EP0400031B2 - Cold-rolled sheet or strip and process for manufacturing them - Google Patents

Cold-rolled sheet or strip and process for manufacturing them Download PDF

Info

Publication number
EP0400031B2
EP0400031B2 EP89901844A EP89901844A EP0400031B2 EP 0400031 B2 EP0400031 B2 EP 0400031B2 EP 89901844 A EP89901844 A EP 89901844A EP 89901844 A EP89901844 A EP 89901844A EP 0400031 B2 EP0400031 B2 EP 0400031B2
Authority
EP
European Patent Office
Prior art keywords
titanium
epsilon
cold
approx
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89901844A
Other languages
German (de)
French (fr)
Other versions
EP0400031A1 (en
EP0400031B1 (en
Inventor
Klaus Freier
Walter Zimnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter AG
Original Assignee
Salzgitter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25864488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0400031(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Salzgitter AG filed Critical Salzgitter AG
Priority to AT89901844T priority Critical patent/ATE97169T1/en
Publication of EP0400031A1 publication Critical patent/EP0400031A1/en
Application granted granted Critical
Publication of EP0400031B1 publication Critical patent/EP0400031B1/en
Publication of EP0400031B2 publication Critical patent/EP0400031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing

Definitions

  • the invention relates to a method for producing a sheet or strip and to Deep-drawing suitable sheet or strip according to the preambles of claims 1 and 5.
  • Texture-free cold-rolled strip is used to deep-draw rotationally symmetrical steel parts or sheet metal is used, so that quasi-isotropic forming is possible and the drawn part is free of corners. This means that a z. B. cylindrical deep-drawn part has no wavy edge.
  • the value for the plane anisotropy is calculated from the anisotropy r for different things Expansion behavior of the material in the rolling direction as well as at 45 degrees and 90 degrees. For Different deep-drawing properties, different r-values can be set.
  • tip-free material can only be obtained by normalizing of the cold-rolled strip in a continuous annealing at about 1000 degrees Celsius, the sheet in the final state a grain size ASTM 8 with a relative tip height of approx. 0.3 to 0.4% and delta r approx. Reach ⁇ 0.1.
  • DE-OS 32 34 574 is a generic cold-rolled steel sheet suitable for deep drawing or steel band known.
  • the titanium content should, depending on the carbon, oxygen, Sulfur and nitrogen, can rise to values up to 0.15%, the reel temperature over 700 degrees Celsius or at least 580 degrees Celsius with subsequent hot strip heating to over 700 degrees Celsius.
  • US Pat. No. 4,125,416 discloses, inter alia, a method in which hot-rolled slabs at temperatures above 830 ° C. made of alloy steel, which 0.06-0.20% C, 0.5-2.0% Mn, 0.30- May contain 0.50% Si as well as Nb and Ti in quantities of 0.01-0.10%, heated to temperatures above 980 ° C, then rolled into hot strip and coiled at 450-650 ° C. C contents of 0.10-0.11%, a Ti content of 0.1% and an Nb content of 0.04% are specified for the production of high-strength cold strip from this hot strip. At 67% degree of deformation, a high-strength cold strip with a yield strength greater than 48.1 kg / mm 2 is produced, which is then recrystallized annealed in a bundle or in a continuous anneal.
  • EP-A1-101 740 recommends a slab heating temperature of less than 1100 degrees Celsius, a final roll temperature of less than Ar 3 , reel temperatures of 320-600 degrees Celsius and cold rolling degrees of 50-95% and recrystallizing continuous annealing for a generic cold-rolled steel.
  • a steel with a maximum of 0.005% carbon, a maximum of 0.004% nitrogen and a maximum of 0.02% niobium is to be used in combination with one or more of the elements aluminum, chromium, boron or tungsten. High average r values above 1.2 are achieved. There are no indications that the material is rough after deep-drawing.
  • Another method for producing deep-drawing steels with a slab annealing temperature lower 1100 degrees Celsius, final rolling temperature max. 780 degrees Celsius and reel temperatures of at least 450 degrees Celsius and cold strip annealing in the hood or continuous annealing furnace are in EP-B1-120 976 disclosed.
  • the method should achieve r values around 2; Values for tip formation are not disclosed.
  • hot strip has good quasi-isotropic formability, but one insufficient surface quality and tolerances, and also not in thicknesses below 1.2 mm is produced.
  • the invention is therefore based on the object of proposing a sheet-free steel sheet which is suitable for deep drawing or at least poor in drawing and a corresponding production process in which continuous annealing at temperatures above A 1 is dispensed with, but can nevertheless be produced inexpensively.
  • the grain size values of at best ASTM 8 corresponding to 490 ⁇ m 2 which are usually achieved in the state of the art for steel St 4 NZ or RSt 14 by normal annealing, can be undercut by recrystallizing annealing using the process according to the invention, with additional low yield strength values being able to be maintained by selecting appropriate ones Cold rolling degrees depending on the titanium content. This has the advantage that high investments for a continuous annealing for a normal annealing treatment can be dispensed with.
  • a particular advantage of the hot strip produced in this way is that, in principle, none There is a restriction regarding the subsequent cold rolling provided that the degree of cold rolling is at least approx. 5 %, i.e. remains above the known critical weak cold deformation that occurs during recrystallization annealing leads to coarse grain. So far, the production of almost strip-free cold strip was on certain degrees of cold rolling are bound, unless normal annealing is used.
  • the variation of the cold rolling degrees depending on the amount of the alloyed titanium is at simultaneous addition of niobium within the specified limits to cold rolling degrees of 45 to 85% limited.
  • niobium does not hinder the early formation of titanium nitride, so that this too Steel alloy according to the invention does not have a pan-cake structure during recrystallizing annealing can arise.
  • a serious technical and economic importance of the invention lies in the use of the Thin sheets for rotationally symmetrical deep-drawn parts such as needle bearing cages, pulley halves etc.
  • the sheet metal according to the invention can in these cases without substantial rework such as cutting the Tip are used.
  • the low-headedness also prevents the emergence of sectoral thermoforming Wall weaknesses, so that the drawn parts do not show any imbalance when rotating. Additional advantages Low-end or corner-free cold strip are known, so that a further description is unnecessary.
  • Figure 1 shows three different cups, which are to define the terms used in the following, pointed (Fig. 1a), low-pointed (Fig. 1b) and free (Fig. 1c), since the measurement of the height with the commercially available corner measuring devices, in particular low-cornered and Tip-free wells with small height differences are problematic even with the smallest deep-drawn burrs on the edge of the well.
  • This definition was adopted for Figure 10 to represent the lobes of wells from the different melts.
  • the finding was confirmed that the steel E coiled at 710 degrees Celsius is free of flakes only at cold rolling degrees of less than approx. 25% and can only be described as low in the range 30 - 50% of cold rolling.
  • cornering was found at cold rolling degrees greater than 30%.
  • the photos in Figures 8 and 9 demonstrate this impressively.
  • Table 2 shows the grain size achieved according to the invention in ASTM units; the achievable grain refinement compared to steels without titanium addition according to the state of the Technology is significant and extends to ASTM 11.
  • the coarsest grain was obtained with a small addition of Ti and a low degree of cold rolling (ASTM 7).
  • ASTM 9-10 the hot strip values for the grain size (ASTM 9-10) were compared in FIG.
  • For a steel C (variants C3 - C5) tests were carried out with variable coiling temperature Th and annealing throughput Pg (Table 3). While fluctuations in the throughput of the bell annealer from 1.1 - 1.9 t / h did not have a negative effect on the grain size or the level anisotropy Delta r, an increase in the reel temperature to 710 degrees Celsius with roughly the same end temperatures resulted in coarsening and deterioration the plane anisotropy.
  • Figures 2a, 2b, 2c show corresponding results on wells made of 180 mm rounds, the with 100 mm stamps with 50 kN retention force were deep drawn.
  • Table 1 also shows the melt analyzes of the process to be used according to the invention
  • Steel G with 0.01% titanium, H with 0.02% titanium and I with 0.03% titanium with 0.05% and 0.06% niobium addition A comparative steel K with 0.05% niobium addition but without titanium content was listed.
  • From the melts G - I according to the invention and the comparative melt K slabs of 220 mm thickness cast in the strand. After heating in the pusher furnace to 1250 degrees Celsius, the slab was Rolled into 4 mm thick hot strip and coiled and cooled to room temperature. The The final roll temperature was 880 degrees Celsius and the reel temperature was 510 degrees Celsius. After this The strips were pickled by cold rolling in different stages from 10 to 80% on thin sheet thickness reduced and reeled.
  • the tightly wrapped coil was placed in the bell annealer of the Ludwig construction type heated to 700 degrees Celsius and with a throughput rate of 1.1 tons or 1.8 Annealed tons per hour recrystallizing, then in the bell annealing furnace to 120 degrees Celsius cooled. After tempering with a degree of deformation of 1.1%, the strip became sheet metal assembled. Sheet rounds of 90 mm in diameter were closed with drawing dies of 50 mm in diameter Cups deep-drawn ( Figures 13 - 16).
  • the yield strength and tensile strength values were found to be more than 50 N / mm 2 above the characteristic values of the only titanium-alloyed material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bleches oder Bandes sowie ein zum Tiefziehen geeignetes Blech oder Band gemaß den Oberbegriffen der Ansprüche 1 und 5.The invention relates to a method for producing a sheet or strip and to Deep-drawing suitable sheet or strip according to the preambles of claims 1 and 5.

Zum Tiefziehen von rotationssymmetrischen Stahlteilen wird möglichst texturfreies kaltgewalztes Band oder Blech eingesetzt, damit ein quasiisotropes Umformen möglich und das gezogene Teil zipfelfrei ist. Damit ist gemeint, daß ein z. B. zylindrisch tiefgezogenes Teil keinen welligen Rand aufweist.Texture-free cold-rolled strip is used to deep-draw rotationally symmetrical steel parts or sheet metal is used, so that quasi-isotropic forming is possible and the drawn part is free of corners. This means that a z. B. cylindrical deep-drawn part has no wavy edge.

Eine vollkommene Zipfelfreiheit ist nur von isotropem Material ohne Seigerungen, ohne nichtmetallische Einschlüsse, ohne perlschnurartige Zementitausscheidungen und bei pan-cake-freiem Gefüge zu erwarten. Daher wird in der folgenden Beschreibung nur der Begriff "zipfelarmes" auch für nach dem Stand der Technik "zipfelfreies" Band verwendet.A perfect tip freedom is only of isotropic material without segregation, without non-metallic Inclusions without expected pearlite-like cementite deposits and with a pan-cake-free structure. Therefore, in the following description, only the term "low-tip" is also used according to the state of the art Technique "corner-free" tape used.

In "Blech, Rohre, Profile" 9/1977, S. 341 - 346 wird detailliert die Ursache für die Zipfelbildung beschrieben und ein Maß für die relative Zipfelhöhe Z sowie die ebene Anisotropie Delta r definiert. Ideal wären jeweils Ergebnisse mit dem Wert Null (zipfelfreies Material).In "Blech, Rohr, Profiles" 9/1977, pp. 341 - 346 the cause of the tip formation is described in detail and defines a measure for the relative tip height Z and the flat anisotropy Delta r. ideal would be results with the value zero (tip-free material).

Der Wert für die ebene Anisotropie errechnet sich aus der Anisotropie r für unterschiedliches Ausdehnungsverhalten des Materials in Walzrichtung sowie unter 45 Grad und 90 Grad dazu. Für unterschiedliche Tiefzieheigenschaften sind verschiedene r-Werte einstellbar.The value for the plane anisotropy is calculated from the anisotropy r for different things Expansion behavior of the material in the rolling direction as well as at 45 degrees and 90 degrees. For Different deep-drawing properties, different r-values can be set.

Für die in der Veröffentlichung erwähnten Stähle läßt sich zipfelfreies Material nur durch Normalglühen des kaltgewalzten Bandes in einer Durchlaufglühe bei etwa 1000 Grad Celsius erreichen, wobei das Blech im Endzustand eine Korngröße ASTM 8 bei einer relativen Zipfelhöhe von ca. 0,3 bis 0,4 % und Delta r ca. ± 0,1 erreichen.For the steels mentioned in the publication, tip-free material can only be obtained by normalizing of the cold-rolled strip in a continuous annealing at about 1000 degrees Celsius, the sheet in the final state a grain size ASTM 8 with a relative tip height of approx. 0.3 to 0.4% and delta r approx. Reach ± 0.1.

Für nicht normalisierend geglühtes Band sei nur ein zipfelarmer Zustand durch Kompromisse in der Verfahrensführung bei der Blechherstellung zu erreichen. Dabei sollen die Walzendtemperaturen ca. 750 Grad Celsius und die Kaltwalzgrade entweder unter 25 % oder über 80 % liegen und mit als für die Zipfeligkeit ungünstig bezeichneten Rekristallisationstemperaturen von über 600 Grad Celsius gearbeitet werden.For non-normalizing annealed strip is only a low-tip condition due to compromises in the To achieve process control in sheet metal production. The final roll temperatures should be approx. 750 Degrees Celsius and the cold rolling degrees are either below 25% or above 80% and with than for Pointed unfavorable recrystallization temperatures of over 600 degrees Celsius worked become.

Beschrieben wird weiterhin, daß ein Normalisieren nicht im Bund, sondern nur in einer Durchlaufglühe erfolgen kann, weil bei den hohen Temperaturen die Bänder zusammenkleben würden.It is also described that normalization is not carried out in a bundle, but only in a continuous annealing line can take place because the tapes would stick together at the high temperatures.

Aus der DE-OS 32 34 574 ist ein gattungsgemäßes zum Tiefziehen geeignetes kaltgewalztes Stahlblech oder Stahlband bekannt. Der Titangehalt soll, in Abhängigkeit der Gehalte an Kohlenstoff, Sauerstoff, Schwefel und Stickstoff, auf Werte bis 0,15 % steigen können, die Haspeltemperatur über 700 Grad Celsius oder mindestens jedoch 580 Grad Celsius mit anschließender Warmband-Erwärmung auf über 700 Grad Celsius betragen. Weiterhin wird ein Kaltwalzgrad von 70 - 85 % sowie ein Durchlaufglühen bei 700 - 900 Grad Celsius mit maximal zwei Minuten Haltezeit empfohlen. Hinweise zur Zipfelbildung des Materials werden nicht gegeben.DE-OS 32 34 574 is a generic cold-rolled steel sheet suitable for deep drawing or steel band known. The titanium content should, depending on the carbon, oxygen, Sulfur and nitrogen, can rise to values up to 0.15%, the reel temperature over 700 degrees Celsius or at least 580 degrees Celsius with subsequent hot strip heating to over 700 degrees Celsius. Furthermore, a cold rolling degree of 70 - 85% and a continuous annealing at 700 - 900 Degrees Celsius with a maximum of two minutes holding time recommended. Notes on the formation of corners of the material are not given.

Die US-PS 4 125 416 offenbart u.a. ein Verfahren bei dem warmeingesetzte Brammen mit Temperaturen oberhalb 830 °C aus legiertem Stahl, der 0,06-0,20 % C, 0,5-2,0 % Mn, 0,30-0,50 % Si sowie Nb und Ti in Mengen von 0,01-0,10% enthalten kann, auf Temperaturen oberhalb 980 ° C erwärmt, dann zu Warmband gewalzt und bei 450-650 ° C gehaspelt wird.
Für die Erzeugung hochfesten Kaltbandes aus diesem Warmband sind C-Gehalte von 0,10-0,11 %, ein Ti-Gehalt von 0,1 % und ein Nb-Gehalt von 0,04 % angegeben. Bei 67 % Umformgrad wird ein hochfestes Kaltband mit einer Streckgrenze größer als 48,1 kg/mm2 erzeugt, daß anschließend im Bund oder in einer Durchlaufglühe rekristallisierend geglüht wird.
US Pat. No. 4,125,416 discloses, inter alia, a method in which hot-rolled slabs at temperatures above 830 ° C. made of alloy steel, which 0.06-0.20% C, 0.5-2.0% Mn, 0.30- May contain 0.50% Si as well as Nb and Ti in quantities of 0.01-0.10%, heated to temperatures above 980 ° C, then rolled into hot strip and coiled at 450-650 ° C.
C contents of 0.10-0.11%, a Ti content of 0.1% and an Nb content of 0.04% are specified for the production of high-strength cold strip from this hot strip. At 67% degree of deformation, a high-strength cold strip with a yield strength greater than 48.1 kg / mm 2 is produced, which is then recrystallized annealed in a bundle or in a continuous anneal.

Aus der EP-A1-101 740 wird für einen gattungsgemäßen kaltgewalzten Stahl eine Brammenerwärmungstemperatur kleiner als 1100 Grad Celsius, eine Walzendtemperatur von unter Ar3, Haspeltemperaturen von 320 - 600 Grad Celsius und Kaltwalzgrade von 50 - 95 % sowie rekristallisierendes Durchlaufglühen empfohlen. Dabei soll ein Stahl mit maximal 0,005 % Kohlenstoff, maximal 0,004 % Stickstoff und maximal 0,02 % Niob in Kombination mit einem oder mehreren der Elemente Aluminium, Chrom, Bor oder Wolfram Verwendung finden. Erzielt werden hohe mittlere r-Werte oberhalb 1,2. Hinweise auf die Zipfligkeit des Materials nach dem Tiefziehen sind nicht offenbart.EP-A1-101 740 recommends a slab heating temperature of less than 1100 degrees Celsius, a final roll temperature of less than Ar 3 , reel temperatures of 320-600 degrees Celsius and cold rolling degrees of 50-95% and recrystallizing continuous annealing for a generic cold-rolled steel. A steel with a maximum of 0.005% carbon, a maximum of 0.004% nitrogen and a maximum of 0.02% niobium is to be used in combination with one or more of the elements aluminum, chromium, boron or tungsten. High average r values above 1.2 are achieved. There are no indications that the material is rough after deep-drawing.

Ein weiteres Verfahren zur Herstellung tiefziehgeeigneter Stähle mit Brammenglühtemperatur kleiner 1100 Grad Celsius, Endwalztemperatur max. 780 Grad Celsius und Haspeltemperaturen von mindestens 450 Grad Celsius sowie Kaltbandglühen im Hauben- oder Durchlaufglühofen sind in der EP-B1-120 976 offenbart. Das Verfahren soll r-Werte um 2 erzielen; Werte für die Zipfelbildung sind nicht offenbart.Another method for producing deep-drawing steels with a slab annealing temperature lower 1100 degrees Celsius, final rolling temperature max. 780 degrees Celsius and reel temperatures of at least 450 degrees Celsius and cold strip annealing in the hood or continuous annealing furnace are in EP-B1-120 976 disclosed. The method should achieve r values around 2; Values for tip formation are not disclosed.

Es ist allgemein bekannt, daß Warmband eine gute quasiisotrope Umformbarkeit besitzt, jedoch eine nicht ausreichende Oberflächengüte und zu große Toleranzen aufweist und zudem nicht in Dicken unter 1,2 mm hergestellt wird. It is generally known that hot strip has good quasi-isotropic formability, but one insufficient surface quality and tolerances, and also not in thicknesses below 1.2 mm is produced.

Von daher liegt der Erfindung die Aufgabe zugrunde, ein zipfelfreies oder zumindest zipfelarmes tiefziehgeeignetes Blech aus Stahlband und ein entsprechendes Herstellverfahren vorzuschlagen, bei dem auf das Durchlaufglühen bei Temperaturen oberhalb A1 verzichtet, aber trotzdem kostengünstig produziert werden kann.The invention is therefore based on the object of proposing a sheet-free steel sheet which is suitable for deep drawing or at least poor in drawing and a corresponding production process in which continuous annealing at temperatures above A 1 is dispensed with, but can nevertheless be produced inexpensively.

Die Aufgabe wird erfindungsgemäß durch die Ansprüche 1, 3 und 5 gelöst.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen erfaßt.
The object is achieved by claims 1, 3 and 5.
Advantageous developments of the invention are covered in the subclaims.

Überraschenderweise hat sich gezeigt, daß bei Anwendung der erfindungsgemäßen Brammen-, Glüh-, Walz- und Haspeltemperaturen für den genannten Stahl ein rekristallisierendes Glühen eines Bundes im Haubenofen ausreicht, um dem Stahlband oder dem konfektionierten Stahlblech hervorragende Tiefzieheigenschaften, insbesondere eine extreme Zipfelarmut, zu geben.Surprisingly, it has been shown that when using the slab, annealing, Rolling and coiling temperatures for the steel mentioned a recrystallizing annealing of a coil in the Hood furnace is sufficient to give the steel strip or the assembled steel sheet excellent deep-drawing properties, in particular extreme extreme poverty.

Die üblicherweise beim Stand der Technik für den Stahl St 4 NZ oder RSt 14 durch Normalglühen erreichten Werte der Korngröße von bestenfalls ASTM 8 entsprechend 490 µm2 können durch das erfindungsgemäße Verfahren durch rekristallisierendes Glühen unterschritten werden, wobei zusätzlich niedrige Streckgrenzenwerte beibehalten werden können durch Wahl entsprechender Kaltwalzgrade in Abhängigkeit vom Titangehalt. Dies ergibt den Vorteil, daß auf hohe Investitionen für eine Durchlaufglühe für eine Normalglühbehandlung verzichtet werden kann.The grain size values of at best ASTM 8 corresponding to 490 µm 2 , which are usually achieved in the state of the art for steel St 4 NZ or RSt 14 by normal annealing, can be undercut by recrystallizing annealing using the process according to the invention, with additional low yield strength values being able to be maintained by selecting appropriate ones Cold rolling degrees depending on the titanium content. This has the advantage that high investments for a continuous annealing for a normal annealing treatment can be dispensed with.

Durch Variation der Zulegierung von Titan in den angegebenen Grenzen läßt sich praktisch jeder gewünschte Kaltwalzgrad für die Erzeugung zipfelfreien Materials einstellen.By varying the addition of titanium within the specified limits, practically everyone can be Set the desired degree of cold rolling for the production of material free of corners.

Eine der Ursachen für die günstigen Eigenschaften des erzeugten Bleches ist in der frühzeitigen Bildung von Titannitrid zu sehen, so daß ein pan-cake-Gefüge während des rekristallisierenden Glühens durch die Aluminium-Nitrid-Ausscheidungen nicht entstehen kann.One of the reasons for the favorable properties of the sheet produced is early Formation of titanium nitride can be seen, causing a pan-cake structure during recrystallizing annealing through which aluminum nitride precipitates cannot arise.

Durch die Wahl niedriger Haspeltemperaturen um 520 Grad Celsius wurden überraschend Warmbandqualitäten erzielt, die nach dem Kaltwalzen ein zipfelfreies Material gewährleisteten und eine zusätzliche Kornverfeinerung ermöglichten.The choice of low reel temperatures around 520 degrees Celsius surprisingly made hot strip qualities achieved, which ensured a tip-free material after cold rolling and an additional Grain refinement enabled.

Ein besonderer Vorteil des so hergestellten Warmbandes liegt darin, daß im Grundsatz keinerlei Restriktion hinsichtlich des anschließenden Kaltwalzens besteht, sofern der Kaltwalzgrad mindestens ca. 5 % beträgt, d.h. oberhalb der bekannten kritischen schwachen Kaltverformung bleibt, die beim Rekristallisationsglühen zu grobem Korn führt. Bisher war man bei der Erzeugung annähernd zipfelfreien Kaltbandes an bestimmte Kaltwalzgrade gebunden, sofern nicht normalgeglüht werden sollte.A particular advantage of the hot strip produced in this way is that, in principle, none There is a restriction regarding the subsequent cold rolling provided that the degree of cold rolling is at least approx. 5 %, i.e. remains above the known critical weak cold deformation that occurs during recrystallization annealing leads to coarse grain. So far, the production of almost strip-free cold strip was on certain degrees of cold rolling are bound, unless normal annealing is used.

Es wurde überraschend gefunden, daß zwar ein gewisser Titangehalt in der Stahllegierung unerlässlich ist, um das erfindungsgemäße Verfahren durchführen zu können und erfindungsgemäße Materialeingenschaften zu erzielen, aber diese Verfahrensparameter zumindest hinsichtlich des Kaltwalzgrades dann anzupassen sind, wenn der Stahllegierung das festigkeitssteigernde Element Niob hinzugefügt wird.It has surprisingly been found that a certain titanium content is essential in the steel alloy in order to be able to carry out the method according to the invention and material properties according to the invention to achieve, but then these process parameters at least with regard to the degree of cold rolling must be adjusted if the strength-increasing element niobium is added to the steel alloy.

Die Variation der Kaltwalzgrade in Abhängigkeit von der Menge des zulegierten Titans ist bei gleichzeitiger Zulegierung von Niob in den angegebenen Grenzen auf Kaltwalzgrade von 45 bis 85 % beschränkt.The variation of the cold rolling degrees depending on the amount of the alloyed titanium is at simultaneous addition of niobium within the specified limits to cold rolling degrees of 45 to 85% limited.

Die Zulegierung von Niob behindert nicht die frühzeitige Bildung von Titannitrid, so daß auch bei dieser erfindungsgemäßen Stahllegierung ein pan-cake-Gefüge während des rekristallisierenden Glühens nicht entstehen kann.The addition of niobium does not hinder the early formation of titanium nitride, so that this too Steel alloy according to the invention does not have a pan-cake structure during recrystallizing annealing can arise.

Eine gravierende technische und wirtschaftliche Bedeutung der Erfindung liegt in der Verwendung des Feinbleches für rotationssymmetrisch tiefgezogene Teile wie Nadellagerkäfige, Riemenscheibenhälften usw. Das erfindungsgemäße Blech kann in diesen Fällen ohne wesentliche Nacharbeit wie Abschneiden der Zipfel eingesetzt werden. Die Zipfelarmut verhindert beim Tiefziehen auch das Entstehen sektoraler Wandschwächungen, so daß die gezogenen Teile bei Rotation keine Unwucht aufweisen. Weitere Vorteile zipfelarmen oder zipfelfreien Kaltbandes sind bekannt, so daß sich eine weitere Beschreibung erübrigt.A serious technical and economic importance of the invention lies in the use of the Thin sheets for rotationally symmetrical deep-drawn parts such as needle bearing cages, pulley halves etc. The sheet metal according to the invention can in these cases without substantial rework such as cutting the Tip are used. The low-headedness also prevents the emergence of sectoral thermoforming Wall weaknesses, so that the drawn parts do not show any imbalance when rotating. Additional advantages Low-end or corner-free cold strip are known, so that a further description is unnecessary.

Einige Ausführungsbeispiele sollen das Ergebnis des erfindungsgemäßen Verfahrens verdeutlichen.Some exemplary embodiments are intended to clarify the result of the method according to the invention.

Aus den erfindungsgemäßen Schmelzen A - D sowie den Vergleichsschmelzen E - F (Tabelle 1) werden Brammen von 210 mm Dicke im Strang vergossen. Nach Erwärmung im Stoßofen auf 1250 Grad Celsius wurde die Bramme zu Warmband von 3 mm Dicke ausgewalzt, gehaspelt und auf Raumtemperatur abgekühlt. Die Walzendtemperaturen und Haspeltemperaturen zeigt Tabelle 2. Nach dem Beizen wurden Bänder durch Kaltwalzen in unterschiedlichen Stufen von 10 % bis zu 80 % auf Feinblechdicke reduziert und erneut gehaspelt. Das Bund wurde im Haubenglühofen der Bauart Fa. Ludwig auf 700 Grad Celsius erwärmt, mit einem Durchsatz von 1,1 t/h bis 1,9 t/h rekristallisierend geglüht und anschließend im Ofen auf 120 Grad Celsius abgekühlt. Nach dem Dressieren mit Umformgraden von 1 - 1,2 % wurde das Band zu Blechtafeln konfektioniert.
Blechronden von 90 bzw. 180 mm Durchmesser wurden mit Ziehstempeln von 50 bzw. 100 mm Durchmesser bei Haltekräften von 50 kN zu Näpfchen tiefgezogen.
From the melts A - D according to the invention and the comparative melts E - F (Table 1), slabs 210 mm thick are cast in the strand. After heating in the pusher furnace to 1250 degrees Celsius, the slab was rolled out into 3 mm thick hot strip, coiled and cooled to room temperature. The final roll temperatures and reel temperatures are shown in Table 2. After pickling, strips were reduced by cold rolling in various stages from 10% to 80% to thin sheet thickness and reeled. The coil was heated to 700 degrees Celsius in the Ludwig annealing furnace, recrystallized at a throughput of 1.1 t / h to 1.9 t / h and then cooled to 120 degrees Celsius in the furnace. After the tempering with degrees of deformation of 1 - 1.2%, the strip was made into sheet metal.
Sheet rounds of 90 or 180 mm in diameter were deep-drawn into cups using drawing dies of 50 or 100 mm in diameter and holding forces of 50 kN.

Figur 1 zeigt drei verschiedene Näpfchen, die die im folgenden verwendeten Begriffe zipfelig (Fig. 1a), zipfelarm (Fig. 1b) und zipfelfrei (Fig. 1c) definieren sollen, da die Messung der Zipfelhöhe mit den handelsüblichen Zipfelmeßgeräten, insbesondere von zipfelarmen und zipfelfreien Näpfchen mit geringen Höhendifferenzen bereits bei kleinsten Tiefziehgraten auf dem Näpfchenrand problematisch ist.
Diese Definition wurde für Figur 10 zur Darstellung der Zipfeligkeit von Näpfchen aus den verschiedenen Schmelzen übernommen. Bestätigt wurde die Erkenntnis, daß der bei 710 Grad Celsius gehaspelte Stahl E nur bei Kaltwalzgraden kleiner ca. 25 % zipfelfrei ist und im Bereich 30 - 50 % Kaltwalzgrad allenfalls als zipfelarm bezeichnet werden kann. Für den Vergleichsstahl F der gemäß Stand der Technik bei 500 Grad Celsius gehaspelt wurde, wurde Zipfeligkeit bei Kaltwalzgraden größer 30 % festgestellt.
Die Fotos in den Figuren 8 und 9 belegen dies eindrucksvoll.
Figure 1 shows three different cups, which are to define the terms used in the following, pointed (Fig. 1a), low-pointed (Fig. 1b) and free (Fig. 1c), since the measurement of the height with the commercially available corner measuring devices, in particular low-cornered and Tip-free wells with small height differences are problematic even with the smallest deep-drawn burrs on the edge of the well.
This definition was adopted for Figure 10 to represent the lobes of wells from the different melts. The finding was confirmed that the steel E coiled at 710 degrees Celsius is free of flakes only at cold rolling degrees of less than approx. 25% and can only be described as low in the range 30 - 50% of cold rolling. For the comparative steel F which was coiled at 500 degrees Celsius according to the state of the art, cornering was found at cold rolling degrees greater than 30%.
The photos in Figures 8 and 9 demonstrate this impressively.

Bei Verwendung der erfindungsgemäß gewalzten und geglühten Stähle A - D zeigten die Näpfchen in Abhängigkeit vom Titangehalt bei verschiedenen Kaltwalzgraden ein unterschiedliches Tiefziehergebnis:

  • Stahl A mit 0,01 % Ti:
    Die Näpfchen waren bei Kaltwalzgraden von Epsilon = 30 - 50 % absolut zipfelfrei, während Kaltwalzgrade von 20 % bzw. 60 % nur zipfelarmes Näpfchen-Ziehen ermöglichte.
  • Stahl B mit 0,02 % Ti:
    Zipfelfrei bei Epsilon = 10 % sowie 50 - 80 %
    Zipfelarm bei Epsilon = 20 %; 40 %
  • Stähle C1/C2 mit 0,03 % Ti, wobei C1 mit 500 Grad Celsius und C2 mit 450 Grad Celsius gehaspelt wurde:
    Zipfelfrei bei Epsilon = 10 - 20 % sowie 60 - 80 %
    Zipfelarm bei Epsilon = 30 %; 50 %
  • Stahl D mit 0,04 % Ti:
    Zipfelfrei bei Epsilon = 60 - 70 % bzw. 20 %
    Zipfelarm bei Epsilon = 15 %, 25 %; 55 %; 80 %
  • Aus dem Vergleich der Kurven für die Stähle A - D lassen sich Tendenzen ablesen, die für Zwischenwerte des Legierungselementes Titan beispielsweise 0,025 % Ti - ausgehend von Stahl B - zipfelfreies Näpfchen-ziehen bei Kaltwalzgraden bis 15 % oder 20 % und bis 85 % erwarten lassen, also eine Kurvenverschiebung nach rechts; bei Werten zwischen 0,01 % und 0,02 % umgekehrt eine Verschiebung der "zipfelfreien" Kaltwalzgrade zu niedrigeren Umformverhältnissen nahelegen.When using the steels A - D rolled and annealed according to the invention, the cells showed different deep-drawing results depending on the titanium content at different degrees of cold rolling:
  • Steel A with 0.01% Ti:
    The cups were absolutely spot-free at cold rolling grades of epsilon = 30 - 50%, while cold rolling grades of 20% or 60% only made it possible to pull the cups with little tips.
  • Steel B with 0.02% Ti:
    Point-free at Epsilon = 10% and 50 - 80%
    Tip arm at Epsilon = 20%; 40%
  • Steels C1 / C2 with 0.03% Ti, whereby C1 was coiled at 500 degrees Celsius and C2 at 450 degrees Celsius:
    Point-free at Epsilon = 10 - 20% and 60 - 80%
    Tip arm at Epsilon = 30%; 50%
  • Steel D with 0.04% Ti:
    Point-free at Epsilon = 60 - 70% or 20%
    Pointed arm at Epsilon = 15%, 25%; 55%; 80%
  • The comparison of the curves for steels A - D shows tendencies that can be expected for intermediate values of the alloying element titanium, for example 0.025% Ti - starting from steel B - cup-free drawing at cold rolling grades of up to 15% or 20% and up to 85% , ie a curve shift to the right; conversely, values between 0.01% and 0.02% suggest a shift of the "corner-free" cold rolling degrees to lower forming ratios.

    Die zu den Stählen gemäß Figur 10 und Tabelle 1 bzw. 2 korrespondierenden Fotos der Figuren 3 bis 7 von tiefgezogenen Näpfchen veranschaulichen das Ergebnis deutlich.The photos of FIGS. 3 to 7 corresponding to the steels according to FIG. 10 and Table 1 or 2 of deep-drawn cells clearly illustrate the result.

    Überraschend zeigte sich, daß den "zipfelfreien" Umformgraden jeweils ein bestimmtes Zugfestigkeits- und Streckgrenzenniveau zugeordnet werden konnte (Figur 11) und die größte Zipfeligkeit gleichzeitig bei der niedrigsten Streckgrenze/Zugfestigkeit festzustellen war.Surprisingly, it was found that the "tip-free" degrees of deformation each have a certain tensile strength and yield point level could be assigned (Figure 11) and the greatest lobes at the same time the lowest yield strength / tensile strength was found.

    Beispiel: Stahl BExample: Steel B

  • a) Zipfelfreiheit beim Kaltwalzgrad 10 % - 15 % ≙
  • Streckgrenzenniveau Rp0,2 = 400 - 350 N/mm2
  • Zugfestigkeitsniveau Rm = 450 - 400 N/mm2
  • b) Zipfeligkeit beim Kaltwalzgrad 30 % ≙
  • Rp0,2= 180 N/mm2 und Rm = 320 N/mm2
  • c) Zipfelfreiheit beim Kaltwalzgrad 50 - 80 % ≙
  • Rp0,2 = 250 - 280 N/mm2 und Rm = 360 - 370 N/mm2
  • Diese Erkenntnis ermöglicht eine bauteil- oder funktionsangepaßte Wahl der Festigkeit für ein und dasselbe Bauteil durch Änderung der Parameter Titangehalt und Kaltwalzgrad.
  • a) Point-free with cold rolling degree 10% - 15% ≙
  • Yield strength level R p0.2 = 400 - 350 N / mm 2
  • Tensile strength level R m = 450 - 400 N / mm 2
  • b) Pointedness at the degree of cold rolling 30% ≙
  • R p0.2 = 180 N / mm 2 and R m = 320 N / mm 2
  • c) Point-free with a cold rolling degree of 50 - 80% ≙
  • R p0.2 = 250 - 280 N / mm 2 and R m = 360 - 370 N / mm 2
  • This knowledge enables component or function-specific selection of the strength for one and the same component by changing the parameters titanium content and degree of cold rolling.

    Tabelle 2 zeigt korrespondierend zu Figur 12 die erfindungsgemäß erzielte Korngröße in ASTM-Einheiten; die erzielbare Kornverfeinerung gegenüber Stählen ohne Titanzusatz nach dem Stand der Technik ist erheblich und reicht bis ASTM 11.Corresponding to FIG. 12, Table 2 shows the grain size achieved according to the invention in ASTM units; the achievable grain refinement compared to steels without titanium addition according to the state of the Technology is significant and extends to ASTM 11.

    Das gröbste Korn wurde bei geringem Ti-Zusatz und geringem Kaltwalzgrad erzielt (ASTM 7). Vergleichsweise wurden bei den Stählen A - D die Warmband-Werte für die Korngröße (ASTM 9-10) in die Figur 12 aufgenommen.
    Für einen Stahl C (Varianten C3 - C5) wurden Versuche mit variabler Haspeltemperatur Th und Glühdurchsatz Pg durchgeführt (Tabelle 3). Während Schwankungen in der Durchsatzmenge des Haubenglühofens von 1,1 - 1,9 t/h sowohl die Korngröße als auch die ebene Anisotropie Delta r nicht negativ beeinflußten, hatte eine Erhöhung der Haspeltemperaturen auf 710 Grad Celsius bei annähernd gleichen Walzendtemperaturen eine Kornvergröberung und eine Verschlechterung der ebenen Anisotropie zur Folge.
    The coarsest grain was obtained with a small addition of Ti and a low degree of cold rolling (ASTM 7). For steel A-D, the hot strip values for the grain size (ASTM 9-10) were compared in FIG.
    For a steel C (variants C3 - C5) tests were carried out with variable coiling temperature Th and annealing throughput Pg (Table 3). While fluctuations in the throughput of the bell annealer from 1.1 - 1.9 t / h did not have a negative effect on the grain size or the level anisotropy Delta r, an increase in the reel temperature to 710 degrees Celsius with roughly the same end temperatures resulted in coarsening and deterioration the plane anisotropy.

    Die Figuren 2a, 2b, 2c zeigen entsprechende Ergebnisse an Näpfchen aus 180 mm-Ronden, die mit 100 mm-Stempeln bei 50 kN Rückhaltekraft tiefgezogen wurden.Figures 2a, 2b, 2c show corresponding results on wells made of 180 mm rounds, the with 100 mm stamps with 50 kN retention force were deep drawn.

    In Tabelle 1 sind auch die Schmelzanalysen des erfindungsgemäß bei dem Verfahren einzusetzenden Stahles G mit 0,01 % Titan, H mit 0,02 % Titan und I mit 0,03 % Titan bei 0,05 % bzw. 0,06 % Niobzugabe aufgelistet, dazu wurde ein Vergleichsstahl K mit 0,05 % Niobzugabe, aber ohne Titangehalt aufgeführt. Aus den erfindungsgemäßen Schmelzen G - I sowie der Vergleichsschmelze K wurden Brammen von 220 mm Dicke im Strang vergossen. Nach Erwärmung im Stoßofen auf 1250 Grad Celsius wurde die Bramme zu Warmband von 4 mm Dicke ausgewalzt und gehaspelt sowie auf Raumtemperatur abgekühlt. Die Walzendtemperatur betrug 880 Grad Celsius und die Haspeltemperatur 510 Grad Celsius. Nach dem Beizen wurden die Bänder durch Kaltwalzen in unterschiedlichen Stufen von 10 bis 80 % auf Feinblechdikke reduziert und erneut gehaspelt. Nach dem Haspeln wurde das festgewickelte Bund im Haubenglühofen der Bauart Fa. Ludwig auf 700 Grad Celsius erwärmt und bei Durchsatzraten von 1,1 Tonnen bzw. 1,8 Tonnen pro Stunde rekristallisierend geglüht, anschließend im Haubenglühofen auf 120 Grad Celsius abgekühlt. Nach dem Dressieren mit einem Umformgrad von 1,1 % wurde das Band zu Blechtafeln konfektioniert. Blechronden von 90 mm Durchmesser wurden mit Ziehstempeln von 50 mm Durchmesser zu Näpfchen tiefgezogen (Figuren 13 - 16).Table 1 also shows the melt analyzes of the process to be used according to the invention Steel G with 0.01% titanium, H with 0.02% titanium and I with 0.03% titanium with 0.05% and 0.06% niobium addition A comparative steel K with 0.05% niobium addition but without titanium content was listed. From the melts G - I according to the invention and the comparative melt K, slabs of 220 mm thickness cast in the strand. After heating in the pusher furnace to 1250 degrees Celsius, the slab was Rolled into 4 mm thick hot strip and coiled and cooled to room temperature. The The final roll temperature was 880 degrees Celsius and the reel temperature was 510 degrees Celsius. After this The strips were pickled by cold rolling in different stages from 10 to 80% on thin sheet thickness reduced and reeled. After coiling, the tightly wrapped coil was placed in the bell annealer of the Ludwig construction type heated to 700 degrees Celsius and with a throughput rate of 1.1 tons or 1.8 Annealed tons per hour recrystallizing, then in the bell annealing furnace to 120 degrees Celsius cooled. After tempering with a degree of deformation of 1.1%, the strip became sheet metal assembled. Sheet rounds of 90 mm in diameter were closed with drawing dies of 50 mm in diameter Cups deep-drawn (Figures 13 - 16).

    Für den Vergleichsstahl K, der in der Legierung kein Titan enthält, ansonsten zu der gattungsgemäßen Stahlsorte gehört, zeigt Fig. 16 deutlich, daß bei keinem der erprobten Kaltwalzgrade zipfelfreies Tiefziehen möglich war.For the comparative steel K, which contains no titanium in the alloy, otherwise to the generic one 16 clearly shows that none of the tried-and-tested degrees of cold rolling have tip-free deep drawing was possible.

    Bei Verwendung der erfindungsgemäß gewalzten und geglühten Stähle G bis I zeigten die Näpfchen in Abhängigkeit vom Titangehalt bei verschiedenen Kaltwalzgraden ein geringfügig unterschiedliches Tiefziehergebnis:

  • Stahl G mit 0,01 % Titan (Fig. 13):
    Die Näpfchen waren bei Kaltwalzgraden von Epsilon = 45 bis 85 % in der Kategorie zipfelarm und bei etwa 60 bis 80 % Kaltwalzgraden sogar zipfelfrei.
  • Stahl H mit 0,02 % Titan (Fig. 14):
    Zipfelarm im Bereich Epsilon = 55 bis 85 % fast zipfelfrei im Bereich von 60 bis 75 %.
  • Stahl I mit 0,03 % Titan (Fig. 15):
    Zipfelarm im Bereich von 60 bis 70 % Kaltwalzgraden.
  • When the steels G to I rolled and annealed according to the invention were used, the wells showed a slightly different deep-drawing result depending on the titanium content at different degrees of cold rolling:
  • Steel G with 0.01% titanium (Fig. 13):
    The cups were low in cold rolled grades of epsilon = 45 to 85% in the category "pointed" and even roughly 60 "to 80% cold rolled.
  • Steel H with 0.02% titanium (Fig. 14):
    Tip arm in the epsilon range = 55 to 85% almost tip-free in the range of 60 to 75%.
  • Steel I with 0.03% titanium (Fig. 15):
    Corner arm in the range of 60 to 70% cold rolling degrees.
  • Bei den erfindungsgemäß hergestellten Stählen konnten beispielsweise bei einem Titangehalt von 0,01 % am tiefziehfertigen Blech Streckgrenz- und Zugfestigkeitswerte festgestellt werden, die um mehr als 50 N/mm2 über den Kennwerten des nur titanlegierten Materials lagen.In the case of the steels produced according to the invention, for example, with a titanium content of 0.01% on the deep-drawn sheet, the yield strength and tensile strength values were found to be more than 50 N / mm 2 above the characteristic values of the only titanium-alloyed material.

    Die in Tabelle 1 aufgeführten erfindungsgemäßen Schmelzen L bzw. M mit Phosphorgehalten an der oberen Analysengrenze wurden behandelt wie die Stähle A - F. Die Haspeltemperatur betrug 510 bzw. 500 Grad Celsius. Bei einem Kaltwalzgrad von 66 % wurde die Konstanz der Ergebnisse über die gesamte Bandlänge geprüft, um die Effektivität des Bundglühens zu bestätigen. Die Näpfchen aus dem Tiefziehversuchen sind in Fig. 17 bzw. 18 dargestellt. Sie zeigen, daß zipfelfreies Material sowohl am Bandanfang (Position O) als auch nach jedem weiteren Viertel des Bandlänge bis zum Bandende (Position 1) erzeugt wurde.

    Figure 00050001
    Stahl Tw °C Th °C K min / max Figur A 860 490 10 / 7 3 B 870 500 11 / 9 4 C1 870 500 11 / 9 5 C2 880 450 11 / 9 6 D 890 430 11 / 9 7 E 900 710 9 / 4 8 F 890 500 9 / 6 9 Stahl Tw °C Th °C Pg t/h K Δr min /max Figur C3 880 520 1,1 9 - 10 -0,07/+0,06 2a C4 915 540 1,9 9 - 10 -0,04/+0,08 2b C5 870 710 1,9 8 - 9 +0,09/+0,17 2c In Tabelle 2 und 3 bedeuten

    Tw
    Walzendtemperatur
    Th
    Haspeltemperatur
    K
    Korngröße nach ASTM
    Pg
    Glühdurchsatz
    Δr
    ebene Anisotropie
    The melts L and M according to the invention listed in Table 1 with phosphorus contents at the upper analysis limit were treated like steels A - F. The reel temperature was 510 and 500 degrees Celsius, respectively. At a cold rolling degree of 66%, the consistency of the results was checked over the entire strip length in order to confirm the effectiveness of the annealing. The wells from the deep-drawing test are shown in FIGS. 17 and 18, respectively. They show that tip-free material was produced both at the beginning of the tape (position O) and after every further quarter of the length of the tape up to the end of the tape (position 1).
    Figure 00050001
    steel Tw ° C Th ° C K min / max figure A 860 490 10/7 3 B 870 500 11/9 4 C1 870 500 11/9 5 C2 880 450 11/9 6 D 890 430 11/9 7 e 900 710 9/4 8th F 890 500 9/6 9 steel Tw ° C Th ° C Pg t / h K Δr min / max figure C3 880 520 1.1 9-10 -0.07 / + 0.06 2a C4 915 540 1.9 9-10 -0.04 / + 0.08 2 B C5 870 710 1.9 8 - 9 + 0.09 / + 0.17 2c In tables 2 and 3 mean
    tw
    rolling temperature
    th
    coiling temperature
    K
    Grain size according to ASTM
    Pg
    Glühdurchsatz
    .delta..sub.R
    flat anisotropy

    Claims (7)

    1. Method of producing a cold-rolled sheet or strip from steel, having good quasi-isotropic deformability and having the following composition in percentages by weight:
      0.03 - 0.08 % carbon
      max. 0.40 % silicon
      0.10 to 1.0 % manganese
      max. 0.08 % phosphorus
      max. 0.02 % sulphur
      max. 0.009 % nitrogen
      0.015 to 0.08 % aluminium
      0.01 to 0.04 % titanium
      max. 0.15 % of one or more of the elements from the group copper, vanadium, nickel, remainder: iron and inevitable impurities,
      wherein the titanium content corresponds to at least 3.5 times the nitrogen content and wherein the slab is heated to above 1120 degrees Celsius, rolled out to form a hot strip at a final rolling temperature above the Ar3 point, wound on a reel at 520 ± 100 degrees Celsius and annealed in a recrystallising manner in the coil after the cold-rolling process.
    2. Method of producing a cold-rolled sheet or strip according to claim 1, characterised in that it is cold-rolled in dependence on the titanium content with the following degrees of deformation (epsilon): approx. 0.01 % titanium epsilon 20 - 60 %, preferably 30 - 50 % approx. 0.02 % titanium epsilon 5 - 20 %, preferably 10 - 15 % or epsilon 40 - 85 %, preferably 50 - 80 % approx. 0.03 % titanium epsilon 5 - 25 %, preferably 10 - 20 % or epsilon 50 - 85 %, preferably 60 - 80 % approx. 0.04 % titanium epsilon 15 -25 %, preferably 20 % or epsilon 55 - 80 %, preferably 60 - 70 %
      and subsequently annealed in a recrystallising manner at temperatures below A1 and thereafter finished with a degree of deformation of approx. 1 %.
    3. Method of producing a cold-rolled sheet or strip from steel, having good quasi-isotropic deformability and having the following composition in percentages by weight:
      0.03 - 0.08 % carbon
      max. 0.40 % silicon
      0.10 to 1.0 % manganese
      max. 0.08 % phosphorus
      max 0.02 % sulphur
      max. 0.009 % nitrogen
      0.015 to 0.08 % aluminium
      0.01 to 0.04 % titanium
      max. 0.15 % of one or more of the elements from the group copper, vanadium, nickel
      0.01 to 0.06 % niobium
      remainder: iron and inevitable impurities,
      wherein the titanium content corresponds to at least 3.5 times the nitrogen content and wherein the slab is heated to above 1120 degrees Celsius, rolled out to form a hot strip at a final rolling temperature above the Ar3 point and wound on a reel at 520 ± 100 degrees Celsius, then it is cold-rolled in dependence on the titanium content with the following degrees of deformation (epsilon): approx. 0.01 % titanium epsilon 45 to 85 %, approx. 0.02 % titanium epsilon 55 to 85 %, approx. 0.03 % titanium epsilon 60 to 70 %,
      and subsequently annealed in a recrystallising manner at temperatures below A1 in the coil and thereafter finished with a degree of deformation of approx. 1 %.
    4. Method according to one of claims 1 to 3, characterised in that the steel is annealed in the fixed coil after the cold-rolling process.
    5. Sheet or strip, formed from steel in the above-mentioned composition, which is suitable for deep-drawing and is produced according to a method mentioned in claims 1 to 4, characterised by a recrystallised structure having a ferrite particle size finer than ASTM 7 for a titanium content of 0.01 % and finer than ASTM 9 for titanium contents of 0.015 to 0.04 % and by a titanium content which corresponds to at least 3.5 times the nitrogen content.
    6. Use of a sheet or strip, which has been produced according to one of the methods according to claims 1 to 4, for the low-peak deep-drawing of, preferably, rotationally symmetrical parts.
    7. Use of a steel according to claim 1 or 3 for the production of deep-drawn, preferably rotationally symmetrical parts.
    EP89901844A 1988-01-29 1989-01-27 Cold-rolled sheet or strip and process for manufacturing them Expired - Lifetime EP0400031B2 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    AT89901844T ATE97169T1 (en) 1988-01-29 1989-01-27 COLD ROLLED SHEET OR STRIP AND PROCESS FOR ITS PRODUCTION.

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE3803064A DE3803064C2 (en) 1988-01-29 1988-01-29 Cold rolled sheet or strip and process for its manufacture
    DE3803064 1988-01-29
    DE3843732A DE3843732C2 (en) 1988-01-29 1988-12-22 Cold rolled sheet or strip and process for its manufacture
    DE3843732 1988-12-22
    PCT/DE1989/000057 WO1989007158A1 (en) 1988-01-29 1989-01-27 Cold-rolled sheet or strip and process for manufacturing them

    Publications (3)

    Publication Number Publication Date
    EP0400031A1 EP0400031A1 (en) 1990-12-05
    EP0400031B1 EP0400031B1 (en) 1993-11-10
    EP0400031B2 true EP0400031B2 (en) 2002-01-02

    Family

    ID=25864488

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP89901844A Expired - Lifetime EP0400031B2 (en) 1988-01-29 1989-01-27 Cold-rolled sheet or strip and process for manufacturing them

    Country Status (8)

    Country Link
    US (1) US5139580A (en)
    EP (1) EP0400031B2 (en)
    JP (1) JPH0814003B2 (en)
    DD (1) DD285298B5 (en)
    DE (3) DE3803064C2 (en)
    ES (1) ES2018975A6 (en)
    GR (1) GR1000537B (en)
    WO (1) WO1989007158A1 (en)

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE59009505D1 (en) * 1989-05-09 1995-09-14 Preussag Stahl Ag METHOD FOR PRODUCING COILBREAK-FREE HOT RIBBON AND AGING-RESISTANT FIRE-GALVANIZED COLD RIBBON.
    DE4015249A1 (en) * 1989-05-09 1991-02-28 Salzgitter Peine Stahlwerke Mfg. coil-break-free hot rolled strip
    US5686194A (en) * 1994-02-07 1997-11-11 Toyo Kohan Co., Ltd. Resin film laminated steel for can by dry forming
    US5556485A (en) * 1994-11-07 1996-09-17 Bethlehem Steel Corporation Bake hardenable vanadium containing steel and method of making thereof
    DE19543804B4 (en) * 1995-11-24 2004-02-05 Salzgitter Ag Process for producing hot-dip galvanized steel strip and hot-dip galvanized sheet or strip made of steel made therewith
    DE19547181C1 (en) * 1995-12-16 1996-10-10 Krupp Ag Hoesch Krupp Mfg. cold-rolled, high strength steel strip with good shapability
    US5656102A (en) * 1996-02-27 1997-08-12 Bethlehem Steel Corporation Bake hardenable vanadium containing steel and method thereof
    DE19622164C1 (en) * 1996-06-01 1997-05-07 Thyssen Stahl Ag Cold rolled steel sheet with good drawing properties
    BE1011066A3 (en) * 1997-03-27 1999-04-06 Cockerill Rech & Dev Niobium steel and method for manufacturing flat products from it.
    DE19736509A1 (en) * 1997-08-22 1999-04-22 Krupp Ag Hoesch Krupp Titanium-alloyed, isotropic, earing-free, cold rolled strip steel is produced
    DE19834361A1 (en) * 1998-07-30 2000-02-03 Schaeffler Waelzlager Ohg Precision deep-drawn case-hardened component, especially a roller bearing and motor component e.g. a needle bearing, sleeve or bush, is made from a cold rolled strip of steel with specified titanium, nitrogen and low aluminum contents
    DE19840788C2 (en) * 1998-09-08 2000-10-05 Thyssenkrupp Stahl Ag Process for producing cold-rolled strips or sheets
    MXPA01006761A (en) * 1998-12-30 2003-05-15 Mije Rob V D Steel band with good forming properties and method for producing same.
    DE10020118B4 (en) * 2000-04-22 2009-11-12 Schaeffler Kg Method for verifying sealability of selected exhaust valve of selected cylinder in internal combustion engine in motor vehicle, involves concluding sealability of valve based on measured values of lambda sensor in one of exhaust gas strands
    DE10055338C1 (en) * 2000-11-08 2002-03-07 Thyssenkrupp Stahl Ag Production of cold strip comprises hot rolling pre-material produced from steel, cold rolling hot strip to form cold strip, annealing at temperature which is lower than recrystallization temperature, cold deforming, and further annealing
    DE10102932C1 (en) 2001-01-23 2002-08-22 Salzgitter Ag Process for producing a cold-rolled steel strip or sheet and strip or sheet which can be produced by the process
    KR20060028909A (en) * 2004-09-30 2006-04-04 주식회사 포스코 High strength cold rolled steel sheet excellent in shape freezability,and manufacturing method thereof
    DE102012211458B3 (en) * 2012-07-03 2013-11-21 Schaeffler Technologies AG & Co. KG Lid with oil storage functionality for a housing of an electrohydraulic valve train of an internal combustion engine
    WO2023135550A1 (en) 2022-01-13 2023-07-20 Tata Steel Limited Cold rolled low carbon microalloyed steel and method of manufacturing thereof

    Family Cites Families (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    NL6901060A (en) * 1969-01-22 1970-07-24 Koninklijke Hoogovens En Staal
    JPS5241209B1 (en) * 1970-12-19 1977-10-17
    US3947293A (en) * 1972-01-31 1976-03-30 Nippon Steel Corporation Method for producing high-strength cold rolled steel sheet
    US3814636A (en) * 1972-03-02 1974-06-04 Steel Corp Method for production of low carbon steel with high drawability and retarded aging characteristics
    US3897280A (en) * 1972-12-23 1975-07-29 Nippon Steel Corp Method for manufacturing a steel sheet and product obtained thereby
    JPS5333919A (en) * 1976-09-10 1978-03-30 Nippon Steel Corp Production of cold rolled aluminum killed steel sheet with excellent deep drawability
    JPS582249B2 (en) * 1977-05-07 1983-01-14 新日本製鐵株式会社 Continuous annealing method for cold rolled steel sheets for press forming
    JPS5529128A (en) * 1978-08-23 1980-03-01 Mitsui Mining & Smelting Co Method of surface treating printed circuit copper foil
    JPS57104627A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of cold rolled soft steel plate with superior press formability by continuous annealing
    JPS57169022A (en) * 1981-04-11 1982-10-18 Sumitomo Metal Ind Ltd Production of cold rolled mild steel plate by continuous annealing
    JPS5867827A (en) * 1981-09-18 1983-04-22 Nippon Steel Corp Preparation of cold rolled steel plate for deep drawing
    JPS6045689B2 (en) * 1982-02-19 1985-10-11 川崎製鉄株式会社 Method for manufacturing cold rolled steel sheet with excellent press formability
    JPS5967322A (en) * 1982-10-08 1984-04-17 Kawasaki Steel Corp Manufacture of cold rolled steel plate for deep drawing
    JPS5967321A (en) * 1982-10-08 1984-04-17 Kawasaki Steel Corp Manufacture of cold rolled steel plate for press forming
    JPS5989727A (en) * 1982-11-12 1984-05-24 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for extremely deep drawing with superior press formability
    CA1259827A (en) * 1984-07-17 1989-09-26 Mitsumasa Kurosawa Cold-rolled steel sheets and a method of manufacturing the same
    JPS62287018A (en) * 1986-06-06 1987-12-12 Nippon Steel Corp Production of high-strength cold rolled steel sheet having excellent deep drawability
    US4889566A (en) * 1987-06-18 1989-12-26 Kawasaki Steel Corporation Method for producing cold rolled steel sheets having improved spot weldability

    Also Published As

    Publication number Publication date
    DE3843732C2 (en) 2001-05-10
    DE3803064C2 (en) 1995-04-20
    DE3843732A1 (en) 1990-07-05
    DE58906176D1 (en) 1993-12-16
    JPH0814003B2 (en) 1996-02-14
    DD285298B5 (en) 1999-01-28
    ES2018975A6 (en) 1991-05-16
    DD285298A5 (en) 1990-12-12
    EP0400031A1 (en) 1990-12-05
    DE3803064C1 (en) 1989-04-06
    US5139580A (en) 1992-08-18
    JPH03503185A (en) 1991-07-18
    GR1000537B (en) 1992-08-25
    EP0400031B1 (en) 1993-11-10
    WO1989007158A1 (en) 1989-08-10

    Similar Documents

    Publication Publication Date Title
    EP0400031B2 (en) Cold-rolled sheet or strip and process for manufacturing them
    DE3312257C2 (en)
    DE69329236T2 (en) COLD ROLLED STEEL SHEET WITH GOOD BURNING TEMPERATURE, WITHOUT COLD AGING AND EXCELLENT PORNABILITY, DIVER-COATED COLD ROLLED STEEL SHEET AND THEIR PRODUCTION PROCESS
    DE69221597T2 (en) High-strength hot-rolled steel sheet with a low yield ratio and process for its production
    DE3323255C2 (en)
    DE2324788C2 (en) Process for the manufacture of a non-aging, low-carbon deep-drawing steel
    DE69518451T2 (en) Process for the production of age-resistant, easily deformable steel sheets for the manufacture of cans
    DE69021471T2 (en) Cold-rolled deep-drawn sheet steel and process for its production.
    DE3126386C3 (en)
    EP2840159B1 (en) Method for producing a steel component
    DE69618263T2 (en) Cold rolled steel sheet with excellent press formability and manufacturing process
    DE69130555T2 (en) High-strength steel sheet for forming by pressing and processes for producing these sheets
    DE3045761C2 (en) A method for producing a high strength cold rolled steel strip excellent in press formability
    DE10023312C1 (en) Galvannealed sheet and method of making such sheet
    DE2942338C2 (en)
    DE3221840C2 (en)
    DE3024303C2 (en)
    DE69806312T2 (en) Process for the production of a thin strip of steel with a very low carbon content for the production of deep-drawn products for packaging and thus produced thin strip
    DE69708224T3 (en) STEEL PLATE WITH EXCELLENT FORMABILITY, FURTHER PROCESSING RESISTANCE AND RUST RESISTANCE FOR SECONDARY BATTERY HOUSING
    DE2211324A1 (en) Low alloy steel
    DE68917116T3 (en) Process for the production of steel sheet with excellent deep drawability.
    EP3719147A1 (en) Hot-rolled flat steel product and method for its production
    DE69117876T3 (en) Cold rolled steel strip with excellent press formability and manufacturing process
    DE69416973T2 (en) Process for producing cold-rolled steel sheets with low planar anisotropy and good processability for the manufacture of cans
    DE69012073T2 (en) High strength cold rolled steel sheet, either hot dip galvanized or not, with improved draw flare properties and manufacturing processes.

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19900528

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: PREUSSAG STAHL AKTIENGESELLSCHAFT

    17Q First examination report despatched

    Effective date: 19921119

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

    REF Corresponds to:

    Ref document number: 97169

    Country of ref document: AT

    Date of ref document: 19931115

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 58906176

    Country of ref document: DE

    Date of ref document: 19931216

    EPTA Lu: last paid annual fee
    ITF It: translation for a ep patent filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19940217

    ET Fr: translation filed
    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    26 Opposition filed

    Opponent name: KRUPP HOESCH STAHL AG

    Effective date: 19940806

    Opponent name: THYSSEN STAHL AG

    Effective date: 19940805

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: KRUPP HOESCH STHAL AG

    Opponent name: THYSSEN STAHL AG

    EAL Se: european patent in force in sweden

    Ref document number: 89901844.4

    PLBO Opposition rejected

    Free format text: ORIGINAL CODE: EPIDOS REJO

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    APAA Appeal reference recorded

    Free format text: ORIGINAL CODE: EPIDOS REFN

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: SALZGITTER AG

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: SALZGITTER AG

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20010124

    Year of fee payment: 13

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    27A Patent maintained in amended form

    Effective date: 20020102

    AK Designated contracting states

    Kind code of ref document: B2

    Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020131

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020131

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

    NLR2 Nl: decision of opposition
    GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
    ET3 Fr: translation filed ** decision concerning opposition
    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20060112

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20060113

    Year of fee payment: 18

    Ref country code: NL

    Payment date: 20060113

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20060118

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20060120

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20060207

    Year of fee payment: 18

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070128

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070127

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20070801

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070127

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070127

    BERE Be: lapsed

    Owner name: *SALZGITTER A.G.

    Effective date: 20070131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070131

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070626

    Year of fee payment: 19

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070801

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080122

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080111

    Year of fee payment: 20

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080127

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070127