtniseffektes vermindern oder die Umwandlungstemperatur ungewollt verschieben.NiTi shape memory alloys are known to have excellent properties. With an almost stoichiometric composition, they are characterized by a particularly high amount of reversible deformation in the one-way and two-way effect, by high tensile strength and ductility and by very good corrosion resistance. In addition, these shape memory alloys have an excellent stability of the effect size against thermal cycles. In addition, they can be heated relatively far above the temperature A f (temperature at the end of the austenite formation) without harmful irreversible structural changes occurring, which reduce the size of the shape memory effect or inadvertently shift the transformation temperature.

Zur Nutzung des Zweiwegeffektes sollte die As-Temperatur (Temperatur des Beginns der Austenitbildung) verhältnismäßig hoch liegen, beispielsweise bei Temperaturen oberhalb von 100°C. Die mit NiTi-Formgedächtnislegierungen maximal erreichbaren As-Temperaturen für wiederholte Anwendungen liegen jedoch unter 100°C.
Im nachfolgenden wird dabei als in Betracht kommende As-Temperatur diejenige As-Temperatur bezeichnet, die sich nach mehreren thermischen Zyklen einstellt.
To use the two-way effect, the A s temperature (temperature at the start of austenite formation) should be relatively high, for example at temperatures above 100 ° C. However, the maximum A s temperatures that can be achieved with NiTi shape memory alloys for repeated applications are below 100 ° C.
In the following there will be considered as coming A s temperature that A s temperature indicated that appears after several thermal cycles.

In der Literatur wird die Zugabe von Zirkonium als drittes Element, das Titan substituieren soll, zur Erhöhung der Umwandlungstemperatur angegeben. Eckelmeyer (Scripta Met. 10 (1976), S. 667-672) beschreibt den Einfluß von bis zu 2 At.-% Zr, die anstelle von Ti zugesetzt werden. Die Umwandlungstemperatur beim Aufheizen soll demnach um etwa 42°C/At.-% Zr ansteigen. Die höchsten gemessenen As-Temperaturen-Werte liegen bei etwa 105°C für den Einwegeffekt (bei 2 At.-% Zr), wobei nicht deutlich erkennbar ist, ob As, Af oder ein Mittelwert gemessen wurde. Die in Rede stehende Veröffentlichung enthält im übrigen keinen Hinweis auf Legierungen mit höheren Zr-Gehalten als 2 At.-%.In the literature, the addition of zirconium as a third element, which is to replace titanium, is stated to increase the transition temperature. Eckelmeyer (Scripta Met. 10 (1976), pp. 667-672) describes the influence of up to 2 at% Zr, which are added instead of Ti. The transition temperature during heating should therefore increase by about 42 ° C / At .-% Zr. The highest measured A s temperature values are around 105 ° C for the one-way effect (at 2 at% Zr), although it is not clearly recognizable whether A s , A f or an average was measured. The publication in question does not contain any reference to alloys with Zr contents higher than 2 at.%.

Kleinherenbrink und Beyer (Conference: The martensitic transformation in science and technology, Bochum, FRG, 9.-10.3.1989) haben in Anlehnung an die zuvor beschriebenen Arbeiten Formgedächtnislegierungen mit bis zu 1,5 At.-% Zr untersucht. Es konnte keine erhöhte Umwandlungstemperatur gemessen werden, d.h. das Ergebnis der erstgenannten Veröffentlichung konnte nicht bestätigt werden.Kleinherenbrink and Beyer (Conference: The martensitic transformation in science and technology, Bochum, FRG, March 9-10, 1989) have studied shape memory alloys with up to 1.5 At .-% Zr based on the work described above. No elevated transition temperature could be measured, ie the result of the first-mentioned publication could not be confirmed.

