EP0409923A1 - EXPRESSION DE LA PROTEINE DU CIRCUMSPOROZOITE DE $i(PLASMODIUM) DANS DES CELLULES D'INSECTE - Google Patents
EXPRESSION DE LA PROTEINE DU CIRCUMSPOROZOITE DE $i(PLASMODIUM) DANS DES CELLULES D'INSECTEInfo
- Publication number
- EP0409923A1 EP0409923A1 EP90900688A EP90900688A EP0409923A1 EP 0409923 A1 EP0409923 A1 EP 0409923A1 EP 90900688 A EP90900688 A EP 90900688A EP 90900688 A EP90900688 A EP 90900688A EP 0409923 A1 EP0409923 A1 EP 0409923A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- protein
- cells
- gene expression
- expression unit
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000014509 gene expression Effects 0.000 title claims description 56
- 241000238631 Hexapoda Species 0.000 title claims description 30
- 241000224016 Plasmodium Species 0.000 title description 10
- 101710117490 Circumsporozoite protein Proteins 0.000 title description 4
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 claims abstract description 51
- 108700005482 Protozoan circumsporozoite Proteins 0.000 claims abstract description 14
- 108090000623 proteins and genes Proteins 0.000 claims description 131
- 102000004169 proteins and genes Human genes 0.000 claims description 105
- 239000013598 vector Substances 0.000 claims description 54
- 241000701447 unidentified baculovirus Species 0.000 claims description 31
- 108091026890 Coding region Proteins 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 24
- 239000013612 plasmid Substances 0.000 claims description 24
- 241000223960 Plasmodium falciparum Species 0.000 claims description 23
- 108020004414 DNA Proteins 0.000 claims description 20
- 229960005486 vaccine Drugs 0.000 claims description 19
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 17
- 230000001105 regulatory effect Effects 0.000 claims description 13
- 241000255777 Lepidoptera Species 0.000 claims description 11
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 claims description 10
- 101150052200 CS gene Proteins 0.000 claims description 10
- 102000003792 Metallothionein Human genes 0.000 claims description 10
- 108090000157 Metallothionein Proteins 0.000 claims description 10
- 101710182846 Polyhedrin Proteins 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 9
- 208000015181 infectious disease Diseases 0.000 claims description 8
- 238000013518 transcription Methods 0.000 claims description 8
- 230000035897 transcription Effects 0.000 claims description 8
- 102000007469 Actins Human genes 0.000 claims description 6
- 108010085238 Actins Proteins 0.000 claims description 6
- 241000256251 Spodoptera frugiperda Species 0.000 claims description 6
- 230000002480 immunoprotective effect Effects 0.000 claims description 6
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 claims description 5
- 230000004224 protection Effects 0.000 claims description 5
- 101001091269 Escherichia coli Hygromycin-B 4-O-kinase Proteins 0.000 claims description 4
- 101001091268 Streptomyces hygroscopicus Hygromycin-B 7''-O-kinase Proteins 0.000 claims description 4
- 230000004936 stimulating effect Effects 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 4
- 231100000252 nontoxic Toxicity 0.000 claims description 3
- 230000003000 nontoxic effect Effects 0.000 claims description 3
- 201000010099 disease Diseases 0.000 claims description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 2
- 238000012258 culturing Methods 0.000 claims 1
- 208000024891 symptom Diseases 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 111
- 239000012634 fragment Substances 0.000 description 29
- 150000001413 amino acids Chemical class 0.000 description 28
- 108090000765 processed proteins & peptides Proteins 0.000 description 17
- 102000004196 processed proteins & peptides Human genes 0.000 description 17
- 229920001184 polypeptide Polymers 0.000 description 12
- 210000003046 sporozoite Anatomy 0.000 description 11
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Hygromycin-B Natural products OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 10
- GRRNUXAQVGOGFE-NZSRVPFOSA-N hygromycin B Chemical compound O[C@@H]1[C@@H](NC)C[C@@H](N)[C@H](O)[C@H]1O[C@H]1[C@H]2O[C@@]3([C@@H]([C@@H](O)[C@@H](O)[C@@H](C(N)CO)O3)O)O[C@H]2[C@@H](O)[C@@H](CO)O1 GRRNUXAQVGOGFE-NZSRVPFOSA-N 0.000 description 10
- 229940097277 hygromycin b Drugs 0.000 description 10
- 241000588724 Escherichia coli Species 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 241000700605 Viruses Species 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 8
- 241000282414 Homo sapiens Species 0.000 description 8
- 108010022394 Threonine synthase Proteins 0.000 description 8
- 102000004419 dihydrofolate reductase Human genes 0.000 description 8
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 7
- 229960000485 methotrexate Drugs 0.000 description 7
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 6
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 6
- 230000008488 polyadenylation Effects 0.000 description 6
- 229940031626 subunit vaccine Drugs 0.000 description 6
- 229960000187 tissue plasminogen activator Drugs 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000013605 shuttle vector Substances 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 244000045947 parasite Species 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 241000701366 unidentified nuclear polyhedrosis viruses Species 0.000 description 4
- 102000004594 DNA Polymerase I Human genes 0.000 description 3
- 108010017826 DNA Polymerase I Proteins 0.000 description 3
- 241000223801 Plasmodium knowlesi Species 0.000 description 3
- 241000223810 Plasmodium vivax Species 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 201000004792 malaria Diseases 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 241000255789 Bombyx mori Species 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 241000255597 Drosophila hydei Species 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 2
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 2
- 108020005038 Terminator Codon Proteins 0.000 description 2
- 101800003344 Vaccinia growth factor Proteins 0.000 description 2
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 101150045500 galK gene Proteins 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 108700003860 Bacterial Genes Proteins 0.000 description 1
- 241000588807 Bordetella Species 0.000 description 1
- 101100507655 Canis lupus familiaris HSPA1 gene Proteins 0.000 description 1
