EP0406094A1 - Procédé de conduite automatisée d'une essoreuse centrifuge à marche discontinue - Google Patents

Procédé de conduite automatisée d'une essoreuse centrifuge à marche discontinue Download PDF

Info

Publication number
EP0406094A1
EP0406094A1 EP90401814A EP90401814A EP0406094A1 EP 0406094 A1 EP0406094 A1 EP 0406094A1 EP 90401814 A EP90401814 A EP 90401814A EP 90401814 A EP90401814 A EP 90401814A EP 0406094 A1 EP0406094 A1 EP 0406094A1
Authority
EP
European Patent Office
Prior art keywords
thickness
value
basket
cycle
epd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90401814A
Other languages
German (de)
English (en)
Other versions
EP0406094B1 (fr
Inventor
Gérard Journet
Nicolas Francou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F C B
Original Assignee
F C B
Fives Cail Babcock SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F C B, Fives Cail Babcock SA filed Critical F C B
Publication of EP0406094A1 publication Critical patent/EP0406094A1/fr
Application granted granted Critical
Publication of EP0406094B1 publication Critical patent/EP0406094B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B13/00Control arrangements specially designed for centrifuges; Programme control of centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/04Periodical feeding or discharging; Control arrangements therefor
    • B04B11/043Load indication with or without control arrangements

Definitions

  • the present invention relates to centrifugal dryers with a cylindrical basket operating in repetitive cycles during which the product to be spun is loaded into the basket, the loading being controlled by a device which interrupts the feeding when the layer of product to be spun reaches a predetermined thickness. , then, after a first spin, the product is washed by a fluid sprayed by means of a ramp pierced with orifices or provided with spray nozzles and placed inside the basket and undergoes a final spin and, finally, the product washed and spun is unloaded from the basket and evacuated.
  • a wringer is used in particular in the sugar industry to wring out the sugar crystals of a cooked mass.
  • the cycle of such a wringer is defined by a certain number of parameters: acceleration, deceleration, speed step, time delay, etc.
  • acceleration, deceleration, speed step, time delay, etc. are entered, individually, in the automatic control of the wringer, either by the production manager or by the operator, and are possibly adjusted empirically as a function of the observed results of the wringing.
  • certain parameters such as the time available for the cycle and the volume of the washing fluid to be used, depend on the load of the basket. As it is difficult to measure this load, we try to keep it constant and equal to a predetermined optimal value. For this, a feeler is used placed inside the basket and which controls the closing of the product supply valve to be wrung when the thickness of the product layer in the basket reaches a predetermined set value. For various reasons, in particular because the product to be spun does not distribute itself uniformly over the entire height of the basket during loading, the thickness measured by means of the probe continues to increase for a certain time after the valve has closed. The maximum thickness reached is greater than the set value, and the difference between the two is variable depending on the characteristics of the product. For the same setpoint, we can therefore have different basket loads from one cycle to another.
  • the cycle includes an acceleration phase AB, a loading phase BC at constant speed VC, an acceleration phase CE, a final spin phase EF, at constant speed VE, a deceleration phase FG and an unloading phase GH, at constant speed VD; before the final spin, the layer of product loaded in the basket is washed, starting at D.
  • the time available for the next cycle is determined using the formula with N: number of wringers available Ch: imposed basket load (in m3) Q: flow rate of the product to be wrung (in m3 / h) TIC: safety margin, from 2 to 30 seconds, which is taken care of between the end of a cycle and the start of the next cycle.
  • Q can, for example, come from the production management system upstream of spinning or from a level measurement in a tank or a mixer feeding the extractors.
  • a duration TE tF - tE longer or shorter, respectively, of such so that the total cycle time is equal to TCD.
  • a new value for the volume of washing liquid to be used during the next cycle is fixed.
  • the supply rate of the washing ramps 22 (FIG. 2) being constant, a new value for the duration of washing TL will be set.
  • a layer sensor 12 is used placed inside the basket.
  • the probe is applied to the product layer 14 to measure its thickness continuously. This increases rapidly until it reaches a set point EPD - trigger thickness.
  • an automaton 24 closes the valve 16 placed on the feed chute 18 of the wringer. After closing the valve, the thickness of layer 14 continues to increase, in particular due to the rise of the product from the bottom of the basket in the case of a vertical basket wringer such as that shown in FIG. 2 .
  • the maximum thickness of the EPM layer is therefore greater than EPD, and the difference between the two is variable depending on the characteristics of the product to be wrung, essentially its viscosity.
  • a new EPD value is determined at the end of each cycle by comparing the maximum value of the layer measured by means of the probe 12 with the theoretical value EPC corresponding to the load on the imposed basket Ch.
  • E EPC - EPM
  • An improvement consists in taking into account the evolution of the slope of the curve giving the variations in the thickness of the layer of the product in the basket.
  • This curve which is shown in dashed lines in FIG. 1, is drawn from information from the probe 12 or from a gammadensimeter 20 whose radiation passes through the layer of products 14.
  • This slope VE is calculated at the start of loading and compared with the slope of the curve of the previous cycle. This calculation can be done, for example, from a measurement of the DTE time it takes to go from a thickness E1 to a thickness E2 during loading.
  • a computer 26 which receives the necessary information from the operator and from appropriate sensors, in particular from the probe 12 or from the gammadensimeter 20.
  • the calculated setpoint values are applied to the inputs of the controller 24 which controls the different parts of the wringer: basket drive motor, feed valve, feeler, etc.
  • the EPC setpoint corresponding to the imposed basket load Ch, is introduced into the computer 26 by the operator.
  • EPD setpoint EPD (n + 1) EPD (n) + K1 [EPC - EPM (n)] + K2 [VE (n) - VE (n + 1)]
  • K1 and K2 are coefficients introduced by the operator in the memory of the computer.
  • K1 could, for example, be chosen in a range from 0 to 2 and K2 in a range from 0 to 3.
  • EPD (n) is the set value used in cycle n and EPD (n + 1) is the calculated value for cycle n + 1 (next cycle).
  • EPD (n + 1) EPD (n) + K3 [EPC - EPM (n)] and to take into account the evolution of the slope of the thickness curve as follows:
  • EPD is calculated by the above formula.

