EP0418965A1 - Tube à rayons cathodiques muni d'un photodeviateur - Google Patents

Tube à rayons cathodiques muni d'un photodeviateur Download PDF

Info

Publication number
EP0418965A1
EP0418965A1 EP90202454A EP90202454A EP0418965A1 EP 0418965 A1 EP0418965 A1 EP 0418965A1 EP 90202454 A EP90202454 A EP 90202454A EP 90202454 A EP90202454 A EP 90202454A EP 0418965 A1 EP0418965 A1 EP 0418965A1
Authority
EP
European Patent Office
Prior art keywords
electrode
tube according
electron beam
electrodes
photocathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90202454A
Other languages
German (de)
English (en)
Other versions
EP0418965B1 (fr
Inventor
Rémy Société Civile S.P.I.D. Polaert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laboratoires dElectronique Philips SAS
Koninklijke Philips NV
Original Assignee
Laboratoires dElectronique Philips SAS
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratoires dElectronique Philips SAS, Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Laboratoires dElectronique Philips SAS
Publication of EP0418965A1 publication Critical patent/EP0418965A1/fr
Application granted granted Critical
Publication of EP0418965B1 publication Critical patent/EP0418965B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/74Deflecting by electric fields only

Definitions

  • the invention relates to a cathode ray tube, provided with means for electrostatic deflection of the path of an electron beam e f coming from an electron source.
  • a cathode ray tube it is usual to deflect the path of the electron beam using an electrostatic deflection formed of plates joined to different potentials.
  • the tube has a pair of plates for horizontal deflection to which a time base is applied and a pair of plates for vertical deflection to which the electrical signal to be processed is applied.
  • This electrical signal is introduced into the tube using connectors and cables which are connected to a signal generator. These signals can be generated initially in forms that are not electrical. Conversion to an electrical signal is therefore necessary, which in certain situations can be a disadvantage.
  • the electrostatic deflection means comprise at least one electrostatic photodeviator including a photodetector which, under the action of incident light radiation, creates electric charges e p which modify the electric deflection field of the photodeviator.
  • the light radiation is not converted into an electrical signal prior to its introduction into the cathode ray tube and the information it contains is thus better preserved. There is therefore direct intervention of light radiation on the electron beam.
  • the principle of the invention is to send the light radiation to be detected directly to one of the deflection plates through a window placed on the side of the tube.
  • This deflection plate can be coated with a photodetector which depends on the spectral range of the light radiation to be detected.
  • a photodetector receives light radiation, a quantity of charges is created in proportion to the intensity of the light radiation. If a positive electrode is placed nearby, these charges will transit and develop a positive potential on the deflection plate. This is equivalent to placing a photodetector inside the cathode ray tube.
  • the deflection plates and the photodetector constitute the photodevector.
  • the photodetector can be a photocathode which, under the action of incident light radiation, creates charges under vacuum, or a photoelectric element such as a photodiode, which, under the action of incident light radiation, creates charges in the material of the photoelectric element. This removes connecting cables, connectors and by-passes between the photodetector and the deflection plate of the cathode ray tube. This results in great freedom in the choice of the load impedance Z.
  • the photodevector can comprise 3 electrodes and for this comprises a first and second extreme electrode between which a central electrode is interposed, the central electrode separating on one side a first space through which the electron beam e f passes and on the other side a second space where the photodetector is located.
  • the photocathode is deposited on the most negative electrode of the electrodes delimiting the second space, the electric charges e p moving from the photocathode to the positive electrode and the electron beam e f crossing the first space in a substantially perpendicular direction.
  • the central electrode is, as the case may be, brought to an intermediate potential higher or lower than the potentials of the first and second extreme electrodes.
  • the photodetector is a photodiode
  • this can consist of a piece of silicon placed between the extreme positive electrode and the central electrode, the electron beam e f passing through the space delimited by the central electrode and l '' extreme negative electrode.
  • the photodetector is a photocathode
  • one way to reduce the capacitance between the photocathode and the deflection electrodes is to remove one of the electrodes.
  • the photodevector is with 2 electrodes, joined respectively to a positive and negative potential, the photocathode being deposited on the face of the negative electrode directed towards the positive electrode, the negative electrode being joined to the negative potential GND by a impedance Z, the electric charges e p moving from the photocathode to the positive electrode and the electron beam crossing the same interelectrode space in a substantially perpendicular direction.
  • the light radiation must reach the photodetector to create the electric charges e p .
  • It can be a transparent support, such as a metallized glass, for receiving the photocathode.
  • the electrode facing the photocathode may be a tight mesh grid.
  • the piece of silicon can be covered with a transparent metal oxide.
  • the photodevector When the photodevector has 2 electrodes with a single space for the electron beam e f and the electric charges generated e p , there is at rest a permanent deviation which it is normally necessary to compensate. This deflection at rest of the path of the electron beam e f is then compensated by means of corrections, for example correcting coils or an electrostatic deflector.
  • the various embodiments which have just been described relate to a photodevector whose basic structure comprises three electrodes or two electrodes. By electrode you must hear a plate or an element of appropriate shape which deflects the beam.
  • the fact that the photodetector is incorporated into the deflection means to form a photodevector makes it possible to increase the speed of response to a rapid light signal. However, it is still possible to increase this speed of response by producing a distributed photodevector which comprises several photodetectors arranged along the path of the electron beam e f , the light radiation being successively deflected from a photocathode or from a photodiode to the next one using reflectors.
  • the photodeviator or the distributed photodeviator can be placed inside a single enclosure, in which a vacuum has been created and which contains all the elements of a cathode ray tube.
  • a vacuum has been created and which contains all the elements of a cathode ray tube.
  • it is a photocathode it is possible to independently carry out the heat treatments which are necessary for the formation of the photocathode on the one hand and of the cathode of the electron gun (electron source) of on the other hand so as not to damage them mutually. After assembly, these two enclosures can remain non-communicating but become mechanically integral after their adapted arrangement.
  • Figure 1 shows a cathode ray tube according to the known art. It comprises a vacuum chamber 10 in which an electron gun 11 emits an electron beam e f which is deflected (beam 14) by vertical deflection plates 12 and horizontal deflection plates 13.
  • the deflection plates can be formed by helical lines according to the prior art to increase the speed of deflection of the beam.
  • the rapid electrical signals to be analyzed are introduced by electrical connectors which are not shown.
  • At least one of the deflection means is replaced by a photodeviator.
  • FIG. 2A represents a photodeviator with 3 electrodes comprising a first extreme electrode 20, a second extreme electrode 21 and a central electrode 22.
  • the electron beam e f passes in the space between the electrodes 21 and 22.
  • the first extreme electrode 20 is brought to a positive potential HT
  • the second extreme electrode 21 is brought to a negative potential GND
  • the central electrode 22 is brought to an intermediate potential.
  • a photocathode 24 is deposited on the side of electrode 20.
  • the central electrode is connected to the negative potential GND by a charge impedance Z.
  • the photocathode emits electrons which are picked up by the first extreme electrode 20.
  • the potential of the central electrode 22 varies and the electric deflection field between the electrodes 21 and 22 also varies, which makes it possible to deflect the electron beam e f .