- 108010035563 Chloramphenicol O-acetyltransferase Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000255896 Galleria mellonella Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 241000255967 Helicoverpa zea Species 0.000 description 1
- 241000256244 Heliothis virescens Species 0.000 description 1
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 241000255908 Manduca sexta Species 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100268515 Mus musculus Serpina1b gene Proteins 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 101900205473 Plasmodium falciparum Circumsporozoite protein Proteins 0.000 description 1
- 241000223821 Plasmodium malariae Species 0.000 description 1
- 206010035501 Plasmodium malariae infection Diseases 0.000 description 1
- 241001505293 Plasmodium ovale Species 0.000 description 1
- 206010035502 Plasmodium ovale infection Diseases 0.000 description 1
- 208000020584 Polyploidy Diseases 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 241001456341 Rachiplusia ou Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000256248 Spodoptera Species 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 241000255993 Trichoplusia ni Species 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229940024545 aluminum hydroxide Drugs 0.000 description 1
- 229940024546 aluminum hydroxide gel Drugs 0.000 description 1
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 238000012832 cell culture technique Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 229940009976 deoxycholate Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 238000012248 genetic selection Methods 0.000 description 1
- 210000000087 hemolymph Anatomy 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000003936 merozoite Anatomy 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 1
- FEBNTWHYQKGEIQ-BIMULSAOSA-N nardin Natural products C[C@H]1CC[C@H](C=C(/C)C(=O)O)C2=C(C)CC[C@@H]12 FEBNTWHYQKGEIQ-BIMULSAOSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000164 protein isolation Methods 0.000 description 1
- 108700042226 ras Genes Proteins 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 235000017709 saponins Nutrition 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000012868 site-directed mutagenesis technique Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229960000814 tetanus toxoid Drugs 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 101150010939 tpa gene Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/44—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from protozoa
- C07K14/445—Plasmodium
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
- C12N15/866—Baculoviral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/06—Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to expression of the Plasmodium Circumsporozoite protein in insect cells. More specifically, this invention relates to the production of such proteins in Drosophila and Lepidoptera
- -> Human malaria is caused by a parasite of the genus Plasmodium.
- Plasmodium There are four species of Plasmodium known to infect man: P. falciparum, P. vivax, P. malariae, and P. ovale. The most severe forms of human malaria are caused by P. falciparum and P. vivax; P.
- the malarial parasite is transmitted by mosquitoes to man in the form of a sporozoite, which migrates to the liver, multiplies within hepatocytes and emerges to initiate a cyclical growth in erythrocytes.
- the merozoite-stage parasite which is released at the en of each cycle, rapidly reinvades red blood cells.
- the merozoite and sporozoite stages are antigenically distinct, and generally, antibodies against one stage do not cross react with another.
- Subunit vaccines against the P. falciparum sporozoite have been directed towards the repeat region of the CS protein. Young et al. (Science, 228:958-62 (1985)) teach cloning and expression of tandem CS repeat units in E. coli. When introduced into mice, these molecules were highly immunogenic. Antibodies raised to the repeat units in mice recognized the CS protein on live sporozoites and blocked sporozoite invasion of human hepatoma cells in vitro.
- subunit vaccines corresponding to synthetic or recombinant polypeptides of the. repeat region
- vaccines thus far tested in humans have been insufficiently immunoprotective for widespread use (Ballou et al. , Lancet, 1:1277-81 (1987)).
- Eqan et al. (Science, 236:453 (1987)) report that in the murine malarial model (P. berqhei) , protective immunity elicited by subunit vaccines and by sporozoites appear to be fundamentally different.
- Subunit vaccines elicited a predominantly antibody mediated protection whereas irradiated sporozoites induced a prolonged, cell-mediated immunity.
- Sadoff et al. teach expression of a protein comprising a full length P. berqhei CS protein in an avirulent strain of Salmonella typhimurium. This CS protein is expressed on the cell surface of S. typhimurium and induced an antigen-specific cell-mediated immunity. Sadoff et al. suggest that the CS protein contains a T cell epitope(s), which is capable of inducing protective cell-mediated immunity.
- T cell domains for the P. falciparum CS protein were identified by synthesizing overlapping synthetic peptides spanning the entire CS protein. In all, three sites were located; all 3' to the CS repeat region.
- Valenzuela et al. (US Patent 4,722,840)- and Rutgers et al. (Bio/Technology, 6_:1065-70 (1988)) teach various length P. falciparum CS repeats fused to the hepatitis B surface antigen. The fusions are expressed as viral particles in Saccharomyces cerevisiae.
- baculovirus expression system a strong, temporally-regulated promoter can be used to express very high levels of heterologous genes.
- Smith et al. US Patent 4,745,051
- Matsuura et al. J Gen Virol, 68: 1233-50 (1987) disclose baculovirus vectors containing the polyhedrin gene promoter to express prokaryotic and eukaryotic genes.
- Miller et al. (PCT/WO88/02030) teach a method for producing heterologous genes by employing a mixture of at least two genetically distinct baculoviruses.
- Cochran et al. (EP-A-228,036) disclose expression of vaccinia growth factor (VGF) in a recombinant baculovirus.
- VVF vaccinia growth factor
- Cochran et al. present a hypothetical list of proteins which may be expressed in a recombinant baculovirus, including the hepatitis B surface antigen and Plasmodium polypeptides.
- the present invention is a
- Plasmodium circumsporozoite gene expression unit which includes a DNA coding sequence for the desired protein and regulatory sequences necessary for transcription of the protein coding sequence and subsequent translation within an insect cell.