Landscapes

  • Centrifugal Separators (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Sewing Machines And Sewing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Procédé de conduite automatisée d'une essoreuse centrifuge à panier cyclindrique et à fonctionnement cyclique suivant lequel on commande, à chaque cycle, la fermeture de la vanne d'alimentation lorsque l'épaisseur de la couche de produit dans le panier atteint une valeur prédéterminée.
Pour maintenir constante la charge du panier en dépit des variations, des caractéristiques du produit, on commande la fermeture de la vanne d'alimentation lorsque l'épaisseur de la couche du produit chargé dans le panier atteint la valeur d'une première consigne (EPD) inférieure à l'épaisseur correspondant à une valeur imposée (Ch) de la charge du panier, puis on mesure l'épaisseur maximale de la couche (EPM) et, à chaque cycle, on compare cette épaisseur maximale mesurée à la valeur d'une seconde consigne (EPC) correspondant à ladite valeur imposée de la charge du panier, et on détermine une nouvelle valeur pour la première consigne (EPD) on fonction de l'écart entre l'épaisseur maximale mesurée (EPM) et la valeur de la seconde consigne (EPC).

Description

  • La présente invention concerne les essoreuses centrifuges à panier cylindrique fonctionnant par cycles répétitifs au cours desquels le produit à essorer est chargé dans le panier, le chargement étant contrôlé par un dispositif qui interrompt l'alimentation lorsque la couche du produit à essorer atteint une épaisseur prédéterminée, puis, après un premier essorage, le produit est lavé par un fluide projeté au moyen d'une rampe percée d'orifices ou munie de buses de pulvérisation et disposée à l'intérieur du panier et subit un essorage final et, enfin, le produit lavé et essoré est déchargé du panier et évacué. Une telle essoreuse est notamment utilisée dans l'industrie sucrière pour essorer les cristaux de sucre d'une masse cuite.
  • Le cycle d'une telle essoreuse est défini par un certain nombre de paramètres: accélération, décélération, palier de vitesse, temporisation, etc. Actuellement, ces paramètres sont entrés, individuellement, dans l'automate de conduite de l'essoreuse, soit par le responsable de fabrication, soit par l'opérateur, et sont éventuellement ajustés empiriquement en fonction des résultats constatés de l'essorage.
  • Dans les installations actuelles, certains paramètres, tels que le temps disponible pour le cycle et le volume du fluide de lavage à utiliser, sont fonction de la charge du panier. Comme il est difficile de mesurer cette charge, on cherche à la maintenir constante et égale à une valeur optimale prédéterminée. Pour cela, on utilise un palpeur placé à l'intérieur du panier et qui commande la fermeture de la vanne d'alimentation en produit à essorer lorsque l'épaisseur de la couche du produit dans le panier atteint une valeur de consigne prédéterminée. Pour différentes raisons, notamment parce que le produit à essorer ne se répartit pas uniformément sur toute la hauteur du panier pendant le chargement, l'épaisseur mesurée au moyen du palpeur continue d'augmenter pendant un certain temps après la fermeture de la vanne. L 'épaisseur maximale atteinte est supérieure à la valeur de consigne, et l'écart entre les deux est variable suivant les caractéristiques du produit. Pour une même valeur de consigne, on pourra donc avoir des charges de panier différentes d'un cycle à l'autre.