  • FIG. 2B shows another arrangement of the elements of a photodeviator with 3 electrodes.
  • the first extreme electrode 20 is brought to a negative potential GND
  • the second extreme electrode 21 is brought to a positive potential HT
  • the central electrode 22 is brought to an intermediate potential, being connected to the positive potential HT by a load impedance Z.
  • the electron beam e f passes between the electrodes 21 and 22.
  • the photocathode is deposited on the negative electrode 20 opposite the central electrode 22 which is at a more positive potential. The same mechanism as before occurs to deflect the beam.
  • the central electrode can be brought to a potential lower or higher than the potentials of the first and second extreme electrodes, with the photocathode deposited on the most negative electrode of the electrodes 20 and 22.
  • FIG. 3 represents a photodeviator with 2 electrodes.
  • the electron beam ef and the electric charges e p move in the same interelectrode space.
  • the photocathode 24 is deposited on the electrode 22 which is connected to the negative potential GND by the impedance Z. In this case the DC bias voltage between the photocathode and the positive electrode causes the electron beam e f to be strongly deviated at rest.
  • This deviation at rest must be compensated by means of corrections: - either by tilting the electron beam a priori before it enters the photodeviator, - either by placing a second electrostatic deflector acting in the opposite direction and placed either upstream or downstream of the photodevector, - either by using a magnetic deflector suitably arranged so that the beam trace comes to form at the desired location on the screen.
  • FIG. 4A represents the electrical diagram of the principle of a photodeviator provided with a photodiode.
  • the photodiode 40 is connected on the one hand to a positive potential V p (lower than the high voltage HT in the case of a photocathode) and on the other hand to the central electrode 22 connected to ground through an impedance Z
  • the electron beam e f passes between the central electrode 22 and the second extreme electrode 21 brought to a negative potential.
  • FIG. 4B represents an embodiment diagram.
  • the photodiode is formed of a piece of silicon 41 placed between the first extreme electrode 20 brought to a positive potential and the central electrode 22. To capture the light radiation 251, 252 at least one of the electrodes must be transparent.
  • FIG. 5A represents an electrical diagram of a distributed photodevector. It comprises a first extreme electrode 20 brought to a positive potential, a second extreme electrode 21 brought to a negative potential and a plurality of central electrodes 221 to 226. Each of these central electrodes carries a photocathode such as 241 for the electrode 221. Each central electrode is connected to the negative potential by an impedance 2.
  • FIG. 5B represents the optical path followed by the light radiation 50. It begins by striking the first photocathode 241. Part of the radiation is absorbed and generates electrons (electric charges e p ) which act on the potential of the central electrode 221 according to the mechanisms already exposed. The other part of the radiation is reflected towards the first extreme electrode 20 which in turn sends it back to the second photocathode and so on. The light radiation is thus absorbed after its action on some photocathodes. To keep all the interest in the distributed photodevector it is desirable to distribute the absorption of light radiation between all the photocathodes concerned without favoring the former by adapting their absorption rate.
  • Each central electrode 221- 226 is connected to the negative potential by an impedance Z (see FIG. 5A).
  • the photocathode 24 is in this case deposited on a transparent support 53 which receives beforehand the first semi-transparent extreme end electrode 20 brought to a negative potential.
  • the electron beam e f passes between these central electrodes and the second extreme electrode 21 brought to a positive potential.
  • the light radiation passes through the transparent support 53 and the semi-transparent electrode 20, is partially absorbed and is reflected on the photocathode 24, crosses the same elements again and is reflected again on a reflector 55.
  • the successive reflection mechanisms are then produce in the same way as before.
  • the optical path can be adapted to the distance d by positioning the reflector 55.
  • FIGS. 6A, 6B represent an exemplary embodiment of a photodevector according to the diagram of FIG. 5B but with lateral reflectors 61, 62.
  • the light radiation 50 arrives in a direction very different from the direction of propagation of the electron beam e f on the first photocathode 241, deposited on the first central electrode 221, is partially absorbed and generates electric charges e p which are picked up by the first extreme electrode 20.
  • the other part of the light radiation is reflected on the lateral reflector 61 which returns the radiation to the second photocathode.
  • the radiation which is not absorbed is thus reflected towards the next photocathode, alternately by one and the other side reflector.
  • FIG. 6B represents a top view of the photodevector of FIG. 6A where the extreme electrodes have been omitted so as not to weigh down the drawing. The same elements are represented with the same references.
  • the central electrodes 221 to 226 constitute independent conductive surfaces each connected by an impedance Z to the negative potential GND.
  • the electrical potential of each central electrode is thus controlled by the electrical charges e p which are created by each photocathode. It is possible to realize different ways this plurality of central conductive electrodes.
  • Figures 7A and 7B show an exemplary embodiment.
  • an insulating support 70 is used on which the central electrodes 221 to 226 are placed individually and consecutively in the direction of propagation of the electron beam e f .
  • Each central electrode passes through the insulating support 70 so that it appears on both sides of the support.
  • the upper face receives the photocathode and the lower face serves to deflect the beam.
  • Each photocathode (for example 241) is connected by an impedance Z (for example 711) to the negative potential GND.
  • the conductive electrodes as well as the Z impedances can be produced by conventional thin film or thick film technologies.
  • the photocathodes are deposited by the usual methods.
  • FIG. 8 represents an exemplary embodiment of a cathode ray tube provided with a photodeviator with 3 electrodes according to the invention. We find the essential elements already described in Figure 1 but one of the deflectors is replaced here by a photodeviator.
  • the cathode ray tube is shown formed of two independent vacuum chambers 10 and 80.
  • the enclosure 80 is formed from an empty air bulb. It contains the first extreme electrode 20 and the central electrode 22 a provided with the photocathode 24. Thus this enclosure 80 can be treated independently for all the processes of formation of the photocathode which otherwise could receive a slight pollution of the other parts of the tube to cathode rays.
  • the enclosure 80 can receive the window which serves to introduce the light radiation therein.
  • the enclosure 10 is provided with the second extreme electrode 21 as well as with another central electrode 22b which is accessible from the outside. So during mounting, the central electrodes 22 a and 22 b are electrically connected to each other (for example welded) and constitute the single central electrode 22 of the photodevector.
  • the central electrode 22b of the vacuum enclosure 10 can be placed in a re-entrant part of the vacuum enclosure 10 in order to reduce the distance which separates it from the electron beam e f , and therefore the capacities, and facilitate the positioning of the vacuum chamber 80.
  • Such a tube can be used to make an oscilloscope.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Tube à rayons cathodiques, muni de moyens de dé­flexion électrostatique (12,13) du trajet d'un faisceau d'électrons ef issus d'une source d'électrons (11), lesdits moyens de déflexion comprenant au moins un photodéviateur électrostatique (20,21,22,24) incluant un photodétecteur (24) qui, sous l'action d'un rayonnement lumineux incident, créé des charges électriques ep qui modifient le champ électrique de déflexion du photodéviateur.
Le photodéviateur peut être réalisé avec trois (20,21,22) ou deux (20,22) électrodes de sorte que le faisceau d'électrons ef et les charges électriques ep générées se situent ou non dans le même espace. Le photodétecteur peut être une photocathode (24) ou une photodiode (40).
La structure peut être répétitive pour réaliser un photodéviateur distribué le long du trajet du faisceau d'électrons ef. Le tube à rayons cathodiques peut permettre de réaliser un oscilloscope.