- this invention is a DNA vector or a recombinant baculovirus which comprises the gene expression unit of the present invention.
- this invention is an insect cell transfected with the DNA vector or recombinant baculovirus of this invention.
- this invention is a Plasmodium circumsporozoite protein, or a derivative thereof produced by the transfected insect cells of this invention.
- the derivative encompasses any Plasmodium circumsporozoite protein such as deletions, additions, substitutions or rearrangement of amino acids or chemical modifications thereof which retain the ability to be recognized by antibodies raised to the wild-type Plasmodium circumsporozoite protein.
- this invention is a vaccine for stimulating protection against malarial infection, which comprises an immunoprotective and non-toxic quantity * of the Plasmodium circumsporozoite protein produced by this invention.
- This invention further relates to a method for preparing the protein of the invention.
- This method comprises growing a host cell transfected with the gene expression unit of this invention in a suitable culture medium.
- the present invention relates to expression of
- Plasmodium proteins, and derivatives thereof, in insect cell cultures are transfected by using standard techniques to introduce foreign DNA into an insect host cell without adversely affecting the host cell.
- the recombinant host cells so constructed produce Plasmodium proteins which are completely free of 1 contaminating materials. They may be expressed intracellularly, or membrane-bound, or secreted into the cell culture medium. Upon secretion, the protein is available by purification using conventional techniques.
- Intracellularly expressed protein may be extracted from the host cells using conventional techniques as well.
- the DNA coding sequence for the Plasmodium falciparum circumsporozoite protein is disclosed by Dame et al ⁇ , Science, 225:593-9 (1984) as follows: 10 l 5' ATG ATGAGAAAAT TAGCTATTTT
- AAAACATAAA AAATTAAAGC AACCAGGGGA TGGTAATCCT GATCCAAATG 25
- the first ATG codes for a N-terminal methionine and the last codon, TAG, is a translation termination (i.e., stop) signal.
- DNA molecules comprising the coding sequence of this invention can be derived from P. falciparum mRNA using known techniques, e.g. , making complementary or cDNAs from mRNA template or via the polymerase chain reaction (see, Mullis et al. , U.S. Patent 4,800,159). Alternatively, such coding sequence may be synthesized by standard DNA synthesis techniques. In addition, there are numerous recombinant host cells containing the P_ ; _ falciparum circumsporozoite DNA molecule, which are widely available.
- the invention is not limited to the specifically disclosed sequence, but includes all CS protein DNA coding sequences, as described below.
- CS protein includes both the full length circumsporozoite protein of P. falciparum, substantially as illustrated above, and all derivatives thereof.
- derivative encompasses any CS DNA coding sequence such as a truncated CS coding sequence or other derivatives which encode a protein that retains the ability to induce an immune response to the wild-type CS protein following internal administration to man.
- Such other derivatives can be prepared by the addition, deletion, substitution, or rearrangement of amino acids or by chemical modifications thereof.
- the CS DNA coding sequence of the invention comprises the full length CS protein, or a CS protein derivative which retains substantially the entire conserved region * I (bases 319-363) and conserved region II (bases 1030-1068) and at least one Asn-Ala-Asn-Pro tetrapeptide unit, as discussed more fully below.
- the CS DNA coding sequence used in the instant invention is substantially the same (i.e., differs in no more than about 10 amino acids) as the DNA coding sequence encoded by the above illustrated sequence, or which is lacking all or part of the carboxy terminal anchor region (approximately amino acids 392-412), or lacking the signal peptide (approximately amino acids 1-18), or lacking both a signal peptide and an anchor region.
- Examples of preferred embodiments are,,given in Example 1.
- the derivative of the invention can be a hybrid, that is, a fusion polypeptide containing additional DNA coding sequences which can carry one or more epitopes for other sporozoite immunogens, other Plasmodium immunogens, or other non-Plasmodium immunogens.
- the derivative of the invention can be fused to a carrier polypeptide which has immunostimulating properties, as in the case of an adjuvant, or which otherwise enhances the immune response to the CS polypeptide, or which is useful in expressing, purifying or formulating the CS polypeptide.
- a desirable DNA coding sequence for the CS protein of this invention may be constructed by fusing the mature CS protein DNA coding sequence to a heterologous signal sequence, e.g., the sequence of tissue plasminogen activator (tPA) .
- a heterologous signal sequence e.g., the sequence of tissue plasminogen activator (tPA) .
- tPA tissue plasminogen activator
- Such signal sequence functions to direct secretion of the protein from the host cell.
- the signal sequence may also be derived from other available signal sequences, e.g., those derived from
- Herpes Simplex virus gene HSV-I gD (Lasky et al. , Science, supra.).
- the CS * DNA coding sequence may also be followed by a polyadenylation (poly A) region, such as an SV40 early poly A region.
- poly A region which functions in the polyadenylation of RNA transcripts, appears to play a role in stabilizing transcription.
- a similar poly A region can be derived from a variety of genes in which it is naturally present. This region can also be modified to alter its sequence provided that polyadenylation and transcript stabilization functions are not adversely affected.
- the recombinant DNA coding sequence of this invention may also carry a genetic selection marker.
- the selection marker can be any gene or genes which cause a readily detectable phenotypic change in a transfected host cell.
- phenotypic change can be, for example, drug resistance, such as the gene for hygromycin B resistance.
- DHFR can be used with Drosophila cells.
- the endogenous eukaryotic DHFR of the cells is inhibited by methotrexate. Therefore by transfecting cells with a plasmid containing the prokaryotic DHFR, which is insensitive to methotrexate, and then selecting with methotrexate, only cells transfected with and expressing the prokaryotic DHFR will survive.