  • Pour remédier à cet inconvénient, il est proposé conformément à l'invention, de déterminer, à la fin de chaque cycle, une nouvelle valeur de consigne d'épaisseur de couche pour la fermeture de la vanne d'alimentation en fonction de l'écart entre la valeur mesurée et une valeur prédéterminée de l'épaisseur de couche maximale atteinte au cours de cycle qui vient de s'achever. On pourra, par exemple, ajouter à l'ancienne valeur de consigne la différence algébrique entre les valeurs mesurée et prédéterminée de l'épaisseur maximale.
  • Pour déterminer la nouvelle valeur de consigne de l'épaisseur de couche, on pourra aussi tenir compte de l'évolution, par rapport au cycle précédent, de la pente d'une courbe représentative des variations de l'épaisseur de la couche de produit dans le panier en fonction du temps.
  • La description qui suit se réfère aux dessins qui accompagnent et sur lesquels :
    • - La figure 1 est le diagramme du cycle d'une essoreuse du type concerné par l'invention. Sur cette figure, on a également représenté la courbe des variations de l'épaisseur de la couche de produit dans le panier de l'essoreuse pendant le cycle, et
    • - La figure 2 est une représentation schématique, en coupe verticale, d'une essoreuse du type concerné.
  • Sur le diagramme de la figure 1 on a porté en abscisses le temps en secondes et en ordonnées la vitesse en tours par minute.
  • Le cycle comporte une phase d'accélération AB, une phase de chargement BC à vitesse constante VC, une phase d'accélération CE, une phase d'essorage final EF, à vitesse constante VE, une phase de décélération FG et une phase de déchargement GH, à vitesse constante VD; avant l'essorage final, on effectue un lavage de la couche du produit chargé dans le panier qui débute en D.
  • A la fin de chaque cycle, on détermine le temps disponible pour le cycle suivant au moyen de la formule
    Figure imgb0001
    avec N : nombre d'essoreuses disponibles
    Ch : charge du panier imposée (en m3)
    Q : débit du produit à essorer (en m3/h)
    TIC : marge de sécurité, de 2 à 30 secondes, que l'on ménage entre la fin d'un cycle et le début du cycle suivant.
  • Q peut, par exemple, provenir du système de gestion de la production en amont de l'essorage ou d'une mesure de niveau dans un réservoir ou un malaxeur alimentant les essoreuses.
  • Si la valeur TCD calculée diffère en plus ou en moins, de la durée tH - tA du cycle précédent, on fixe pour le palier d'essorage EF du cycle suivant une durée TE = tF - tE plus ou moins longue, respectivement, de telle sorte que la durée totale du cycle soit égale à TCD.
  • Corrélativement, on fixe une nouvelle valeur de volume de liquide de lavage à utiliser pendant le cycle suivant. En pratique, le débit d'alimentation des rampes de lavage 22 (figure 2) étant constant, on fixera une nouvelle valeur de la durée du lavage TL.
  • Pour maintenir la charge du panier 10 à la valeur imposée Ch, on utilise un palpeur de couche 12 placé à l'intérieur du panier.
  • Dès que le chargement du panier a commencé, le palpeur est appliqué sur la couche de produit 14 pour mesurer son épaisseur en continu. Celle-ci augmente rapidement jusqu'à atteindre une valeur de consigne EPD - épaisseur de déclenchement. A cet instant là, un automate 24 déclenche la fermeture de la vanne 16 placée sur la goulotte d'alimentation 18 de l'essoreuse. Après la fermeture de la vanne, l'épaisseur de la couche 14 continue d'augmenter, notamment du fait de la montée du produit depuis le fond du panier dans le cas d'une essoreuse à panier vertical telle que celle représentée sur la figure 2.
  • L'épaisseur maximale de la couche EPM est donc supérieure à EPD, et l'écart entre les deux est variable en fonction des caractéristiques du produit à essorer, essentiellement de sa viscosité.
  • Conformément à l'invention, on détermine à la fin de chaque cycle, une nouvelle valeur de EPD en comparant la valeur maximale de la couche mesurée au moyen du palpeur 12 à la valeur théorique EPC correspondant à la charge du panier imposée Ch. On calcule l'écart E = EPC - EPM puis la nouvelle valeur de EPD.
  • Un perfectionnement consiste à tenir compte de l'évolution de la pente de la courbe donnant les variations de l'épaisseur de la couche du produit dans le panier. Cette courbe, qui est représentée en tirets sur la figure 1, est tracée à partir des informations du palpeur 12 ou d'un gammadensimètre 20 dont le rayonnement traverse la couche de produits 14. Cette pente VE est calculée au début du chargement et comparée à la pente de la courbe du cycle précédent. Ce calcul pourra être fait, par exemple, à partir d'une mesure du temps DTE qu'il faut pour passer d'une épaisseur E1 à une épaisseur E2 au cours du chargement.
  • Tous les calculs sont effectués automatiquement par un calculateur 26 qui reçoit les informations nécessaires de l'opérateur et de capteurs appropriés, notamment du palpeur 12 ou du gammadensimètre 20. Les valeurs de consigne calculées sont appliquées aux entrées de l'automate 24 qui commande les différents organes de l'essoreuse : moteur d'entrainement du panier, vanne d'alimentation, palpeur, etc
  • A la mise en marche des essoreuses, la valeur de consigne EPC, correspondant à la charge du panier imposée Ch, est introduite dans le calculateur 26 par l'opérateur. Pour le premier cycle, le calculateur détermine la valeur de consigne EPD par la formule :
    EPD(1) = K EPC
    K étant un coefficient choisi par l'opérateur à partir de résultats d'essais;
    K pourra, par exemple, être pris égal à 0,8.
  • Pour les cycles suivants, le calculateur utilise la formule ci-après pour déterminer la valeur de consigne EPD
    EPD(n+1) = EPD(n) + K1 [EPC - EPM(n)] + K2 [VE(n) - VE(n+1)]
  • Dans cette formule K1 et K2 sont des coefficients introduits par l'opérateur dans la mémoire du calculateur. K1 pourra, par exemple, être choisi dans une plage de 0 à 2 et K2 dans une plage de 0 à 3. EPD(n) est la valeur de consigne utilisée dans le cycle n et EPD (n + 1) est la valeur calculée pour le cycle n + 1 (cycle suivant).
  • Une solution simplifiée consiste à calculer EPD par la formule :
    EPD (n+1) = EPD (n) + K3 [EPC - EPM(n)]
    et à tenir compte de l'évolution de la pente de la courbe d'épaisseur de la façon suivante :
  • Si l'évolution est positive - pente plus forte - et si l'écart EPC - EPM(n) est aussi positif - chargement au cours du cycle précédent trop faible - on ne modifie pas EPD pour le cycle en cours EPD (n+1) = EPD(n). De même, si l'évolution de la pente de la courbe de charge est négative - pente plus faible - et si l'écart EPC - EPM(n) est aussi négatif - chargement trop important au cours du cycle précédent - on ne modifie pas EPD.
  • Dans les autres cas, EPD est calculé par la formule ci-­dessus.