Description

  • L'invention concerne un tube à rayons cathodi­ques, muni de moyens de déflexion électrostatique du trajet d'un faisceau d'électrons ef issus d'une source d'électrons.
  • Dans un tube à rayons cathodiques il est habituel de dévier le trajet du faisceau d'électrons à l'aide d'une dé­flexion électrostatique formée de plaques réunies à des poten­tiels différents. Habituellement le tube dispose d'une paire de plaques pour la déflexion horizontale sur lesquelles on applique une base de temps et une paire de plaques pour la déflexion verticale sur lesquelles on applique le signal électrique à traiter. Ce signal électrique est introduit dans le tube à l'aide de connecteurs et de câbles qui sont reliés à un générateur de signaux. Ces signaux peuvent être générés initialement sous des formes qui ne sont pas électriques. Une conversion en un signal électrique est donc nécessaire ce qui dans certaines situations peut être un inconvénient.
  • D'autre part ces signaux peuvent avoir des rapi­dités diverses. Dans le domaine des signaux rapides lorsque l'on désire réaliser par exemple un oscilloscope ayant une bande passante couvrant plusieurs centaines de mégahertzs, cela est difficile à réaliser avec de tels moyens de déflexion électrostatique. Des solutions ont été proposées mettant en oeuvre des techniques de propagation d'ondes.
  • Ainsi le document intitulé "Les tubes à rayons cathodiques à propagation d'ondes à très large bande" par C. LOTY, Acta Electronica vol. 10 n°4 1966 p.351-361, révèle une solution utilisant une ligne en hélice. Dans ce cas on dispose d'une ligne à constantes réparties constituée d'un fil conducteur replié, le long duquel l'onde se propage à la vi­tesse de la lumière selon une structure à trois dimensions. Un oscilloscope réalisé sur de telles bases dispose d'une bande passante très élevée. Mais les signaux qui sont à analyser et qui agissent sur la déflexion électrostatique du faisceau d'électrons sont à introduire sous une forme électrique à l'aide de câbles de liaison qui ont des capacités non négli­geables. Dans la pratique on est toujours confronté à un pro­blème de sensibilité et le concepteur est conduit à établir un compromis entre la rapidité et la sensibilité de la déviation du faisceau d'électrons.
  • Or lorsque l'on analyse des phénomènes lumineux, qui peuvent être de durée excessivement brève, une grande par­tie de l'information rapide qu'ils renferment peut être mas­quée voire perdue par ces difficultés d'introduction des si­gnaux électriques dans le tube à rayons cathodiques ce qui ag­grave les inconvénients.
  • On se pose alors le problème d'éviter la conver­sion des signaux optiques. En outre on peut désirer conserver au tube à la fois une grande sensibilité et une grande rapidi­té pour l'analyse de tels signaux lumineux lorsqu'ils sont ra­pides.
  • La solution que propose l'invention est que les moyens de déflexion électrostatique comprennent au moins un photodéviateur électrostatique incluant un photodétecteur qui, sous l'action d'un rayonnement lumineux incident, créé des charges électriques ep qui modifient le champ électrique de déflexion du photodéviateur.
  • Ainsi avantageusement le rayonnement lumineux n'est pas converti en un signal électrique préalablement à son introduction dans le tube à rayons cathodiques et l'informa­tion qu'il contient est ainsi mieux conservée. Il y a donc in­tervention directe du rayonnement lumineux sur le faisceau d'électrons.
  • Ceci est très utile non seulement dans des dispo­sitifs qui doivent répondre rapidement à l'action du rayonne­ment lumineux, mais également dans des dispositifs moins rapi­des qui mettent à profit l'absence de transformation du rayon­nement lumineux en un signal électrique à l'extérieur dudit dispositif.
  • Le principe de l'invention est d'envoyer le ra­yonnement lumineux à détecter directement sur l'une des pla­ques de déviation à travers une fenêtre placée sur le côté du tube. Cette plaque de déviation peut être revêtue d'un photo­détecteur qui dépend du domaine spectral du rayonnement lumi­neux à détecter. Lorsque ce photodétecteur reçoit un rayonne­ment lumineux, une quantité de charges est créée en proportion de l'intensité du rayonnement lumineux. Si on place une élec­trode positive à proximité, ces charges vont transiter et dé­velopper un potentiel positif sur la plaque de déviation. Cela revient à placer un photodétecteur à l'intérieur du tube à rayons cathodiques. Les plaques de déviation et le photodétec­teur constituent le photodéviateur. Le photodétecteur peut être une photocathode qui, sous l'action d'un rayonnement lu­mineux incident, créé des charges sous vide, ou un élément photoélectrique comme une photodiode, qui, sous l'action d'un rayonnement lumineux incident, créé des charges dans le maté­riau de l'élément photoélectrique . Ainsi on supprime des câ­bles de liaison, des connecteurs et des by-pass entre le pho­todétecteur et la plaque de déviation du tube à rayons catho­diques. Il en résulte une grande liberté sur le choix de l'im­pédance de charge Z.
  • En particulier il n'y a plus de nécessité d'avoir une impédance adaptée à celle d'un câble de liaison (typique­ment Z=50Ω), et il est possible d'adopter une impédance de va­leur élevée et d'augmenter de façon importante la sensibilité de détection verticale. Ainsi, si l'impédance Z est une résis­tance de 1000Ω accompagnée d'une capacité parasite de C=0, 1pF, on obtient un gain de sensibilité de déflexion dans le rapport 1000/50=20 pour un temps de montée excessivement bref (100ps) du photodétecteur.
  • Le photodéviateur peut comprendre 3 électrodes et pour cela comprend une première et seconde électrode extrême entre lesquelles est intercalée une électrode centrale, l'électrode centrale séparant d'un côté un premier espace où transite le faisceau d'électrons ef et de l'autre côté un second espace où se situe le photodétecteur.
  • Lorsque le photodétecteur est une photocathode, selon une réalisation la photocathode est déposée sur l'élec­trode la plus négative des électrodes délimitant le second es­pace, les charges électriques ep se déplaçant de la photoca­thode vers l'électrode positive et le faisceau d'électrons ef traversant le premier espace dans une direction sensible­ment perpendiculaire.