- methotrexate can be used in the Drosophila system to initially obtain high-copy number transfectants. Only the cells which have incorporated the protective prokaryotic DHFR gene will survive. Concomitantly, these cells have the gene expression unit of interest.
- the regulatory region typically contains a promoter region which functions in the binding of RNA polymerase and in the initiation of.ENA transcription.
- the promoter region is typically found upstream from the CS protein coding sequence.
- Drosophila promoters include mammalian cell promoters as well as Drosophila promoters, the latter being preferred.
- useful Drosophila promoters include the Drosophila metallothionein promoter. (Lastowski-Perry et al. , J. Biol. Chem. , 260: 1527 (1985)). This inducible promoter directs high-level transcription of the gene in the presence of metals, e.g., CuSO..
- Use of the Drosophila metallothionein promoter results in the expression system of the invention retaining full regulation even at very high copy number.
- the Drosophila actin 5C gene promoter (B.J. Bond et al ⁇ , Mol. Cell. Biol., 6_: 2080 (1986)) is also a desirable promoter sequence.
- the actin 5C promoter is a constitutive promoter and does not require addition of metal. Therefore, it is better-suited for use in a large scale production system, like a perfusion system, than is the Drosophila metallothionein promoter.
- An additional advantage is that the absence of a high concentration of copper in the media maintains the cells in a healthier state for longer periods of time.
- Drosophila promoters examples include, e.g., the inducible heatshock (Hsp70) and COPIA LTR promoters.
- Hsp70 inducible heatshock
- COPIA LTR promoters COPIA LTR promoters.
- the SV40 early promoter gives lower levels of expression than the Drosophila metallothionein • promoter.
- Promoters which are commonly employed in the cell expression vectors including, e.g., avian Rous sarcoma virus LTR and simian virus (SV40 early promoter) demonstrate poor function and expression in the Drosophila system.
- Promoters for use in Lepidoptera cells include promoters from a baculovirus genome.
- the promoter for the polyhedrin gene is preferred because the polyhedrin protein is naturally over expressed relative to other baculovirus proteins.
- the preferred polyhedrin gene promoter is from the AcMNPV baculovirus. See, Summers et al. , U.S. Patent 4,745,051; Smith et al. , Proc Natl Acad Sci USA, 82:8404 (1985); and Cochran, EP-A-228,036.
- Insect cells which can be used in the invention include Drosophila SI, S2, S3, KC-0 and D. hydei cells. See, for example, Schneider et al. , J Embryo1 Exp Morph, 27:353 (1972); Schultz et al. , Proc Natl Acad Sci USA, 183:9428 (1986); Sinclair et al. , Mol Cell Biol, 5_:3208 (1985) .
- a preferred Drosophila cell line for use in the practice of the invention is the S 2 line.
- S 2 cells (Schneider, J. Embryol. Exp. Morph. 27: 353 (1972)) are stable cell cultures of polyploid embryonic Drosophila cells.
- S 2 Drosophila cell has many ' advantages, including, but not limited to, its ability to grow to a high density at room temperature. Stable integration of the selection system has produced up to 1000 copies of the transfected gene expression unit into the cell chromosomes.
- Drosophila cell culture systems may also be useful in the present invention.
- Some possibly useful cells are, for example, the KC-0 Drosophila Melanoqaster cell line which is a serum-free cell line (Schulz et al ⁇ , Proc. Nat'l Acad. Sci. USA, 83 . : 9428 (1986)). Preliminary studies using the KC-0 line have suggested that transfection is more difficult than with S 2 cells.
- Another cell line which may be useful is a cell line from Drosophila hydei. Protein expression can be obtained using the hydei cell line; however, transfection into this cell line can result in the transfected DNA being expressed with very low efficiency (Sinclair et al. , Mol. Cell. Biol., 5 ⁇ : 3208 (1985)].
- Other available Drosophila cell lines which may be used in this invention include s and S 3 -
- the Drosophila cells selected for use in the present invention can be cultured in a variety of suitable nutrient media, including, e.g., M 3 medium.
- M 3 medium consists of a formulation of balanced salts and essential amino acids at a pH of 6.6. Preparation of the media is substantial, as described by Lindquist, PIS (Drosophila Information- Services) , 58 ⁇ 163 (1982). Other conventional media for growth of Drosophila cells may also be used.
- Useful Lepidoptera cells include cells from
- baculoviruses include nuclear polyhedrosis viruses (NPV) , single nucleocapsid viruses 5 (SNPV) and multiple nucleocapsid viruses (MNPV) .
- NPV nuclear polyhedrosis viruses
- SNPV single nucleocapsid viruses 5
- MNPV multiple nucleocapsid viruses
- the preferred baculoviruses are NPV or MNPV baculoviruses because these contain the polyhedrin gene promoter which is highly expressed in infected cells.
- MNPV virus from 10 Autoqraphica California (AcMNPV).
- AcMNPV Autoqraphica California
- other MNPV and NPV viruses can also be employed such as the silkworm virus, Bombyx mori.
- Lepidoptera cells are transfected with the recombinant baculovirus of the invention, according to standard transfection techniques. These 15 include but are not limited to, calcium phosphate precipitation, electroporation, and liposome-mediated transfer.
- Cells are cultured in ' accordance with standard cell culture techniques in a variety of nutrient media, including, for example, TCI00 (Gibco Europe; Gardiner et 20 al.
- a CS protein is expressed in Lepidoptera cells to produce
- immunogenic polypeptides For expression of the CS protein in Lepidoptera cells, use of a baculovirus expression system is preferred.
- an expression cassette comprising the CS protein DNA coding sequence, operat-ively linked to a baculovirus promoter, 5 typically is placed into a shuttle vector.
- Such vector contains a sufficient amount of bacterial DNA to propagate the shuttle vector in E. coli or some other suitable prokaryotic host.
- Such shuttle vector also contains a sufficient amount of baculovirus DNA flanking the CS protein coding sequence so as to permit recombination between a wild-type baculovirus and the heterologous gene.
- The- recombinant vector is then cotransfected into Lepidoptera cells with DNA from a wild-type baculovirus.
- the recombinant baculoviruses arising from homologous recombination are then selected and plaque purified by standard techniques. See Summers et al. , TAES Bull (Texas Agricultural Experimental Station Bulletin) NR 1555, May, 1987.
- CS protein can be produced in Heliothis virescens caterpillars by feeding the recombinant baculovirus of the invention along with traces of wild-type baculovirus and then extracting the CS protein from, the hemolymph after about two days. See, for example. Miller et al. , PCT/WO88/02030.
- a CS protein is expressed in Drosophila host cells.
- Drosophila host cells use of a two-vector system is preferred.
- a CS protein gene expression unit is typically found on an expression vector.
- This expression vector comprises a regulatory region which functions in Drosophila, e.g., metallothionein or actin SC ' promoter, a gene expression unit and a polyadenylation region, e.g., SV40 poly A site.
- the second vector of the two-vector system comprises a selection marker gene expression unit, e.g., hygromycin B or DHFR.
- the vector, pCOHYGRO encodes the hygromycin B phosphotransferase gene, which when expressed confers hygromycin B resistance to the transfected host cells which are expressing said selectable marker gene.
- Another example is the dihydrofolate reductase (DHFR) gene, which, when expressed, is useful as a selectable marker in the presence of methotrexate.
- DHFR dihydrofolate reductase
- Drosophila S 2 cells are especially suited to high-yield production of protein in the method of the present invention.
- the cells can be maintained in suspension cultures at room temperature (24+l°C) .
- Culture medium is M 3 supplemented with between 5 and 10% (v/v) heat-inactivated fetal bovine serum (FBS) .
- FBS heat-inactivated fetal bovine serum
- the culture medium contains 5% FBS.
- the cells are cultured in serum-free media.
- the media is also supplemented with 300 ⁇ g/ml hygromycin B.
- the S 2 cells can be grown in suspension cultures, for example, in 250 ml to 2000 ml spinner flasks, with stirring at 50-60 rpm. Cell densities are typically maintained between 10 6 and 107 cells per ml. In one embodiment of this invention, the cells are grown prior to induction in 1500 ml spinner flasks in media containing 5% serum. Transcription and expression of the CS protein coding sequence in the above-described systems can be monitored. For example, Southern blot analysis can be used to determine copy number of the CS gene. Northern blot analysis provides information regarding the size of the transcribed gene sequence (see, e.g., Maniatis et al. , Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982)). The level of transcription can also be quantitated. Expression of the selected CS protein in the recombinant cells can be further verified through Western blot analysis.
- the purification of the CS polypeptide from eel 1 culture is carried out by conventional protein isolation techniques, e.g., selective precipitation, absorption chromatography and affinity chromatography, including a monoclonal antibody affinity column, as described in Example 3.
- the proteins produced by Drosophila cells are completely free of mammalian, bacterial and protozoal contaminating materials and, more importantly, from other Plasmodium materials.
- the vaccine of the invention comprises an immunoprotective amount of P. falciparum CS protein, prepared by the method of this invention.
- the term "immunoprotective" refers to the amount necessary to elicit an immune response against a subsequent challenge such that disease is averted or mitigated.
- the vaccine of the invention comprises an aqueous solution of the insect derived CS protein which can ' be used directly.
- the CS protein with or without prior lyophilization, can be mixed or absorbed with any of the various known adjuvants.
- Such adjuvants include, but are not limited to, aluminum hydroxide, muramyl dipeptide and saponins such as Quil A.
- the CS protein can be encapsulated within microparticles such as liposomes.
- the CS protein can be conjugated to an immunostimulating macromolecule, such as killed Bordetella or a tetanus toxoid.
- Vaccine preparation is generally described in New Trends and Developments in Vaccines, Voller et al.
- Plasmid WR201 is obtained from the Walter Reed Army Institute of Research. It contains a 2.3 kilobase, EcoRI fragment from phage ⁇ mPfl, which encodes the complete P. falciparum circumsporozoite protein of 412 amino acids, signal sequence inclusive. See Dame et al. , Science, 22j5:593-9 (1984). From WR201, a Stul - AsuII fragment is isolated which codes for amino acids 18 - 412 of the CS protein plus 3' untranslated DNA.
- a HindiII - Stul synthetic oligomer 5' 3 AGCTTACCATGATGAGAAAATTAGCTATTTTATCTGTTTCTTCCTTTTTATTTGTTGAG ATGGTACTACTCTTTTAATCGATAAAATAGACAAAGAAGGAAAAATAAACAACTC 3' 5 to recreate amino acids 1 - 17, but lacking the 5' untranslated DNA region.
- the new fragment i.e. HindiII-Stul-AsuII
- E. coli DNA polymerase I, Large Fragment i.e. Klenow Fragment
- Klenow Fragment Large Fragment
- Plasmid TigND is a derivative of plasmid TND
- Plasmid TigND differs from plasmid TND in that the Rous LTR is replaced by the mouse gamma 2B heavy chain immunoglobin enhancer sequence.
- the HindiII-Stul-AsuII CS gene fragment can be inserted into the HindiII - AceI sites of pUC19 or pBR322 or other standard cloning vectors.
