EP0400031B1 - Cold-rolled sheet or strip and process for manufacturing them - Google Patents

Cold-rolled sheet or strip and process for manufacturing them Download PDF

Info

Publication number
EP0400031B1
EP0400031B1 EP89901844A EP89901844A EP0400031B1 EP 0400031 B1 EP0400031 B1 EP 0400031B1 EP 89901844 A EP89901844 A EP 89901844A EP 89901844 A EP89901844 A EP 89901844A EP 0400031 B1 EP0400031 B1 EP 0400031B1
Authority
EP
European Patent Office
Prior art keywords
titanium
epsilon
strip
cold
approx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89901844A
Other languages
German (de)
French (fr)
Other versions
EP0400031B2 (en
EP0400031A1 (en
Inventor
Klaus Freier
Walter Zimnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter AG
Original Assignee
Preussag Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25864488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0400031(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Preussag Stahl AG filed Critical Preussag Stahl AG
Priority to AT89901844T priority Critical patent/ATE97169T1/en
Publication of EP0400031A1 publication Critical patent/EP0400031A1/en
Application granted granted Critical
Publication of EP0400031B1 publication Critical patent/EP0400031B1/en
Publication of EP0400031B2 publication Critical patent/EP0400031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing

Definitions

  • the invention relates to a method for producing a Sheets or strips as well as a sheet suitable for deep drawing or tape according to the preambles of claims 1 and 5.
  • the value for the plane anisotropy is calculated from the Anisotropy r for different expansion behavior of the Material in the rolling direction as well as under 45 degrees and 90 degrees. Different are for different deep-drawing properties r values adjustable.
  • Tip-free material only by normalizing the cold-rolled Band in a continuous annealing at about 1000 degrees Celsius reach, the sheet in the final state a grain size ASTM 8 with a relative tip height of approx. 0.3 to 0.4% and delta r reach approx. ⁇ 0.1.
  • DE-OS 32 34 574 is a generic for deep drawing suitable cold-rolled steel sheet or steel strip is known.
  • the Titanium content should, depending on the carbon content, Oxygen, sulfur and nitrogen, to values up to 0.15% can, the reel temperature over 700 degrees Celsius or at least 580 degrees Celsius with subsequent Hot strip heating to over 700 degrees Celsius.
  • US Pat. No. 4,125,416 discloses, inter alia, a process in which hot-rolled slabs at temperatures above 830 ° C. made of alloy steel, which 0.06-0.20% C, 0.5-2.0% Mn, 0.30- May contain 0.50% Si as well as Nb and Ti in quantities of 0.01-0.10%, heated to temperatures above 980 ° C, then rolled into hot strip and coiled at 450-650 ° C. C contents of 0.10-0.11%, a Ti content of 0.1% and an Nb content of 0.04% are specified for the production of high-strength cold strip from this hot strip. With a degree of deformation of 67%, a high-strength cold strip with a yield strength greater than 48.1 kg / mm2 is produced, which is then recrystallized in the coil or in a continuous annealing.
  • hot strip is a good quasi-isotropic Formability has, but not sufficient Surface quality and too large tolerances and also not is produced in thicknesses below 1.2 mm.
  • the invention is therefore based on the object Corner-free or at least low-corner deep-drawn sheet from steel strip and a corresponding manufacturing process to propose in the case of continuous annealing at temperatures dispensed above A1, but still produced inexpensively can be.
  • a particular advantage of the hot strip produced in this way is in that in principle no restriction with regard to the subsequent cold rolling, provided the degree of cold rolling is at least about 5%, i.e. above the known critical weak cold deformation that remains at Recrystallization annealing leads to coarse grain. So far you were in the production of approximately strip-free cold strip to certain Cold rolling grades bound, unless normal annealing should be carried out.
  • niobium does not hinder early education of titanium nitride, so that even in this invention Steel alloy a pan-cake structure during the recrystallizing glow cannot arise.
  • a serious technical and economic importance of the Invention lies in the use of sheet metal for rotationally symmetrical deep-drawn parts such as needle bearing cages, Pulley halves, etc.
  • the sheet according to the invention can in these cases without substantial rework such as cutting off the Tip are used.
  • the point poorness prevents Thermoforming also creates sectoral wall weaknesses, so that the drawn parts are unbalanced when rotating.
  • Other advantages of low-corner or corner-free cold strip are known, so that a further description is unnecessary.
  • Some embodiments are the result of Clarify the inventive method.
  • Figure 1 shows three different wells, which are to define the terms used in the following, pointed (Fig. 1a), low-pointed (Fig. 1b) and free (Fig. 1c), since the measurement of the height of the corners with the conventional corner measuring devices, in particular of corner-poor and Tip-free wells with small height differences are problematic even with the smallest deep-drawing burrs on the edge of the well.
  • This definition was adopted for Figure 10 to represent the lobes of wells from the different melts.
  • the finding was confirmed that the steel E coiled at 710 degrees Celsius is free of flakes only at cold rolling degrees of less than approx. 25% and in the range of 30 - 50% cold rolling degrees can at best be described as flake-free.
  • the photos in Figures 8 and 9 demonstrate this impressively.
  • the cells showed a different deep-drawing result depending on the titanium content at different degrees of cold rolling:
  • Table 2 shows the invention achieved grain size in ASTM units; the achievable Grain refinement compared to steels without titanium addition after The state of the art is considerable and extends to ASTM 11.
  • the coarsest grain was obtained with a small addition of Ti and a low degree of cold rolling (ASTM 7).
  • ASTM 9-10 the hot strip values for the grain size (ASTM 9-10) were included in FIG. 12 for steels AD.
  • Figures 2a, 2b, 2c show corresponding results Cups made of 180 mm rounds with 100 mm stamps at 50 kN Retention force were deep drawn.
  • Table 1 also lists the melt analyzes of the steel G with 0.01% titanium, H with 0.02% titanium and I with 0.03% titanium with 0.05% and 0.06% addition of niobium in the process , a comparative steel K with 0.05% niobium addition, but without titanium content was listed.
  • Slabs 220 mm thick were cast in the strand from the melts G - I according to the invention and the comparative melt K. After heating in the pusher furnace to 1250 degrees Celsius, the slab was rolled out into 4 mm thick hot strip and coiled and cooled to room temperature. The final roll temperature was 880 degrees Celsius and the reel temperature was 510 degrees Celsius. After pickling, the strips were reduced by cold rolling in various stages from 10 to 80% to sheet thickness and reeled.
  • the tightly wound coil was heated to 700 degrees Celsius in the Ludwig annealing furnace and recrystallized annealing at throughput rates of 1.1 tons or 1.8 tons per hour, then cooled to 120 degrees Celsius in the annealing furnace. After tempering with a degree of deformation of 1.1%, the strip was made into sheet metal. Sheet blanks 90 mm in diameter were deep-drawn into cups using drawing dies of 50 mm in diameter (FIGS. 13-16).
  • the melts L and M according to the invention listed in Table 1 with phosphorus contents at the upper analysis limit were treated like steels A - F.
  • the reel temperature was 510 and 500 degrees Celsius, respectively.
  • the consistency of the results was checked over the entire strip length in order to confirm the effectiveness of the annealing.
  • the wells from the deep-drawing test are shown in FIGS. 17 and 18, respectively. They show that tip-free material was produced both at the beginning of the tape (position O) and after every further quarter of the tape length to the end of the tape (position 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bleches oder Bandes sowie ein zum Tiefziehen geeignetes Blech oder Band gemaß den Oberbegriffen der Ansprüche 1 und 5. The invention relates to a method for producing a Sheets or strips as well as a sheet suitable for deep drawing or tape according to the preambles of claims 1 and 5.