  • Il est possible selon des réalisations que l'électrode centrale est, selon les cas, portée à un potentiel intermédiaire supérieur ou inférieur aux potentiels des pre­mière et seconde électrodes extrêmes.
  • Lorsque le photodétecteur est une photodiode celle-ci peut être constituée d'une pièce de silicium placée entre l'électrode extrême positive et l'électrode centrale, le faisceau d'électrons ef traversant l'espace délimité par l'électrode centrale et l'électrode extrême négative.
  • Il est aussi possible de vouloir adopter une ré­sistance de charge très élevée, de valeur quasi infinie par exemple 10 MΩ, pour accroître la sensibilité de détection. Dans ce cas la constante de temps devient grande devant le temps de montée des signaux optiques à détecter et cette fois la déviation verticale Vy n'est plus proportionnelle au si­gnal lumineux instantané mais à l'intégrale de ce signal en fonction du temps :
    Vy = 1/C ∫i dt
    Il est clair que la sensibilité de déflexion est alors inver­sement proportionnelle à la capacité C donc proportionnelle à la distance entre le photodétecteur et l'électrode positive divisée par la surface active du photodétecteur. Par ailleurs une augmentation de cette distance photodétecteur-électrode positive allonge le temps de vol des électrons, c'est-à-dire le temps de montée propre de cet espace interélectrode. Il y a donc une distance optimale à déterminer en fonction de l'application envisagée.
  • Dans tous les modes de réalisation notamment les modes à 3 électrodes, il y a intérêt à réduire la capacité propre du photodétecteur.
  • Lorsque le photodétecteur est une photocathode, un moyen de réduire la capacité entre la photocathode et les électrodes de déviation consiste à supprimer une des électro­des. Il existe alors un espace interélectrode unique où agis­sent le faisceau d'électrons ef et les charges électriques ep. Dans ce cas le photodéviateur est à 2 électrodes, réu­nies respectivement à un potentiel positif et négatif, la pho­tocathode étant déposée sur la face de l'électrode négative dirigée vers l'électrode positive, l'électrode négative étant réunie au potentiel négatif GND par une impédance Z, les char­ges électriques ep se déplaçant de la photocathode vers l'é­lectrode positive et le faisceau d'électrons traversant le même espace interélectrode dans une direction sensiblement perpendiculaire.
  • Le rayonnement lumineux doit atteindre le photo­détecteur pour créer les charges électriques ep. Selon l'o­rientation du rayonnement lumineux il peut être nécessaire que l'une au moins des électrodes soit transparente pour transmet­tre le rayonnement lumineux au photodétecteur. Il peut s'agir d'un support transparent, tel un verre métallisé, pour rece­voir la photocathode. Ou bien l'électrode qui fait face à la photocathode peut être une grille à mailles serrées. Ou bien, lorsqu'il s'agit d'une photodiode, la pièce de silicium peut être recouverte d'un oxyde métallique transparent.
  • Lorsque le photodéviateur est à 2 électrodes avec un espace unique pour le faisceau d'électrons ef et les charges électriques générées ep, il se produit au repos une déviation permanente qu'il est normalement nécessaire de com­penser. Cette déviation au repos du trajet du faisceau d'élec­trons ef est alors compensée par des moyens de corrections par exemple des bobines correctrices ou un déviateur électro­statique.
  • Les différentes réalisations qui viennent d'être décrites concernent un photodéviateur dont la structure de ba­se comprend trois électrodes ou deux électrodes. Par électrode il faut entendre une plaque ou un élément de forme appropriée qui défléchit le faisceau. Le fait que le photodétecteur soit incorporé aux moyens de déviation pour former un photodévia­teur permet d'accroître la vitesse de réponse à un signal lu­mineux rapide. Mais il est encore possible d'accroître cette rapidité de réponse en réalisant un photodéviateur distribué qui comprend plusieurs photodétecteurs disposés le long du trajet du faisceau d'électrons ef, le rayonnement lumineux étant successivement dévié d'une photocathode ou d'une photo­diode à la suivante à l'aide de réflecteurs. Les meilleurs ré­sultats sont obtenus lorsque les distances qui séparent les photocathodes ou les photodiodes des réflecteurs d'une part, et les distances qui séparent deux électrodes centrales consé­cutives d'autre part, sont déterminées pour assurer une action synchronisée sur le faisceau d'électrons ef.
  • Le photodéviateur ou le photodéviateur distribué peuvent être disposés à l'intérieur d'une enceinte unique, dans laquelle on a fait le vide et qui renferme tous les élé­ments d'un tube à rayons cathodiques. Mais dans le cas d'une réalisation à 3 électrodes, pour faciliter la réalisation in­dustrielle, il est possible d'isoler l'enceinte renfermant le photodéviateur de l'enceinte renfermant les autres éléments du tube à rayons cathodiques. Ainsi lorsqu'il s'agit d'une photo­cathode, il est possible de réaliser indépendamment les trai­tements thermiques qui sont nécessaires à la formation de la photocathode d'une part et de la cathode du canon à électrons (source d'électrons) d'autre part de façon à ne pas les endom­mager mutuellement. Après le montage ces deux enceintes peu­vent rester non communicantes mais deviennent solidaires méca­niquement après leur disposition adaptée.
  • L'invention sera mieux comprise à l'aide des figures suivantes données à titre d'exemple non limitatif et qui représentent :
    • figure 1 : un tube à rayons cathodiques connu.
    • figures 2A, 2B : deux schémas d'un photodéviateur à 3 électrodes muni d'une photocathode selon l'invention.
    • figure 3 : un schéma d'un photodéviateur à 2 électrodes muni d'une photocathode selon l'invention.
    • figures 4A, 4B : un schéma d'un photodéviateur muni d'une photodiode.
    • figures 5A à 5D : des schémas de réalisation d'un photo­déviateur distribué.
    • figures 6A, 6B : un exemple de réalisation du photodévia­teur distribué selon le schéma optique de la figure 5B.
    • figures 7A, 7B : un exemple de réalisation du photodévia­teur distribué selon le schéma électrique de la figure 5A.
    • figure 8 : un exemple de réalisation d'un tube à rayons cathodiques selon l'invention formé de deux enceintes sépa­rées.
  • La figure 1 représente un tube à rayons cathodi­ques selon l'art connu. Il comprend une enceinte à vide 10 dans laquelle un canon à électrons 11 émet un faisceau d'élec­trons ef qui est dévié (faisceau 14) par des plaques de dé­viation verticale 12 et des plaques de déviation horizontale 13. Les plaques de déviation peuvent être formées de lignes en hélice selon l'art antérieur pour accroître la rapidité de dé­flexion du faisceau. Les signaux électriques rapides à analy­ser sont introduits par des connecteurs électriques non repré­sentés.
  • Selon l'invention on remplace au moins un des moyens de déviation par un photodéviateur.
  • La figure 2A représente un photodéviateur à 3 électrodes comprenant une première électrode extrême 20, une seconde électrode extrême 21 et une électrode centrale 22. Le faisceau d'électrons ef transite dans l'espace entre les électrodes 21 et 22. La première électrode extrême 20 est por­tée à un potentiel positif HT, la seconde électrode extrême 21 est portée a un potentiel négatif GND, et l'électrode centrale 22 est portée à un potentiel intermédiaire. Sur l'électrode la plus négative des électrodes 20 et 22, l'électrode centrale, est déposée une photocathode 24 du côté de l'électrode 20. L'électrode centrale est reliée au potentiel négatif GND par une impédance de charge Z. Sous l'influence du rayonnement lumineux 25₁, 25₂, 25₃ la photocathode émet des électrons qui sont captés par la première électrode extrême 20. Sous l'influence du courant électrique ainsi créé, le potentiel de l'électrode centrale 22 varie et le champ électrique de déflexion entre les électrodes 21 et 22 varie également, ce qui permet de défléchir le faisceau d'électrons ef.
  • La figure 2B représente une autre disposition des éléments d'un photodéviateur à 3 électrodes. La première électrode extrême 20 est portée à un potentiel négatif GND, la seconde électrode extrême 21 est portée à un potentiel positif HT, et l'électrode centrale 22 est portée à un potentiel in­termédiaire, étant reliée au potentiel positif HT par une im­pédance de charge Z. Le faisceau d'électrons ef transite entre les électrodes 21 et 22. La photocathode est déposée sur l'électrode négative 20 face à l'électrode centrale 22 qui est à un potentiel plus positif. Le même mécanisme que précédem­ment se produit pour défléchir le faisceau.
  • Dans des autres réalisations l'électrode centrale peut être portée à un potentiel inférieur ou supérieur aux po­tentiels des première et seconde électrodes extrêmes, avec la photocathode déposée sur l'électrode la plus négative des électrodes 20 et 22.
  • La figure 3 représente un photodéviateur à 2 é­lectrodes. Le faisceau d'électrons ef et les charges élec­triques ep se déplacent dans le même espace interélectrode. La photocathode 24 est déposée sur l'électrode 22 qui est re­liée au potentiel négatif GND par l'impédance Z. Dans ce cas la tension continue de polarisation entre la photocathode et l'électrode positive entraîne que le faisceau d'électrons ef est fortement dévié au repos. Cette déviation au repos doit être compensée par des moyens de corrections :
    - soit en inclinant à priori le faisceau d'électrons avant son entrée dans le photodéviateur,
    - soit en plaçant un second déviateur électrostatique agissant en sens opposé et placé soit en amont, soit en aval du photodéviateur,
    - soit en utilisant un déviateur magnétique convenablement disposé pour que la trace du faisceau vienne se former à l'en­droit désiré sur l'écran.
  • La figure 4A représente le schéma électrique du principe d'un photodéviateur muni d'une photodiode. La photo­diode 40 est reliée d'une part à un potentiel positif Vp (inférieur à la haute tension HT dans le cas d'une photocatho­de) et d'autre part à l'électrode centrale 22 reliée à la mas­se à travers une impédance Z. Le faisceau d'électrons ef transite entre l'électrode centrale 22 et la seconde électrode extrême 21 portée à un potentiel négatif. La figure 4B repré­sente un schéma de réalisation. La photodiode est formée d'une pièce de silicium 41 placée entre la première électrode ex­trême 20 portée à un potentiel positif et l'électrode centrale 22. Pour capter le rayonnement lumineux 25₁, 25₂ l'une au moins des électrodes doit être transparente.
  • La figure 5A représente un schéma électrique d'un photodéviateur distribué. Il comprend une première électrode extrême 20 portée à un potentiel positif, une seconde électrode extrême 21 portée à un potentiel négatif et une pluralité d'électrodes centrales 22₁ à 22₆. Chacune de ces électrodes centrales porte une photocathode telle que 24₁ pour l'électrode 22₁. Chaque électrode centrale est reliée au potentiel négatif par une impédance 2.
  • La figure 5B représente le trajet optique suivi par le rayonnement lumineux 50. Il commence par frapper la première photocathode 24₁. Une partie du rayonnement est ab­sorbée et génère des électrons (charges électriques ep) qui agissent sur le potentiel de l'électrode centrale 22₁ selon les mécanismes déjà exposés. L'autre partie du rayonnement est réfléchi vers la première électrode extrême 20 qui le renvoie à son tour vers la seconde photocathode et ainsi de suite. Le rayonnement lumineux est ainsi absorbé après son action sur quelques photocathodes. Pour conserver au photodéviateur dis­tribué tout son intérêt il est souhaitable de répartir l'absorption du rayonnement lumineux entre toutes les photoca­thodes concernées sans privilégier les premières en adaptant leur taux d'absorption.
    Mais pour que les actions de tous les photodéviateurs indivi­duels soient en phase, il est nécessaire de déterminer la dis­tance d séparant deux photodéviateurs individuels consécutifs pour adapter le chemin optique, suivi par le rayonnement lumi­neux entre deux photocathodes consécutives, à la distance sé­parant une photocathode (par exemple 24₁) de la première élec­trode extrême 20. La vitesse des électrons étant de :
    v(m/s)=(2e.V/m)¹/₂=5,932.10⁵.(V)¹/₂
    où e est la charge électrique,
    m la masse de l'électron,
    V le potentiel appliqué,
    les distances d entre les photocathodes sont ainsi détermi­nées en fonction du potentiel appliqué.
  • Pour allonger le chemin optique il est possible d'utiliser non pas la première électrode extrême 20 mais des réflecteurs latéraux tel que cela est représenté sur les figu­res 6A et 6B.
  • Pour allonger le chemin optique suivi par le ra­yonnement lumineux il est également possible de réaliser un photodéviateur distribué selon la figure 5C. Chaque électrode centrale 22₁- 22₆ est reliée au potentiel négatif par une im­pédance Z (voir figure 5A). La photocathode 24 est dans ce cas déposée sur un support transparent 53 qui reçoit au préalable la première électrode extrême 20 semi-transparente portée à un potentiel négatif. Le faisceau d'électrons ef transite entre ces électrodes centrales et la seconde électrode extrême 21 portée à un potentiel positif. Ainsi le rayonnement lumineux traverse le support transparent 53 et l'électrode semi-­transparente 20, est absorbé partiellement et se réfléchit sur la photocathode 24, retraverse les mêmes éléments et vient se réfléchir à nouveau sur un réflecteur 55. Les mécanismes successifs de réflexion se produisent ensuite de la même ma­nière que précédemment. Dans ce cas le chemin optique peut être adapté à la distance d en positionnant le réflecteur 55.
  • Il est également possible de modifier le schéma de la figure 5C en faisant que le support transparent 53 soit suffisamment épais pour que le rayonnement lumineux ne quitte pas le support 53 par la face 56 dans la direction du réflec­teur 55, tout en ayant un chemin optique assez long (figure 5D). La réflexion peut s'effectuer soit sur le réflecteur 55 lorsqu'un tel réflecteur est accolé au support 53, soit sans réflecteur 55 sur la face 56 elle-même par réflexion totale. Les épaisseurs et les positionnements de ces différents élé­ments dépendent des caractéristiques de rapidité que l'on dé­sire donner au photodéviateur distribué.
  • Les figures 6A, 6B représentent un exemple de réalisation d'un photodéviateur selon le schéma de la figure 5B mais avec des réflecteurs latéraux 61, 62.
  • Le rayonnement lumineux 50 arrive dans une direc­tion très différente de la direction de propagation du fais­ceau d'électrons ef sur la première photocathode 24₁, dépo­sée sur la première électrode centrale 22₁, est partiellement absorbé et génère des charges électriques ep qui sont cap­tées par la première électrode extrême 20. L'autre partie du rayonnement lumineux est réfléchie sur le réflecteur latéral 61 qui renvoie le rayonnement vers la seconde photocathode. A chaque photocathode, le rayonnement qui n'est pas absorbé est ainsi réfléchi vers la photocathode suivante, alternativement par l'un et l'autre réflecteur latéral. La figure 6B représen­te une vue de dessus du photodéviateur de la figure 6A où les électrodes extrêmes ont été omises pour ne pas alourdir le dessin. Les mêmes éléments sont représentés avec les mêmes re­pères.
  • Sur la figure 5A les électrodes centrales 22₁ à 22₆ constituent des surfaces conductrices indépendantes re­liées chacune par une impédance Z au potentiel négatif GND. Le potentiel électrique de chaque électrode centrale est ainsi asservi aux charges électriques ep qui sont créées par cha­que photocathode. Il est possible de réaliser de différentes manières cette pluralité d'électrodes centrales conductrices. Les figures 7A et 7B représentent un exemple de réalisation. Pour cela on utilise un support isolant 70 sur lequel sont placées les électrodes centrales 22₁ à 22₆ isolément et consé­cutivement dans la direction de propagation du faisceau d'électrons ef. Chaque électrode centrale traverse le sup­port isolant 70 de sorte qu'elle apparaît sur les deux faces du support. La face supérieure (sur la figure 7B) reçoît la photocathode et la face inférieure sert à défléchir le faisceau. Chaque photocathode (par exemple 24₁) est reliée par une impédance Z (par exemple 71₁) au potentiel négatif GND. Les électrodes conductrices ainsi que les impédances Z peuvent être réalisées par les technologies classiques de couches min­ces ou de couches épaisses. Les photocathodes sont déposées par les méthodes habituelles.
  • Les autres dispositions décrites avec les photo­cathodes déposées sur les électrodes négatives peuvent utili­ser les mêmes méthodes de réalisation.
  • La figure 8 représente un exemple de réalisation d'un tube à rayons cathodiques muni d'un photodéviateur à 3 électrodes selon l'invention. On retrouve les éléments essen­tiels déjà décrits sur la figure 1 mais un des déviateurs est ici remplacé par un photodéviateur.
  • Le tube à rayons cathodiques est représenté formé de deux enceintes à vide indépendantes 10 et 80.
  • L'enceinte 80 est formée d'une ampoule vide d'air. Elle contient la première électrode extrême 20 et l'électrode centrale 22a munie de la photocathode 24. Ainsi cette enceinte 80 peut être traitée indépendamment pour tous les processus de formation de la photocathode qui autrement pourrait recevoir une légère pollution des autres parties du tube à rayons cathodiques. L'enceinte 80 peut recevoir la fe­nêtre qui sert à y introduire le rayonnement lumineux.
  • L'enceinte 10 est munie de la seconde électrode extrême 21 ainsi que d'une autre électrode centrale 22b qui est accessible de l'extérieur. Ainsi lors du montage, les électrodes centrales 22a et 22b sont reliées électrique­ment entre elles (par exemple soudées) et constituent l'élec­trode centrale unique 22 du photodéviateur. L'électrode cen­trale 22b de l'enceinte à vide 10 peut être placée dans une partie rentrante de l'enceinte à vide 10 afin de réduire la distance qui la sépare du faisceau d'électrons ef, et donc les capacités, et faciliter le positionnement de l'enceinte à vide 80.
  • Bien évidemment il est possible de ne pas adopter cette constitution à deux enceintes séparées et de placer tous les éléments dans l'enceinte à vide 10. Les modes de réalisa­tion du photodéviateur décrits précédemment peuvent être mon­tés dans un tube à rayons cathodiques selon des principes ana­logues accessibles à l'homme de métier sans sortir du cadre de l'invention.
  • Un tel tube peut être utilisé pour réaliser un oscilloscope.

Claims (19)

1. Tube à rayons cathodiques, muni de moyens de dé­flexion électrostatique du trajet d'un faisceau d'électrons ef issus d'une source d'électrons caractérisé en ce que les­dits moyens de déflexion comprennent au moins un photodévia­teur électrostatique incluant un photodétecteur qui, sous l'action d'un rayonnement lumineux incident, créé des charges électriques ep qui modifient le champ électrique de défle­xion du photodéviateur.
2. Tube selon la revendication 1 caractérisé en ce que le photodéviateur comprend une première et seconde élec­trode extrême entre lesquelles une électrode centrale est in­tercalée, un premier espace, où transite le faisceau d'élec­trons ef, étant délimité par l'électrode centrale et la se­conde électrode extrême, et un second espace, qui renferme le photodétecteur, étant délimité par l'électrode centrale et la première électrode extrême.
3. Tube selon la revendication 2 caractérisé en ce que le photodétecteur est une photocathode déposée sur l'élec­trode la plus négative des électrodes délimitant le second es­pace, les charges électriques ep se déplaçant de la photoca­thode vers l'électrode positive et le faisceau d'électrons ef traversant le premier espace dans une direction sensible­ment perpendiculaire.
4. Tube selon les revendications 2 ou 3 caractérisé en ce que la première électrode extrême est portée à un poten­tiel négatif, la seconde électrode extrême est portée à un po­tentiel positif et l'électrode centrale est portée à un poten­tiel intermédiaire.
5. Tube selon la revendication 2 ou 3 caractérisé en ce que la première électrode extrême est portée à un potentiel positif, la seconde électrode extrême est portée à un poten­tiel négatif, et l'électrode centrale est portée à un poten­tiel intermédiaire.
6. Tube selon les revendications 2 ou 3 caractérisé en ce que l'électrode centrale est portée à un potentiel supé­rieur aux potentiels des première et seconde électrodes extrê­mes.
7. Tube selon les revendications 2 ou 3 caractérisé en ce que l'électrode centrale est portée à un potentiel infé­rieur aux potentiels des première et seconde électrodes extrê­mes.
8. Tube selon la revendication 1 caractérisé en ce que le photodéviateur est à 2 électrodes réunies respective­ment à un potentiel positif et négatif, une photocathode étant déposée sur la face de l'électrode négative dirigée vers l'é­lectrode positive, l'électrode négative étant réunie au poten­tiel négatif GND par une impédance Z, les charges électriques ep se déplaçant de la photocathode vers l'électrode positive et le faisceau d'électrons traversant le même espace inter­électrode dans une direction sensiblement perpendiculaire.
9. Tube selon la revendication 8 caractérisé en ce que la déviation au repos du trajet du faisceau d'électrons ef est compensée par des moyens de corrections.
10. Tube selon la revendication 1 ou 2 caractérisé en ce que le photodétecteur est une photodiode.
11. Tube selon la revendication 10 dans la mesure où elle dépend de la revendication 2 caractérisé en ce que la photodiode est constituée d'une pièce de silicium placée entre l'électrode extrême positive et l'électrode centrale, le fais­ceau d'électrons ef traversant l'espace délimité par l'élec­trode centrale et l'électrode extrême négative.
12. Tube selon une des revendications 1 à 11 caracté­risé en ce que le faisceau d'électrons ef est défléchi par la combinaison d'un signal électrique appliqué sur au moins une des électrodes avec un signal optique appliqué sur le pho­todétecteur.
13. Tube selon une des revendications 2 à 12 caracté­risé en ce que l'une au moins des électrodes est transparente pour transmettre le rayonnement lumineux au photodétecteur.
14. Tube selon la revendication 13 caractérisé en ce que l'électrode transparente est constituée d'une grille à mailles serrées.
15. Tube selon une des revendications 1 à 14 caracté­risé en ce qu'il comprend plusieurs photodéviateurs formant un photodéviateur distribué le long du trajet du faisceau d'élec­trons ef, le rayonnement lumineux étant successivement dévié d'une photocathode ou d'une photodiode à la suivante à l'aide de réflecteurs.
16. Tube selon la revendication 15 caractérisé en ce que les distances qui séparent les photocathodes ou les photo­diodes des réflecteurs d'une part, et les distances qui sépa­rent deux électrodes centrales consécutives d'autre part, sont déterminées pour assurer une action synchronisée sur le fais­ceau d'électrons ef.
17. Tube selon une des revendications 1 à 7 ou selon une des revendications 10 à 16 dans la mesure où elle dépend des revendications 1 à 7 caractérisé en ce qu'il comprend une première enceinte à vide qui comprend le photodéviateur et une seconde enceinte à vide solidaire de la première qui comprend les autres éléments du tube.
18. Tube selon la revendication 17 caractérisé en ce que, préalablement à son montage, la première enceinte à vide forme un élément indépendant.
19. Oscilloscope caractérisé en ce qu'il comprend un tube à rayons cathodiques selon une des revendications 1 à 18.
EP90202454A 1989-09-22 1990-09-17 Tube à rayons cathodiques muni d'un photodeviateur Expired - Lifetime EP0418965B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8912474 1989-09-22
FR8912474A FR2652447A1 (fr) 1989-09-22 1989-09-22 Tube a rayons cathodiques muni d'un photodeviateur.

Publications (2)

Publication Number Publication Date
EP0418965A1 true EP0418965A1 (fr) 1991-03-27
EP0418965B1 EP0418965B1 (fr) 1994-08-24

Family

ID=9385765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90202454A Expired - Lifetime EP0418965B1 (fr) 1989-09-22 1990-09-17 Tube à rayons cathodiques muni d'un photodeviateur

Country Status (5)

Country Link
US (1) US5157303A (fr)
EP (1) EP0418965B1 (fr)
JP (1) JPH03156837A (fr)
DE (1) DE69011788T2 (fr)
FR (1) FR2652447A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576692B1 (fr) * 1992-06-22 1996-01-03 Siemens Aktiengesellschaft Intensificateur d'images muni à capteur d'images
JP2005164350A (ja) * 2003-12-02 2005-06-23 Yokogawa Electric Corp 電子ビーム発生装置及びこの装置を用いた光サンプリング装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1015514A (fr) * 1947-12-23 1952-10-14 Csf Oscillographe cathodique destiné à mesurer la puissance d'ondes ultra-courtes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3774236A (en) * 1971-11-29 1973-11-20 Gec Owensboro Image converter utilizing the combination of an electrostatic deflection field and a magnetic focusing field

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1015514A (fr) * 1947-12-23 1952-10-14 Csf Oscillographe cathodique destiné à mesurer la puissance d'ondes ultra-courtes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1983 SID INTERNATIONAL SYMPOSIUM, Digest of Technical Papers, May 1983, Coral Gables (FL;US) C. LOTY: "A 7GHz CRT for Realtime Digital Oscilloscopy"; pages 126 et 127 *
ACTA ELECTRONICA vol. 10, no. 4, 1966, Paris (FR) pages 351 - 361; C. LOTY: "Les tubes à rayons cathodiques à propagation d'onde à très large bande" *

Also Published As

Publication number Publication date
JPH03156837A (ja) 1991-07-04
US5157303A (en) 1992-10-20
FR2652447A1 (fr) 1991-03-29
DE69011788D1 (de) 1994-09-29
DE69011788T2 (de) 1995-03-16
EP0418965B1 (fr) 1994-08-24

Similar Documents

Publication Publication Date Title
EP0742954B1 (fr) Detecteur de rayonnements ionisants a microcompteurs proportionnels
EP0186225B1 (fr) Capteur d'images pour caméra fonctionnant en mode "jour-nuit"
EP0389326A1 (fr) Tube à rayons x à balayage avec plaques de déflexion
EP0418965B1 (fr) Tube à rayons cathodiques muni d'un photodeviateur
EP0045704B1 (fr) Détecteur de rayonnement
WO2004057675A1 (fr) Matrice de detecteurs multispectraux
EP0368694A1 (fr) Procédé et dispositif de localisation de particules neutres, à haute resolution
EP0044239B1 (fr) Tube intensificateur d'images à micro-canaux et ensemble de prise de vues comprenant un tel tube
EP0165119A1 (fr) Dispositif multiplicateur d'électrons, à localisation par le champ électrique
EP0155890B1 (fr) Tube convertisseur d'image à balayage de fente
WO2007003723A2 (fr) Tube multiplicateur d'electrons a plusieurs voies
EP0340126A1 (fr) Détecteur gazeux pour rayons-x sans parallaxe
EP0423886A1 (fr) Tube photomultiplicateur multivoies à fort pouvoir de résolution entre signaux
EP0056671A1 (fr) Dispositif de détection photoélectrique
FR2875331A1 (fr) Tube multiplicateur d'electrons a plusieurs voies
FR2602058A1 (fr) Detecteur a gaz utilisant une anode a microbandes
FR2572583A1 (fr) Dispositif photoelectrique pour la detection d'evenements lumineux
EP0540093B1 (fr) Tube-image à obturateur électrostatique et dispositif de prise de vue
EP0269472B1 (fr) Tube de prise de vue muni d'un dispositif de polarisation lumineuse
EP0056556A1 (fr) Tube analyseur à cible à accumulation
CH191362A (fr) Analyseur électronique pour émetteur de télévision.
FR2955427A1 (fr) Tube photomultiplicateur multivoie a moindres ecarts de temps de transit et a structure simplifiee
FR2604560A1 (fr) Tube electrostatique obturateur muni d'ouvertures de collimation pour photographie a haute vitesse
BE823576A (fr) Dispositif de representation de signaux video comportant une modulation de la vitesse de balayage
FR2955426A1 (fr) Tube photomultiplicateur multivoie a moindres ecarts de temps de transit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19910923

17Q First examination report despatched

Effective date: 19931102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940824

REF Corresponds to:

Ref document number: 69011788

Country of ref document: DE

Date of ref document: 19940929

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941128

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980901

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980922

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981123

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990917

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST