EP0401401B1 - Elastic control system for bridging joints in roadways with intermediate beams - Google Patents

Elastic control system for bridging joints in roadways with intermediate beams Download PDF

Info

Publication number
EP0401401B1
EP0401401B1 EP89110223A EP89110223A EP0401401B1 EP 0401401 B1 EP0401401 B1 EP 0401401B1 EP 89110223 A EP89110223 A EP 89110223A EP 89110223 A EP89110223 A EP 89110223A EP 0401401 B1 EP0401401 B1 EP 0401401B1
Authority
EP
European Patent Office
Prior art keywords
spring
control system
crossbar
spring elements
crossbars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89110223A
Other languages
German (de)
French (fr)
Other versions
EP0401401A1 (en
Inventor
Christian Dr. F.Maurer Söhne Gmbh & Co KG Braun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Maurer Soehne GmbH and Co KG
Original Assignee
Friedrich Maurer Soehne GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Maurer Soehne GmbH and Co KG filed Critical Friedrich Maurer Soehne GmbH and Co KG
Priority to DE89110223T priority Critical patent/DE58905557D1/en
Priority to EP89110223A priority patent/EP0401401B1/en
Priority to AT89110223T priority patent/ATE94235T1/en
Publication of EP0401401A1 publication Critical patent/EP0401401A1/en
Application granted granted Critical
Publication of EP0401401B1 publication Critical patent/EP0401401B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/06Arrangement, construction or bridging of expansion joints
    • E01D19/062Joints having intermediate beams
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2/00General structure of permanent way
    • E01B2/003Arrangement of tracks on bridges or in tunnels

Definitions

  • the invention relates to an elastic control system for lane bridging constructions in girder grate construction, wherein at least one girder is mounted on trusses, the trusses of each bearing point are connected to one another or to the joint edge by control springs, and the control springs are formed by spring elements which are parallel to the trusses extending thorns are stored and their end faces bear against stops attached to the trusses or the truss boxes.
  • expansion joints are provided to take into account temperature-related and / or load-related relative movements of two adjacent roadway parts between the roadway parts.
  • the joints are elastic and gliding in truss boxes Bridges trusses that carry beams running parallel to the edge of the road.
  • Function 2 is largely taken over by the friction that is generated between the crossbeams and the preloaded sliding springs / plain bearings as a crossbeam support. Because of the relatively large scatter of such frictional forces, which is caused, among other things, by the reduction of the spring preload over time, the effect of the frictional forces is not taken into account in the static verifications.
  • the control springs used in the elastic control system have to take up a very long working path (70 to 80 mm) for the control.
  • the control springs used so far inevitably have a very low spring constant c (kN / m). At the high braking forces of z. B.
  • a transition construction is known, as can be seen from FIG. 1.
  • the opposite truss boxes 1 and 2 are shown there.
  • the opposite end faces of boxes 1 and 2 are open.
  • two trusses 3 and 4 are slidably mounted on plain bearings, not shown.
  • On the cross members 3 and 4 a support 5 and 6 is arranged for each of a merely indicated support 7 and 8, respectively.
  • the carriers 7 and 8 are connected to one another or to the edge profiles, not shown, by means of sealing profiles.
  • stops 9 and 10 or 9 'and 10' are welded to one another on each traverse side, but offset from one another.
  • a stop 11 and 12 are screwed to each side wall of the boxes 1 and 2 on the open end face, in such a way that a stop 11 on the lower side wall of the box 1 on the left in the drawing and the other stop 12 are arranged on the upper side wall of the box 2 shown on the right in the drawing.
  • the attacks 9 ', 11; 10, 10 'and 9, 12 are each aligned holes, in each of which a mandrel 13 is slidably mounted.
  • the mandrel 13 is provided in the middle with a groove into which a protruding ring arranged in the bore of the control spring engages to fix the control spring on the mandrel.
  • a spring element 14 is arranged on the mandrels 13.
  • the spring elements are very strongly compressed.
  • the restoring force of the spring elements is therefore greatest.
  • the preloaded springs relax to the position that is determined by the joint width that is present and is dependent on the bridge temperature.
  • the spring element 14c in the right-hand crossbar box 2 is subjected to tension when the braking force is directed to the crossbar 3 from left to right.
  • the invention is therefore based on the object of designing the elastic control system of the type mentioned in such a way that, regardless of the direction and the size of the horizontal forces introduced, there is always elastic support by the control springs, so that damage to the roadway bridging construction is avoided.
  • At least two spring elements are arranged on each mandrel and the stops are assigned to the trusses or the truss boxes such that at least one spring element is always subjected to pressure.
  • two stops including the spring elements are provided on a crossmember and that two spring elements with their mutually facing end faces rest on the opposite side faces of stops attached to the respectively adjacent crossbar or the crossbar boxes.
  • the spring elements are mounted on mandrels, the ends of which are fixedly connected to a respective stop, the mandrels each penetrating an opening which is provided coaxially with the mandrel axis in the stop attached to the adjacent crossmember or the crossbar box.
  • the spring elements consist of an elastomeric, foamed material with a spring constant which is a linear function of the spring travel.
  • these relationships only arise in the control system designed according to the invention, in which all the elastomeric spring elements are only subjected to pressure.
  • the spring elements located in the area of tensile stress cooperate by applying a compressive pretension as described above, which is correspondingly reduced under tensile stress and thus has the same effect as a spring subject to tensile stress.
  • the invention achieves an improvement in the "horizontal force transmission" function of the control system.
  • Due to the parallel connection of the two springs of a control element described above when a beam is deflected from the central position, the difference between the spring forces acting on the left and right of a crossbar will be twice as high as when only one spring is arranged within one control element.
  • This differential force is calculated from the static spring constant c stat , while the dynamic spring constant c dyn is decisive for the absorption of the horizontal forces from vehicle brakes .
  • the beam is pushed back into its central position by the occurrence of this differential force, which is dependent on the respective total joint opening.
  • rigid end stops are provided between the individual cross members and the cross members and cross member boxes, the interacting end stops being arranged alternately on the cross members or cross member boxes, that they come into contact with each other before one of the spring elements assigned to them comes on block. This also prevents damage to the spring elements and thus premature wear.
  • FIGS. 1 and 2 corresponding parts are designated with the same reference symbols.
  • two spring elements 16 and 17 are arranged one behind the other on each mandrel 15.
  • the ends of the respective mandrels 15 are fixedly connected to the corresponding stop pairs 18, 18 'and 19, 19' and 20, 20 '.
  • the spring elements are preferably prestressed under pressure.
  • the crossbeam 4 is now loaded from left to right in relation to the drawing - for example by a braking force acting on the crossbeam - then the crossbeam 4 is pushed into the right crossbeam box 2 (as shown, for example, in FIGS. 2b and 2c is), the spring element 16 is increasingly loaded under pressure, while the spring element 17 is stressed in tension.
  • the spring element 17 would be subjected to pressure, while the spring element 16 would be subjected to tension. In any case, however, care is taken to ensure that the springs 16, 17 arranged one behind the other are always subjected to pressure regardless of the direction of loading, since the tensile forces introduced merely lead to a reduction in the pretension.
  • the horizontal force acts again from left to right on the center beam welded to the crossbar 3 via point 5.
  • the springs 16a and 16b are subjected to pressure, the springs 17a and 17b assigned in the double spring package to tension.
  • the spring 16c is also subjected to pressure here, the associated double spring 17c is subjected to tension.
  • the double spring systems 16a / 17a, 16b / 17b are connected in series, while 16c / 17c is connected in parallel.
  • a spring stiffness results from the two double spring systems 16a / 17a and 16b / 17b connected in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)
  • Road Paving Structures (AREA)
  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)

Abstract

In a resilient control system for carriageway bridging structures using the segmental method, in which the cantilever segments 7, 8 are supported on supporting beams 3, 4 which are displaceably mounted by means of sliding springs/sliding bearings in supporting beam boxes 1, 2 and connected by control springs 16, 17, the control springs being formed by spring elements which are mounted on pins 15 extending parallel to the supporting beams and bear, with their end surfaces, against stops 10', 11, 12, 18, 18', 19, 19', 20, 20' attached to the supporting beams or to the supporting beam boxes, provision is made, according to the invention, for at least two spring elements 16, 17 to be arranged on each pin 15 and for the stops to be assigned to the supporting beams or to the supporting beam boxes so that at least one spring element is always under compressive stress, irrespective of the direction of loading and the magnitude of loading. <IMAGE>

Description

Die Erfindung betrifft ein elastisches Steuersystem für Fahrbahnüberbrückungskonstruktionen in Trägerrostfugenbauweise, wobei mindestens ein Träger auf Traversen gelagert ist, die Traversen jeder Auflagerstelle untereinander bzw. mit dem Fugenrand durch Steuerfedern verbunden sind, und wobei die Steuerfedern von Federelementen gebildet sind, welche auf parallel zu den Traversen verlaufenden Dornen gelagert sind und mit ihren Stirnflächen gegen an den Traversen bzw. den Traversenkästen befestigte Anschläge anliegen.The invention relates to an elastic control system for lane bridging constructions in girder grate construction, wherein at least one girder is mounted on trusses, the trusses of each bearing point are connected to one another or to the joint edge by control springs, and the control springs are formed by spring elements which are parallel to the trusses extending thorns are stored and their end faces bear against stops attached to the trusses or the truss boxes.

Insbesondere im Brückenbau werden zur Berücksichtigung von temperaturbedingten bzw. belastungsbedingten relativen Bewegungen zweier stirnseitig benachbarter Fahrbahnteile zwischen den Fahrbahnteilen Bewegungsfugen vorgesehen. Die Fugen werden von in Traversenkästen elastisch und gleitend gelagerten Traversen überbrückt, die parallel zur Fahrbahnkante verlaufende Träger tragen.In bridge construction in particular, expansion joints are provided to take into account temperature-related and / or load-related relative movements of two adjacent roadway parts between the roadway parts. The joints are elastic and gliding in truss boxes Bridges trusses that carry beams running parallel to the edge of the road.

Das bei Fugenkonstruktionen nach dem Trägerrostprinzip verwendete elastische Steuersystem muß dabei grundsätzlich zwei Funktionen erfüllen:

  • 1. Eine Steuerungsfunktion: Die gesamte Fugenbewegung muß gleichmäßig auf die einzelnen zwischen den Trägern bzw. zwischen den Trägern und den Fugenrändern vorhandenen, durch Dichtprofile abgedeckten Spalte aufgeteilt werden.
  • 2. Abtragung von horizontalen Kräften, die durch Beschleunigung beim Anfahren bzw. Bremsen eines über die Fuge fahrenden Fahrzeuges entstehen, in die Fugenränder.
The elastic control system used for joint constructions based on the girder grating principle must basically perform two functions:
  • 1. A control function: The entire joint movement must be divided equally between the individual gaps between the beams or between the beams and the joint edges, which are covered by sealing profiles.
  • 2. Transfer of horizontal forces, which arise from acceleration when starting or braking a vehicle traveling over the joint, into the joint edges.

Die Funktion 2. wird zum größten Teil von der Reibung übernommen, die zwischen den Traversen und den vorgespannten Gleitfedern/Gleitlagern als Traversenauflagerung erzeugt wird. Wegen der relativ großen Streuung derartiger Reibungskräfte, die unter anderem durch den Abbau der Federvorspannung im Laufe der Zeit entsteht, bleibt bei statischen Nachweisen die Wirkung der Reibungskräfte unberücksichtigt. Die verwendeten Steuerfedern des elastischen Steuersystems müssen für die Steuerung einen sehr großen Arbeitsweg (70 bis 80 mm) aufnehmen. Die bisher verwendeten Steuerfedern weisen daher zwangsläufig eine sehr geringe Federkonstante c (kN/m) auf. Bei den hohen auftretenden Bremskräften von z. B. 39 kN/Rad ergeben sich somit große Verschiebungen der Träger bzw. der mit den Trägern gekoppelten Traversen, die soweit gehen, daß die Traversen an Endanschlägen anstoßen und dann an die Stelle der elastischen Stützung durch die Steuerfedern eine starre Stützung an den Endanschlägen tritt. Dies kann bei häufiger Wiederholung zur Zerstörung bzw. Beschädigung der Übergangskonstruktion führen.Function 2 is largely taken over by the friction that is generated between the crossbeams and the preloaded sliding springs / plain bearings as a crossbeam support. Because of the relatively large scatter of such frictional forces, which is caused, among other things, by the reduction of the spring preload over time, the effect of the frictional forces is not taken into account in the static verifications. The control springs used in the elastic control system have to take up a very long working path (70 to 80 mm) for the control. The control springs used so far inevitably have a very low spring constant c (kN / m). At the high braking forces of z. B. 39 kN / wheel thus result in large displacements of the beams or the cross beams coupled to the beams, which go so far that the cross beams abut end stops and then, instead of the elastic support by the control springs, there is a rigid support at the end stops . Frequent repetition can destroy or damage the transition structure.

Es ist eine Übergangskonstruktion bekannt, wie sie aus der Fig. 1 hervorgeht. Dargestellt sind dort die sich gegenüberliegenden Traversenkästen 1 und 2. Die sich gegenüberstehenden Stirnseiten der Kästen 1 und 2 sind offen. In den Kästen sind zwei Traversen 3 und 4 auf nicht dargestellten Gleitlagern verschieblich gelagert. Auf den Traversen 3 und 4 ist jeweils ein Auflager 5 und 6 für je einen lediglich angedeutete Träger 7 bzw. 8 angeordnet. Die Träger 7 und 8 sind untereinander bzw. mit den nicht dargestellten Randprofilen durch Dichtungsprofile verbunden. Wie sich aus der Darstellung der Fig. 1 ergibt, sind an jeder Traversenseite einander gegenüberliegend, aber versetzt zueinander Anschläge 9 und 10 bzw. 9′ und 10′angeschweißt. Ebenso sind an jeweils einer Seitenwand der Kästen 1 und 2 an der offenen Stirnseite je ein Anschlag 11 und 12 angeschraubt, und zwar derart, daß ein Anschlag 11 an der in der Zeichnung unteren Seitenwand des in der Zeichnung linken Kastens 1 und der andere Anschlag 12 an der in der Zeichnung oberen Seitenwand des in der Zeichnung rechts dargestellten Kastens 2 angeordnet sind. Somit liegen sich jeweils die Anschläge 9′und 11, 10 und 10′sowie 9 und 12 gegenüber. In den Anschlägen 9′, 11; 10, 10′und 9, 12 sind jeweils miteinander fluchtende Bohrungen vorgesehen, in denen jeweils ein Dorn 13 verschiebbar gelagert ist. Im vorliegenden Beispiel ist der Dorn 13 in der Mitte mit einer Nut versehen, in die ein in der Bohrung der Steuerfeder angeordneter hervorspringender Kranz zur Fixierung der Steuerfeder auf dem Dorn eingreift. Zwischen jeweils gegenüberstehenden Anschlägen 9′, 11; 10, 10′und 9, 12 ist auf den Dornen 13 je ein Federelement 14 angeordnet.A transition construction is known, as can be seen from FIG. 1. The opposite truss boxes 1 and 2 are shown there. The opposite end faces of boxes 1 and 2 are open. In the boxes, two trusses 3 and 4 are slidably mounted on plain bearings, not shown. On the cross members 3 and 4, a support 5 and 6 is arranged for each of a merely indicated support 7 and 8, respectively. The carriers 7 and 8 are connected to one another or to the edge profiles, not shown, by means of sealing profiles. As can be seen from the illustration in FIG. 1, stops 9 and 10 or 9 'and 10' are welded to one another on each traverse side, but offset from one another. Likewise, a stop 11 and 12 are screwed to each side wall of the boxes 1 and 2 on the open end face, in such a way that a stop 11 on the lower side wall of the box 1 on the left in the drawing and the other stop 12 are arranged on the upper side wall of the box 2 shown on the right in the drawing. Thus, the stops 9'and 11, 10 and 10'are 9 and 12 opposite each other. In the attacks 9 ', 11; 10, 10 'and 9, 12 are each aligned holes, in each of which a mandrel 13 is slidably mounted. In the present example, the mandrel 13 is provided in the middle with a groove into which a protruding ring arranged in the bore of the control spring engages to fix the control spring on the mandrel. Between each opposing stops 9 ', 11; 10, 10 'and 9, 12, a spring element 14 is arranged on the mandrels 13.

Bei dem in der Fig. 1 gezeigten Zustand des Steuersystems sind die Federelemente sehr stark zusammengepreßt. Die Rückstellkraft der Federelemente ist somit am größten. Bei Beendigung einer Belastung entspannen sich die vorgespannten Federn bis zu der Stellung, die durch die gerade vorliegende, von der Brückentemperatur abhängige Fugenbreite vorgegeben ist.In the state of the control system shown in FIG. 1, the spring elements are very strongly compressed. The restoring force of the spring elements is therefore greatest. At the end of a load, the preloaded springs relax to the position that is determined by the joint width that is present and is dependent on the bridge temperature.

Bei der vorbeschriebenen bekannten Überbrückungskonstruktion wird beispielsweise das Federelement 14c im rechten Traversenkasten 2 bei einer auf die Traverse 3 von links nach rechts gerichteten Bremskraft auf Zug beansprucht. Dabei ergibt sich der Nachteil, daß hierbei weder die Versteifung der Feder aufgrund der hohen Verformungsgeschwindigkeit noch die Versteifung mit zunehmendem Federweg c = c (s) auftreten.In the known bridging construction described above, for example, the spring element 14c in the right-hand crossbar box 2 is subjected to tension when the braking force is directed to the crossbar 3 from left to right. The disadvantage here is that neither the stiffening of the spring due to the high rate of deformation nor the stiffening with increasing spring travel c = c (s) occur.

Der Erfindung liegt daher die Aufgabe zugrunde, das elastische Steuersystem der eingangs genannten Art so auszugestalten, daß unabhängig von der Richtung und der Größe der eingeleiteten Horizontalkräfte immer eine elastische Stützung durch die Steuerfedern gegeben ist, so daß Schäden an der Fahrbahnüberbrückungskonstruktion vermieden werden.The invention is therefore based on the object of designing the elastic control system of the type mentioned in such a way that, regardless of the direction and the size of the horizontal forces introduced, there is always elastic support by the control springs, so that damage to the roadway bridging construction is avoided.

Diese Aufgabe wird gemäß der Erfindung dadurch gelöst, daß auf jedem Dorn wenigstens zwei Federelemente angeordnet sind und die Anschläge den Traversen bzw. den Traversenkästen derart zugeordnet sind, daß wenigstens ein Federelement immer auf Druck beansprucht wird. Dabei kann in vorteilhafter Weise vorgesehen sein, daß jeweils zwei die Federelemente einschließende Anschläge an einer Traverse vorgesehen sind und daß zwei Federelemente mit ihren aufeinanderzuweisenden Stirnflächen an den sich gegenüberliegenden Seitenflächen von an der jeweils benachbarten Traverse bzw. den Traversenkästen befestigten Anschlägen anliegen. Dabei sind die Federelemente auf Dornen gelagert, deren Enden fest mit einem jeweiligen Anschlag verbunden sind, wobei die Dorne jeweils eine Öffnung durchgreifen, die koaxial zur Dornachse in dem an der benachbarten Traverse bzw. dem Traversenkasten befestigten Anschlag vorgesehen ist. Hierdurch ergibt sich der Vorteil, daß unabhängig von der Belastungsrichtung immer ein Federelement auf Druck beansprucht wird. Wenn die Federelemente zusätzlich auf Druck vorgespannt sind, dann führt dies dazu, daß auch die auf Zug beanspruchte Feder durch Abbau ihrer Vorspannung mitwirkt und damit die beiden Federn als parallel geschaltete Federn der resultierenden Federsteifigkeit c₁ + c₂ behandelt werden können. Allerdings ist die Federsteifigkeit c₂ der auf Zug beanspruchten Feder erheblich geringer als die Federsteifigkeit c₁ der auf Druck beanspruchten Feder. Die Druckvorspannung wird in vorteilhafter Weise derart gewählt, daß alle Federelemente unabhängig von der Richtung und der Größe der Relativbewegung der Anschläge immer auf Druck benansprucht sind. Bei denjenigen Federelementen, in welche Zugkräfte eingeleitet werden, findet daher ein Abbau der Druckvorspannung in Abhängigkeit von der Größe der eingeleiteten Zugkraft statt.This object is achieved according to the invention in that at least two spring elements are arranged on each mandrel and the stops are assigned to the trusses or the truss boxes such that at least one spring element is always subjected to pressure. It can be provided in an advantageous manner that two stops including the spring elements are provided on a crossmember and that two spring elements with their mutually facing end faces rest on the opposite side faces of stops attached to the respectively adjacent crossbar or the crossbar boxes. The spring elements are mounted on mandrels, the ends of which are fixedly connected to a respective stop, the mandrels each penetrating an opening which is provided coaxially with the mandrel axis in the stop attached to the adjacent crossmember or the crossbar box. This has the advantage that, regardless of the direction of loading, a spring element is always subjected to pressure. If the spring elements are additionally biased to pressure, this leads to the fact that the spring, which is subjected to tension, also contributes by reducing its preload, and thus the two springs are connected in parallel Springs of the resulting spring stiffness can be treated c₁ + c₂. However, the spring stiffness c₂ of the spring-loaded spring is considerably less than the spring stiffness c₁ of the spring-loaded spring. The pressure preload is advantageously chosen such that all spring elements are always subjected to pressure regardless of the direction and the size of the relative movement of the stops. In the case of those spring elements into which tensile forces are introduced, there is therefore a reduction in the compressive preload as a function of the magnitude of the tensile force introduced.

In vorteilhafter Weise ist vorgesehen, daß die Federelemente aus einem elastomeren, geschäumten Material mit einer Federkonstante bestehen, die eine lineare Funktion des Federweges ist. Versuche mit elastomeren, aus geschäumtem Material hergestellten Federelementen haben gezeigt, daß unter sehr plötzlicher Lasteinwirkung (hohe Belastungsgeschwindigkeit) eine deutliche Versteifung der Feder eintritt und daß außerdem die Federkonstante c eine Funktion des Federweges ist, c = k . f . w

Figure imgb0001
, wobei f die Prüffrequenz der pulsierenden Federbelastung darstellt und w den Federweg angibt, d.h., cdyn wächst linear mit dem Verschiebeweg w. Diese Verhältnisse ergeben sich allerdings nur bei dem erfindungsgemäßen ausgestaltenen Steuersystem, bei welchem sämtliche elastomeren Federelemente nur auf Druck beansprucht werden. Da bei auf Zug beanspruchten Federelementen dieser Effekt nicht auftritt, wird eine Mitwirkung der im Zugbeanspruchungsbereich liegenden Federelemente durch das oben beschriebene Aufbringen einer Druckvorspannung erreicht, die bei Zugbeanspruchung entsprechend abgebaut wird und damit in der Wirkung einer zugbeanspruchten Feder gleichkommt.It is advantageously provided that the spring elements consist of an elastomeric, foamed material with a spring constant which is a linear function of the spring travel. Experiments with elastomeric spring elements made of foamed material have shown that under very sudden loads (high loading speed) the spring stiffens significantly and that the spring constant c is a function of the spring travel, c = k. f. w
Figure imgb0001
, where f represents the test frequency of the pulsating spring load and w indicates the spring travel, ie, c dyn increases linearly with the displacement w. However, these relationships only arise in the control system designed according to the invention, in which all the elastomeric spring elements are only subjected to pressure. Since this effect does not occur in the case of spring elements subjected to tension, the spring elements located in the area of tensile stress cooperate by applying a compressive pretension as described above, which is correspondingly reduced under tensile stress and thus has the same effect as a spring subject to tensile stress.

Da die Federkonstante bei steigender Beanspruchung, d.h. bei wachsendem Federweg ebenfalls linear anwächst, nimmt die Steifigkeit der horizontalen elastischen Abstützung der Träger zu, so daß es auch bei hohen Horizontalkräften nicht zu dem nachteiligen Anfahren der Traversen gegen die starren Endanschläge kommt.Since the spring constant also increases linearly with increasing stress, ie with increasing spring travel, the stiffness of the horizontal elastic support of the carrier increases, so that it does not increase even with high horizontal forces the disadvantageous approach of the trusses against the rigid end stops.

Durch die Erfindung wird eine Verbesserung der Funktion "Horizontalkraftübertragung" des Steuersystems erzielt. Als Nebeneffekt der Anordnung von Doppelfedern ergibt sich für "Trägersteuerung" ebenfalls eine Verbesserung. Durch die oben beschriebene Parallelschaltung der beiden Federn eines Steuergliedes wird bei Auslenkung einer Träger aus der mittigen Stellung die Differenz der links und rechts an einer Traverse angreifenden Federkräfte doppelt so hoch ausfallen wie bei Anordnung nur einer Feder innerhalb eines Steuergliedes. Diese Differenzkraft errechnet sich aus den statischen Federkonstanten cstat, während für die Aufnahme der Horizontalkräfte aus Fahrzeugbremsen die dynamische Federkonstante cdyn maßgebend ist. Bei Beendigung der Horizontalbelastung wird durch das Auftreten dieser Differenzkraft der Träger wieder in seine mittige Stellung zurückgeschoben, die von der jeweiligen Gesamtfugenöffnung abhängig ist. Um die Öffnung der Fugenüberbrückungskonstruktion auf einen Maximalwert zu begrenzen, ist in weiterer vorteilhafter Ausgestaltung der Erfindung vorgesehen, daß zwischen den einzelnen Traversen und den Traversen und Traversenkästen starre Endanschläge vorgesehen sind, wobei die zusammenwirkenden Endanschläge derart wechselseitig an den Traversen bzw. Traversenkästen angeordnet sind, daß sie gegenseitig zur Anlage kommen, bevor eines der ihnen zugeordneten Federelemente auf Block kommt. Dadurch wird außerdem eine Beschädigung der Federlemente und damit ein vorzeitiger Verschleiß vermieden.The invention achieves an improvement in the "horizontal force transmission" function of the control system. As a side effect of the arrangement of double springs, there is also an improvement for "carrier control". Due to the parallel connection of the two springs of a control element described above, when a beam is deflected from the central position, the difference between the spring forces acting on the left and right of a crossbar will be twice as high as when only one spring is arranged within one control element. This differential force is calculated from the static spring constant c stat , while the dynamic spring constant c dyn is decisive for the absorption of the horizontal forces from vehicle brakes . At the end of the horizontal load, the beam is pushed back into its central position by the occurrence of this differential force, which is dependent on the respective total joint opening. In order to limit the opening of the joint bridging construction to a maximum value, it is provided in a further advantageous embodiment of the invention that rigid end stops are provided between the individual cross members and the cross members and cross member boxes, the interacting end stops being arranged alternately on the cross members or cross member boxes, that they come into contact with each other before one of the spring elements assigned to them comes on block. This also prevents damage to the spring elements and thus premature wear.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels annhand der Zeichnung. Darin zeigen:

Fig. 1
ein elastisches Steuersystem für eine bekannte Fahrbahnüberbrückungskonstruktion in Trägerbauweise, und
Fig.2a - c
im Prinzip Darstellungen in Draufsicht einer Fahrbahnüberbrückungskonstruktion mit dem erfindungsgemäßen elastischen Steuersystem in drei verschiedenen Öffnungszuständen der Dehnungsfuge.
Further features, advantages and details of the invention result from the following description of a preferred exemplary embodiment with reference to the drawing. In it show:
Fig. 1
a resilient control system for a known carrier bridging structure, and
Fig.2a - c
in principle representations in top view of a road bridging construction with the elastic control system according to the invention in three different opening states of the expansion joint.

Bei den in den Fig. 1 und 2 dargestellten Ausführungsbeispielen sind sich entsprechende Teile mit gleichen Bezugszeichen bezeichnet. Im Gegensatz zu dem oben beschriebenen Ausführungsbeispiel der Fig. 1 sind bei dem Ausführungsbeispiel nach Fig. 2 auf jedem Dorn 15 jeweils zwei Federelemente 16 bzw. 17 hintereinander angeordnet. Wobei die Federelemente mit ihren nach außen weisenden Stirnflächen gegen Anschläge 18, 18′; 19, 19′; 20, 20′ anliegen, während sie mit ihren aufeinanderzuweisenden Stirnflächen gegen die an den Traversenkästen 1 bzw. 2 angeschraubten Anschlägen 11 bzw. 12 anliegen bzw. gegen den an der Traverse 4 angeschweißten Anschlag 10′. Die Enden der jeweiligen Dorne 15 sind mit den entsprechen Anschlagpaaren 18, 18′ bzw. 19, 19′ bzw. 20, 20′ fest verbunden. Die Federelemente sind vorzugsweise auf Druck vorgespannt. Wird nun beispielsweise die Traverse 4 in Bezug auf die Zeichnung von links nach rechts belastet - beispielsweise durch eine an der Traverse angreifende Bremskraft -, dann wird die Traverse 4 in den rechten Traversenkasten 2 hineingeschoben (wie dies beispielsweise in den Fig. 2b und 2c gezeigt ist), wobei das Federelement 16 zunehmend auf Druck belastet wird, während das Federelement 17 auf Zug beansprucht wird. Bei einer Belastung der Traverse von rechts nach links würde dagegen das Federelement 17 auf Druck beansprucht werden, während das Federelement 16 auf Zug beansprucht werden würde. In jedem Falle ist jedoch dafür Sorge getragen, daß die hintereinander angeordneten Federn 16, 17 unabhängig von der Belastungsrichtung immer auf Druck beansprucht sind, denn die eingeleiteten Zugkräfte führen lediglich zu einem Abbau der Vorspannung.In the exemplary embodiments shown in FIGS. 1 and 2, corresponding parts are designated with the same reference symbols. In contrast to the embodiment of FIG. 1 described above, in the embodiment of FIG. 2, two spring elements 16 and 17 are arranged one behind the other on each mandrel 15. The spring elements with their outwardly facing end faces against stops 18, 18 '; 19, 19 '; 20, 20 'abut while they rest with their mutually facing end faces against the screwed to the truss boxes 1 and 2 stops 11 and 12 or against the welded to the crossbar 4 stop 10'. The ends of the respective mandrels 15 are fixedly connected to the corresponding stop pairs 18, 18 'and 19, 19' and 20, 20 '. The spring elements are preferably prestressed under pressure. If, for example, the crossbeam 4 is now loaded from left to right in relation to the drawing - for example by a braking force acting on the crossbeam - then the crossbeam 4 is pushed into the right crossbeam box 2 (as shown, for example, in FIGS. 2b and 2c is), the spring element 16 is increasingly loaded under pressure, while the spring element 17 is stressed in tension. In contrast, if the crossmember was loaded from right to left, the spring element 17 would be subjected to pressure, while the spring element 16 would be subjected to tension. In any case, however, care is taken to ensure that the springs 16, 17 arranged one behind the other are always subjected to pressure regardless of the direction of loading, since the tensile forces introduced merely lead to a reduction in the pretension.

Ein Beispiel soll den Unterschied des erfindungsgemäßen Steuersystems zum Stand der Technik weiter verdeutlichen.An example is intended to further illustrate the difference between the control system according to the invention and the prior art.

Greift bei einem herkömmlichen Steuersystem gem. Fig. 1a eine von links nach rechts gerichtete Horizontalkraft an dem bei Punkt 6 an die Traverse 3 angeschweißten Mittelträger ein, werden die Steuerfedern 14a und 14b auf Druck beansprucht, während Steuerfeder 14c eine Zugbeanspruchung bekäme. Die Steuerfedern 14a und 14b sind hintereinander geschaltet, ihre resultierende Federsteifigkeit cres errechnet sich aus

Figure imgb0002

daraus cres = 1 2
Figure imgb0003
. c.Applies to a conventional control system acc. Fig. 1a a left to right horizontal force on the welded to the cross member 3 at point 6, the control springs 14a and 14b are subjected to pressure, while control spring 14c would be tensile. The control springs 14a and 14b are connected in series, their resulting spring stiffness c res is calculated
Figure imgb0002

from it c res = 1 2nd
Figure imgb0003
. c.

Da die Feder 14c keinen Zug aufnehmen kann, wirkt sie bei der Aufnahme der horizontalen Bremskraft nicht mit. Wäre an die Stelle der Feder 14c eine Zugfeder angeordnet mit der Federsteifigkeit cz, so wäre diese Feder parallel geschaltet den beiden hintereinander geschalteten Druckfedern der resultierenden Federsteifigkeit cres. Die Gesamtsteifigkeit der Horizontallagerung betrüge dann c ges = c res + c z = c 2 + c z

Figure imgb0004

bzw. wenn keine Zugfeder vorhanden ist c ges = c  2.
Figure imgb0005
Since the spring 14c cannot absorb any tension, it does not cooperate in absorbing the horizontal braking force. If a tension spring with the spring stiffness c z were arranged in the place of the spring 14c, this spring would be connected in parallel with the two pressure springs of the resulting spring stiffness c res connected in series . The total rigidity of the horizontal bearing would then be c total = c res + c e.g. = c 2nd + c e.g.
Figure imgb0004

or if there is no tension spring c total = c 2nd
Figure imgb0005

Nun wird das erfindungsgemäße Steuersystem gem. Fig. 2a bis 2c betrachtet. Die Horizontalkraft greift wieder von links nach rechts gerichtet an dem über Punkt 5 an die Traverse 3 angeschweißten Mittelträger an. Dabei werden die Federn 16a und 16b auf Druck, die im Doppelfederpaket zugeordneten Federn 17a und 17b auf Zug beansprucht. Im Unterschied zum herkömmlichen Steuersystem wird jedoch auch hier die Feder 16c auf Druck, die ihr zugeordnete Doppelfeder 17c auf Zug beansprucht. Die Doppelfedersysteme 16a/17a, 16b/17b sind hintereinander geschaltet, während 16c/17c parallel geschaltet ist.Now the control system according to the invention. 2a to 2c considered. The horizontal force acts again from left to right on the center beam welded to the crossbar 3 via point 5. The springs 16a and 16b are subjected to pressure, the springs 17a and 17b assigned in the double spring package to tension. In contrast to the conventional control system, however, the spring 16c is also subjected to pressure here, the associated double spring 17c is subjected to tension. The double spring systems 16a / 17a, 16b / 17b are connected in series, while 16c / 17c is connected in parallel.

Innerhalb eines Doppelfedersystems sind Zug- und Druckfeder jeweils parallel geschaltet. Unter Außerachtlassung des dynamischen Erhöhungsfaktors errechnet sich bei der Federsteifigkeit c der Einzelfeder die resultierende Federsteifigkeit des Doppelfedersystems zu c + c = 2c

Figure imgb0006
. Aus den beiden hintereinander geschalteten Doppelfedersystemen 16a/17a und 16b/17b ergibt sich eine resultierende Federsteifigkeit
Figure imgb0007
The tension and compression springs are connected in parallel within a double spring system. Disregarding the dynamic With the spring stiffness c of the single spring, the increase factor is calculated as the resulting spring stiffness of the double spring system c + c = 2c
Figure imgb0006
. A spring stiffness results from the two double spring systems 16a / 17a and 16b / 17b connected in series
Figure imgb0007

Die Gesamtsteifigkeit der Horizontalauflagerung beträgt in diesem Fall:

c ges = 2c 2 + 2c = 3c

Figure imgb0008


gegenüber dem herkömmlichen Steuersystem mit nur c  2.
Figure imgb0009
In this case, the overall rigidity of the horizontal support is:

c total = 2c 2nd + 2c = 3c
Figure imgb0008


compared to the conventional tax system with only c 2nd
Figure imgb0009

Aus Vereinfachungsgründen wurde hier der Unterschied zwischen cdyn und cstat vernachlässigt. Wie bereits ausgeführt, kann bei der auf Zug beanspruchten Feder nur cstat angesetzt werden. Wegen der Abhängigkeit der Federsteifigkeit c vom Federweg s, c = c (s), wirkt sich diese Versteifung bei Druckbeanspruchung der Feder 16 c gem. Fig. 2a als einer in der Federkette parallel geschalteten Feder hier voll aus, während der Versteifungseinfluß bei den Federsystemen 16a/17a und 16b/17b durch deren Hintereinanderschaltung halbiert wird.For reasons of simplification, the difference between c dyn and c stat has been neglected. As already stated, only c stat can be applied to the spring that is subjected to tension. Because of the dependence of the spring stiffness c on the spring travel s, c = c (s), this stiffening has an effect when the spring 16 c is under pressure. 2a as a spring connected in parallel in the spring chain here in full, while the stiffening influence in the spring systems 16a / 17a and 16b / 17b is halved by connecting them in series.

Aus den Fig. 2a bis 2c ist ferner zu entnehmen, daß zwischen den einzelnen Traversen 3, 4 und den Traversenkästen 1, 2 starre Endanschläge 21, 22, 23 und 24 vorgesehen sind. Die Endanschläge 21 und 23 sind an der Traverse 3 angeschweißt, während die Endanschläge 22 und 24 an der Traverse 4 angeschweißt sind. In der maximalen Öffnungsstellung der Fahrbahnüberbrückungskonstruktion, in welcher die Trägern 7 und 8 einen maximalen Abstand D aufweisen (siehe Fig. 2a) kommen die Endanschläge 21, 22 gegenseitig zur Anlage, um diese maximale Öffnungsstellung zu begrenzen. Dabei ist das den Anschlägen zugeordnete Federelement 16 noch nicht in einem Blockzustand, so daß es vorzeitig verschleißen kann.From FIGS. 2a to 2c it can also be seen that rigid end stops 21, 22, 23 and 24 are provided between the individual trusses 3, 4 and the truss boxes 1, 2. The end stops 21 and 23 are welded to the cross member 3, while the end stops 22 and 24 are welded to the cross member 4. In the maximum opening position of the roadway bridging construction, in which the beams 7 and 8 are at a maximum distance D (see FIG. 2a), the end stops 21, 22 come to bear against one another in order to limit this maximum opening position. The spring element 16 assigned to the stops is not yet in a block state, so that it can wear out prematurely.

Claims (8)

  1. Resilient control system for bridging joints in roadways with supporting beams, in which at least one beam (7, 8) is mounted on crossbars (3, 4) which are displaceably mounted in crossbar casings (1, 2) by sliding springs/sliding bearings and are connected by control springs, wherein the control springs are formed by spring elements which are mounted on spindles extending parallel to the crossbars and abut, with their end faces, abutment stops that are secured on the crossbars or the crossbar casings, characterised in that at least two spring elements (16, 17) are arranged on each spindle (15), and the abutment stops (10', 11, 12, 18, 18', 19, 19', 20, 20') are associated with the crossbars (3, 4) or the crossbar casings (1, 2) in such a manner that at least one spring element is always under compressive stress, independently of the direction of the size of the load.
  2. Control system according to Claim 1, characterised in that at least two abutment stops (18, 18'; 19, 19'; 20, 20') enclosing the spring elements (16, 17) are provided on a crossbar (3, 4) in each case, and in that the end faces, which face one another, of two spring elements (16, 17) abut the opposite lateral faces of abutment stops (10', 11, 12) which are secured to the crossbars or crossbar casings which are adjacent in each case.
  3. Control system according to Claim 2, characterised in that a spindle (15) is associated with each pair of abutment stops (18, 18'; 19, 19'; 20, 20'), the ends of which spindle are securely connected to an abutment stop in each case and which engages through an aperture that is provided, coaxial to the axis of the pin, in the abutment stop (10, 11, 12) secured on the adjacent crossbar or the crossbar casing.
  4. Control system according to at least one of the preceding claims, characterised in that the spring elements (16, 17) are under precompressive stress.
  5. Control system according to Claim 4, characterised in that the precompressive stress is selected in such a manner that all the spring elements (16, 17) are always under compressive stress, irrespective of the direction and extent of the relative movement of the abutment stops.
  6. Control system according to at least one of the preceding claims, characterised in that the spring elements (16, 17) consist of an elastomer foamed material with a spring constant that is a linear function of the spring elongation.
  7. Control system according to at least one of the preceding claims, characterised in that rigid end abutment stops (11, 12, 21, 22, 23, 24) which limit the opening of the gap bridging construction to a maximum value are provided between the individual crossbars (3, 4) and the crossbars and crossbar casings (1, 2).
  8. Control system according to Claim 7, characterised in that the cooperating end abutment stops (21, 22; 11, 18; 12, 23) are disposed on the crossbars (3, 4) or crossbar casings (1, 2) on alternate sides such that they come to abut one another before one of the spring elements (16, 17) associated therewith is compressed into a block.
EP89110223A 1989-06-06 1989-06-06 Elastic control system for bridging joints in roadways with intermediate beams Expired - Lifetime EP0401401B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE89110223T DE58905557D1 (en) 1989-06-06 1989-06-06 Elastic control system for lane bridging constructions in girder construction.
EP89110223A EP0401401B1 (en) 1989-06-06 1989-06-06 Elastic control system for bridging joints in roadways with intermediate beams
AT89110223T ATE94235T1 (en) 1989-06-06 1989-06-06 ELASTIC CONTROL SYSTEM FOR ROADWAY BRIDGE STRUCTURES IN METER GRATING JOINT CONSTRUCTION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP89110223A EP0401401B1 (en) 1989-06-06 1989-06-06 Elastic control system for bridging joints in roadways with intermediate beams

Publications (2)

Publication Number Publication Date
EP0401401A1 EP0401401A1 (en) 1990-12-12
EP0401401B1 true EP0401401B1 (en) 1993-09-08

Family

ID=8201468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89110223A Expired - Lifetime EP0401401B1 (en) 1989-06-06 1989-06-06 Elastic control system for bridging joints in roadways with intermediate beams

Country Status (3)

Country Link
EP (1) EP0401401B1 (en)
AT (1) ATE94235T1 (en)
DE (1) DE58905557D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630328C2 (en) * 1996-07-26 1999-11-18 Maurer Friedrich Soehne Bridging device for joint gaps
DE10222690A1 (en) * 2002-04-17 2003-11-06 Maurer Friedrich Soehne Bridging device for joint gaps
CN106835969A (en) * 2017-03-23 2017-06-13 柳州东方工程橡胶制品有限公司 One kind subtracts the special retractor device of Isolated Bridges

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759891A (en) * 1970-03-26 1971-05-17 Maurer Friedrich Soehne BRIDGING DEVICE FOR EXPANSION JOINTS IN BRIDGES OR SIMILAR
DE2155249C3 (en) * 1971-11-06 1982-03-25 Friedrich Maurer Söhne GmbH & Co KG, 8000 München Device for controlling the expansion joint in a bridge, street or the like depending on the movement of the joint edges. moving components of the joint bridging construction
CH562924A5 (en) * 1973-02-05 1975-06-13 Proceq Sa
CH576045A5 (en) * 1974-06-06 1976-05-31 Proceq Sa Road or track expansion joint spanning device - has springs in parallel to support lamellae and lever rod connection
US4339214A (en) * 1980-05-02 1982-07-13 Acme Highway Products Corporation Composite expansion joint

Also Published As

Publication number Publication date
EP0401401A1 (en) 1990-12-12
ATE94235T1 (en) 1993-09-15
DE58905557D1 (en) 1993-10-14

Similar Documents

Publication Publication Date Title
EP3477004A1 (en) Rail system having expansion joint
DE3212717C1 (en) Joint bridging device for expansion joints in carriageways of bridges or the like.
WO1994012729A1 (en) Rail support system
EP0401401B1 (en) Elastic control system for bridging joints in roadways with intermediate beams
EP2598391A1 (en) Multi-part rail vehicle having at least two coach bodies connected by means of a double articulation joint
EP0824166A2 (en) Troughbridge
EP0338124B1 (en) Bridge deck joint bridging
EP0633358B1 (en) Device for bridging an expansion joint in a roadway, particularly in bridgedecks
EP1836353B1 (en) Bridging device for an expansion joint in a structure fit for traffic
EP0643169A1 (en) Joint arrangement for rails tied on a support structure
EP0692574A1 (en) Road joint
DE3017048C2 (en) Joint bridging device for expansion joints in bridges or the like.
AT393850B (en) BRIDGE DEVICE FOR EXPANSION JOINTS IN ROADS OF BRIDGES OD. DGL.
DE3333880A1 (en) DEVICE FOR CONTROLLING THE BLADE SPACES ON A BRIDGE DEVICE FOR EXPANSION JOINTS IN BRIDGES OD. DGL.
DE2804378C3 (en) Flange connection between a vehicle axle and the longitudinal spars of a chassis
EP2799620A1 (en) Scaffold for creating structural systems
DE7739969U1 (en) Leaf spring
DE2811589C2 (en) Rail vehicle with bogies coupled by a cross coupling
DE3802914C2 (en)
DE2004634A1 (en) Joint bridging device for expansion joints
DE2500702C3 (en) Slidably mounted support part for slats or the like. in joint bridging constructions of bridges or similar structures
DE3122572C2 (en) Brake trolley for a positively driven railroad
DE10123438C2 (en) Running gear with wheels
DE2406212C3 (en) Device for the seamless connection of dictating rail joints for monorails
DE102004051789B3 (en) Support structure for e.g. facade, has traction plates extending over pressing unit, where plates and unit are stuck together by mounting hole that extend transverse to lengthwise direction of rod and are centered in direction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19910118

17Q First examination report despatched

Effective date: 19930208

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930908

Ref country code: FR

Effective date: 19930908

Ref country code: GB

Effective date: 19930908

Ref country code: BE

Effective date: 19930908

Ref country code: SE

Effective date: 19930908

Ref country code: NL

Effective date: 19930908

REF Corresponds to:

Ref document number: 94235

Country of ref document: AT

Date of ref document: 19930915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58905557

Country of ref document: DE

Date of ref document: 19931014

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19940630

Ref country code: LI

Effective date: 19940630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950301