Zum Tiefziehen von rotationssymmetrischen Stahlteilen wird möglichst texturfreies kaltgewalztes Band oder Blech eingesetzt, damit ein quasiisotropes Umformen möglich und das gezogene Teil zipfelfrei ist. Damit ist gemeint, daß ein z. B. zylindrisch tiefgezogenes Teil keinen welligen Rand aufweist. For deep drawing of rotationally symmetrical steel parts cold-rolled strip or sheet as free of texture as possible, quasi-isotropic forming is possible and the drawn part is flawless. This means that a z. B. cylindrical deep-drawn part has no wavy edge.

Eine vollkommene Zipfelfreiheit ist nur von isotropem Material ohne Seigerungen, ohne nichtmetallische Einschlüsse, ohne perlschnurartige Zementitausscheidungen und bei pan-cake-freiem Gefüge zu erwarten. Daher wird in der folgenden Beschreibung nur der Begriff "zipfelarmes" auch für nach dem Stand der Technik "zipfelfreies" Band verwendet. Complete tip freedom is only of isotropic material without segregations, without non-metallic inclusions, without pearl cord-like cementite precipitates and pan-cake-free Expected structure. Therefore, the following description only the term "low-tip" also for according to the prior art "zip-free" tape used.

In "Blech, Rohre, Profile" 9/1977, S. 341 - 346 wird detailliert die Ursache für die Zipfelbildung beschrieben und ein Maß für die relative Zipfelhöhe Z sowie die ebene Anisotropie Delta r definiert. Ideal wären jeweils Ergebnisse mit dem Wert Null (zipfelfreies Material). Details are given in "Blech, Rohr, Profiles" 9/1977, pp. 341 - 346 the cause of the tip formation is described and a measure of the relative tip height Z and the flat anisotropy delta r Are defined. Results with a value of zero would be ideal (tip-free material).

Der Wert für die ebene Anisotropie errechnet sich aus der Anisotropie r für unterschiedliches Ausdehnungsverhalten des Materials in Walzrichtung sowie unter 45 Grad und 90 Grad dazu. Für unterschiedliche Tiefzieheigenschaften sind verschiedene r-Werte einstellbar. The value for the plane anisotropy is calculated from the Anisotropy r for different expansion behavior of the Material in the rolling direction as well as under 45 degrees and 90 degrees. Different are for different deep-drawing properties r values adjustable.  

Für die in der Veröffentlichung erwähnten Stähle läßt sich zipfelfreies Material nur durch Normalglühen des kaltgewalzten Bandes in einer Durchlaufglühe bei etwa 1000 Grad Celsius erreichen, wobei das Blech im Endzustand eine Korngröße ASTM 8 bei einer relativen Zipfelhöhe von ca. 0,3 bis 0,4 % und Delta r ca. ± 0,1 erreichen. For the steels mentioned in the publication, Tip-free material only by normalizing the cold-rolled Band in a continuous annealing at about 1000 degrees Celsius reach, the sheet in the final state a grain size ASTM 8 with a relative tip height of approx. 0.3 to 0.4% and delta r reach approx. ± 0.1.

Für nicht normalisierend geglühtes Band sei nur ein zipfelarmer Zustand durch Kompromisse in der Verfahrensführung bei der Blechherstellung zu erreichen. Dabei sollen die Walzendtemperaturen ca. 750 Grad Celsius und die Kaltwalzgrade entweder unter 25 % oder über 80 % liegen und mit als für die Zipfeligkeit ungünstig bezeichneten Rekristallisationstemperaturen von über 600 Grad Celsius gearbeitet werden. For a strip that has not been normalized, it is only a low-corner Condition due to compromises in the conduct of the process To achieve sheet metal production. The should Final rolling temperatures approx. 750 degrees Celsius and the cold rolling degrees either below 25% or above 80% and with than for Pointed unfavorably designated Recrystallization temperatures of over 600 degrees Celsius be worked.

Beschrieben wird weiterhin, daß ein Normalisieren nicht im Bund, sondern nur in einer Durchlaufglühe erfolgen kann, weil bei den hohen Temperaturen die Bänder zusammenkleben würden. It is also described that normalization is not in the federal government, but can only be done in a continuous annealing, because with the high temperatures the tapes would stick together.

Aus der DE-OS 32 34 574 ist ein gattungsgemäßes zum Tiefziehen geeignetes kaltgewalztes Stahlblech oder Stahlband bekannt. Der Titangehalt soll, in Abhängigkeit der Gehalte an Kohlenstoff, Sauerstoff, Schwefel und Stickstoff, auf Werte bis 0,15 % steigen können, die Haspeltemperatur über 700 Grad Celsius oder mindestens jedoch 580 Grad Celsius mit anschließender Warmband-Erwärmung auf über 700 Grad Celsius betragen. Weiterhin wird ein Kaltwalzgrad von 70 - 85 % sowie ein Durchlaufglühen bei 700 - 900 Grad Celsius mit maximal zwei Minuten Haltezeit empfohlen. Hinweise zur Zipfelbildung des Materials werden nicht gegeben. DE-OS 32 34 574 is a generic for deep drawing suitable cold-rolled steel sheet or steel strip is known. The Titanium content should, depending on the carbon content, Oxygen, sulfur and nitrogen, to values up to 0.15% can, the reel temperature over 700 degrees Celsius or at least 580 degrees Celsius with subsequent Hot strip heating to over 700 degrees Celsius. Farther a cold rolling degree of 70 - 85% and a continuous annealing 700 - 900 degrees Celsius with a maximum holding time of two minutes recommended. There will be no information on the formation of the material given.  

Die US-PS 4 125 416 offenbart u.a. ein Verfahren bei dem warmeingesetzte Brammen mit Temperaturen oberhalb 830°C aus legiertem Stahl, der 0,06-0,20 % C, 0,5-2,0 % Mn, 0,30-0,50 % Si sowie Nb und Ti in Mengen von 0,01-0,10% enthalten kann, auf Temperaturen oberhalb 980°C erwärmt, dann zu Warmband gewalzt und bei 450-650°C gehaspelt wird.
Für die Erzeugung hochfesten Kaltbandes aus diesem Warmband sind C-Gehalte von 0,10-0,11 %, ein Ti-Gehalt von 0,1 % und ein Nb-Gehalt von 0,04 % angegeben. Bei 67 % Umformgrad wird ein hochfestes Kaltband mit einer Streckgrenze größer als 48,1 kg/mm² erzeugt, daß anschließend im Bund oder in einer Durchlaufglühe rekristallisierend geglüht wird.
US Pat. No. 4,125,416 discloses, inter alia, a process in which hot-rolled slabs at temperatures above 830 ° C. made of alloy steel, which 0.06-0.20% C, 0.5-2.0% Mn, 0.30- May contain 0.50% Si as well as Nb and Ti in quantities of 0.01-0.10%, heated to temperatures above 980 ° C, then rolled into hot strip and coiled at 450-650 ° C.
C contents of 0.10-0.11%, a Ti content of 0.1% and an Nb content of 0.04% are specified for the production of high-strength cold strip from this hot strip. With a degree of deformation of 67%, a high-strength cold strip with a yield strength greater than 48.1 kg / mm² is produced, which is then recrystallized in the coil or in a continuous annealing.

Aus der EP-A1-101 740 wird für einen gattungsgemäßen kaltgewalzten Stahl eine Brammenerwärmungstemperatur kleiner als 1100 Grad Celsius, eine Walzendtemperatur von unter Ar₃, Haspeltemperaturen von 320 - 600 Grad Celsius und Kaltwalzgrade von 50 - 95 % sowie rekristallisierendes Durchlaufglühen empfohlen. Dabei soll ein Stahl mit maximal 0,005 % Kohlenstoff, maximal 0,004 % Stickstoff und maximal 0,02 % Niob in Kombination mit einem oder mehreren der Elemente Aluminium, Chrom, Bor oder Wolfram Verwendung finden. Erzielt werden hohe mittlere r-Werte oberhalb 1,2. Hinweise auf die Zipfligkeit des Materials nach dem Tiefziehen sind nicht offenbart. From EP-A1-101 740 for a generic cold rolled steel a slab heating temperature less than 1100 degrees Celsius, a final roll temperature of below Ar₃, Coil temperatures of 320 - 600 degrees Celsius and cold rolling degrees 50 - 95% and recrystallizing continuous annealing recommended. A steel with a maximum of 0.005% carbon, maximum 0.004% nitrogen and maximum 0.02% niobium in combination with one or more of the elements aluminum, chrome, boron or Find tungsten. High average r values are achieved above 1.2. Indications of the rickety of the material after the Deep drawing is not disclosed.

Ein weiteres Verfahren zur Herstellung tiefziehgeeigneter Stähle mit Brammenglühtemperatur kleiner 1100 Grad Celsius, Endwalztemperatur max. 780 Grad Celsius und Haspeltemperaturen von mindestens 450 Grad Celsius sowie Kaltbandglühen im Hauben- oder Durchlaufglühofen sind in der EP-B1-120 976 offenbart. Das Verfahren soll r-Werte um 2 erzielen; Werte für die Zipfelbildung sind nicht offenbart. Another process for producing deep-drawing steels with slab annealing temperature less than 1100 degrees Celsius, Final rolling temperature max. 780 degrees Celsius and reel temperatures of at least 450 degrees Celsius and cold strip annealing in the hood or Continuous annealing furnaces are disclosed in EP-B1-120 976. The The process should achieve r values around 2; Values for tip formation are not disclosed.

Es ist allgemein bekannt, daß Warmband eine gute quasiisotrope Umformbarkeit besitzt, jedoch eine nicht ausreichende Oberflächengüte und zu große Toleranzen aufweist und zudem nicht in Dicken unter 1,2 mm hergestellt wird. It is well known that hot strip is a good quasi-isotropic Formability has, but not sufficient Surface quality and too large tolerances and also not is produced in thicknesses below 1.2 mm.

Von daher liegt der Erfindung die Aufgabe zugrunde, ein zipfelfreies oder zumindest zipfelarmes tiefziehgeeignetes Blech aus Stahlband und ein entsprechendes Herstellverfahren vorzuschlagen, bei dem auf das Durchlaufglühen bei Temperaturen oberhalb A₁ verzichtet, aber trotzdem kostengünstig produziert werden kann. The invention is therefore based on the object Corner-free or at least low-corner deep-drawn sheet from steel strip and a corresponding manufacturing process to propose in the case of continuous annealing at temperatures dispensed above A₁, but still produced inexpensively can be.  

Die Aufgabe wird erfindungsgemäß durch die Ansprüche 1, 3 und 5 gelöst.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen erfaßt.
The object is achieved by claims 1, 3 and 5.
Advantageous developments of the invention are covered in the subclaims.

Überraschenderweise hat sich gezeigt, daß bei Anwendung der erfindungsgemäßen Brammen-, Glüh-, Walz- und Haspeltemperaturen für den genannten Stahl ein rekristallisierendes Glühen eines Bundes im Haubenofen ausreicht, um dem Stahlband oder dem konfektionierten Stahlblech hervorragende Tiefzieheigenschaften, insbesondere eine extreme Zipfelarmut, zu geben. Surprisingly, it has been shown that when using the slab, annealing, rolling and coiling temperatures according to the invention a recrystallizing annealing for the mentioned steel Federal in the hood furnace is sufficient to the steel belt or the assembled steel sheet excellent deep drawing properties, especially extreme extreme poverty.

Die üblicherweise beim Stand der Technik für den Stahl St 4 NZ oder RSt 14 durch Normalglühen erreichten Werte der Korngröße von bestenfalls ASTM 8 entsprechend 490 µm² können durch das erfindungsgemäße Verfahren durch rekristallisierendes Glühen unterschritten werden, wobei zusätzlich niedrige Streckgrenzenwerte beibehalten werden können durch Wahl entsprechender Kaltwalzgrade in Abhängigkeit vom Titangehalt. Dies ergibt den Vorteil, daß auf hohe Investitionen für eine Durchlaufglühe für eine Normalglühbehandlung verzichtet werden kann. The usually in the prior art for the steel St 4 NZ or RSt 14 grain size values achieved by normalizing at best ASTM 8 corresponding to 490 µm² can by Process according to the invention by recrystallizing annealing fall below, with additionally low Yield strength values can be maintained by choice corresponding degrees of cold rolling depending on the titanium content. This gives the advantage that high investments for a Continuous annealing for a normal annealing treatment can be dispensed with can.

Durch Variation der Zulegierung von Titan in den angegebenen Grenzen läßt sich praktisch jeder gewünschte Kaltwalzgrad für die Erzeugung zipfelfreien Materials einstellen und/oder genauso ebenfalls eine Streckgrenze zwischen 175 und 450 N/mm² bei Zugfestigkeiten von 310 bis 520 N/mm². By varying the addition of titanium in the specified Virtually any desired degree of cold rolling for the Set generation of tip-free material and / or exactly the same also a yield strength between 175 and 450 N / mm² Tensile strengths from 310 to 520 N / mm².

Eine der Ursachen für die günstigen Eigenschaften des erzeugten Bleches ist in der frühzeitigen Bildung von Titannitrid zu sehen, so daß ein pan-cake-Gefüge während des rekristallisierenden Glühens durch die Aluminium-Nitrid-Ausscheidungen nicht entstehen kann. One of the causes of the favorable properties of the produced Bleches can be seen in the early formation of titanium nitride, so that a pan-cake structure during the recrystallizing Annealing caused by the aluminum nitride precipitates can.  

Durch die Wahl niedriger Haspeltemperaturen um 520 Grad Celsius wurden überraschend Warmbandqualitäten erzielt, die nach dem Kaltwalzen ein zipfelfreies Material gewährleisteten und eine zusätzliche Kornverfeinerung ermöglichten. By choosing low reel temperatures around 520 degrees Celsius surprisingly hot strip qualities were achieved, which after the Cold rolling ensured a tip-free material and one enabled additional grain refinement.

Ein besonderer Vorteil des so hergestellten Warmbandes liegt darin, daß im Grundsatz keinerlei Restriktion hinsichtlich des anschließenden Kaltwalzens besteht, sofern der Kaltwalzgrad mindestens ca. 5 % beträgt, d.h. oberhalb der bekannten kritischen schwachen Kaltverformung bleibt, die beim Rekristallisationsglühen zu grobem Korn führt. Bisher war man bei der Erzeugung annähernd zipfelfreien Kaltbandes an bestimmte Kaltwalzgrade gebunden, sofern nicht normalgeglüht werden sollte. A particular advantage of the hot strip produced in this way is in that in principle no restriction with regard to the subsequent cold rolling, provided the degree of cold rolling is at least about 5%, i.e. above the known critical weak cold deformation that remains at Recrystallization annealing leads to coarse grain. So far you were in the production of approximately strip-free cold strip to certain Cold rolling grades bound, unless normal annealing should be carried out.

Es wurde überraschend gefunden, daß zwar ein gewisser Titangehalt in der Stahllegierung unerlässlich ist, um das erfindungsgemäße Verfahren durchführen zu können und erfindungsgemäße Materialeingenschaften zu erzielen, aber diese Verfahrensparameter zumindest hinsichtlich des Kaltwalzgrades dann anzupassen sind, wenn der Stahllegierung das festigkeitssteigernde Element Niob hinzugefügt wird. It was surprisingly found that a certain titanium content in the steel alloy is essential to the invention To be able to carry out methods and inventive Achieve material properties, but these process parameters then at least with regard to the degree of cold rolling, if the steel alloy contains the strength-increasing element niobium will be added.

Die Variation der Kaltwalzgrade in Abhängigkeit von der Menge des zulegierten Titans ist bei gleichzeitiger Zulegierung von Niob in den angegebenen Grenzen auf Kaltwalzgrade von 45 bis 85 % beschränkt. The variation of the cold rolling degrees depending on the amount of alloyed titanium is combined with the addition of niobium in the specified limits on cold rolling grades of 45 to 85% limited.

Die Zulegierung von Niob behindert nicht die frühzeitige Bildung von Titannitrid, so daß auch bei dieser erfindungsgemäßen Stahllegierung ein pan-cake-Gefüge während des rekristallisierenden Glühens nicht entstehen kann. The addition of niobium does not hinder early education of titanium nitride, so that even in this invention Steel alloy a pan-cake structure during the recrystallizing glow cannot arise.  

Eine gravierende technische und wirtschaftliche Bedeutung der Erfindung liegt in der Verwendung des Feinbleches für rotationssymmetrisch tiefgezogene Teile wie Nadellagerkäfige, Riemenscheibenhälften usw. Das erfindungsgemäße Blech kann in diesen Fällen ohne wesentliche Nacharbeit wie Abschneiden der Zipfel eingesetzt werden. Die Zipfelarmut verhindert beim Tiefziehen auch das Entstehen sektoraler Wandschwächungen, so daß die gezogenen Teile bei Rotation keine Unwucht aufweisen. Weitere Vorteile zipfelarmen oder zipfelfreien Kaltbandes sind bekannt, so daß sich eine weitere Beschreibung erübrigt. A serious technical and economic importance of the Invention lies in the use of sheet metal for rotationally symmetrical deep-drawn parts such as needle bearing cages, Pulley halves, etc. The sheet according to the invention can in these cases without substantial rework such as cutting off the Tip are used. The point poorness prevents Thermoforming also creates sectoral wall weaknesses, so that the drawn parts are unbalanced when rotating. Other advantages of low-corner or corner-free cold strip are known, so that a further description is unnecessary.

Einige Ausführungsbeispiele sollen das Ergebnis des erfindungsgemäßen Verfahrens verdeutlichen. Some embodiments are the result of Clarify the inventive method.

Aus den erfindungsgemäßen Schmelzen A - D sowie den Vergleichsschmelzen E - F (Tabelle 1) werden Brammen von 210 mm Dicke im Strang vergossen. Nach Erwärmung im Stoßofen auf 1250 Grad Celsius wurde die Bramme zu Warmband von 3 mm Dicke ausgewalzt, gehaspelt und auf Raumtemperatur abgekühlt. Die Walzendtemperaturen und Haspeltemperaturen zeigt Tabelle 2. Nach dem Beizen wurden Bänder durch Kaltwalzen in unterschiedlichen Stufen von 10 % bis zu 80 % auf Feinblechdicke reduziert und erneut gehaspelt. Das Bund wurde im Haubenglühofen der Bauart Fa. Ludwig auf 700 Grad Celsius erwärmt, mit einem Durchsatz von 1,1 t/h bis 1,9 t/h rekristallisierend geglüht und anschließend im Ofen auf 120 Grad Celsius abgekühlt. Nach dem Dressieren mit Umformgraden von 1 - 1,2 % wurde das Band zu Blechtafeln konfektioniert.
Blechronden von 90 bzw. 180 mm Durchmesser wurden mit Ziehstempeln von 50 bzw. 100 mm Durchmesser bei Haltekräften von 50 kN zu Näpfchen tiefgezogen.
From the melts A - D according to the invention and the comparative melts E - F (Table 1), slabs 210 mm thick are cast in the strand. After heating in the pusher furnace to 1250 degrees Celsius, the slab was rolled out into 3 mm thick hot strip, coiled and cooled to room temperature. The final roll temperatures and reel temperatures are shown in Table 2. After the pickling, strips were reduced by cold rolling in various stages from 10% to 80% to the thickness of the sheet and rewound. The bundle was heated to 700 degrees Celsius in the Ludwig annealing furnace, recrystallized at a throughput of 1.1 t / h to 1.9 t / h and then cooled to 120 degrees Celsius in the furnace. After the tempering with degrees of deformation of 1 - 1.2%, the strip was made into sheet metal.
Sheet rounds of 90 or 180 mm in diameter were deep-drawn into cups using drawing dies of 50 or 100 mm in diameter and holding forces of 50 kN.

Figur 1 zeigt drei verschiedene Näpfchen, die die im folgenden verwendeten Begriffe zipfelig (Fig. 1a), zipfelarm (Fig. 1b) und zipfelfrei (Fig. 1c) definieren sollen, da die Messung der Zipfelhöhe mit den handelsüblichen Zipfelmeßgeräten, insbesondere von zipfelarmen und zipfelfreien Näpfchen mit geringen Höhendifferenzen bereits bei kleinsten Tiefziehgraten auf dem Näpfchenrand problematisch ist.
Diese Definition wurde für Figur 10 zur Darstellung der Zipfeligkeit von Näpfchen aus den verschiedenen Schmelzen übernommen. Bestätigt wurde die Erkenntnis, daß der bei 710 Grad Celsius gehaspelte Stahl E nur bei Kaltwalzgraden kleiner ca. 25 % zipfelfrei ist und im Bereich 30 - 50 % Kaltwalzgrad allenfalls als zipfelarm bezeichnet werden kann. Für den Vergleichsstahl F der gemäß Stand der Technik bei 500 Grad Celsius gehaspelt wurde, wurde Zipfeligkeit bei Kaltwalzgraden größer 30 % festgestellt.
Die Fotos in den Figuren 8 und 9 belegen dies eindrucksvoll.
Figure 1 shows three different wells, which are to define the terms used in the following, pointed (Fig. 1a), low-pointed (Fig. 1b) and free (Fig. 1c), since the measurement of the height of the corners with the conventional corner measuring devices, in particular of corner-poor and Tip-free wells with small height differences are problematic even with the smallest deep-drawing burrs on the edge of the well.
This definition was adopted for Figure 10 to represent the lobes of wells from the different melts. The finding was confirmed that the steel E coiled at 710 degrees Celsius is free of flakes only at cold rolling degrees of less than approx. 25% and in the range of 30 - 50% cold rolling degrees can at best be described as flake-free. For the comparative steel F, which was coiled at 500 degrees Celsius according to the state of the art, cornering was found at degrees of cold rolling greater than 30%.
The photos in Figures 8 and 9 demonstrate this impressively.

Bei Verwendung der erfindungsgemäß gewalzten und geglühten Stähle A - D zeigten die Näpfchen in Abhängigkeit vom Titangehalt bei verschiedenen Kaltwalzgraden ein unterschiedliches Tiefziehergebnis:
Stahl A mit 0,01 % Ti:
Die Näpfchen waren bei Kaltwalzgraden von Epsilon = 30 - 50 % absolut zipfelfrei, während Kaltwalzgrade von 20 % bzw. 60 % nur zipfelarmes Näpfchen-Ziehen ermöglichte.
Stahl B mit 0,02 % Ti:
Zipfelfrei bei Epsilon = 10 % sowie 50 - 80 %
Zipfelarm bei Epsilon = 20 %; 40 %
Stähle C1/C2 mit 0,03 % Ti, wobei C1 mit 500 Grad Celsius und C2 mit 450 Grad Celsius gehaspelt wurde:
Zipfelfrei bei Epsilon = 10 - 20 % sowie 60 - 80 %
Zipfelarm bei Epsilon = 30 %; 50 %
Stahl D mit 0,04 % Ti:
Zipfelfrei bei Epsilon = 60 - 70 % bzw. 20 %
Zipfelarm bei Epsilon = 15 %, 25 %; 55 %; 80 %
Aus dem Vergleich der Kurven für die Stähle A - D lassen sich Tendenzen ablesen, die für Zwischenwerte des Legierungselementes Titan beispielsweise 0,025 % Ti - ausgehend von Stahl B - zipfelfreies Näpfchenziehen bei Kaltwalzgraden bis 15 % oder 20 % und bis 85 % erwarten lassen, also eine Kurvenverschiebung nach rechts; bei Werten zwischen 0,01 % und 0,02 % umgekehrt eine Verschiebung der "zipfelfreien" Kaltwalzgrade zu niedrigeren Umformverhältnissen nahelegen.
When using the steels A - D rolled and annealed according to the invention, the cells showed a different deep-drawing result depending on the titanium content at different degrees of cold rolling:
Steel A with 0.01% Ti:
The cups were absolutely spot-free at cold rolling degrees of Epsilon = 30 - 50%, while cold rolling degrees of 20% or 60% only made it possible to pull wells with little tips.
Steel B with 0.02% Ti:
Point-free at Epsilon = 10% and 50 - 80%
Tip arm at Epsilon = 20%; 40%
Steels C1 / C2 with 0.03% Ti, whereby C1 was coiled at 500 degrees Celsius and C2 at 450 degrees Celsius:
Point-free at Epsilon = 10 - 20% and 60 - 80%
Tip arm at Epsilon = 30%; 50%
Steel D with 0.04% Ti:
Point-free with Epsilon = 60 - 70% or 20%
Pointed arm at Epsilon = 15%, 25%; 55%; 80%
From the comparison of the curves for steels A - D, tendencies can be read that can be expected for intermediate values of the alloying element titanium, e.g. 0.025% Ti - starting from steel B - cup-free drawing at cold rolling grades of up to 15% or 20% and up to 85% a curve shift to the right; conversely, values between 0.01% and 0.02% suggest a shift in the "corner-free" cold rolling degrees to lower forming ratios.

Die zu den Stählen gemäß Figur 10 und Tabelle 1 bzw. 2 korrespondierenden Fotos der Figuren 3 bis 7 von tiefgezogenen Näpfchen veranschaulichen das Ergebnis deutlich. The steels according to FIG. 10 and Table 1 and 2 corresponding photos of Figures 3 to 7 of deep-drawn Cups clearly illustrate the result.

Überraschend zeigte sich, daß den "zipfelfreien" Umformgraden jeweils ein bestimmtes Zugfestigkeits- und Streckgrenzenniveau zugeordnet werden konnte (Figur 11) und die größte Zipfeligkeit gleichzeitig bei der niedrigsten Streckgrenze/Zugfestigkeit festzustellen war. Surprisingly, it was found that the "tip-free" degrees of deformation a specific level of tensile strength and yield point could be assigned (Figure 11) and the greatest point at the same time at the lowest yield strength / tensile strength was found.

Beispiel: Stahl BExample: Steel B

  • a) Zipfelfreiheit beim Kaltwalzgrad 10 % - 15 % ≙
    Streckgrenzenniveau Rp0,2= 400 - 350 N/mm²
    Zugfestigkeitsniveau Rm = 450 - 400 N/mm²
    a) Point-free with cold rolling degree 10% - 15% ≙
    Yield strength level R p0.2 = 400 - 350 N / mm²
    Tensile strength level R m = 450 - 400 N / mm²
  • b) Zipfeligkeit beim Kaltwalzgrad 30 % ≙
    Rp0,2= 180 N/mm² und Rm = 320 N/mm²
    b) Pointedness at the degree of cold rolling 30%
    R p0.2 = 180 N / mm² and R m = 320 N / mm²
  • c) Zipfelfreiheit beim Kaltwalzgrad 50 - 80 % ≙
    Rp0,2= 250 - 280 N/mm² und Rm = 360 - 370 N/mm²
    c) Point-free with a cold rolling degree of 50 - 80% ≙
    R p0.2 = 250 - 280 N / mm² and R m = 360 - 370 N / mm²
  • Diese Erkenntnis ermöglicht eine bauteil- oder funktionsangepaßte Wahl der Festigkeit für ein und dasselbe Bauteil durch Änderung der Parameter Titangehalt und Kaltwalzgrad. This knowledge enables a component or function adapted Choice of strength for one and the same component by changing the parameters titanium content and degree of cold rolling.

    Tabelle 2 zeigt korrespondierend zu Figur 12 die erfindungsgemäß erzielte Korngröße in ASTM-Einheiten; die erzielbare Kornverfeinerung gegenüber Stählen ohne Titanzusatz nach dem Stand der Technik ist erheblich und reicht bis ASTM 11. Corresponding to FIG. 12, Table 2 shows the invention achieved grain size in ASTM units; the achievable Grain refinement compared to steels without titanium addition after The state of the art is considerable and extends to ASTM 11.

    Das gröbste Korn wurde bei geringem Ti-Zusatz und geringem Kaltwalzgrad erzielt (ASTM 7). Vergleichsweise wurden bei den Stählen A - D die Warmband-Werte für die Korngröße (ASTM 9-10) in die Figur 12 aufgenommen.
    Für einen Stahl C (Varianten C3 - C5) wurden Versuche mit variabler Haspeltemperatur Th und Glühdurchsatz Pg durchgeführt (Tabelle 3). Während Schwankungen in der Durchsatzmenge des Haubenglühofens von 1,1 - 1,9 t/h sowohl die Korngröße als auch die ebene Anisotropie Delta r nicht negativ beeinflußten, hatte eine Erhöhung der Haspeltemperaturen auf 710 Grad Celsius bei annähernd gleichen Walzendtemperaturen eine Kornvergröberung und eine Verschlechterung der ebenen Anisotropie zur Folge.
    The coarsest grain was obtained with a small addition of Ti and a low degree of cold rolling (ASTM 7). By comparison, the hot strip values for the grain size (ASTM 9-10) were included in FIG. 12 for steels AD.
    For a steel C (variants C3 - C5) tests were carried out with variable coiling temperature Th and annealing throughput Pg (Table 3). While fluctuations in the throughput of the bell annealer from 1.1 - 1.9 t / h did not negatively affect the grain size or the level anisotropy Delta r, an increase in the reel temperatures to 710 degrees Celsius with roughly the same end temperatures resulted in coarsening and deterioration the plane anisotropy.

    Die Figuren 2a, 2b, 2c zeigen entsprechende Ergebnisse an Näpfchen aus 180 mm-Ronden, die mit 100 mm-Stempeln bei 50 kN Rückhaltekraft tiefgezogen wurden. Figures 2a, 2b, 2c show corresponding results Cups made of 180 mm rounds with 100 mm stamps at 50 kN Retention force were deep drawn.

    In Tabelle 1 sind auch die Schmelzanalysen des erfindungsgemäß bei dem Verfahren einzusetzenden Stahles G mit 0,01 % Titan, H mit 0,02 % Titan und I mit 0,03 % Titan bei 0,05 % bzw. 0,06 % Niobzugabe aufgelistet, dazu wurde ein Vergleichsstahl K mit 0,05 % Niobzugabe, aber ohne Titangehalt aufgeführt.
    Aus den erfindungsgemäßen Schmelzen G - I sowie der Vergleichsschmelze K wurden Brammen von 220 mm Dicke im Strang vergossen. Nach Erwärmung im Stoßofen auf 1250 Grad Celsius wurde die Bramme zu Warmband von 4 mm Dicke ausgewalzt und gehaspelt sowie auf Raumtemperatur abgekühlt. Die Walzendtemperatur betrug 880 Grad Celsius und die Haspeltemperatur 510 Grad Celsius. Nach dem Beizen wurden die Bänder durch Kaltwalzen in unterschiedlichen Stufen von 10 bis 80 % auf Feinblechdicke reduziert und erneut gehaspelt. Nach dem Haspeln wurde das festgewickelte Bund im Haubenglühofen der Bauart Fa. Ludwig auf 700 Grad Celsius erwärmt und bei Durchsatzraten von 1,1 Tonnen bzw. 1,8 Tonnen pro Stunde rekristallisierend geglüht, anschließend im Haubenglühofen auf 120 Grad Celsius abgekühlt. Nach dem Dressieren mit einem Umformgrad von 1,1 % wurde das Band zu Blechtafeln konfektioniert. Blechronden von 90 mm Durchmesser wurden mit Ziehstempeln von 50 mm Durchmesser zu Näpfchen tiefgezogen (Figuren 13 - 16).
    Table 1 also lists the melt analyzes of the steel G with 0.01% titanium, H with 0.02% titanium and I with 0.03% titanium with 0.05% and 0.06% addition of niobium in the process , a comparative steel K with 0.05% niobium addition, but without titanium content was listed.
    Slabs 220 mm thick were cast in the strand from the melts G - I according to the invention and the comparative melt K. After heating in the pusher furnace to 1250 degrees Celsius, the slab was rolled out into 4 mm thick hot strip and coiled and cooled to room temperature. The final roll temperature was 880 degrees Celsius and the reel temperature was 510 degrees Celsius. After pickling, the strips were reduced by cold rolling in various stages from 10 to 80% to sheet thickness and reeled. After coiling, the tightly wound coil was heated to 700 degrees Celsius in the Ludwig annealing furnace and recrystallized annealing at throughput rates of 1.1 tons or 1.8 tons per hour, then cooled to 120 degrees Celsius in the annealing furnace. After tempering with a degree of deformation of 1.1%, the strip was made into sheet metal. Sheet blanks 90 mm in diameter were deep-drawn into cups using drawing dies of 50 mm in diameter (FIGS. 13-16).

    Für den Vergleichsstahl K, der in der Legierung kein Titan enthält, ansonsten zu der gattungsgemäßen Stahlsorte gehört, zeigt Fig. 16 deutlich, daß bei keinem der erprobten Kaltwalzgrade zipfelfreies Tiefziehen möglich war. For the comparative steel K, which is not titanium in the alloy contains, otherwise belongs to the generic type of steel, shows Fig. 16 clearly shows that none of the tried cold rolling degrees Tip-free deep drawing was possible.  

    Bei Verwendung der erfindungsgemäß gewalzten und geglühten Stähle G bis I zeigten die Näpfchen in Abhängigkeit vom Titangehalt bei verschiedenen Kaltwalzgraden ein geringfügig unterschiedliches Tiefziehergebnis:
    Stahl G mit 0,01 % Titan (Fig. 13):
    Die Näpfchen waren bei Kaltwalzgraden von Epsilon = 45 bis 85 % in der Kategorie zipfelarm und bei etwa 60 bis 80 % Kaltwalzgraden sogar zipfelfrei.
    Stahl H mit 0,02 % Titan (Fig. 14):
    Zipfelarm im Bereich Epsilon = 55 bis 85 % fast zipfelfrei im Bereich von 60 bis 75 %.
    Stahl I mit 0,03 % Titan (Fig. 15):
    Zipfelarm im Bereich von 60 bis 70 % Kaltwalzgraden.
    When the steels G to I rolled and annealed according to the invention were used, the wells showed a slightly different deep-drawing result depending on the titanium content at different degrees of cold rolling:
    Steel G with 0.01% titanium (Fig. 13):
    The cups were low in cold rolled grades of epsilon = 45 to 85% in the category pointed and even roughly 60 to 80% cold rolled.
    Steel H with 0.02% titanium (Fig. 14):
    Tip arm in the Epsilon area = 55 to 85% almost tip-free in the area of 60 to 75%.
    Steel I with 0.03% titanium (Fig. 15):
    Corner arm in the range of 60 to 70% cold rolling degrees.

    Bei den erfindungsgemäß hergestellten Stählen konnten beispielsweise bei einem Titangehalt von 0,01 % am tiefziehfertigen Blech Streckgrenz- und Zugfestigkeitswerte festgestellt werden, die um mehr als 50 N/mm² über den Kennwerten des nur titanlegierten Materials lagen. In the steels produced according to the invention, for example with a titanium content of 0.01% on Ready-to-draw sheet metal yield and tensile strength values are found to be more than 50 N / mm² above the characteristic values of the only titanium alloy material.

    Die in Tabelle 1 aufgeführten erfindungsgemäßen Schmelzen L bzw. M mit Phosphorgehalten an der oberen Analysengrenze wurden behandelt wie die Stähle A - F. Die Haspeltemperatur betrug 510 bzw. 500 Grad Celsius. Bei einem Kaltwalzgrad von 66 % wurde die Konstanz der Ergebnisse über die gesamte Bandlänge geprüft, um die Effektivität des Bundglühens zu bestätigen. Die Näpfchen aus dem Tiefziehversuchen sind in Fig. 17 bzw. 18 dargestellt. Sie zeigen, daß zipfelfreies Material sowohl am Bandanfang (Position O) als auch nach jedem weiteren Viertel des Bandlänge bis zum Bandende (Position 1) erzeugt wurde. Stahl Tw °C Th °C K min / max Figur A 860 490 10 / 7 3 B 870 500 11 / 9 4 C1 870 500 11 / 9 5 C2 880 450 11 / 9 6 D 890 430 11 / 9 7 E 900 710 9 / 4 8 F 890 500 9 / 6 9 Stahl Tw °C Th °C Pg t/h K Δr min /max Figur C3 880 520 1,1 9 - 10 -0,07/+0,06 2a C4 915 540 1,9 9 - 10 -0,04/+0,08 2b C5 870 710 1,9 8 - 9 +0,09/+0,17 2c The melts L and M according to the invention listed in Table 1 with phosphorus contents at the upper analysis limit were treated like steels A - F. The reel temperature was 510 and 500 degrees Celsius, respectively. At a cold rolling degree of 66%, the consistency of the results was checked over the entire strip length in order to confirm the effectiveness of the annealing. The wells from the deep-drawing test are shown in FIGS. 17 and 18, respectively. They show that tip-free material was produced both at the beginning of the tape (position O) and after every further quarter of the tape length to the end of the tape (position 1). stole Tw ° C Th ° C K min / max Figure A 860 490 10/7 3rd B 870 500 11/9 4th C1 870 500 11/9 5 C2 880 450 11/9 6 D 890 430 11/9 7 E 900 710 9/4 8th F 890 500 9/6 9 stole Tw ° C Th ° C Pg t / h K Δr min / max Figure C3 880 520 1.1 9-10 -0.07 / + 0.06 2a C4 915 540 1.9 9-10 -0.04 / + 0.08 2 B C5 870 710 1.9 8 - 9 + 0.09 / + 0.17 2c

    In Tabelle 2 und 3 bedeuten

    Tw
    Walzendtemperatur
    Th
    Haspeltemperatur
    K
    Korngröße nach ASTM
    Pg
    Glühdurchsatz
    Δr
    ebene Anisotropie
    In tables 2 and 3 mean
    Tw
    End of roll temperature
    Th
    Reel temperature
    K
    Grain size according to ASTM
    Pg
    Annealing throughput
    Δr
    flat anisotropy

    Claims (8)

    1. Method of producing a cold-rolled sheet or strip from steel, having good quasi-isotropic deformability and having the following composition in percentages by weight:
      0.03 - 0.08 % carbon
      max. 0.40 % silicon
      0.10 to 1.0 % manganese
      max. 0.08 % phosphorus
      max. 0.02 % sulphur
      max. 0.009 % nitrogen
      0.015 to 0.08 % aluminium
      0.01 to 0.04 % titanium
      max. 0.15 % of one or more of the elements from the group copper, vanadium, nickel
      remainder: iron and inevitable impurities,
      wherein the slab is heated to above 1120 degrees Celsius, rolled out to form a hot strip at a final rolling temperature above the Ar₃ point, wound on a reel at 520 ± 100 degrees Celsius and annealed in a recrystallising manner in the coil after the cold-rolling process.
    2. Method of producing a cold-rolled sheet or strip according to claim 1, characterised in that it is cold-rolled in dependence on the titanium content with the following degrees of deformation (epsilon):
      approx. 0.01 % titanium:
      epsilon 20 - 60 %,
      preferably 30 - 50 %
      approx. 0.02 % titanium:
      epsilon 5 - 20 %,
      preferably 10 - 15 % or
      epsilon 40 - 85 %,
      preferably 50 - 80 %
      approx. 0.03 % titanium:
      epsilon 5 - 25 %,
      preferably 10 - 20 % or
      epsilon 50 - 85 %,
      preferably 60 - 80 %
      approx. 0.04 % titanium:
      epsilon 15 - 25 %,
      preferably 20 % or
      epsilon 55 - 80 %,
      preferably 60 - 70 %
      and subsequently annealed in a recrystallising manner at temperatures below A₁ and thereafter finished with a degree of deformation of approx. 1 %.
    3. Method of producing a cold-rolled sheet or strip from steel, having good quasi-isotropic deformability and having the following composition in percentages by weight:
      0.03 - 0.08 % carbon
      max. 0.40 % silicon
      0.10 to 1.0 % manganese
      max. 0.08 % phosphorus
      max. 0.02 % sulphur
      max. 0.009 % nitrogen
      0.015 to 0.08 % aluminium
      0.01 to 0.04 % titanium
      max. 0.15 % of one or more of the elements from the group copper, vanadium, nickel
      0.01 to 0.06 % niobium
      remainder: iron and inevitable impurities,
      wherein the slab is heated to above 1120 degrees Celsius, rolled out to form a hot strip at a final rolling temperature above the Ar₃ point and wound on a reel at 520 ± 100 degrees Celsius, then it is cold-rolled in dependence on the titanium content with the following degrees of deformation (epsilon):
      approx. 0.01 % titanium:
      epsilon 45 to 85 %,
      approx. 0.02 % titanium:
      epsilon 55 to 85 %,
      approx. 0.03 % titanium:
      epsilon 60 to 70 %,
      and subsequently annealed in a recrystallising manner at temperatures below A₁ in the coil and thereafter finished with a degree of deformation of approx. 1 %.
    4. Method according to one of claims 1 to 3, characterised in that the steel is annealed in the fixed coil after the cold-rolling process.
    5. Sheet or strip, formed from steel in the above-mentioned composition, which is suitable for deep-drawing and is produced according to a method mentioned in claims 1 to 4, characterised by a recrystallised structure having a ferrite particle size finer than ASTM 7 for a titanium content of 0.01 % and finer than ASTM 9 for titanium contents of 0.015 to 0.04 %.
    6. Sheet or strip which is suitable for deep-drawing according to claim 5, characterised in that the titanium content corresponds to at least 3.5 times the nitrogen content.
    7. Use of a sheet or strip, which has been produced according to one of the methods according to claims 1 to 4, for the low-peak deep-drawing of, preferably, rotationally symmetrical parts.
    8. Use of a steel according to claim 1 or 3 for the production of deep-drawn, preferably rotationally symmetrical parts.
    EP89901844A 1988-01-29 1989-01-27 Cold-rolled sheet or strip and process for manufacturing them Expired - Lifetime EP0400031B2 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    AT89901844T ATE97169T1 (en) 1988-01-29 1989-01-27 COLD ROLLED SHEET OR STRIP AND PROCESS FOR ITS PRODUCTION.

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE3803064A DE3803064C2 (en) 1988-01-29 1988-01-29 Cold rolled sheet or strip and process for its manufacture
    DE3803064 1988-01-29
    DE3843732A DE3843732C2 (en) 1988-01-29 1988-12-22 Cold rolled sheet or strip and process for its manufacture
    DE3843732 1988-12-22
    PCT/DE1989/000057 WO1989007158A1 (en) 1988-01-29 1989-01-27 Cold-rolled sheet or strip and process for manufacturing them

    Publications (3)

    Publication Number Publication Date
    EP0400031A1 EP0400031A1 (en) 1990-12-05
    EP0400031B1 true EP0400031B1 (en) 1993-11-10
    EP0400031B2 EP0400031B2 (en) 2002-01-02

    Family

    ID=25864488

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP89901844A Expired - Lifetime EP0400031B2 (en) 1988-01-29 1989-01-27 Cold-rolled sheet or strip and process for manufacturing them

    Country Status (8)

    Country Link
    US (1) US5139580A (en)
    EP (1) EP0400031B2 (en)
    JP (1) JPH0814003B2 (en)
    DD (1) DD285298B5 (en)
    DE (3) DE3803064C2 (en)
    ES (1) ES2018975A6 (en)
    GR (1) GR1000537B (en)
    WO (1) WO1989007158A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6749696B2 (en) 2001-01-23 2004-06-15 Salzgitter Ag Process for producing a cold-rolled strip or sheet of steel and strip or sheet which can be produced by the process

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4015249A1 (en) * 1989-05-09 1991-02-28 Salzgitter Peine Stahlwerke Mfg. coil-break-free hot rolled strip
    ATE126276T1 (en) * 1989-05-09 1995-08-15 Preussag Stahl Ag METHOD FOR PRODUCING COILBREAK-FREE HOT STRIP AND AGING-RESISTANT HOT-DIP GALVANIZED COLD STRIP.
    US5686194A (en) * 1994-02-07 1997-11-11 Toyo Kohan Co., Ltd. Resin film laminated steel for can by dry forming
    US5556485A (en) * 1994-11-07 1996-09-17 Bethlehem Steel Corporation Bake hardenable vanadium containing steel and method of making thereof
    DE19543804B4 (en) * 1995-11-24 2004-02-05 Salzgitter Ag Process for producing hot-dip galvanized steel strip and hot-dip galvanized sheet or strip made of steel made therewith
    DE19547181C1 (en) * 1995-12-16 1996-10-10 Krupp Ag Hoesch Krupp Mfg. cold-rolled, high strength steel strip with good shapability
    US5656102A (en) * 1996-02-27 1997-08-12 Bethlehem Steel Corporation Bake hardenable vanadium containing steel and method thereof
    DE19622164C1 (en) * 1996-06-01 1997-05-07 Thyssen Stahl Ag Cold rolled steel sheet with good drawing properties
    BE1011066A3 (en) * 1997-03-27 1999-04-06 Cockerill Rech & Dev Niobium steel and method for manufacturing flat products from it.
    DE19736509A1 (en) * 1997-08-22 1999-04-22 Krupp Ag Hoesch Krupp Titanium-alloyed, isotropic, earing-free, cold rolled strip steel is produced
    DE19834361A1 (en) * 1998-07-30 2000-02-03 Schaeffler Waelzlager Ohg Precision deep-drawn case-hardened component, especially a roller bearing and motor component e.g. a needle bearing, sleeve or bush, is made from a cold rolled strip of steel with specified titanium, nitrogen and low aluminum contents
    DE19840788C2 (en) * 1998-09-08 2000-10-05 Thyssenkrupp Stahl Ag Process for producing cold-rolled strips or sheets
    CA2357663A1 (en) * 1998-12-30 2000-07-13 Hille & Muller Gmbh Steel band with good forming properties and method for producing same
    DE10020118B4 (en) * 2000-04-22 2009-11-12 Schaeffler Kg Method for verifying sealability of selected exhaust valve of selected cylinder in internal combustion engine in motor vehicle, involves concluding sealability of valve based on measured values of lambda sensor in one of exhaust gas strands
    DE10055338C1 (en) * 2000-11-08 2002-03-07 Thyssenkrupp Stahl Ag Production of cold strip comprises hot rolling pre-material produced from steel, cold rolling hot strip to form cold strip, annealing at temperature which is lower than recrystallization temperature, cold deforming, and further annealing
    KR20060028909A (en) * 2004-09-30 2006-04-04 주식회사 포스코 High strength cold rolled steel sheet excellent in shape freezability,and manufacturing method thereof
    DE102012211458B3 (en) * 2012-07-03 2013-11-21 Schaeffler Technologies AG & Co. KG Lid with oil storage functionality for a housing of an electrohydraulic valve train of an internal combustion engine
    WO2023135550A1 (en) 2022-01-13 2023-07-20 Tata Steel Limited Cold rolled low carbon microalloyed steel and method of manufacturing thereof

    Family Cites Families (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    NL6901060A (en) * 1969-01-22 1970-07-24 Koninklijke Hoogovens En Staal
    JPS5241209B1 (en) * 1970-12-19 1977-10-17
    US3947293A (en) * 1972-01-31 1976-03-30 Nippon Steel Corporation Method for producing high-strength cold rolled steel sheet
    US3814636A (en) * 1972-03-02 1974-06-04 Steel Corp Method for production of low carbon steel with high drawability and retarded aging characteristics
    US3897280A (en) * 1972-12-23 1975-07-29 Nippon Steel Corp Method for manufacturing a steel sheet and product obtained thereby
    JPS5333919A (en) * 1976-09-10 1978-03-30 Nippon Steel Corp Production of cold rolled aluminum killed steel sheet with excellent deep drawability
    JPS582249B2 (en) * 1977-05-07 1983-01-14 新日本製鐵株式会社 Continuous annealing method for cold rolled steel sheets for press forming
    JPS5529128A (en) * 1978-08-23 1980-03-01 Mitsui Mining & Smelting Co Method of surface treating printed circuit copper foil
    JPS57104627A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of cold rolled soft steel plate with superior press formability by continuous annealing
    JPS57169022A (en) * 1981-04-11 1982-10-18 Sumitomo Metal Ind Ltd Production of cold rolled mild steel plate by continuous annealing
    JPS5867827A (en) * 1981-09-18 1983-04-22 Nippon Steel Corp Preparation of cold rolled steel plate for deep drawing
    JPS6045689B2 (en) * 1982-02-19 1985-10-11 川崎製鉄株式会社 Method for manufacturing cold rolled steel sheet with excellent press formability
    JPS5967321A (en) * 1982-10-08 1984-04-17 Kawasaki Steel Corp Manufacture of cold rolled steel plate for press forming
    JPS5967322A (en) * 1982-10-08 1984-04-17 Kawasaki Steel Corp Manufacture of cold rolled steel plate for deep drawing
    JPS5989727A (en) * 1982-11-12 1984-05-24 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for extremely deep drawing with superior press formability
    CA1259827A (en) * 1984-07-17 1989-09-26 Mitsumasa Kurosawa Cold-rolled steel sheets and a method of manufacturing the same
    JPS62287018A (en) * 1986-06-06 1987-12-12 Nippon Steel Corp Production of high-strength cold rolled steel sheet having excellent deep drawability
    US4889566A (en) * 1987-06-18 1989-12-26 Kawasaki Steel Corporation Method for producing cold rolled steel sheets having improved spot weldability

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6749696B2 (en) 2001-01-23 2004-06-15 Salzgitter Ag Process for producing a cold-rolled strip or sheet of steel and strip or sheet which can be produced by the process

    Also Published As

    Publication number Publication date
    DE3803064C2 (en) 1995-04-20
    GR1000537B (en) 1992-08-25
    DE58906176D1 (en) 1993-12-16
    EP0400031B2 (en) 2002-01-02
    ES2018975A6 (en) 1991-05-16
    DE3843732A1 (en) 1990-07-05
    DD285298A5 (en) 1990-12-12
    DE3843732C2 (en) 2001-05-10
    JPH0814003B2 (en) 1996-02-14
    JPH03503185A (en) 1991-07-18
    DE3803064C1 (en) 1989-04-06
    EP0400031A1 (en) 1990-12-05
    US5139580A (en) 1992-08-18
    WO1989007158A1 (en) 1989-08-10
    DD285298B5 (en) 1999-01-28

    Similar Documents

    Publication Publication Date Title
    EP0400031B1 (en) Cold-rolled sheet or strip and process for manufacturing them
    DE3323255C2 (en)
    DE3312257C2 (en)
    DE10259230B4 (en) Method for producing a steel product
    DE602004008917T2 (en) HIGH-FIXED HOT-ROLLED STEEL PLATE WITH OUTSTANDING FORMFIXING PROPERTIES AND RELATED MANUFACTURING METHOD
    DE3107276C2 (en) Use of a non-rusting ferritic steel as a material for the production of deep-drawn sheets
    DE2324788C2 (en) Process for the manufacture of a non-aging, low-carbon deep-drawing steel
    DE3126386C3 (en)
    DE10128544A1 (en) High-strength, cold-formable steel strip or sheet, process for its production and use of such a strip or sheet
    DE2607646A1 (en) COLD FORMED AND ANNEALED, LOW ALLOY STEEL STRIP AND SHEET METAL MATERIAL AND PROCESS FOR ITS MANUFACTURING
    DE69021471T2 (en) Cold-rolled deep-drawn sheet steel and process for its production.
    DE3046941A1 (en) &#34;METHOD FOR PRODUCING A TWO-PHASE STEEL SHEET&#34;
    DE2334974A1 (en) HARDENABLE AND HIGH-STRENGTH STEEL FOR COLD-ROLLED PLATE
    DE1558720B1 (en) PROCESS FOR MANUFACTURING A COLD-ROLLED STEEL SHEET WITH EXCELLENT DEEP-DRAWABILITY AND DUCTILITY
    DE3138302C2 (en)
    DE2942338C2 (en)
    DE3221840C2 (en)
    DE3024303C2 (en)
    DE2211324A1 (en) Low alloy steel
    DE60009002T2 (en) Process for producing a very high strength hot rolled steel strip, usable for forming and in particular for deep drawing
    EP3719147A1 (en) Hot-rolled flat steel product and method for its production
    DE3007560A1 (en) METHOD FOR PRODUCING HOT-ROLLED SHEET WITH LOW STRETCH STRESS, HIGH TENSILE STRENGTH AND EXCELLENT SHAPING CAPACITY
    DE69012073T2 (en) High strength cold rolled steel sheet, either hot dip galvanized or not, with improved draw flare properties and manufacturing processes.
    DE2247690A1 (en) Hot-rolled low-carbon steels - having very good deformation props
    DE10117118C1 (en) Production of fine sheet metal used in the production of cans comprises casting a steel to slabs or thin slabs, cooling, re-heating, hot rolling in several passes

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19900528

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

    RAP3 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: PREUSSAG STAHL AKTIENGESELLSCHAFT

    17Q First examination report despatched

    Effective date: 19921119

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

    REF Corresponds to:

    Ref document number: 97169

    Country of ref document: AT

    Date of ref document: 19931115

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 58906176

    Country of ref document: DE

    Date of ref document: 19931216

    EPTA Lu: last paid annual fee
    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19940217

    ET Fr: translation filed
    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    26 Opposition filed

    Opponent name: KRUPP HOESCH STAHL AG

    Effective date: 19940806

    Opponent name: THYSSEN STAHL AG

    Effective date: 19940805

    NLR1 Nl: opposition has been filed with the epo

    Opponent name: KRUPP HOESCH STHAL AG

    Opponent name: THYSSEN STAHL AG

    EAL Se: european patent in force in sweden

    Ref document number: 89901844.4

    PLBO Opposition rejected

    Free format text: ORIGINAL CODE: EPIDOS REJO

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    APAA Appeal reference recorded

    Free format text: ORIGINAL CODE: EPIDOS REFN

    RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: SALZGITTER AG

    NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

    Owner name: SALZGITTER AG

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20010124

    Year of fee payment: 13

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    PLAW Interlocutory decision in opposition

    Free format text: ORIGINAL CODE: EPIDOS IDOP

    PUAH Patent maintained in amended form

    Free format text: ORIGINAL CODE: 0009272

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT MAINTAINED AS AMENDED

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    27A Patent maintained in amended form

    Effective date: 20020102

    AK Designated contracting states

    Kind code of ref document: B2

    Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020131

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020131

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: AEN

    Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

    NLR2 Nl: decision of opposition
    GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
    ET3 Fr: translation filed ** decision concerning opposition
    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20060112

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20060113

    Year of fee payment: 18

    Ref country code: NL

    Payment date: 20060113

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20060118

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20060120

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20060207

    Year of fee payment: 18

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070128

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070127

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20070801

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070127

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070127

    BERE Be: lapsed

    Owner name: *SALZGITTER A.G.

    Effective date: 20070131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070131

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070626

    Year of fee payment: 19

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070801

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080122

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080111

    Year of fee payment: 20

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080127

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070127