Zur Zeit kommen für wiederholte Anwendungen im kommerziellen Bereich bei As-Temperaturen über 100°C nur Formgedächtnislegierungen des Systems CuAlNi in Frage (Duerig, Albrecht, Gessinger: A Shape memory alloy for high-temperature applications. Journal of metals 34 (1982), S. 14-20). Mit diesen sind As-Temperaturen bis zu 175°C realisierbar, allerdings unter Inkaufnahme gravierender Nachteile. So beträgt der maximale Zweiwegeffekt nur 1,2 %, die Bruchdehnung ist mit 5 bis 7 % niedrig und die Überhitzbarkeit deutlich geringer als bei NiTi-Formgedächtnislegierungen. Ungünstig für wiederholte Anwendungen ist die geringe Effektstabilität: Eine deutliche Abnahme der Größe der reversiblen Verformung tritt schon nach wenigen hundert Temperatur-Zyklen auf.Currently s temperatures of CuAlNi system come for repeated applications in the commercial sector at A above 100 ° C only shape memory alloys in question (Duerig, Albrecht, Gessinger: A shape memory alloy for high-temperature applications Journal of metals 34 (1982). Pp. 14-20). With these, A s temperatures of up to 175 ° C can be achieved, but with serious disadvantages. The maximum two-way effect is only 1.2%, the elongation at break is low at 5 to 7% and the overheatability is significantly lower than with NiTi shape memory alloys. The low effect stability is unfavorable for repeated applications: a significant decrease in the size of the reversible deformation occurs after only a few hundred temperature cycles.

Auf der Basis von NiTi konnte bisher keine kommerziell einsetzbare Formgedächtnislegierung mit einer As-Temperatur von mehr als 100°C gefunden werden, obwohl wegen der günstigen Eigenschaften derartiger Legierungen erhebliche, in diese Richtung zielende Anstrengungen unternommen worden sind.No commercially available shape memory alloy with an A s temperature of more than 100 ° C. has hitherto been found on the basis of NiTi, although considerable efforts have been made in this direction because of the favorable properties of such alloys.

Der Erfindung liegt die Aufgabe zugrunde, eine Formgedächtnislegierung auf NiTi-Basis vorzuschlagen, die bei einer As-Temperatur von mehr als 100°C gute Werte für den Zweiwegeffekt, die Bruchdehnung, die Überhitzbarkeit und die reversible Verformung aufweist.The invention has for its object to propose a shape memory alloy based on NiTi, which has good values for the two-way effect, elongation at break, overheatability and reversible deformation at an A s temperature of more than 100 ° C.

Die Aufgabe wird durch eine Formgedächtnislegierung mit As-Temperaturen über 100°C gelöst, die aus 41,5 bis 54 At.-% Ni, 24 bis 42,5 At.-% Ti und 7,5 bis 22 At.-% Zr besteht.The object is achieved by a shape memory alloy with A s temperatures above 100 ° C., which consists of 41.5 to 54 at.% Ni, 24 to 42.5 at.% Ti and 7.5 to 22 at.% Zr exists.

Diese Formgedächtnislegierung kann dadurch vorteilhaft weitergebildet sein, daß sie noch bis zu 8,5 At.-% Cu (also zwischen 0 und 8,5 At.-% Cu) enthält.This shape memory alloy can advantageously be further developed in that it still contains up to 8.5 at.% Cu (ie between 0 and 8.5 at.% Cu).

Die in Rede stehenden Formgedächtnislegierungen werden in bekannter Weise aus geeigneten Startschmelzen oder Vorlegierungen durch Umschmelzen im Vakuuminduktionsofen unter Argonatmosphäre in Graphittiegeln gewonnen; die Startschmelzen oder Vorlegierungen sind dabei derart zusammengesetzt, daß eine Reaktion mit dem Graphittiegel weitgehend unterdrückt wird.
Entgegen den Erwartungen wurde festgestellt, daß Formgedächtnislegierungen des angesprochenen Zusammensetzungsbereichs Formgedächtniseigenschaften mit gegenüber binären NiTi-Formgedächtnislegierungen deutlich höheren Umwandlungstemperaturen aufweisen.
The shape memory alloys in question are obtained in a known manner from suitable starting melts or master alloys by remelting in a vacuum induction furnace under an argon atmosphere in graphite crucibles; the starting melts or master alloys are composed such that a reaction with the graphite crucible is largely suppressed.
Contrary to expectations, it was found that shape memory alloys in the composition range mentioned have shape memory properties with significantly higher transition temperatures than binary NiTi shape memory alloys.