- Plasmid pAcYMl is a baculovirus shuttle vector containing sequences from the AcMNPV genome which includes the polyhedrin gene promoter, but not the polyhedrin gene, and sequences from a high copy number bacterial plasmid, pUC8. See Matsuura et al. , J Gen Virol, 68: 1233-50 (1987). From pNIV2103, a 1261 base pair HindiII - Ddel fragment, coding for the full length CS protein, including 3' untranslated P. falciparum DNA from WR201, is treated with E. coli DNA polymerase I and isolated. The blunt-ended fragment is then ligated into a blunt-ended BamHl site of plasmid pAcYMl, to create a plasmid herein referred to as pNIV2H2.
- Example (i) is first cloned into the HindiII - Accl sites of M13mpl8, a standard vector used in subcloning, sequencing, and m ⁇ tagenesis. Then, using standard techniques of site-directed mutagenesis, the CS gene was mutagenized with the primer:
- plasmid pNIV2105 From pNIV2104, a 1180 base pair HindiII - Bell blunt-ended fragment, coding for amino acids 1 - 391, is then ligated into a blunt-ended BamHl site of pAcYMl to create plasmid pNIV2105.
- This plasmid is essentially the same as pNIV2112 except that it codes for a CS protein lacking the carboxy terminus.
- pNIV2111 which is missing the first 17 codons (i.e. signal sequence) in addition to the last 21 codons of the CS protein gene.
- This vector is constructed by (1) deleting the Xhol - Stul fragment from pNIV2105, comprising the polyhedrin gene promoter through the CS signal sequence (amino acids 1 - 17), and (2) replacing this fragment with a synthetic linker:
- pNIV2111 encodes a CS protein from amino acids 18 to 391, which is lacking a signal and an anchor sequence.
- the tPA expression vector pMTtPA (also called pDMtPA) was used.
- This vector is a derivative of vector pMLl, a small pBR322 vector containing the beta-lactamase gene which has deleted the poison sequences [Mellon et e . , Cell, 27: 297 (1982)]. These sequences are inhibitory to amplification of the vector.
- This vector was digested with Sail and Aat2 which removes a small piece of pBR322, and the digested ends were filled in.
- the missing piece of pBR322 is then replaced with a cassette containing the Drosophila metallothionein promoter on an end-filled EcoRl-Stul fragment, followed by a filled-in Hindlll-Sacl fragment from pDSPI [D.S. Reifen et al. , DNA, 4/6) : 461 (1985)] containing a tPA signal sequence, prepeptide and the entire coding region of tPA.
- the tPA gene on this fragment is followed by an SV40 early polyadenylation site.
- COPIA is a representative member of the disperse middle repetition sequences found scattered through the Drosophila genome [Rubin et al. , in Cold Spring Harbor Symp. Quant. Biol., 45: 619 (1980)].
- the vector pUCOPIA was cut at the Smal site and the E_;_ coli gene coding for hygromycin B phosphotransferase (hygromycin B cassette) was cloned into pUCOPIA using standard cloning techniques.
- the hygromycin B cassette was isolated oh a Hindlll-BamHI fragment of 1481 base " pairs from the vector DSP-hygro [Gertz et al. , Gene, 25: 179 (1983)].
- the hygromycin B cassette contains the sequence coding for the hygromycin B phosphotransferase gene and the SV40 early poly A region.
- the HindiII and BamHl sites were filled in using T. DNA polymerase, and the hygromycin B cassette was ligated into the Smal site of the vector pUCOPIA producing vector pCOHYGRO.
- a BstXl - Xbal fragment encoding for amino acids 26 - 391 was isolated from plasmid pULB122lCSPdel. This fragment and a synthetic Bglll - BstXl adapter, which codes for serine and CS amino acids 19-25:
- AAATAAGGTCCTTATGGTC 5' was ligated into the Bglll - Xbal sites of vector having the Drosophila metallothionein promoter, a tPA signal sequence, and an SV40 early polyadenylation site such as the pMTtPA derived vector pgpl60 ⁇ 32 (Johansen et al. , U.S. Patent Application Serial No. 07/278,386, filed Dec. i, 1988.).
- the resultant vector, pMTcsp39l encodes a mature CS protein missing a carboxy terminal anchor sequence (i.e., missing amino acids 392 - 412) and having an additional serine residue at the amino terminal end, vii) pMTcsp398
- Another vector containing a modified P. falciparum CS coding sequence was constructed by digesting vector pMTcsp391 with the restriction endonucleases HgiAI and Xbal and subsequently replacing the HgiAI - Xbal fragment with a synthetic oligonucleotide adaptor of the sequence:
- the adaptor encodes for CS amino acids 390 - 398 plus a termination codon.
- This resultant vector designated pMTcsp398, encodes a mature CS protein having an additional serine at the amino terminal end and which is also lacking carboxy terminal anchor codons 399-412, i.e., ser-CS 19 _ 398 .
- a 1492 bp BstXl - EcoRV fragment encoding the P ⁇ falciparum CS protein (amino acids 26 - 412) was isolated from plasmid WR201 (cited above) .
- This BstXl - EcoRV fragment and the same synthetic adaptor for vector construction (vi) was ligated into the Bglll - Sacl (blunt-ended) sites of vector pMTtPA (see construction (iv)).
- the final construct, pMTcsp412 encodes for a mature CS protein (amino acids 19 - 412) plus an additional serine at the amino terimus, i.e., ser-CS 19 _ 412 .
- Spodoptera frugiperda 9 (Sf9) cells are available from the ATCC (Rockville, MD, USA).