Claims (2)

1. Procédé de conduite automatisée d'une essoreuse centrifuge à panier cyclindrique et à fonctionnement cyclique suivant lequel on commande, à chaque cycle, la fermeture de la vanne d'alimentation (16) lorsque l'épaisseur de la couche de produit dans le panier atteint une valeur prédéterminée caractérisé en ce qu'on commande la fermeture de la vanne d'alimentation (16) lorsque l'épaisseur de la couche du produit chargé dans le panier atteint la valeur d'une première consigne (EPD) inférieure à l'épaisseur correspondant à une valeur imposée (Ch) de la charge du panier, puis on mesure l'épaisseur maximale de la couche (EPM) et, à chaque cycle, on compare cette épaisseur maximale mesurée à la valeur d'une seconde consigne (EPC) correspondant à ladite valeur imposée de la charge du panier, et on détermine une nouvelle valeur pour la première consigne (EPD) en fonction de l'écart entre l'épaisseur maximale mesurée (EPM) et la valeur de la seconde consigne (EFC).
2. Procédé selon la revendication 1, caractérisé en ce que la nouvelle valeur de la première consigne (EPD) est déterminée en tenant compte de l'évolution, par rapport au cycle précédent, de la pente (VE) de la courbe donnant les variations de l'épaisseur de la couche du produit dans le panier en fonction du temps.
EP90401814A 1989-06-29 1990-06-26 Procédé de conduite automatisée d'une essoreuse centrifuge à marche discontinue Expired - Lifetime EP0406094B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8908714 1989-06-29
FR898908714A FR2649909B1 (fr) 1989-06-29 1989-06-29

Publications (2)

Publication Number Publication Date
EP0406094A1 true EP0406094A1 (fr) 1991-01-02
EP0406094B1 EP0406094B1 (fr) 1993-04-21

Family

ID=9383276

Family Applications (2)

Application Number Title Priority Date Filing Date
EP90401814A Expired - Lifetime EP0406094B1 (fr) 1989-06-29 1990-06-26 Procédé de conduite automatisée d'une essoreuse centrifuge à marche discontinue
EP90401815A Expired - Lifetime EP0406095B1 (fr) 1989-06-29 1990-06-26 Procédé de conduite automatisée d'une essoreuse centrifuge à marche discontinue

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP90401815A Expired - Lifetime EP0406095B1 (fr) 1989-06-29 1990-06-26 Procédé de conduite automatisée d'une essoreuse centrifuge à marche discontinue

Country Status (5)

Country Link
US (2) US5115575A (fr)
EP (2) EP0406094B1 (fr)
DE (2) DE69005044T2 (fr)
ES (2) ES2047285T3 (fr)
FR (1) FR2649909B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679722A2 (fr) * 1994-04-27 1995-11-02 PFEIFER & LANGEN Procédé de contrôle de l'efficacité d'une centrifugeuse travaillant en discontinu, en particulier une centrifugeuse pour sucre

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1254625B (it) * 1991-11-19 1995-09-28 Dispositivo e procedimento per il trattamento di acque fangose e di scarico.
US5485066A (en) * 1994-04-15 1996-01-16 Savannah Foods And Industries Variable speed centrifugal drive control for sugar refining machines and the like
US6296774B1 (en) * 1999-01-29 2001-10-02 The Western States Machine Company Centrifuge load control for automatic infeed gate adjustment
US7958650B2 (en) * 2006-01-23 2011-06-14 Turatti S.R.L. Apparatus for drying foodstuffs
ATE533561T1 (de) * 2009-07-16 2011-12-15 Bws Technologie Gmbh Diskontinuierliche zentrifuge mit einer füllgutmengensteuerung und ein verfahren zum betreiben der zentrifuge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2790553A (en) * 1955-06-20 1957-04-30 Western States Machine Co Centrifugal battery control system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1652680A (en) * 1926-06-14 1927-12-13 William F Clegg Method of and means for treating sacchariferous solutions
US2682488A (en) * 1949-07-18 1954-06-29 Ernest G Kochli Method of centrifugal purification of sugar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2790553A (en) * 1955-06-20 1957-04-30 Western States Machine Co Centrifugal battery control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679722A2 (fr) * 1994-04-27 1995-11-02 PFEIFER & LANGEN Procédé de contrôle de l'efficacité d'une centrifugeuse travaillant en discontinu, en particulier une centrifugeuse pour sucre
EP0679722A3 (fr) * 1994-04-27 1998-05-27 PFEIFER & LANGEN Procédé de contrôle de l'efficacité d'une centrifugeuse travaillant en discontinu, en particulier une centrifugeuse pour sucre

Also Published As

Publication number Publication date
FR2649909A1 (fr) 1991-01-25
EP0406095A1 (fr) 1991-01-02
US5044092A (en) 1991-09-03
DE69005044T2 (de) 1994-04-21
DE69005044D1 (de) 1994-01-20
US5115575A (en) 1992-05-26
DE69001400D1 (de) 1993-05-27
ES2041157T3 (es) 1993-11-01
DE69001400T2 (de) 1993-11-11
FR2649909B1 (fr) 1993-05-21
EP0406094B1 (fr) 1993-04-21
ES2047285T3 (es) 1994-02-16
EP0406095B1 (fr) 1993-12-08

Similar Documents

Publication Publication Date Title
EP0724528B1 (fr) Procede de remplissage d'un recipient avec un poids net de reference
US5765402A (en) Spin extractor
US6029300A (en) Spin extractor
US7340792B2 (en) Process for eliminating foam in the lye container of a drum washing machine
EP0406094B1 (fr) Procédé de conduite automatisée d'une essoreuse centrifuge à marche discontinue
KR101287534B1 (ko) 세탁기 및 그 제어방법
WO2001005698A1 (fr) Procede de remplissage d'un recipient
US9427748B2 (en) Centrifuge system and method that determines fill status through vibration sensing
JPS6221559B2 (fr)
US5647232A (en) Automatically controlled washing machine
FR2800264A1 (fr) Appareil menager aquifere et procede de commande d'une pompe de circulation de celui-ci
JP3332769B2 (ja) 遠心脱液装置
FR2650199A1 (fr) Procede de conduite automatisee d'une essoreuse centrifuge a marche discontinue
FR2572520A1 (fr) Installation de dosage en continu par pesage par perte de poids d'un produit en vrac
JPH1094508A (ja) 皿洗い機内に充填される水の量を制御するための方法
FR2516102A1 (fr) Procede et dispositif de commande de l'operation d'amorcage du filage dans un metier a filer a fibres liberees
FR2665379A1 (fr) Procede de conduite automatisee d'une essoreuse centrifuge a marche discontinue.
EP0615835B1 (fr) Procédé automatique de détermination, de commande et de contrÔle d'un égouttage forcé avant pressurage pour pressoirs discontinus
US5104453A (en) Method and apparatus for eliminating liquid components and fine-grained components from a sugar suspension
JPH06182083A (ja) 洗濯機の制御装置
FR2664830A2 (fr) Procede de conduite automatisee d'une essoreuse centrifuge a marche discontinue.
EP0711860B1 (fr) Phase d'essorage d'une machine à laver le linge
EP0219387B1 (fr) Procédé de détection du niveau d'eau dans une cuve de lave-linge, et lave-linge mettant en oeuvre ce procédé
FR2687696A3 (fr) Machine a laver commandee par programme.
EP0468862B1 (fr) Procédé de commande de la vitesse de rotation du tambour d'une machine à essorage centrifuge en fonction du balourd et machine pour la mise en oeuvre de ce procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB IT NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: F C B

17P Request for examination filed

Effective date: 19910619

17Q First examination report despatched

Effective date: 19920930

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB IT NL SE

REF Corresponds to:

Ref document number: 69001400

Country of ref document: DE

Date of ref document: 19930527

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930618

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041157

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90401814.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960509

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960515

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960610

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960617

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960630

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960830

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970627

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19970627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970630

BERE Be: lapsed

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19980101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970626

EUG Se: european patent has lapsed

Ref document number: 90401814.0

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050626