Die Formgedächtnislegierungen sind dabei duktil und lassen sich bei Raumtemperaturen verformen, sofern sie aufgrund ihrer Zusammensetzung ein einphasiges Gefüge besitzen. Die Grenze für die Konzentration der intermetallischen Phase NiTiZr bzw. NiTiZrCu bei den gewählten Herstellbedingungen folgt ungefähr dem Gesetz Ni (At.-%) = 50,8 + 0,045 Zr (At.-%) für den Fall der ternären Legierungen bzw. Ni + Cu (At.-%) = 50,8 + 0,045 Zr (At.-%) für den Fall der quaternären Legierungen.The shape memory alloys are ductile and can be deformed at room temperature, provided that their composition has a single-phase structure. The limit for the concentration of the intermetallic phase NiTiZr or NiTiZrCu under the selected manufacturing conditions roughly follows the law Ni (At .-%) = 50.8 + 0.045 Zr (At .-%) for the case of the ternary alloys or Ni + Cu (at%) = 50.8 + 0.045 Zr (at%) for the case of quaternary alloys.

Im Rahmen der Erfindung lassen sich Formgedächtnislegierungen mit vorteilhaften Eigenschaften auch in der Weise ausgestalten, daß sie innerhalb der mit den Ansprüchen 1 und 2 vorgegebenen Zusammensetzungsbereiche 24 bis 34 At.-% Ti und 16 bis 22 At.-% Zr (Anspruch 3) bzw. 24 bis 30 At.-% Ti und 20 bis 22 At.-% Zr (Anspruch 4) enthalten.Within the scope of the invention, shape memory alloys with advantageous properties can also be designed in such a way that they range from 24 to 34 at.% Ti and 16 to 22 at.% Zr (claim 3) or 24 to 30 at% Ti and 20 to 22 at% Zr (claim 4).

Bei einem Zr-Anteil in Höhe von 16 At.-% liegt die As-Temperatur oberhalb von 120°C, bei einem Zr-Anteil in Höhe von 20 At.-% oberhalb von 145°C.With a Zr content of 16 at%, the A s temperature is above 120 ° C, with a Zr content of 20 at% above 145 ° C.

Die Formgedächtnislegierung gemäß Anspruch 1 und 2 kann dadurch vorteilhaft weitergebildet sein, daß der (Ni+Cu)-Anteil 47 bis 50 At.-% (Anspruch 5) bzw. 48 bis 49,5 At.-% (Anspruch 6) bzw. 48,5 bis 49 At.-% (Anspruch 7) ausmacht.The shape memory alloy according to claims 1 and 2 can advantageously be further developed in that the (Ni + Cu) content 47 to 50 at.% (Claim 5) or 48 to 49.5 at.% (Claim 6) or 48.5 to 49 at% (claim 7).

Innerhalb der im übrigen geltenden Zusammensetzungsbereiche (Ansprüche 1 und 5 bis 7) kann der Zr-Anteil in der Weise abgeändert sein, daß er zwischen 10 und 19 At.-% (Anspruch 8) bzw. zwischen 14 und 18 At.-% (Anspruch 9) beträgt.Within the rest of the compositional ranges (claims 1 and 5 to 7), the Zr content can be modified in such a way that it is between 10 and 19 at% (claim 8) or between 14 and 18 at% ( Claim 9) is.

Eine Formgedächtnislegierung mit besonders günstigen Eigenschaften läßt sich dabei dadurch herstellen, daß die Zusammensetzungsbereiche in der mit den Ansprüchen 1, 7 und 9 umschriebenen Weise bemessen werden. Eine derartige Formgedächtnislegierung weist also die folgende Zusammensetzung auf: 48,5 bis 49 At.-% Ni; 24 bis 42,5 At.-% Ti und 14 bis 18 At.-% Zr.A shape memory alloy with particularly favorable properties can be produced by dimensioning the composition ranges in the manner described by claims 1, 7 and 9. Such a shape memory alloy therefore has the following composition: 48.5 to 49 at.% Ni; 24 to 42.5 at% Ti and 14 to 18 at% Zr.

Die für das Element Zr beschriebene Eigenschaft, mit Ni und Ti eine Formgedächtnislegierung mit erhöhter Umwandlungstemperatur oberhalb von 100°C zu bilden, trifft auch für dem Zr ähnliche Elemente wie insbesondere Hf zu. Im Rahmen der erfindungsgemäßen Lehre kann also ggf. Zr durch Hf und diesem ähnliche Elemente ersetzt werden.The property described for the element Zr, with Ni and Ti to form a shape memory alloy with an elevated transition temperature above 100 ° C., also applies to elements similar to the Zr, such as in particular Hf. Within the framework of the teaching according to the invention, Zr can therefore be replaced by Hf and elements similar to it.

In den nachfolgenden Tabellen 1 und 2 sind beispielhaft erfindungsgemäße Formgedächtnislegierungen mit ihren As-Temperaturen aufgelistet.Tables 1 and 2 below list, by way of example, shape memory alloys according to the invention with their A s temperatures.

In Tabelle 2 ist außerdem ein Beispiel einer binären NiTi-Formgedächtnislegierung angegeben, deren As-Temperatur erwartungsgemäß unterhalb von 100°C liegt.Table 2 also shows an example of a binary NiTi shape memory alloy whose A s temperature is expected to be below 100 ° C.

Die Ausführungsbeispiele in Tabelle 1 und 2 lassen erkennen, daß die As-Temperaturen mit zunehmendem Zr-Anteil ansteigen: Bei mehr als 16 At.-% Zr liegt die As-Temperatur oberhalb von 120°C, bei mehr als 20 At.-% Zr höher als 150°C.The exemplary embodiments in Tables 1 and 2 show that the A s temperatures increase with increasing Zr content: with more than 16 at.% Zr, the A s temperature is above 120 ° C., with more than 20 at. -% Zr higher than 150 ° C.

Neben den Umwandlungstemperaturen As und Af stellt die Größe des Formgedächtniseffektes, d.h. der Umfang der reversiblen Verformung, ein weiteres wichtiges Merkmal dar.
Da der Formgedächtniseffekt mit zunehmendem Zr-Anteil absinkt, weisen die in den Tabellen angegebenen Formgedächtnislegierungen - mit Rücksicht auf die geschilderte gegenläufige Tendenz der Eigenschaften - nur zum Teil Zr-Anteile in der Größenordnung um 20 At.-% auf.
In addition to the transition temperatures A s and A f , the size of the shape memory effect, ie the extent of the reversible deformation, is another important feature.
Since the shape memory effect decreases with increasing Zr content, the shape memory alloys given in the tables only have Zr contents in the order of 20 at%, taking into account the opposite tendency of the properties.

Vorlegierungen der beanspruchten Zusammensetzung werden im Knopfofen erstellt und im Vakuuminduktionsofen unter Argonatmosphäre in Graphittiegeln zu zylinderförmigen Proben umgeschmolzen. Die in den Tabellen angegebenen Umwandlungstemperaturen As und Af sind kalorimetrisch an den Proben im Gußzustand nach mehreren thermischen Zyklen ermittelt worden.Master alloys of the claimed composition are created in the button furnace and remelted in the vacuum induction furnace under argon atmosphere in graphite crucibles to cylindrical samples. The transition temperatures A s and A f given in the tables were determined calorimetrically on the samples in the as-cast state after several thermal cycles.