- the Sf9 cells were cotransfected with one of the following recombinant vectors, plasmid pNIV2112, pNIV2105 or pNIV2111 and with wild-type AcMNPV DNA, at 50 ⁇ g and 1 ⁇ g respectively; substantially as described by Summers et al. , TAES Bull, NR 1555, May 1987, cited above. Resulting virus particles were obtained by collecting the supernatants. The virus-containing media was then used to infect Sf9 cells in a plaque assay. Subsequent infection of Sf9 cells with a plaque purified recombinant baculovirus resulted in cells expressing the CS protein instead of the polyhedrin protein.
- the recombinant baculovirus infected cells derived from pNIV2112 were shown to express a CS protein intracellularly, at roughly 3 ⁇ g/ml of infected culture medium supernatant.
- Western blot analysis showed essentially one band at about 60 kilodaltons.
- the recombinant baculovirus infected cells derived from ' pNIV2105 express an "anchor-less", i.e., lacking a carboxy terminal anchor, CS protein, at a level of approximately 1 ⁇ g/ml of a 7 day culture supernatant.
- anchor-less i.e., lacking a carboxy terminal anchor, CS protein
- Western blot analysis of proteins in the supernatant and in the cell extract showed two immunoreactive doublet bands at about 50 and 60 kilodaltons.
- Cells infected with pNIV2lll express a CS protein intracellularly at a level of approximately 3 ⁇ g/ 1.5 x 10 cells, 3 days post infection.
- Western blot analysis of the proteins in the cell extract showed essentially 2 bands at approximately 50 kilodaltons.
- the MTcsp vectors of Example 1 were each contransfected with pCOHYGRO into Drosophila S 2 cells in the ratio of MTcsp vector to pCOHYGRO of 20:1. Transfection was performed by conventional techniques using CaPO. precipitation. Polyclonal cell lines were generated after selection with hygromycin B for 2 weeks. Single clonal cell lines were generated by serially diluting the polyclonal cell line and plating one cell per well in 96 well dishes. The cell lines were grown up and the expression of CS protein was monitored after 6 days of induction with CuSO. of a culture with a cell density of 5x10 cells/ml.
- the recombinant CS proteins expressed in S. frugiperda cells were purified as follows: Sf9 infected cells were lysed by 3 freeze-thawing cycles in RIPA buffer (50 mM Tris-HCl pH 7.2, 0.15M NaCl, 1% Triton X-100, 0.1% . SDS, 1% Na deoxycholate) . The crude extract was centrifuged for 30 min at 13,000 rpm . The supernatant was incubated with DNAse for 30 min at 37°C, pH 7.5. The pH was adjusted to 5.5 and RNAse and MgSO. were added.
- the cell extract was made 1M in MgCl 2 and 1M in NaCl; the pH was then adjusted to 1.6 by addition of concentrated HC1 and the sample was incubated for 1 hr at 0 C, then centrifuged 30 min at 13,000 rpm. The supernatant was dialyzed against 20 mM ammonium carbonate pH 7.5 and applied onto an affinity column made of a monoclonal antibody recognizing the repeats of the CS protein (See Nardin et al. , J Exp Med, 156:20 (1982)). Elution was performed with 100 mM Na acetate at pH 4.0 in the presence of 500 mM NaCl.
- This purification technique is also effective with recombinant CS proteins expressed in a Drosophila host.
- An illustrative vaccine of this invention is prepared as follows: The insect-derived recombinant CS protein of this invention is added with stirring to a final concentration of 10 - 2,000 ⁇ g/ml, preferably 600 - 1600 ⁇ g/ml, in a buffered saline solution (150 mM
- Each vaccine dose contains 0.5 ml to 3.0 ml of the CS vaccine formulation, prepared as described above.
- the amount of polypeptide per dose is about l to about 2,000 ⁇ g.
- each dose would contain approximately 800 ⁇ g of polypeptide/ 0.5 ml.
- the vaccine is preferably administered parenterally, e.g. , intramuscularly (im) or subcutaneously (sc), although other routes of administration may be used to elicit a protective response.
- the vaccine is administered in a one-dose or multiple-dose course, e.g. 2 to 4 supplementary doses. Preferably, a multiple-dose course is administered 1 - 6 weeks apart. Thereafter, vaccinees can be revaccinated as needed, e.g., annually.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US28793488A | 1988-12-21 | 1988-12-21 | |
US287934 | 1999-04-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0409923A1 true EP0409923A1 (fr) | 1991-01-30 |
EP0409923A4 EP0409923A4 (en) | 1993-01-20 |
Family
ID=23105005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19900900688 Withdrawn EP0409923A4 (en) | 1988-12-21 | 1989-12-13 | Expression of the i(plasmodium) circumsporozoite protein in insect cells |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0409923A4 (fr) |
JP (1) | JPH03504082A (fr) |
KR (1) | KR910700352A (fr) |
AU (1) | AU634512B2 (fr) |
CA (1) | CA2005512A1 (fr) |
DK (1) | DK187790D0 (fr) |
IL (1) | IL92782A0 (fr) |
NZ (1) | NZ231795A (fr) |
PT (1) | PT92677A (fr) |
WO (1) | WO1990007006A1 (fr) |
ZA (1) | ZA899610B (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2003794C (fr) * | 1988-12-01 | 2000-02-08 | Hanne R. Johansen | Expression de proteines de vih dans des cellules de drosophiles |
US9169304B2 (en) | 2012-05-01 | 2015-10-27 | Pfenex Inc. | Process for purifying recombinant Plasmodium falciparum circumsporozoite protein |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0166410A2 (fr) * | 1984-06-26 | 1986-01-02 | THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce | Peptides à activité immunologique induisant l'immunisation contre la malaria et leur codage génétique |
EP0278941A1 (fr) * | 1987-01-30 | 1988-08-17 | Smithkline Biologicals S.A. | Expression de la protéine de circumsporozoite du P. falciparum dans la levure |
EP0290261A1 (fr) * | 1987-05-08 | 1988-11-09 | Smithkline Beecham Corporation | Expression de gènes étrangers dans les cellules de Drosophila |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745051A (en) * | 1983-05-27 | 1988-05-17 | The Texas A&M University System | Method for producing a recombinant baculovirus expression vector |
-
1989
- 1989-12-13 KR KR1019900701860A patent/KR910700352A/ko not_active Application Discontinuation
- 1989-12-13 AU AU48037/90A patent/AU634512B2/en not_active Ceased
- 1989-12-13 EP EP19900900688 patent/EP0409923A4/en not_active Withdrawn
- 1989-12-13 WO PCT/US1989/005550 patent/WO1990007006A1/fr not_active Application Discontinuation
- 1989-12-13 JP JP2501398A patent/JPH03504082A/ja active Pending
- 1989-12-14 CA CA002005512A patent/CA2005512A1/fr not_active Abandoned
- 1989-12-15 ZA ZA899610A patent/ZA899610B/xx unknown
- 1989-12-15 NZ NZ231795A patent/NZ231795A/en unknown
- 1989-12-18 IL IL92782A patent/IL92782A0/xx unknown
- 1989-12-21 PT PT92677A patent/PT92677A/pt not_active Application Discontinuation
-
1990
- 1990-08-06 DK DK187790A patent/DK187790D0/da not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0166410A2 (fr) * | 1984-06-26 | 1986-01-02 | THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce | Peptides à activité immunologique induisant l'immunisation contre la malaria et leur codage génétique |
EP0278941A1 (fr) * | 1987-01-30 | 1988-08-17 | Smithkline Biologicals S.A. | Expression de la protéine de circumsporozoite du P. falciparum dans la levure |
EP0290261A1 (fr) * | 1987-05-08 | 1988-11-09 | Smithkline Beecham Corporation | Expression de gènes étrangers dans les cellules de Drosophila |
Non-Patent Citations (3)
Title |
---|
MOL. BIOL. MED., vol. 5, 1988, pages 185-196, Academic Press Ltd; F. DONTFRAID et al.: "Human and murine CD4 T cell epitopes map to the same region of the malaria circumsporozoite protein: limited immunogenicity of sporozoites and circumsporozoite protein" * |
MOLECULAR AND CELLULAR BIOLOGY, vol. 6, no. 6, June 1986, pages 2080-2088; American Society for Microbiology, US; B.J. BOND et al.: "The Drosophilia melanogaster Actin 5C gene uses two transcription initiation sites and three polyadenylation sites to express multiple mRNA species" * |
See also references of WO9007006A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1990007006A1 (fr) | 1990-06-28 |
EP0409923A4 (en) | 1993-01-20 |
IL92782A0 (en) | 1990-09-17 |
DK187790A (da) | 1990-08-06 |
AU634512B2 (en) | 1993-02-25 |
NZ231795A (en) | 1992-04-28 |
ZA899610B (en) | 1990-11-28 |
KR910700352A (ko) | 1991-03-14 |
AU4803790A (en) | 1990-07-10 |
JPH03504082A (ja) | 1991-09-12 |
DK187790D0 (da) | 1990-08-06 |
CA2005512A1 (fr) | 1990-06-21 |
PT92677A (pt) | 1990-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3183879B2 (ja) | ポリペプチドおよびこれをコードするdna | |
AU627465B2 (en) | Expression of retrovirus gag protein in eukaryotic cells | |
EP0340359B1 (fr) | Vecteurs de transfert de Baculovirus | |
KR0166585B1 (ko) | 앵커-결여 vzv 당단백질, 이를 제조하는 방법 및 이의 면역보호적 용도 | |
AU647190B2 (en) | Expression system | |
AU4314489A (en) | Fusion protein of paramyxovirus, method of production using recombinant baculovirus expression vector, vaccine comprising such protein and use thereof | |
HU211673A9 (en) | Coccidiosis vaccines | |
WO1992001057A1 (fr) | Vaccin a base de glycoproteine de vhe-4 (virus d'herpes equin-4) | |
EP0759995A1 (fr) | Glycoproteine hybride de hcmv et hsv | |
AU634512B2 (en) | Expression of the plasmodium circumsporozoite protein in insect cells | |
KR20000065265A (ko) | 말라리아 원충 msp-1의 c-말단 단편을 함유하는 재조합 단백질 | |
EP0432168B1 (fr) | Vaccin contre la coccidiose prepare par genie genetique | |
EP0278941A1 (fr) | Expression de la protéine de circumsporozoite du P. falciparum dans la levure | |
Matsuoka et al. | Induction of anti-malarial transmission blocking immunity with a recombinant ookinete surface antigen of Plasmodium berghei produced in silkworm larvae using the baculovirus expression vector system | |
EP0695358A1 (fr) | Antigenes recombines du virus ourlien et leur utilisation dans les vaccins | |
US5733553A (en) | Recombinant birth control vaccine | |
EP0514411B1 (fr) | Polypeptiques et adn codant pour ces derniers, associes aux parasites de la malaria chez l' tre humain | |
WO1998014472A1 (fr) | Proteines de fusion pfs28 | |
US7737262B2 (en) | Plasmodium falciparum polypeptides and methods of using same | |
Jacobs et al. | Plasmodium falciparum: recombinant baculoviruses direct the expression of circumsporozoite proteins in Spodoptera frugiperda cell cultures | |
US5695957A (en) | Polypeptides and DNA encoding same, associated with human malaria parasites | |
WO1991005049A1 (fr) | Vaccin rebombinant de limitation des naissances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900810 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19921201 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19930210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19930821 |