Unter Umständen lassen sich höhere Umwandlungstemperaturen As und Af als in den beiden Tabellen angegeben verwirklichen, falls - bei im übrigen unveränderter Zusammensetzung der Formgedächtnislegierung - das Element Zr durch Hf ersetzt wird. Diese Wirkung tritt in jedem Fall bei Formgedächtnislegierungen auf, welche einen Hf-Prozentsatz in der Größenordnung von 14 bis 17 At.-% aufweisen. Tabelle 1 Zusammensetzung von NiTiZrCu-Legierungen (in At.-%) (Rest: interstitielle und herstellspezifisch bedingte Verunreinigungen) und ihre Umwandlungstemperaturen (in °C) Nr.: Ni Ti Zr Cu As Af 1 47,2 39,8 10,8 1,9 102 142 2 45,2 34,8 16,3 3,5 125 152 3 43,1 31,2 20,1 5,4 158 210 4 42,5 39,9 11,1 6,3 100 134 5 41,5 34,1 16,1 8,1 122 146 Tabelle 2 Zusammensetzung von NiTiZr-Legierungen (in At.-%) (Rest: interstitielle und herstellspezifisch bedingte Verunreinigungen) und ihre Umwandlungstemperaturen (in °C) Nr Ni Ti Zr As Af 1 49,1 50,8 0 85 116 2 47,9 37,9 14,0 122 165 3 48,9 40,1 10,8 108 152 4 48,8 34,9 16,1 132 180 5 48,6 31,0 20,2 170 230 Under certain circumstances, higher transition temperatures A s and A f than those given in the two tables can be achieved if - with the composition of the shape memory alloy remaining unchanged - the element Zr is replaced by Hf. This effect occurs in any case with shape memory alloys which have an Hf percentage on the order of 14 to 17 at%. Table 1 Composition of NiTiZrCu alloys (in At .-%) (rest: interstitial and manufacturer-specific impurities) and their transition temperatures (in ° C) No.: Ni Ti Zr Cu A s A f 1 47.2 39.8 10.8 1.9 102 142 2nd 45.2 34.8 16.3 3.5 125 152 3rd 43.1 31.2 20.1 5.4 158 210 4th 42.5 39.9 11.1 6.3 100 134 5 41.5 34.1 16.1 8.1 122 146 Composition of NiTiZr alloys (in At .-%) (rest: interstitial and manufacturer-specific impurities) and their transition temperatures (in ° C) No Ni Ti Zr A s A f 1 49.1 50.8 0 85 116 2nd 47.9 37.9 14.0 122 165 3rd 48.9 40.1 10.8 108 152 4th 48.8 34.9 16.1 132 180 5 48.6 31.0 20.2 170 230

Claims (9)

1. Formgedächtnislegierung mit As-Temperaturen über 100°C, bestehend aus 41,5 bis 54 At.-% Ni, 24 bis 42,5 At.-% Ti und 7,5 bis 22 At.-% Zr.1. Shape memory alloy with A s temperatures above 100 ° C, consisting of 41.5 to 54 at.% Ni, 24 to 42.5 at.% Ti and 7.5 to 22 at.% Zr. 2. Formgedächtnislegierung nach Anspruch 1, dadurch gekennzeichnet, daß diese noch bis zu 8,5 At.-% Cu enthält.2. Shape memory alloy according to claim 1, characterized in that it still contains up to 8.5 at .-% Cu. 3. Formgedächtnislegierung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß sie 24 bis 34 At.-% Ti und 16 bis 22 At.-% Zr enthält.3. shape memory alloy according to claims 1 and 2, characterized in that it contains 24 to 34 at.% Ti and 16 to 22 at.% Zr. 4. Formgedächtnislegierung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß sie 24 bis 30 At.-% Ti und 20 bis 22 At.-% Zr enthält.4. shape memory alloy according to claims 1 and 2, characterized in that it contains 24 to 30 at.% Ti and 20 to 22 at.% Zr. 5. Formgedächtnislegierung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß sie 47 bis 50 At.-% Ni + Cu enthält.5. shape memory alloy according to claims 1 and 2, characterized in that it contains 47 to 50 at .-% Ni + Cu. 6. Formgedächtnislegierung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß sie 48 bis 49,5 At.-% Ni + Cu enthält.6. shape memory alloy according to claims 1 and 2, characterized in that it contains 48 to 49.5 at .-% Ni + Cu. 7. Formgedächtnislegierung nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß sie 48,5 bis 49 At.-% Ni + Cu enthält.7. shape memory alloy according to claims 1 and 2, characterized in that it contains 48.5 to 49 at .-% Ni + Cu. 8. Formgedächtnislegierung nach zumindest einem der Ansprüche 1 und 5 bis 7, dadurch gekennzeichnet, daß sie 10 bis 19 At.-% Zr enthält.8. shape memory alloy according to at least one of claims 1 and 5 to 7, characterized in that it contains 10 to 19 at .-% Zr. 9. Formgedächtnislegierung nach zumindest einem der Ansprüche 1 und 5 bis 7, dadurch gekennzeichnet, daßsie 14 bis 18 At.-% Zr enthält.Shape memory alloy according to at least one of Claims 1 and 5 to 7, characterized in that it contains 14 to 18 at% Zr.
EP90114034A 1989-08-12 1990-07-21 Shape memory alloy Expired - Lifetime EP0419789B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3926693 1989-08-12
DE3926693 1989-08-12
DE4006076A DE4006076C1 (en) 1989-08-12 1990-02-27
DE4006076 1990-02-27

Publications (2)

Publication Number Publication Date
EP0419789A1 true EP0419789A1 (en) 1991-04-03
EP0419789B1 EP0419789B1 (en) 1993-07-21

Family

ID=25883963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90114034A Expired - Lifetime EP0419789B1 (en) 1989-08-12 1990-07-21 Shape memory alloy

Country Status (4)

Country Link
US (1) US5108523A (en)
EP (1) EP0419789B1 (en)
JP (1) JPH0372046A (en)
DE (2) DE4006076C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023072B3 (en) * 2005-04-29 2006-09-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wolf tones reducing device for stringed bowed instrument, has multi-functional material that causes transformation of mechanical vibrational energy into electrical energy in case of vibrational stimulation by wolf tone at instrument

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165292A (en) * 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US6682608B2 (en) * 1990-12-18 2004-01-27 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US5419788A (en) * 1993-12-10 1995-05-30 Johnson Service Company Extended life SMA actuator
US5904480A (en) 1995-05-30 1999-05-18 Ormco Corporation Dental and orthodontic articles of reactive metals
US6358380B1 (en) 1999-09-22 2002-03-19 Delphi Technologies, Inc. Production of binary shape-memory alloy films by sputtering using a hot pressed target
US6592724B1 (en) 1999-09-22 2003-07-15 Delphi Technologies, Inc. Method for producing NiTiHf alloy films by sputtering
US6596132B1 (en) 1999-09-22 2003-07-22 Delphi Technologies, Inc. Production of ternary shape-memory alloy films by sputtering using a hot pressed target
WO2001039695A2 (en) * 1999-12-01 2001-06-07 Advanced Cardiovascular Systems, Inc. Nitinol alloy composition for vascular stents
US6500282B2 (en) 2000-03-28 2002-12-31 Honeywell International Inc. Gold-indium intermetallic compound, shape memory alloys formed therefrom and resulting articles
US6464844B1 (en) 2000-09-21 2002-10-15 Delphi Technologies, Inc. Sputtering alloy films using a sintered metal composite target
US6303008B1 (en) 2000-09-21 2001-10-16 Delphi Technologies, Inc. Rotating film carrier and aperture for precision deposition of sputtered alloy films
US6402906B1 (en) 2000-10-19 2002-06-11 Delphi Technologies, Inc. Sputtering alloy films using a crescent-shaped aperture
US7976648B1 (en) 2000-11-02 2011-07-12 Abbott Cardiovascular Systems Inc. Heat treatment for cold worked nitinol to impart a shape setting capability without eventually developing stress-induced martensite
US6602272B2 (en) * 2000-11-02 2003-08-05 Advanced Cardiovascular Systems, Inc. Devices configured from heat shaped, strain hardened nickel-titanium
US6855161B2 (en) * 2000-12-27 2005-02-15 Advanced Cardiovascular Systems, Inc. Radiopaque nitinol alloys for medical devices
US6454913B1 (en) 2001-07-12 2002-09-24 Delphi Technologies, Inc. Process for deposition of sputtered shape memory alloy films
DE10142998B4 (en) * 2001-09-03 2005-02-24 Stiftung Caesar Center Of Advanced European Studies And Research Shape memory composite with inherent motion sequence
WO2003064717A1 (en) * 2002-02-01 2003-08-07 Mide Technology Corporation Enhery aborbring shape memory alloys
EP1629134B1 (en) * 2003-03-25 2012-07-18 Questek Innovations LLC Coherent nanodispersion-strengthened shape-memory alloys
US7942892B2 (en) * 2003-05-01 2011-05-17 Abbott Cardiovascular Systems Inc. Radiopaque nitinol embolic protection frame
SG147485A1 (en) * 2003-09-30 2008-11-28 Shire Llc Pharmaceutical compositions for prevention of overdose or abuse
FR2942471A1 (en) 2009-02-24 2010-08-27 Saint Gobain Ct Recherches COATED CERAMIC PIECE.
FR2942516B1 (en) 2009-02-24 2015-07-03 Saint Gobain Ct Recherches FLUSH ASSEMBLY.
FR2942515B1 (en) * 2009-02-24 2015-07-03 Saint Gobain Ct Recherches ASSEMBLY DEVICE.
US10081969B2 (en) * 2014-04-16 2018-09-25 Dynalloy, Inc. Lockable latching device
RU2613835C1 (en) * 2015-10-22 2017-03-21 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Composite material based on nitinol
CN115927915A (en) * 2022-11-30 2023-04-07 西安赛特思迈钛业有限公司 Ti-Ni-Zr shape memory alloy and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2105555A1 (en) * 1970-02-25 1971-09-30 Philips Nv Shape memory element
DE2133103A1 (en) * 1970-07-02 1972-02-17 Raychem Corp Ligature recovering in the heat
FR2389990A1 (en) * 1977-05-06 1978-12-01 Bbc Brown Boveri & Cie
DE3007307A1 (en) * 1980-01-18 1981-07-23 BBC AG Brown, Boveri & Cie., Baden, Aargau Detachable shrunk joint - uses shape memory alloy with two=way effect
US4283233A (en) * 1980-03-07 1981-08-11 The United States Of America As Represented By The Secretary Of The Navy Method of modifying the transition temperature range of TiNi base shape memory alloys
EP0047639A2 (en) * 1980-09-05 1982-03-17 RAYCHEM CORPORATION (a California corporation) Nickel/titanium/copper shape memory alloys
EP0086013A2 (en) * 1982-02-05 1983-08-17 BBC Brown Boveri AG Material at least partly consisting of a component showing a one-way memory effect, and process for the manufacture thereof
EP0187452A1 (en) * 1984-11-06 1986-07-16 RAYCHEM CORPORATION (a Delaware corporation) A method of processing a nickel/titanium-based shape memory alloy and article produced therefrom

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150069A (en) * 1983-02-15 1984-08-28 Hitachi Metals Ltd Manufacture of shape memory alloy
US4950340A (en) * 1987-08-10 1990-08-21 Mitsubishi Kinzoku Kabushiki Kaisha Intermetallic compound type alloy having improved toughness machinability and wear resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2105555A1 (en) * 1970-02-25 1971-09-30 Philips Nv Shape memory element
DE2133103A1 (en) * 1970-07-02 1972-02-17 Raychem Corp Ligature recovering in the heat
FR2389990A1 (en) * 1977-05-06 1978-12-01 Bbc Brown Boveri & Cie
DE3007307A1 (en) * 1980-01-18 1981-07-23 BBC AG Brown, Boveri & Cie., Baden, Aargau Detachable shrunk joint - uses shape memory alloy with two=way effect
US4283233A (en) * 1980-03-07 1981-08-11 The United States Of America As Represented By The Secretary Of The Navy Method of modifying the transition temperature range of TiNi base shape memory alloys
EP0047639A2 (en) * 1980-09-05 1982-03-17 RAYCHEM CORPORATION (a California corporation) Nickel/titanium/copper shape memory alloys
EP0086013A2 (en) * 1982-02-05 1983-08-17 BBC Brown Boveri AG Material at least partly consisting of a component showing a one-way memory effect, and process for the manufacture thereof
EP0187452A1 (en) * 1984-11-06 1986-07-16 RAYCHEM CORPORATION (a Delaware corporation) A method of processing a nickel/titanium-based shape memory alloy and article produced therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAPE MEMORY EFFECTS IN ALLOYS, 1975, Seiten 263-265, J. Perkins, Plenum Press, New York, US; "Effects of alloying (Shape memory effect in TiNi)" *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023072B3 (en) * 2005-04-29 2006-09-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wolf tones reducing device for stringed bowed instrument, has multi-functional material that causes transformation of mechanical vibrational energy into electrical energy in case of vibrational stimulation by wolf tone at instrument

Also Published As

Publication number Publication date
DE59002023D1 (en) 1993-08-26
DE4006076C1 (en) 1990-12-13
US5108523A (en) 1992-04-28
JPH0372046A (en) 1991-03-27
EP0419789B1 (en) 1993-07-21

Similar Documents

Publication Publication Date Title
DE4006076C1 (en)
DE3024641C2 (en)
DE3634635C2 (en) Nickel aluminides and nickel iron aluminides for use in oxidizing environments
DE3024645A1 (en) TITANIUM ALLOY, ESPECIALLY TITANIUM-ALUMINUM ALLOY
DE2714712A1 (en) NICKEL ALLOY AND METHOD FOR MANUFACTURING IT
EP1017867A1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE2704765A1 (en) COPPER ALLOY, METHOD OF MANUFACTURING IT AND ITS USE FOR ELECTRIC CONTACT SPRINGS
DE3326890C2 (en)
EP0035069B1 (en) Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect
DE1483228B2 (en) ALUMINUM ALLOY WITH HIGH PERFORMANCE
DE1294029B (en) Use of a titanium-tantalum alloy as a material for the production of objects which, in addition to being highly corrosion-resistant to boiling acids, must also have high strength and toughness, especially at elevated temperatures
DE2558915A1 (en) MAGNESIUM ALLOYS
DE2910044A1 (en) ALLOY
DE1290727B (en) Process for the production of high strength niobium alloys
DE60123408T2 (en) SUPER ELASTIC GOLD INDIUM ALLOY AND ITEMS MANUFACTURED THEREIN
DE1533199B1 (en) USE OF A TITANIUM ALLOY FOR HEAT-RESISTANT AND CREEP-RESISTANT OBJECTS
DE3210870C2 (en) Use of copper-based alloys as alloys with design memory
DE1906007C3 (en) Use of a nickel-chromium alloy
DE2711576A1 (en) NEW ALLOYS
EP0410979B1 (en) Hardenable nickel alloy
DE3725950A1 (en) USE OF A COPPER ALLOY AS A MATERIAL FOR CONTINUOUS CASTING MOLDS
DE1215375B (en) Zinc alloys and processes for their manufacture
DE1483356A1 (en) Process for producing a tungsten-rhenium alloy
DE1458354A1 (en) Titanium alloy
DE2000256C (en) Use of a titanium alloy for tensile and creep resistant objects

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB LU NL SE

17P Request for examination filed

Effective date: 19910920

17Q First examination report despatched

Effective date: 19911223

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRIED. KRUPP AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KRUPP INDUSTRIETECHNIK GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB LU NL SE

REF Corresponds to:

Ref document number: 59002023

Country of ref document: DE

Date of ref document: 19930826

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940613

Year of fee payment: 5

Ref country code: BE

Payment date: 19940613

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940616

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940617

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940623

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19940630

Year of fee payment: 5

26N No opposition filed
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940731

Year of fee payment: 5

EAL Se: european patent in force in sweden

Ref document number: 90114034.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950721

Ref country code: GB

Effective date: 19950721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950731

BERE Be: lapsed

Owner name: KRUPP INDUSTRIETECHNIK G.M.B.H.

Effective date: 19950731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950721

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960402

EUG Se: european patent has lapsed

Ref document number: 90114034.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST