EP0397246A2 - Coated perfume particles - Google Patents
Coated perfume particles Download PDFInfo
- Publication number
- EP0397246A2 EP0397246A2 EP90201105A EP90201105A EP0397246A2 EP 0397246 A2 EP0397246 A2 EP 0397246A2 EP 90201105 A EP90201105 A EP 90201105A EP 90201105 A EP90201105 A EP 90201105A EP 0397246 A2 EP0397246 A2 EP 0397246A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- perfume
- particles
- coating
- composition according
- carrier material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002304 perfume Substances 0.000 title claims abstract description 169
- 239000002245 particle Substances 0.000 title claims abstract description 127
- 238000000576 coating method Methods 0.000 claims abstract description 57
- 239000011248 coating agent Substances 0.000 claims abstract description 48
- 239000012876 carrier material Substances 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims description 82
- 239000003599 detergent Substances 0.000 claims description 21
- 238000002844 melting Methods 0.000 claims description 21
- 230000008018 melting Effects 0.000 claims description 21
- -1 polyethylenes Polymers 0.000 claims description 16
- 239000004698 Polyethylene Substances 0.000 claims description 11
- 229920000573 polyethylene Polymers 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 10
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 9
- 150000001299 aldehydes Chemical class 0.000 claims description 9
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 7
- 150000001412 amines Chemical class 0.000 claims description 7
- 239000004202 carbamide Substances 0.000 claims description 6
- 229920000877 Melamine resin Polymers 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 5
- 239000004615 ingredient Substances 0.000 claims description 5
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 5
- 239000004094 surface-active agent Substances 0.000 claims description 5
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 239000004793 Polystyrene Substances 0.000 claims description 4
- 229920003180 amino resin Polymers 0.000 claims description 4
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920001195 polyisoprene Polymers 0.000 claims description 4
- 229920002223 polystyrene Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 239000002216 antistatic agent Substances 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims 3
- 229920002635 polyurethane Polymers 0.000 claims 3
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 claims 2
- 239000004902 Softening Agent Substances 0.000 claims 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 49
- 239000004744 fabric Substances 0.000 abstract description 21
- 238000003860 storage Methods 0.000 abstract description 10
- 238000004140 cleaning Methods 0.000 abstract description 9
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 238000006731 degradation reaction Methods 0.000 abstract description 6
- 238000004321 preservation Methods 0.000 abstract description 4
- 230000001681 protective effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 43
- 230000008569 process Effects 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000005406 washing Methods 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 235000019645 odor Nutrition 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000000306 component Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 239000011257 shell material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000013019 agitation Methods 0.000 description 7
- 239000011162 core material Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 239000003205 fragrance Substances 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 230000003750 conditioning effect Effects 0.000 description 6
- 239000002979 fabric softener Substances 0.000 description 6
- 239000001993 wax Substances 0.000 description 6
- 229920000084 Gum arabic Polymers 0.000 description 5
- 239000000205 acacia gum Substances 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229920001807 Urea-formaldehyde Polymers 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 238000013270 controlled release Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000007605 air drying Methods 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005354 coacervation Methods 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- CBOQJANXLMLOSS-UHFFFAOYSA-N ethyl vanillin Chemical compound CCOC1=CC(C=O)=CC=C1O CBOQJANXLMLOSS-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 235000019256 formaldehyde Nutrition 0.000 description 2
- 229960004279 formaldehyde Drugs 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004900 laundering Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000008262 pumice Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- MAUMSNABMVEOGP-UHFFFAOYSA-N (methyl-$l^{2}-azanyl)methane Chemical compound C[N]C MAUMSNABMVEOGP-UHFFFAOYSA-N 0.000 description 1
- MINYPECWDZURGR-UHFFFAOYSA-N 1-tert-butyl-3,4,5-trimethyl-2,6-dinitrobenzene Chemical compound CC1=C(C)C([N+]([O-])=O)=C(C(C)(C)C)C([N+]([O-])=O)=C1C MINYPECWDZURGR-UHFFFAOYSA-N 0.000 description 1
- FACFHHMQICTXFZ-UHFFFAOYSA-N 2-(2-phenylimidazo[1,2-a]pyridin-3-yl)ethanamine Chemical compound N1=C2C=CC=CN2C(CCN)=C1C1=CC=CC=C1 FACFHHMQICTXFZ-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QJRVOJKLQNSNDB-UHFFFAOYSA-N 4-dodecan-3-ylbenzenesulfonic acid Chemical compound CCCCCCCCCC(CC)C1=CC=C(S(O)(=O)=O)C=C1 QJRVOJKLQNSNDB-UHFFFAOYSA-N 0.000 description 1
- XSVSPKKXQGNHMD-UHFFFAOYSA-N 5-bromo-3-methyl-1,2-thiazole Chemical compound CC=1C=C(Br)SN=1 XSVSPKKXQGNHMD-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000282375 Herpestidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- SUAUILGSCPYJCS-UHFFFAOYSA-N Musk ambrette Chemical compound COC1=C([N+]([O-])=O)C(C)=C([N+]([O-])=O)C=C1C(C)(C)C SUAUILGSCPYJCS-UHFFFAOYSA-N 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000004665 cationic fabric softener Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- WWYHAQDAMPXWSI-UHFFFAOYSA-N dodecan-1-ol;methane Chemical compound C.CCCCCCCCCCCCO WWYHAQDAMPXWSI-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SSVFMICWXDVRQN-UHFFFAOYSA-N ethanol;sodium Chemical compound [Na].CCO SSVFMICWXDVRQN-UHFFFAOYSA-N 0.000 description 1
- 229940073505 ethyl vanillin Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- BFBPISPWJZMWJN-UHFFFAOYSA-N methyl 2-[(7-hydroxy-3,7-dimethyloctylidene)amino]benzoate Chemical compound COC(=O)C1=CC=CC=C1N=CCC(C)CCCC(C)(C)O BFBPISPWJZMWJN-UHFFFAOYSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 229940067137 musk ketone Drugs 0.000 description 1
- XMWRWTSZNLOZFN-UHFFFAOYSA-N musk xylene Chemical compound CC1=C(N(=O)=O)C(C)=C(N(=O)=O)C(C(C)(C)C)=C1N(=O)=O XMWRWTSZNLOZFN-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- LQPLDXQVILYOOL-UHFFFAOYSA-I pentasodium;2-[bis[2-[bis(carboxylatomethyl)amino]ethyl]amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC(=O)[O-])CCN(CC([O-])=O)CC([O-])=O LQPLDXQVILYOOL-UHFFFAOYSA-I 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000001738 pogostemon cablin oil Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000010671 sandalwood oil Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- RPACBEVZENYWOL-XFULWGLBSA-M sodium;(2r)-2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate Chemical compound [Na+].C=1C=C(Cl)C=CC=1OCCCCCC[C@]1(C(=O)[O-])CO1 RPACBEVZENYWOL-XFULWGLBSA-M 0.000 description 1
- PXDLHKPVKLUIJV-UHFFFAOYSA-M sodium;2-octanoyloxybenzenesulfonate Chemical compound [Na+].CCCCCCCC(=O)OC1=CC=CC=C1S([O-])(=O)=O PXDLHKPVKLUIJV-UHFFFAOYSA-M 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical class [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/50—Perfumes
- C11D3/502—Protected perfumes
- C11D3/505—Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
- C11D17/0069—Laundry bars
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
Definitions
- the present invention relates to perfume particles which comprise perfume dispersed within a water-insoluble low molecular weight polymeric carrier material, and encapsulated with a friable coating. Such coated particles are useful, for example, in cleaning and fabric conditioning compositions.
- This invention is based on the concept of controlled perfume release, i.e., perfume release at a time and under conditions that will achieve the desired perfume effect. In general, this is a very old idea, and various methods for achieving this end have been developed, from the simple idea of putting perfume in wax candles to the complex technology of microencapsulation.
- One aspect of the concept of controlled release of perfume is providing slow release of perfume over an extended period of time. This is generally achieved by blending perfume with a substance that will, in essence, "trap” the perfume so that small amounts of perfume are released over time.
- the use of high molecular weight polymeric substances having perfume incorporated therein to provide controlled release of perfume over time is known. See, for example, U.S. Patent 4,184,099 Lindauer et al, issued January 15, 1980; European Patent Application 0 028 118, Leonard, published May 6, 1981; and U.S. Patent 4,110,261, Newland, issued August 29, 1978, which teach combining perfume with a release controlling medium and forming the combination into a solid product for air freshening.
- Textile laundering is also concerned with controlled release of perfumes.
- Application of this concept allows for slowing down or preventing release of perfume through long periods of shelf storage.
- Such a concept also allows for using much lower levels of perfume in product since much less perfume is wasted.
- Perfume preservation over storage times can be achieved in a variety of ways.
- the perfume can be made a part of the package for the composition.
- the perfume can be combined with plastic used to make a bottle, or the perfume can be mixed with a polymer substance and the product used to coat a cardboard package composition, as is disclosed in U.S. Patent 4,540,721, Staller, issued September 10, 1985. Either way the perfume is released over time from the polymer matrix.
- the perfume/controlled release agent may also be in the form of particles mixed into the laundry composition.
- One method taught to achieve this end is combining the perfume with a water-soluble polymer, forming into particles and adding to a laundry composition, as is described in U.S. Patent 4,209,417, Whyte, issued June 24, 1980; U.S. Patent 4,339,356, Whyte, issued July 13, 1982; and U.S. Patent 3,576,760, Gould et al, issued April 27, 1971.
- the perfume may also be adsorbed onto a porous carrier material, which may be a polymeric material.
- a porous carrier material which may be a polymeric material. See, for example, U.K. Patent Publication 2,066,839, Bares et al (applied for in the name of Vysoka Skola Chemicko Technologika), published July 15, 1981. These methods may also be used to mask unpleasant odors in a composition or to protect perfume from degradation by harsh components in a laundry composition. Such methods will provide these benefits only for dry powder or granular type compositions because, as soon as the polymer is hydrated the perfume is released. Thus, these methods provide for perfume fragrance benefits upon opening of the product package and loading into the washing apparatus.
- An even more desirable method for delivering perfume to laundered fabric would be one which provides for protection of the perfume through the washing process and hence delivery of the perfume to fabric in essentially its original state.
- Such a method must allow for prevention of dilution, degradation or loss of the perfume during the wash cycle of the laundry process. This is done by utilizing a system that releases the perfume in the drying process or later after the perfume has been delivered to the fabric. Preventing release of perfume during the washing process involves very different and more difficult technology. Such protection must be stable in not only the heat-elevated conditions of the wash but must also be stable against degradation by water and other harsh chemicals in the washing process such as bleach, enzymes, surfactants, etc.
- perfume microencapsulation comprises a capsule core which is coated completely with a material which may be polymeric.
- the perfume is delivered to fabric via the microcapsules and is then released by rupture of the microcapsules such as would occur with manipulation of the fabric.
- Another method of perfume delivery involves providing protection of perfume through the wash cycle, with release of perfume in the heat-elevated conditions of the dryer.
- U.S. Patent 4,096,072, Brock et al, issued June 20, 1978 teaches a method for delivering fabric conditioning agents to textiles through the wash and dry cycle via particles containing hydrogenated caster oil and a fatty quarternary ammonium salt. Perfume may be incorporated into these particles. However, it is not clear whether the perfume thus incorporated is released in the wash cycle or, more desirably, carried in the particles to the dryer and released there, as the particles soften.
- U.S. Patent 4,402,856, Schnoring et al, issued September 6, 1983, teaches a microencapsulation technique which involves the formulation of a shell material which will allow for diffusion of perfume out of the capsule only at certain temperatures. This allows for maintenance of the perfume particles through storage and additionally through the wash cycle. The particles adhere to the fabric and are carried over to the dryer. Diffusion of the perfume out of the capsules then occurs only in heat-elevated conditions of the dryer. These particles are made of gelatin, an anionic polymer and a hardening agent.
- compositions comprising perfume particles that can be incorporated in liquid as well as dry granular or powder compositions and provide long-term storage stability.
- the present invention encompasses perfume particles having an average size, when coated, of less than about 350 microns (preferivelyably, an average size not greater than 150 microns; most preferively a size range of 40-150 microns) which comprise from about 5% to about 70% of a perfume dispersed in from about 30% to about 95% of a water-insoluble polymeric carrier material having a molecular weight of from about 100 to about 30,000, a melting point of from about 37°C to about 190°C, and a hardness value of from about 0.1 to about 15, said particles having a friable coating on their outer surfaces.
- a water-insoluble polymeric carrier material having a molecular weight of from about 100 to about 30,000, a melting point of from about 37°C to about 190°C, and a hardness value of from about 0.1 to about 15, said particles having a friable coating on their outer surfaces.
- Size herein is meant average particle diameter for substantially spherical particles, or the size of the largest diameter or dimension for nonspherical particles.
- Particle sizes larger than this may be more lost from the surface they are deposited on, and do not provide a relative great enough surface area to release the perfume at the desired rate.
- particles larger than specified herein may be undesirably noticeable on the surface being treated. Particles at the low end of the range tend to adhere well to the surface being treated, but tend to release the perfume quite rapidly.
- the particles herein are characterized by a coating which comprises up to 20% by weight of the perfumed particles.
- the coating typically comprises from 1% to 10% by weight of the perfumed particles.
- Preferred particles herein are those wherein the friable coating is substantially water-insoluble.
- Suitable coatings of this type can be prepared from aminoplast polymers, e.g., the reaction products of an amine and an aldehyde.
- Typical friable coatings comprise, for example, the reaction products of an amine selected from urea and melamine, and an aldehyde selected from formaldehyde, acetaldehyde and glutaraldehyde, and mixtures of said amines and said aldehydes. Such friable coatings are described hereinafter.
- coated perfume particles herein are useful in situations where the particle coating is ruptured or worn away (e.g., in an automatic washing machine or laundry dryer) to release the particles, which, in turn, release their perfume.
- the coated particles are useful in typical cleaning composition, comprising detersive surfactants, optional builders, and the like.
- the particles are likewise useful in conditioning compositions, comprising fiber- and fabric-conditioning agents.
- the present invention allows for preservation, protection, and delivery of perfumes contained in cleaning and conditioning compositions through extended storage and harsh cleaning conditions. This is achieved by isolation of the perfume in a carrier material in the form of small particles.
- the perfumed particles of the present invention comprise perfume dispersed in certain carrier materials.
- the perfumed particles are coated with a friable coating material which ruptures in-use to release the perfumed particle which, in turn, releases its perfume.
- perfume means any odoriferous material or any material which acts as a malodor counteractant. In general, such materials are characterized by a vapor pressure greater than atmospheric pressure at ambient temperatures.
- the perfume or deodorant materials employed herein will most often be liquid at ambient temperatures, but also can be solids such as the various camphoraceous perfumes known in the art.
- a wide variety of chemicals are known for perfumery uses, including materials such as aldehydes, ketones, esters and the like. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as perfumes, and such materials can be used herein.
- the perfumes herein can be relatively simple in their composition or can comprise highly sophisticated, complex mixtures of natural and synthetic chemical components, all chosen to provide any desired odor.
- Typical perfumes herein can comprise, for example, woody/earthy bases containing exotic materials such as sandalwood oil, civet, patchouli oil and the like.
- the perfumes herein can be of a light, floral fragrance, e.g., rose extract, violet extract and the like.
- the perfumes herein can be formulated to provide desirably fruity odors, e.g., lime, lemon, orange and the like.
- Suitable perfumes include musk ambrette, musk ketone, musk tibetine, musk xylol, aurantiol, ethyl vanillin and mixtures thereof.
- Perfume materials such as these are described more fully in S. Arctander, Perfume Flavors and Chemicals, Vols. I and II , Aurthor, Montclair, N.J., and the Merck Index, 8th Edition , Merck & Co., Inc. Rahway, N.J., both references being incorporated herein by reference.
- any chemically compatible material which exudes a pleasant or otherwise desirable odor can be used in the perfumed particles herein to provide a desirable odor when applied to fabrics.
- Perfumes which are normally solid can also be employed in the present invention. These may be admixed with a liquefying agent such as a solvent prior to incorporation into the particles, or may be simply melted and incorporated, as long as the perfume does not sublime or decompose upon heating.
- a liquefying agent such as a solvent
- the invention also encompasses the use of materials which act as malodor counteractants. These materials, although termed “perfumes” hereinafter, may not themselves have a discernible odor but can conceal or reduce any unpleasant odors. Examples of suitable malodor counteractants are disclosed in U.S. Patent No. 3,102,101, issued August 27, 1963, to Hawley et al.
- the perfumed particles of the present invention can even comprise perfumes which are not typically used to deliver a fragrance to a surface, such as fabric through the laundry process.
- Perfume materials which are very volatile, unstable, or soluble in the particular compositions being used to deliver the perfume may be used in the present invention because the perfume is isolated from the composition in the particles.
- Perfume materials which are not substantive to fabrics in the laundry process can also be used in the present invention since the particles deliver the perfume to the fabric surface where it is released.
- use of the present invention to deliver a perfume to a surface broadens the class of perfume materials that can be utilized.
- the perfumed particles of the present invention will comprise from about 5% to about 70%, preferably from about 5% to about 50%, perfume.
- the exact amount of perfume used in the particles will vary greatly depending on the strength of the particular fragrance used, and the desired odor effect.
- the carrier materials of the perfumed particles must meet certain criteria to be useful in the present invention.
- the carrier material must be a water-insoluble polymeric material.
- the material must have a molecular weight between about 100 and about 30,000, preferably between about 500 and about 5000.
- the molecular weight of the carrier material may be determined by any standard means.
- the material must also have a melting point of between about 37°C and about 190°C, typically 37°C to 130°C. This will prevent melting of the particles in storage or the washing machine in laundry applications. (It is most desirable to have a carrier material that will not completely melt in an automatic dryer, to avoid blocking of the lint screen and excessive build-up of heat in the dryer).
- the melting point of the carrier material should also not be higher than a point at which the perfume to be combined therewith will decompose.
- the melting point of the carrier material is measured by what is called the drop melting point method.
- ASTM American Society for Testing and Materials
- Test Method D127-63 (reapproved 1982, incorporated by reference herein). Briefly, this method involves the following. The sample to be measured is deposited onto a thermometer bulb by dipping a chilled thermometer into the melted sample. The thermometer bearing the sample is then placed into a test tube and heated by means of a water bath until the sample melts and the first drop falls from the thermometer bulb. The average of the temperatures at which the drops of sample fall is the drop melting point of the sample.
- the polymeric material must also be of a particular hardness. This hardness value may be measured by the standard test method for needle penetration of petroleum waxes. ASTM Test Method D1321-86 (incorporated by reference herein). Briefly, this method involves first melting and further heating the sample to be tested to 17°C (30°F) above its congealing point. The sample is then poured into a container and air cooled under controlled conditions. The sample is then conditioned at the test temperature in a water bath. Penetration is then measured with a penetrometer, which applies a standard needle to the sample for five seconds under a load of 100 grams. The penetration or hardness value is the depth, in tenths of a millimeter, to which the standard needle penetrates into the wax under these defined conditions.
- the hardness value of the carrier material must be between about 0.1 and about 15, preferably between 0.1 and 8, to be useful in the present invention. This will allow for particles of a hardness that will optimize the perfume protection/preservation in the carrier.
- the carrier material must also be inert to the perfume and relatively odorless.
- the material must allow for diffusion of the perfume therethrough.
- the carrier material must also be such that it melts without decomposition.
- Nonlimiting examples of useful carrier materials include polyethylenes, polyamides, polystyrenes, polyisoprenes, polycarbonates, polyesters, polyacrylates, vinyl polymers and polyurethanes and mixtures thereof, which meet the above-described criteria, e.g., they are water-insoluble, have a molecular weight between about 100 and about 30,000, have a melting point between about 37°C and 190°C and a hardness value between 0.1 and 15.
- Highly preferred carriers will have a hardness value of 0.1 to 8, typically 0.5; a molecular weight of 500 to 5,000 (typically 2,000); and a melting point of about 126°C - typically, a polyethylene.
- POLYWAX 2000 is sold under the trade name POLYWAX 2000 by Petrolite Specialty Polymers Group.
- This material is a polyethylene having a molecular weight of about 2,000, a melting point of about 259°F (126°C), and a hardness value (as measured above) at 77°F (25°C) of about 0.5.
- POLYWAX 1000 also sold by Petrolite Specialty Polymers Group.
- This material is also a polyethylene having a molecular weight of about 1,000, a melting point of about 237°F (114°C), and has a hardness value at 77°F (25°C) of about 1.0.
- Another such material is POLYWAX 500.
- a mixture of different carrier materials in the perfume particles of the present invention for example, a blend of a polymeric material and a minor amount of a wax material.
- useful wax materials include the materials sold under the trade names BOLER 1014, STARWAX 100, and VICTORY, all available from the Boler Petroleum Company.
- Such a blend allows for better deposition properties because the particles formed therefrom would have a "stickier" surface.
- a great number of combinations of materials are possible and are intended to be covered by this invention so long as the final blend of carrier materials meets the criteria outlined above.
- carrier material to be used in the perfumed particles of the present invention will depend to some degree on the particular perfume to be used. Some perfumes will require a greater amount of protection than others and the carrier material to be used therewith can be chosen accordingly.
- the perfumed particles used in the present invention will comprise from about 30% to about 95%, preferably from about 50% to about 95% carrier material. Again, this will vary with the type and amount of the particular perfume being utilized.
- the perfume-containing particles can be made as follows.
- the carrier material is first heated slowly to its melting point.
- the material is not heated any more than is necessary to just melt the substance.
- the perfume is then quickly added, generally as an oil or liquid, at room temperature to the melted carrier substance.
- the two are quickly mixed into a homogeneous blend then rapidly cooled with liquid nitrogen (or with dry ice or any other means which will cool the mixture quickly) until it has completely solidified.
- the solid material is then subdivided, generally by grinding or milling, to produce particles of the desired average size. Other methods such as spray cooling or extrusion may also be used to subdivide the particles.
- perfumes which are not so volatile will not require this special treatment because it would inhibit their release from the carrier substance too much. Optimization of the rate at which the perfume is released from the carrier is the goal, and this optional additional step allows for better control of that rate with some of the more volatile perfumes.
- the perfume-containing particles are encapsulated to provide a friable coating.
- This coating prevents the perfume from diffusing out of the particles as readily during long storage periods. Moreover, the coating helps preserve the original "character" of perfumes having particularly volatile top-notes. Moreover, the coating helps protect the perfumed particle from other ingredients in the formulation being perfumed.
- the coating materials used herein are friable, and are designed to break-up as the perfumed formulation is used, thereby releasing the perfumed particle.
- the particles may be coated with more than one friable coating material to produce a particle having more than one layer of coating.
- Different coating materials can be chosen to provide different perfume protection as needed, so long as one of the coatings, generally, the outermost, is friable.
- the individual perfume-containing particles may also be agglomerated with the coating material to provide larger particles which comprise a number of the individual perfume-containing particles.
- This agglomerating material surrounding the particles provides an additional barrier to diffusion of the perfume out of the particles.
- Such an approach also minimizes the surface area of free particles susceptible to perfume diffusion.
- the ratio of perfume particles to agglomerate material will vary greatly depending upon the extent of additional protection desired. This agglomeration approach may be particularly useful with very volatile perfumes or perfumes that are especially susceptible to degradation. Also, agglomeration of very small perfume particles would provide additional protection against premature diffusion out of perfume.
- Agglomeration of particles in this fashion is useful in preventing segregation of small perfume particles from larger detergent granules, for example, in a dry granular detergent product.
- the process of manufacture is based on applying the coating as a kind of "shell" to the perfumed particles.
- the process involves melting the carrier and perfume together and adding the molten mixture to a solvent solution of the "shell” material, or a suitable precursor, held above the carrier melting temperature.
- the system is agitated sufficiently to form an emulsion of the carrier/perfume of desired liquid liquid drop size in the shell solution.
- the conditions necessary to deposit the encapsulating material are then established and the whole is cooled to give encapsulated solid particles having the desired, friable "shell". Water insolubility of the shell is established either at the deposition stage, or by suitable treatment prior to isolation or use of the particles.
- pre-formed perfume particles can be prepared in a variety of ways, including cryogrinding, spray drying, spray congealing and meltable dispersion techniques such as those described in books by P. B. Deasy ("Microencapsulation & Related Drug Processes", Dekker, N.Y., 1986) and A. Kondo ("Microcapsule Processing and Technology", Dekker, N.Y., 1979). Such techniques would be required for carrier materials having a melting point above the solvent boiling point.
- encapsulation procedures can be used, such as reviewed in the books by Deary and Kondo above.
- the shell can impart hydrophilicity or hydrophobicity to the particles.
- encapsulating materials and processes include gelatin-gum arabic concentrate deposited by a complex coacervation procedure, e.g., U.S. Patent 2,800,457, for hydrophilic shells, and ureaformaldehyde deposited by a polycondensation process, e.g., U.S. Patent 3,516,941, for hydrophobic shells.
- Water insolubility of the shell materials may be imparted by cross-linking of the gelatin-gum arabic coacervate with suitable aldehydes or other known gelatin hardeners after deposition. Polymerization of the urea-formaldehyde precondensate during the encapsulation process yields water-insolubility.
- the slurry containing the perfume particles can be used directly, e.g., spray dried with other components of the formulation, or the particles can be washed and separated, and dried if desired.
- Perfume particles containing a hydrophilic coating deposited by complex coacervation are prepared as follows.
- POLYWAX 500 polyethylene having a molecular weight of 500
- 44 g of perfume at room temperature is added to the melted POLYWAX 500 and heating is maintained to bring this core mixture back to 100°C.
- the melted core material is added to 400 g of a 5% aqueous gelatin solution (Sanafi Type A, 275 Bloom strength) maintained 15-20°C above the core melting point in a 1-l steel beaker, and emulsified by agitation until desired drop size around 100 ⁇ is reached. Then 200 g of hot, 11% gum arabic solution is added and agitation maintained for about 30 minutes.
- a 5% aqueous gelatin solution Sanafi Type A, 275 Bloom strength
- the pH is reduced to around 4.2 by the dropwise addition of glacial acetic acid, and the beaker contents then poured into 1-l of stirred water at room temperature. This solidifies the core mixture with a concomitant deposition of gelatin-gum arabic coacervate.
- the coating is set by chilling the slurry in ice water to around 5°C.
- the slurry may be used at this point, or the particle may be freed from any undeposited coacervate in the slurry by addition of about an equal volume of 10% sodium chloride and removing the capsules in a separatory funnel. This may be repeated as necessary to fully remove the free coacervate.
- the particles may be dried by filtering, washing the filter cake with water, then with inopiopanol, followed by air drying overnight at 25°C.
- the particles may then be sieved to desired size range.
- Perfume particles having a less water-soluble hydrophilic coating can be prepared as follows.
- a slurry of perfume particles containing a gelatin-gum arabic coating are prepared as in Example 1. After chilling, the slurry is allowed to warm up to room temperature and 8.0 ml of 25% aqueous glutaraldehyde solution is added with stirring. The pH is raised to 5.0 by addition of 2.5% aqueous sodium hydroxide solution, and the slurry is stirred overnight.
- the slurry may be used at this point, or separated as in Example 1.
- the glutaraldehyde-treated coating can withstand prolonged immersion in water at 60°C, whereas untreated coatings are removed on heating to 50°C.
- Perfume particles containing a hydrophobic, water-insoluble coating deposited by polycondensation are prepared as follows.
- a urea-formaldehyde precondensate is first formed by heating a mixture of 162 g 37% aqueous formaldehyde and 60-65 g urea, adjusted to pH 8.0 with 0.53 g sodium tetraborate, for 1 hour at 70°C, and then adding 276.85 g water.
- the reactor is then allowed to cool to room temperature with a gradual pH reduction to 2.2 over a 2 hour period.
- the reactor is then increased to about 50°C for a further 2 hours, then cooled to room temperature, after which the pH is adjusted to 7.0 with 10% sodium hydroxide solution.
- the resultant slurry containing the solid core particles encapsulated with urea-formaldehyde polymer may be used directly, or may be isolated by separation, washing and air drying as required.
- coated perfumed particles prepared in the foregoing manner can be used in all types of products where it is desirable to deposit fragrances on treated surfaces, and wherein sufficient agitation or pressure is exerted to rupture the friable coating.
- Typical examples of such products are laundry detergents and fabric softeners. The following illustrates the use of the compositions of this invention in such products.
- Laundry cleaning products comprise: a detersive surfactant; usually, one or more detergency builders; optionally, various enzymes, bleaches, carriers, and the like, all well-known from standard texts and very familiar to detergent formulators.
- Surfactants include soap, alkyl benzene sulfonates, ethoxylated alcohols, alkyl sulfates, and the like.
- Builders include various phosphates, zeolites, polycarboxylates and the like.
- U.S. Patents 3,985,669, 4,379,080 and 4,605,609 can be referred to for typical listings of such ingredients.
- Modern fabric softeners typically comprise one or more quaternary ammonium salts, or imidazoline or imidazolinium compounds.
- Softeners (and antistatic agent) generally have one, or preferably two, C12-C18 alkyl substituents and two or three short chain alkyl groups. Again, such materials are conventional and well-known to softener formulators.
- a granular laundry detergent is as follows: Component Weight % Sodium C13 alkylbenzene sulfonate 7.5 Sodium C 14-15 alkylsulfate 7.5 C 12-13 alkyl polyethoxylate (6.5) stripped of unethoxylated alcohol and lower ethoxylate 2.0 C12 alkyltrimethyl ammonium chloride 1.0 Sodium tripolyphosphate 32.0 Sodium carbonate 10.0 Sodium perborate monohydrate 5.3 Sodium octanoyloxybenzene sulfonate 5.8 Sodium diethylene triamine pentaacetate 0.5 Sodium sulfate, H2O and minors Balance
- the above composition is prepared using conventional means.
- the composition is combined with the perfume particles of Example I as follows.
- An amount of the perfume particles of Example I is combined with the detergent composition so that the detergent composition comprises about 0.3% perfume.
- the particles may be simply mixed in with the detergent granules.
- the particles can optionally be coated or agglomerated with a water-soluble coating material (on top of the friable coating) prior to combining with the detergent granules. This can be accomplished with a Schugi mixer (Flexomix 160) where a sufficient amount of a dextrin glue solution (2% dextrin, 3% water) is sprayed onto the particles to result in agglomerates of perfume particles in the same size range as other detergent granules.
- a dextrin glue solution 2% dextrin, 3% water
- the perfume is protected in the particles from degradation by the bleach in the detergent composition over long periods of storage.
- this detergent composition will provide perfume fragrance in substantially its original state from product, through the wash process and onto the fabric.
- a liquid fabric softener for use in an aqueous laundry rinse bath is as follows:
- Example V When used in the rinse bath of an automatic washing machine, the coating on perfumed particles of Example V is ruptured and the particles provide a fragrance to the fabrics being treated.
- a liquid laundry detergent composition is as follows. Component Weight % C13 linear alkylbenzene sulfonic acid 7.2 C 14-15 alkyl polyethoxylate (2.25) sulfuric acid 10.8 C 12-13 alcohol polyethoxylate (6.5)* 6.5 C12 alkyl trimethylammonium chloride 1.2 C 12-14 fatty acid 13.0 Oleic acid 2.0 Citric acid (anhydrous) 4.0 Diethylenetriamine pentaacetic acid 0.23 Protease enzyme (2.0 AU/g) 0.75 Amylase enzyme (375 Am.
- the detergent is prepared by adding the components, with continuous mixing, in the following order: paste premix of alkylbenzene sulfonic acid, sodium hydroxide, propylene glycol and ethanol; paste premix of alkyl polyethoxylate sulfuric acid, sodium hydroxide and ethanol; pentaacetic acid; alcohol polyethoxylate; premix of water, brighteners, alkanolamine and alcohol polyethoxylate; ethanol; sodium and potassium hydroxide; fatty acid; citric acid; formic acid and calcium; alkyl trimethylammonium chloride; TEPA-15 ⁇ 18; adjust pH to about 8.1; and balance of components.
- Example II The above composition is combined with the perfume-containing particles prepared according to Example II as follows. An amount of the perfume particles of Example II (avg. size range 40-150 microns; 5% coating) is thoroughly mixed into the liquid detergent composition so that the detergent composition comprises about 0.3% perfume (about 1% of the detergent composition will comprise the perfume particles).
- a fiber- and fabric-softener composition is as follows. Component Weight % Softener C* 3.7 TAMET** 0.3 GMS*** 1.20 Phosphoric Acid 0.023 Polydimethylsiloxane (350) 0.10 Glutaraldehyde 550 ppm Blue Dye 10 ppm Coated Perfume Particles**** 3.0 *(R1)2(CH3)2N+, Br ⁇ , wherein R1 is mixed C12-C18 alkyl (i.e., "tallowalkyl”). **TAMET is tallowalkyl N(CH2CH2OH)2. ***GMS is glyceryl monostearate. ****Coated perfume particles per Example III, sieved to average size less than 150 microns. Coating weight 3%.
- anions, X used with any of the cationic fabric softeners herein are a routine matter of choice, and that X can be, for example, chloride, bromide, methylsulfate, and the like. Mixtures of fabric softeners can be used, as can mixtures of anions.
- Example VI The detergent composition of Example VI is modified by using perfumed particles with friable coatings (melamine/urea/formaldehyde; 0.1/1/1.1 mole ratio; 300 micron size) with coating weights of 1% and 20%, respectively.
- friable coatings melamine/urea/formaldehyde; 0.1/1/1.1 mole ratio; 300 micron size
- a detersive bar composition is prepared by gently (so as not to fracture the coating) admixing 2% by weight of the coated perfumed particles of Example I (7% coating; all particles through 150 micron sieve) into a 99.44% tallow soap mixture (Na salt) and formed into a bar in a pin die.
- compositions herein can also be used in combination with abrasives.
- abrasive cleaners typically comprise 10% to 90+% abrasive such as pumice, silica, calcium carbonate, and the like. Coated perfume particles used in such cleaners are ruptured, in-use, to release their perfume.
- An abrasive cleanser is as follows. Component Weight % Sodium tallow sulfate 1.0 Calcium carbonate 40.0 Pumice (through 60 micron sieve) 45.0 Sodium sulfate 10.0 Coated perfume particles* 3.0 Chlorinated trisodium phosphate 1.0 *Per Example III; 10% coating; particles through 100 micron sieve.
- Example X The composition of Example X is prepared by gently dry-blending the ingredients.
- the weight (or thickness) of operable friable coatings can be adjusted according to the usage envisioned. For example, even relatively thick coatings will rupture and release their perfume particles under European machine washing conditions, which can involve wash times of many minutes, at high temperature and considerable agitation. By contrast, USA machine washing conditions are much shorter, and milder, so less coating material should be used. For fabric softeners, agitation and agitation times are usually less than for washing.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Fats And Perfumes (AREA)
- Detergent Compositions (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Plural Heterocyclic Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Cosmetics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
- The present invention relates to perfume particles which comprise perfume dispersed within a water-insoluble low molecular weight polymeric carrier material, and encapsulated with a friable coating. Such coated particles are useful, for example, in cleaning and fabric conditioning compositions.
- This invention is based on the concept of controlled perfume release, i.e., perfume release at a time and under conditions that will achieve the desired perfume effect. In general, this is a very old idea, and various methods for achieving this end have been developed, from the simple idea of putting perfume in wax candles to the complex technology of microencapsulation.
- One aspect of the concept of controlled release of perfume is providing slow release of perfume over an extended period of time. This is generally achieved by blending perfume with a substance that will, in essence, "trap" the perfume so that small amounts of perfume are released over time. The use of high molecular weight polymeric substances having perfume incorporated therein to provide controlled release of perfume over time is known. See, for example, U.S. Patent 4,184,099 Lindauer et al, issued January 15, 1980; European Patent Application 0 028 118, Leonard, published May 6, 1981; and U.S. Patent 4,110,261, Newland, issued August 29, 1978, which teach combining perfume with a release controlling medium and forming the combination into a solid product for air freshening.
- Textile laundering is also concerned with controlled release of perfumes. Application of this concept allows for slowing down or preventing release of perfume through long periods of shelf storage. Such a concept also allows for using much lower levels of perfume in product since much less perfume is wasted.
- Perfume preservation over storage times can be achieved in a variety of ways. The perfume can be made a part of the package for the composition. The perfume can be combined with plastic used to make a bottle, or the perfume can be mixed with a polymer substance and the product used to coat a cardboard package composition, as is disclosed in U.S. Patent 4,540,721, Staller, issued September 10, 1985. Either way the perfume is released over time from the polymer matrix.
- The perfume/controlled release agent may also be in the form of particles mixed into the laundry composition. One method taught to achieve this end is combining the perfume with a water-soluble polymer, forming into particles and adding to a laundry composition, as is described in U.S. Patent 4,209,417, Whyte, issued June 24, 1980; U.S. Patent 4,339,356, Whyte, issued July 13, 1982; and U.S. Patent 3,576,760, Gould et al, issued April 27, 1971.
- The perfume may also be adsorbed onto a porous carrier material, which may be a polymeric material. See, for example, U.K. Patent Publication 2,066,839, Bares et al (applied for in the name of Vysoka Skola Chemicko Technologika), published July 15, 1981. These methods may also be used to mask unpleasant odors in a composition or to protect perfume from degradation by harsh components in a laundry composition. Such methods will provide these benefits only for dry powder or granular type compositions because, as soon as the polymer is hydrated the perfume is released. Thus, these methods provide for perfume fragrance benefits upon opening of the product package and loading into the washing apparatus. While these benefits are desirable, it would be even more desirable to have a method which allows for delivery of undiluted, undissipated and unaltered perfume to fabric and release of the perfume at the end of the laundry process so that the fabric is scented with the desirable perfume odor.
- Of course, one method for achieving this end is putting the perfume into a product which goes directly into the dryer. This way, the perfume is delivered to the fabric in the dryer cycle. Such a method is taught in both U.S. Patent 4,511,495, Melville, issued April 16, 1985, and U.S. Patent 4,636,330, Melville, issued January 13, 1987. Both teach forming perfume into particles with a carrier. These particles are then formulated into a composition which is applied to textiles prior to putting into the dryer or prior to clothes-line drying.
- An even more desirable method for delivering perfume to laundered fabric would be one which provides for protection of the perfume through the washing process and hence delivery of the perfume to fabric in essentially its original state.
- Such a method must allow for prevention of dilution, degradation or loss of the perfume during the wash cycle of the laundry process. This is done by utilizing a system that releases the perfume in the drying process or later after the perfume has been delivered to the fabric. Preventing release of perfume during the washing process involves very different and more difficult technology. Such protection must be stable in not only the heat-elevated conditions of the wash but must also be stable against degradation by water and other harsh chemicals in the washing process such as bleach, enzymes, surfactants, etc.
- One method which has been developed to provide these benefits is perfume microencapsulation. Here the perfume comprises a capsule core which is coated completely with a material which may be polymeric. U.S. Patent 4,145,184, Brain et al, issued March 20, 1979, and U.S. Patent 4,234,627, Schilling, issued November 18, 1980, teach using a tough coating material which essentially prohibits the diffusion out of the perfume. The perfume is delivered to fabric via the microcapsules and is then released by rupture of the microcapsules such as would occur with manipulation of the fabric.
- Another method of perfume delivery involves providing protection of perfume through the wash cycle, with release of perfume in the heat-elevated conditions of the dryer. U.S. Patent 4,096,072, Brock et al, issued June 20, 1978, teaches a method for delivering fabric conditioning agents to textiles through the wash and dry cycle via particles containing hydrogenated caster oil and a fatty quarternary ammonium salt. Perfume may be incorporated into these particles. However, it is not clear whether the perfume thus incorporated is released in the wash cycle or, more desirably, carried in the particles to the dryer and released there, as the particles soften.
- U.S. Patent 4,402,856, Schnoring et al, issued September 6, 1983, teaches a microencapsulation technique which involves the formulation of a shell material which will allow for diffusion of perfume out of the capsule only at certain temperatures. This allows for maintenance of the perfume particles through storage and additionally through the wash cycle. The particles adhere to the fabric and are carried over to the dryer. Diffusion of the perfume out of the capsules then occurs only in heat-elevated conditions of the dryer. These particles are made of gelatin, an anionic polymer and a hardening agent.
- U.S. Patent 4,152,272, Young, issued May 1, 1979, teaches incorporating perfume into wax particles to protect the perfume through storage in dry compositions and through the laundry process. The perfume then diffuses through the wax matrix of the particles on the fabric in the heat-elevated conditions of the dryer.
- It is desirable to provide compositions comprising perfume particles that can be incorporated in liquid as well as dry granular or powder compositions and provide long-term storage stability.
- It is desirable to provide a method for delivering a broad range of perfume materials to fabric or other surfaces during a cleaning or fabric- or fiber-conditioning process.
- It would be most desirable to have a perfumed cleaning or conditioning composition which would provide improved product odor, improved odor of perfume released during the cleaning process, and improved odor and intensity of perfume delivered to the surface being cleaned.
- It would be particularly desirable to provide perfumed particles which are stable in fluid compositions, but which liberate their perfume, in use.
- The present invention encompasses perfume particles having an average size, when coated, of less than about 350 microns (preferably, an average size not greater than 150 microns; most preferably a size range of 40-150 microns) which comprise from about 5% to about 70% of a perfume dispersed in from about 30% to about 95% of a water-insoluble polymeric carrier material having a molecular weight of from about 100 to about 30,000, a melting point of from about 37°C to about 190°C, and a hardness value of from about 0.1 to about 15, said particles having a friable coating on their outer surfaces. (By "size" herein is meant average particle diameter for substantially spherical particles, or the size of the largest diameter or dimension for nonspherical particles.) Particle sizes larger than this may be more lost from the surface they are deposited on, and do not provide a relative great enough surface area to release the perfume at the desired rate. Also, particles larger than specified herein may be undesirably noticeable on the surface being treated. Particles at the low end of the range tend to adhere well to the surface being treated, but tend to release the perfume quite rapidly.
- Typically, the particles herein are characterized by a coating which comprises up to 20% by weight of the perfumed particles. For general use in fabric laundering and conditioning compositions, the coating typically comprises from 1% to 10% by weight of the perfumed particles.
- Preferred particles herein are those wherein the friable coating is substantially water-insoluble. Suitable coatings of this type can be prepared from aminoplast polymers, e.g., the reaction products of an amine and an aldehyde. Typical friable coatings comprise, for example, the reaction products of an amine selected from urea and melamine, and an aldehyde selected from formaldehyde, acetaldehyde and glutaraldehyde, and mixtures of said amines and said aldehydes. Such friable coatings are described hereinafter.
- The coated perfume particles herein are useful in situations where the particle coating is ruptured or worn away (e.g., in an automatic washing machine or laundry dryer) to release the particles, which, in turn, release their perfume. Thus, the coated particles are useful in typical cleaning composition, comprising detersive surfactants, optional builders, and the like. The particles are likewise useful in conditioning compositions, comprising fiber- and fabric-conditioning agents.
- All percentages herein are by weight, unless otherwise specified.
- The present invention allows for preservation, protection, and delivery of perfumes contained in cleaning and conditioning compositions through extended storage and harsh cleaning conditions. This is achieved by isolation of the perfume in a carrier material in the form of small particles. The individual components of the invention will now be discussed in detail.
- The perfumed particles of the present invention comprise perfume dispersed in certain carrier materials. The perfumed particles are coated with a friable coating material which ruptures in-use to release the perfumed particle which, in turn, releases its perfume.
- In the present context, the term "perfume" means any odoriferous material or any material which acts as a malodor counteractant. In general, such materials are characterized by a vapor pressure greater than atmospheric pressure at ambient temperatures. The perfume or deodorant materials employed herein will most often be liquid at ambient temperatures, but also can be solids such as the various camphoraceous perfumes known in the art. A wide variety of chemicals are known for perfumery uses, including materials such as aldehydes, ketones, esters and the like. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as perfumes, and such materials can be used herein. The perfumes herein can be relatively simple in their composition or can comprise highly sophisticated, complex mixtures of natural and synthetic chemical components, all chosen to provide any desired odor.
- Typical perfumes herein can comprise, for example, woody/earthy bases containing exotic materials such as sandalwood oil, civet, patchouli oil and the like. The perfumes herein can be of a light, floral fragrance, e.g., rose extract, violet extract and the like. The perfumes herein can be formulated to provide desirably fruity odors, e.g., lime, lemon, orange and the like. Suitable perfumes include musk ambrette, musk ketone, musk tibetine, musk xylol, aurantiol, ethyl vanillin and mixtures thereof.
- Perfume materials such as these are described more fully in S. Arctander, Perfume Flavors and Chemicals, Vols. I and II, Aurthor, Montclair, N.J., and the Merck Index, 8th Edition, Merck & Co., Inc. Rahway, N.J., both references being incorporated herein by reference.
- In short, any chemically compatible material which exudes a pleasant or otherwise desirable odor can be used in the perfumed particles herein to provide a desirable odor when applied to fabrics.
- Perfumes which are normally solid can also be employed in the present invention. These may be admixed with a liquefying agent such as a solvent prior to incorporation into the particles, or may be simply melted and incorporated, as long as the perfume does not sublime or decompose upon heating.
- The invention also encompasses the use of materials which act as malodor counteractants. These materials, although termed "perfumes" hereinafter, may not themselves have a discernible odor but can conceal or reduce any unpleasant odors. Examples of suitable malodor counteractants are disclosed in U.S. Patent No. 3,102,101, issued August 27, 1963, to Hawley et al.
- The perfumed particles of the present invention can even comprise perfumes which are not typically used to deliver a fragrance to a surface, such as fabric through the laundry process. Perfume materials which are very volatile, unstable, or soluble in the particular compositions being used to deliver the perfume may be used in the present invention because the perfume is isolated from the composition in the particles. Perfume materials which are not substantive to fabrics in the laundry process can also be used in the present invention since the particles deliver the perfume to the fabric surface where it is released. Thus, use of the present invention to deliver a perfume to a surface broadens the class of perfume materials that can be utilized.
- Generally, the perfumed particles of the present invention will comprise from about 5% to about 70%, preferably from about 5% to about 50%, perfume. The exact amount of perfume used in the particles will vary greatly depending on the strength of the particular fragrance used, and the desired odor effect.
- The carrier materials of the perfumed particles must meet certain criteria to be useful in the present invention. First, the carrier material must be a water-insoluble polymeric material. Further, the material must have a molecular weight between about 100 and about 30,000, preferably between about 500 and about 5000. The molecular weight of the carrier material may be determined by any standard means. The material must also have a melting point of between about 37°C and about 190°C, typically 37°C to 130°C. This will prevent melting of the particles in storage or the washing machine in laundry applications. (It is most desirable to have a carrier material that will not completely melt in an automatic dryer, to avoid blocking of the lint screen and excessive build-up of heat in the dryer). The melting point of the carrier material should also not be higher than a point at which the perfume to be combined therewith will decompose. The melting point of the carrier material is measured by what is called the drop melting point method. American Society for Testing and Materials (ASTM) Test Method D127-63 (reapproved 1982, incorporated by reference herein). Briefly, this method involves the following. The sample to be measured is deposited onto a thermometer bulb by dipping a chilled thermometer into the melted sample. The thermometer bearing the sample is then placed into a test tube and heated by means of a water bath until the sample melts and the first drop falls from the thermometer bulb. The average of the temperatures at which the drops of sample fall is the drop melting point of the sample.
- The polymeric material must also be of a particular hardness. This hardness value may be measured by the standard test method for needle penetration of petroleum waxes. ASTM Test Method D1321-86 (incorporated by reference herein). Briefly, this method involves first melting and further heating the sample to be tested to 17°C (30°F) above its congealing point. The sample is then poured into a container and air cooled under controlled conditions. The sample is then conditioned at the test temperature in a water bath. Penetration is then measured with a penetrometer, which applies a standard needle to the sample for five seconds under a load of 100 grams. The penetration or hardness value is the depth, in tenths of a millimeter, to which the standard needle penetrates into the wax under these defined conditions. The hardness value of the carrier material must be between about 0.1 and about 15, preferably between 0.1 and 8, to be useful in the present invention. This will allow for particles of a hardness that will optimize the perfume protection/preservation in the carrier.
- The carrier material must also be inert to the perfume and relatively odorless. The material must allow for diffusion of the perfume therethrough. The carrier material must also be such that it melts without decomposition.
- Nonlimiting examples of useful carrier materials include polyethylenes, polyamides, polystyrenes, polyisoprenes, polycarbonates, polyesters, polyacrylates, vinyl polymers and polyurethanes and mixtures thereof, which meet the above-described criteria, e.g., they are water-insoluble, have a molecular weight between about 100 and about 30,000, have a melting point between about 37°C and 190°C and a hardness value between 0.1 and 15.
- Highly preferred carriers will have a hardness value of 0.1 to 8, typically 0.5; a molecular weight of 500 to 5,000 (typically 2,000); and a melting point of about 126°C - typically, a polyethylene.
- One carrier material which meets all of these specified criteria is sold under the trade name POLYWAX 2000 by Petrolite Specialty Polymers Group. This material is a polyethylene having a molecular weight of about 2,000, a melting point of about 259°F (126°C), and a hardness value (as measured above) at 77°F (25°C) of about 0.5. Another material which meets these criteria is POLYWAX 1000 (also sold by Petrolite Specialty Polymers Group). This material is also a polyethylene having a molecular weight of about 1,000, a melting point of about 237°F (114°C), and has a hardness value at 77°F (25°C) of about 1.0. Another such material is POLYWAX 500.
- It may be desirable to utilize a mixture of different carrier materials in the perfume particles of the present invention, for example, a blend of a polymeric material and a minor amount of a wax material. Examples of useful wax materials include the materials sold under the trade names BOLER 1014, STARWAX 100, and VICTORY, all available from the Boler Petroleum Company. Such a blend allows for better deposition properties because the particles formed therefrom would have a "stickier" surface. A great number of combinations of materials are possible and are intended to be covered by this invention so long as the final blend of carrier materials meets the criteria outlined above.
- The choice of carrier material to be used in the perfumed particles of the present invention will depend to some degree on the particular perfume to be used. Some perfumes will require a greater amount of protection than others and the carrier material to be used therewith can be chosen accordingly.
- Generally, the perfumed particles used in the present invention will comprise from about 30% to about 95%, preferably from about 50% to about 95% carrier material. Again, this will vary with the type and amount of the particular perfume being utilized.
- In a typical process, the perfume-containing particles can be made as follows. The carrier material is first heated slowly to its melting point. The material is not heated any more than is necessary to just melt the substance. The perfume is then quickly added, generally as an oil or liquid, at room temperature to the melted carrier substance. The two are quickly mixed into a homogeneous blend then rapidly cooled with liquid nitrogen (or with dry ice or any other means which will cool the mixture quickly) until it has completely solidified. The solid material is then subdivided, generally by grinding or milling, to produce particles of the desired average size. Other methods such as spray cooling or extrusion may also be used to subdivide the particles.
- To further stabilize particularly volatile or delicate perfumes, it may be desirable to preload the perfume (i.e., mix the perfume) onto silica gel or clay prior to combining with the carrier substance. Some perfumes which are not so volatile will not require this special treatment because it would inhibit their release from the carrier substance too much. Optimization of the rate at which the perfume is released from the carrier is the goal, and this optional additional step allows for better control of that rate with some of the more volatile perfumes.
- The perfume-containing particles, above, are encapsulated to provide a friable coating. This coating prevents the perfume from diffusing out of the particles as readily during long storage periods. Moreover, the coating helps preserve the original "character" of perfumes having particularly volatile top-notes. Moreover, the coating helps protect the perfumed particle from other ingredients in the formulation being perfumed.
- The coating materials used herein are friable, and are designed to break-up as the perfumed formulation is used, thereby releasing the perfumed particle.
- The particles may be coated with more than one friable coating material to produce a particle having more than one layer of coating. Different coating materials can be chosen to provide different perfume protection as needed, so long as one of the coatings, generally, the outermost, is friable.
- The individual perfume-containing particles may also be agglomerated with the coating material to provide larger particles which comprise a number of the individual perfume-containing particles. This agglomerating material surrounding the particles provides an additional barrier to diffusion of the perfume out of the particles. Such an approach also minimizes the surface area of free particles susceptible to perfume diffusion. The ratio of perfume particles to agglomerate material will vary greatly depending upon the extent of additional protection desired. This agglomeration approach may be particularly useful with very volatile perfumes or perfumes that are especially susceptible to degradation. Also, agglomeration of very small perfume particles would provide additional protection against premature diffusion out of perfume.
- Agglomeration of particles in this fashion is useful in preventing segregation of small perfume particles from larger detergent granules, for example, in a dry granular detergent product.
- For friable coatings, the process of manufacture is based on applying the coating as a kind of "shell" to the perfumed particles. For perfumed particles whose carrier material has a melting point below that of the boiling point of the solvent used in the process, the process involves melting the carrier and perfume together and adding the molten mixture to a solvent solution of the "shell" material, or a suitable precursor, held above the carrier melting temperature. The system is agitated sufficiently to form an emulsion of the carrier/perfume of desired liquid liquid drop size in the shell solution. The conditions necessary to deposit the encapsulating material are then established and the whole is cooled to give encapsulated solid particles having the desired, friable "shell". Water insolubility of the shell is established either at the deposition stage, or by suitable treatment prior to isolation or use of the particles.
- Although the process described here is a one step molten drop formation/encapsulation procedure, it should be readily apparent to those skilled in the art that encapsulation of pre-formed perfume particles can be accomplished in a like manner. The pre-formed particles can be prepared in a variety of ways, including cryogrinding, spray drying, spray congealing and meltable dispersion techniques such as those described in books by P. B. Deasy ("Microencapsulation & Related Drug Processes", Dekker, N.Y., 1986) and A. Kondo ("Microcapsule Processing and Technology", Dekker, N.Y., 1979). Such techniques would be required for carrier materials having a melting point above the solvent boiling point.
- A variety of suitable encapsulation procedures can be used, such as reviewed in the books by Deary and Kondo above. Depending on materials used, the shell can impart hydrophilicity or hydrophobicity to the particles. Nonlimiting examples of encapsulating materials and processes include gelatin-gum arabic concentrate deposited by a complex coacervation procedure, e.g., U.S. Patent 2,800,457, for hydrophilic shells, and ureaformaldehyde deposited by a polycondensation process, e.g., U.S. Patent 3,516,941, for hydrophobic shells.
- Water insolubility of the shell materials may be imparted by cross-linking of the gelatin-gum arabic coacervate with suitable aldehydes or other known gelatin hardeners after deposition. Polymerization of the urea-formaldehyde precondensate during the encapsulation process yields water-insolubility.
- The slurry containing the perfume particles can be used directly, e.g., spray dried with other components of the formulation, or the particles can be washed and separated, and dried if desired.
- Perfume particles containing a hydrophilic coating deposited by complex coacervation are prepared as follows.
- 132 g of POLYWAX 500 (polyethylene having a molecular weight of 500) is heated in a beaker on a hot plate at about 100°C until just melted. 44 g of perfume at room temperature is added to the melted POLYWAX 500 and heating is maintained to bring this core mixture back to 100°C.
- The melted core material is added to 400 g of a 5% aqueous gelatin solution (Sanafi Type A, 275 Bloom strength) maintained 15-20°C above the core melting point in a 1-l steel beaker, and emulsified by agitation until desired drop size around 100 µ is reached. Then 200 g of hot, 11% gum arabic solution is added and agitation maintained for about 30 minutes.
- The pH is reduced to around 4.2 by the dropwise addition of glacial acetic acid, and the beaker contents then poured into 1-l of stirred water at room temperature. This solidifies the core mixture with a concomitant deposition of gelatin-gum arabic coacervate.
- The coating is set by chilling the slurry in ice water to around 5°C. The slurry may be used at this point, or the particle may be freed from any undeposited coacervate in the slurry by addition of about an equal volume of 10% sodium chloride and removing the capsules in a separatory funnel. This may be repeated as necessary to fully remove the free coacervate. The particles may be dried by filtering, washing the filter cake with water, then with inopiopanol, followed by air drying overnight at 25°C.
- The particles may then be sieved to desired size range.
- Perfume particles having a less water-soluble hydrophilic coating can be prepared as follows.
- A slurry of perfume particles containing a gelatin-gum arabic coating are prepared as in Example 1. After chilling, the slurry is allowed to warm up to room temperature and 8.0 ml of 25% aqueous glutaraldehyde solution is added with stirring. The pH is raised to 5.0 by addition of 2.5% aqueous sodium hydroxide solution, and the slurry is stirred overnight.
- The slurry may be used at this point, or separated as in Example 1.
- The glutaraldehyde-treated coating can withstand prolonged immersion in water at 60°C, whereas untreated coatings are removed on heating to 50°C.
- Perfume particles containing a hydrophobic, water-insoluble coating deposited by polycondensation are prepared as follows.
- A urea-formaldehyde precondensate is first formed by heating a mixture of 162 g 37% aqueous formaldehyde and 60-65 g urea, adjusted to pH 8.0 with 0.53 g sodium tetraborate, for 1 hour at 70°C, and then adding 276.85 g water.
- 429 ml of this precondensate and 142 ml water are then stirred in a 1-l steel reactor and 57.14 g sodium chloride and 0.57 g sodium carboxymethyl cellulose added. Then are added the core components comprising 161.3 g POLYWAX 500 carrier and 60.7 ml perfume, and the reactor is heated to about 10°C above the core melting point. Agitation is adjusted to emulsify and maintain the molten core at the desired drop size, and the pH of the contents is adjusted to about 5.0 with dilute hydrochloric acid.
- The reactor is then allowed to cool to room temperature with a gradual pH reduction to 2.2 over a 2 hour period. The reactor is then increased to about 50°C for a further 2 hours, then cooled to room temperature, after which the pH is adjusted to 7.0 with 10% sodium hydroxide solution.
- The resultant slurry containing the solid core particles encapsulated with urea-formaldehyde polymer may be used directly, or may be isolated by separation, washing and air drying as required.
- The coated perfumed particles prepared in the foregoing manner can be used in all types of products where it is desirable to deposit fragrances on treated surfaces, and wherein sufficient agitation or pressure is exerted to rupture the friable coating. Typical examples of such products are laundry detergents and fabric softeners. The following illustrates the use of the compositions of this invention in such products.
- Laundry cleaning products comprise: a detersive surfactant; usually, one or more detergency builders; optionally, various enzymes, bleaches, carriers, and the like, all well-known from standard texts and very familiar to detergent formulators. Surfactants include soap, alkyl benzene sulfonates, ethoxylated alcohols, alkyl sulfates, and the like. Builders include various phosphates, zeolites, polycarboxylates and the like. U.S. Patents 3,985,669, 4,379,080 and 4,605,609 can be referred to for typical listings of such ingredients.
- Modern fabric softeners typically comprise one or more quaternary ammonium salts, or imidazoline or imidazolinium compounds. Softeners (and antistatic agent) generally have one, or preferably two, C₁₂-C₁₈ alkyl substituents and two or three short chain alkyl groups. Again, such materials are conventional and well-known to softener formulators.
- A granular laundry detergent is as follows:
Component Weight % Sodium C₁₃ alkylbenzene sulfonate 7.5 Sodium C14-15 alkylsulfate 7.5 C12-13 alkyl polyethoxylate (6.5) stripped of unethoxylated alcohol and lower ethoxylate 2.0 C₁₂ alkyltrimethyl ammonium chloride 1.0 Sodium tripolyphosphate 32.0 Sodium carbonate 10.0 Sodium perborate monohydrate 5.3 Sodium octanoyloxybenzene sulfonate 5.8 Sodium diethylene triamine pentaacetate 0.5 Sodium sulfate, H₂O and minors Balance - The above composition is prepared using conventional means. The composition is combined with the perfume particles of Example I as follows. An amount of the perfume particles of Example I is combined with the detergent composition so that the detergent composition comprises about 0.3% perfume.
- The particles may be simply mixed in with the detergent granules. To prevent segregation of the perfume particles during packaging and shipping (due to their smaller size relative to the detergent granules), the particles can optionally be coated or agglomerated with a water-soluble coating material (on top of the friable coating) prior to combining with the detergent granules. This can be accomplished with a Schugi mixer (Flexomix 160) where a sufficient amount of a dextrin glue solution (2% dextrin, 3% water) is sprayed onto the particles to result in agglomerates of perfume particles in the same size range as other detergent granules.
- The perfume is protected in the particles from degradation by the bleach in the detergent composition over long periods of storage. When used in the laundry process in an automatic washing machine this detergent composition will provide perfume fragrance in substantially its original state from product, through the wash process and onto the fabric.
- A great number of perfumes can be utilized in the present composition that would not otherwise be appropriate for use in such laundry detergent compositions.
-
- When used in the rinse bath of an automatic washing machine, the coating on perfumed particles of Example V is ruptured and the particles provide a fragrance to the fabrics being treated.
- A liquid laundry detergent composition is as follows.
Component Weight % C₁₃ linear alkylbenzene sulfonic acid 7.2 C14-15 alkyl polyethoxylate (2.25) sulfuric acid 10.8 C12-13 alcohol polyethoxylate (6.5)* 6.5 C₁₂ alkyl trimethylammonium chloride 1.2 C12-14 fatty acid 13.0 Oleic acid 2.0 Citric acid (anhydrous) 4.0 Diethylenetriamine pentaacetic acid 0.23 Protease enzyme (2.0 AU/g) 0.75 Amylase enzyme (375 Am. U/g) 0.16 TEPA-E15-18** 1.5 Monoethanolamine 2.0 (moles of alkanolamine) (0.033) Sodium ion 1.66 Potassium ion 2.65 (molar K+:Na+) (0.94) Propylene glycol 6.8 Ethanol 7.8 Formic acid 0.66 Calcium ion 0.03 Minors and water Balance to 100 pH at concentration of 10% in water at 68°F (20°C) 8.65 *Alcohol and monoethoxylated alcohol removed. **Tetraethylene pentaimine ethoxylated with 15-18 moles (avg.) of ethylene oxide at each hydrogen site. - The detergent is prepared by adding the components, with continuous mixing, in the following order: paste premix of alkylbenzene sulfonic acid, sodium hydroxide, propylene glycol and ethanol; paste premix of alkyl polyethoxylate sulfuric acid, sodium hydroxide and ethanol; pentaacetic acid; alcohol polyethoxylate; premix of water, brighteners, alkanolamine and alcohol polyethoxylate; ethanol; sodium and potassium hydroxide; fatty acid; citric acid; formic acid and calcium; alkyl trimethylammonium chloride; TEPA-₁₅₋₁₈; adjust pH to about 8.1; and balance of components.
- The above composition is combined with the perfume-containing particles prepared according to Example II as follows. An amount of the perfume particles of Example II (avg. size range 40-150 microns; 5% coating) is thoroughly mixed into the liquid detergent composition so that the detergent composition comprises about 0.3% perfume (about 1% of the detergent composition will comprise the perfume particles).
- A fiber- and fabric-softener composition is as follows.
Component Weight % Softener C* 3.7 TAMET** 0.3 GMS*** 1.20 Phosphoric Acid 0.023 Polydimethylsiloxane (350) 0.10 Glutaraldehyde 550 ppm Blue Dye 10 ppm Coated Perfume Particles**** 3.0 *(R¹)₂(CH₃)₂N⁺, Br⁻, wherein R¹ is mixed C₁₂-C₁₈ alkyl (i.e., "tallowalkyl"). **TAMET is tallowalkyl N(CH₂CH₂OH)₂. ***GMS is glyceryl monostearate. ****Coated perfume particles per Example III, sieved to average size less than 150 microns. Coating weight 3%. - It will be appreciated by those skilled in the art that the anions, X, used with any of the cationic fabric softeners herein are a routine matter of choice, and that X can be, for example, chloride, bromide, methylsulfate, and the like. Mixtures of fabric softeners can be used, as can mixtures of anions.
- The detergent composition of Example VI is modified by using perfumed particles with friable coatings (melamine/urea/formaldehyde; 0.1/1/1.1 mole ratio; 300 micron size) with coating weights of 1% and 20%, respectively.
- A detersive bar composition is prepared by gently (so as not to fracture the coating) admixing 2% by weight of the coated perfumed particles of Example I (7% coating; all particles through 150 micron sieve) into a 99.44% tallow soap mixture (Na salt) and formed into a bar in a pin die.
- The compositions herein can also be used in combination with abrasives. As is well-known, abrasive cleaners typically comprise 10% to 90+% abrasive such as pumice, silica, calcium carbonate, and the like. Coated perfume particles used in such cleaners are ruptured, in-use, to release their perfume.
- An abrasive cleanser is as follows.
Component Weight % Sodium tallow sulfate 1.0 Calcium carbonate 40.0 Pumice (through 60 micron sieve) 45.0 Sodium sulfate 10.0 Coated perfume particles* 3.0 Chlorinated trisodium phosphate 1.0 *Per Example III; 10% coating; particles through 100 micron sieve. - The composition of Example X is prepared by gently dry-blending the ingredients.
- It will be appreciated by the formulator that the weight (or thickness) of operable friable coatings can be adjusted according to the usage envisioned. For example, even relatively thick coatings will rupture and release their perfume particles under European machine washing conditions, which can involve wash times of many minutes, at high temperature and considerable agitation. By contrast, USA machine washing conditions are much shorter, and milder, so less coating material should be used. For fabric softeners, agitation and agitation times are usually less than for washing.
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35043489A | 1989-05-11 | 1989-05-11 | |
US350434 | 1989-05-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0397246A2 true EP0397246A2 (en) | 1990-11-14 |
EP0397246A3 EP0397246A3 (en) | 1991-10-09 |
EP0397246B1 EP0397246B1 (en) | 1995-03-29 |
Family
ID=23376708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90201105A Expired - Lifetime EP0397246B1 (en) | 1989-05-11 | 1990-05-02 | Coated perfume particles |
Country Status (19)
Country | Link |
---|---|
EP (1) | EP0397246B1 (en) |
JP (1) | JPH0341197A (en) |
KR (1) | KR970011344B1 (en) |
CN (2) | CN1027082C (en) |
AT (1) | ATE120483T1 (en) |
AU (1) | AU644358B2 (en) |
BR (1) | BR9002227A (en) |
CA (1) | CA2015737C (en) |
DE (1) | DE69018119T2 (en) |
DK (1) | DK0397246T3 (en) |
ES (1) | ES2072967T3 (en) |
FI (1) | FI902340A0 (en) |
GR (1) | GR3015569T3 (en) |
IE (1) | IE66911B1 (en) |
MA (1) | MA22039A1 (en) |
MX (1) | MX171352B (en) |
NZ (1) | NZ233579A (en) |
PT (1) | PT94005B (en) |
TR (1) | TR27082A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992018601A1 (en) * | 1991-04-16 | 1992-10-29 | Minnesota Mining And Manufacturing Company | Improvements in coated perfume particles |
WO1993005139A1 (en) * | 1991-08-28 | 1993-03-18 | The Procter & Gamble Company | Solid, particulate fabric softener with protected, dryer-activated, cyclodextrin/perfume complex |
WO1993005141A1 (en) * | 1991-08-28 | 1993-03-18 | The Procter & Gamble Company | Solid, particulate detergent composition with protected, dryer-activated, water sensitive material |
WO1993005137A1 (en) * | 1991-08-28 | 1993-03-18 | The Procter & Gamble Company | Liquid fabric softener with protected cyclodextrine/perfume complex |
WO1993005136A1 (en) * | 1991-08-28 | 1993-03-18 | The Procter & Gamble Company | Process for preparing protected particles of water sensitive material |
EP0539025A2 (en) * | 1991-09-25 | 1993-04-28 | Unilever Plc | Fragrance microcapsules for fabric conditioning |
WO1993013195A1 (en) * | 1991-12-20 | 1993-07-08 | The Procter & Gamble Company | A process for preparing a perfume capsule composition |
EP0622453A1 (en) * | 1993-04-26 | 1994-11-02 | Setric International S.A. | Process for particulate protection of a combustible product against the action of a chlorinated product mixed therewith |
US5425887A (en) * | 1993-07-26 | 1995-06-20 | Lever Brothers Company, Division Of Conopco, Inc. | Encapsualted perfume in fabric conditioning articles |
EP0684301A2 (en) * | 1994-04-28 | 1995-11-29 | The Procter & Gamble Company | Granular detergent composition |
EP0686190A1 (en) * | 1993-02-26 | 1995-12-13 | The Procter & Gamble Company | Laundry additives comprising encapsulated perfumes and modified polyesters |
WO1998028396A1 (en) * | 1996-12-23 | 1998-07-02 | Quest International B.V. | Compositions containing perfume |
WO1999038945A1 (en) * | 1998-02-02 | 1999-08-05 | Rhodia Chimie | Water dispersible granulates comprising a perfume in a water soluble or water dispersible matrix and preparation method |
WO2000017311A1 (en) * | 1998-09-23 | 2000-03-30 | The Procter & Gamble Company | Encapsulated materials and bar compositions containing such materials |
WO2000032735A1 (en) * | 1998-12-01 | 2000-06-08 | Henkel Kommanditgesellschaft Auf Aktien | Active chlorine-containing preparations with stabilized fragrances |
WO2000032730A1 (en) * | 1998-12-01 | 2000-06-08 | Henkel Kommanditgesellschaft Auf Aktien | Peroxy-containing preparations with stabilized fragrances |
WO2000065019A1 (en) * | 1999-04-22 | 2000-11-02 | Henkel Kommanditgesellschaft Auf Aktien | Detergent containing abrasive material and microcapsules |
WO2001044422A2 (en) * | 1999-12-14 | 2001-06-21 | Henkel Kommanditgesellschaft Auf Aktien | Particulate wetting agent and machine dishwashing agent |
WO2002009663A1 (en) * | 2000-08-02 | 2002-02-07 | Quest International B.V. | Particles |
US6624136B2 (en) * | 1998-02-02 | 2003-09-23 | Rhodia Chimie | Water-dispersible granules comprising a fragrance in a water-soluble or water-dispersible matrix, and process for their preparation |
WO2006077049A2 (en) * | 2005-01-21 | 2006-07-27 | Henkel Kommanditgesellschaft Auf Aktien | Antiadhesive polymer for prevention of adhesion of microorganisms to textiles and for prevention of laundry odours |
US7166567B2 (en) | 2000-11-21 | 2007-01-23 | Givaudan Sa | Fragrance compositions |
GB2428250A (en) * | 2004-02-06 | 2007-01-24 | Brendan Ruff | Method for introducing a scent into an unscented candle |
US7485610B2 (en) | 2002-10-11 | 2009-02-03 | Bell Flavors & Fragrances Duft Und Aroma Gmbh | Method for the production of a solid fragrance concentrate |
WO2009126960A2 (en) | 2008-04-11 | 2009-10-15 | Amcol International Corporation | Multilayer fragrance encapsulation |
EP2221039A1 (en) * | 2009-02-18 | 2010-08-25 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Antiperspirant compositions |
US8188022B2 (en) | 2008-04-11 | 2012-05-29 | Amcol International Corporation | Multilayer fragrance encapsulation comprising kappa carrageenan |
DE102015205802A1 (en) * | 2015-03-31 | 2016-10-06 | Henkel Ag & Co. Kgaa | Detergent composition with bleach catalyst and perfume capsules |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2015736A1 (en) * | 1989-05-11 | 1990-11-11 | Diane G. Schmidt | Perfume particles for use in cleaning and conditioning compositions |
KR100431360B1 (en) * | 2001-02-07 | 2004-05-14 | 우리켐테크(주) | Resin composition for slow flavor emission |
KR20030062154A (en) * | 2002-01-16 | 2003-07-23 | 이상범 | Aromatic wood panel |
US7365043B2 (en) * | 2003-06-27 | 2008-04-29 | The Procter & Gamble Co. | Lipophilic fluid cleaning compositions capable of delivering scent |
ZA200603871B (en) * | 2003-12-19 | 2007-12-27 | Unilever Plc | Detergent granules and process for their manufacture |
EP1893734B1 (en) | 2005-06-08 | 2019-03-20 | Firmenich Sa | Near anhydrous consumer products comprising fragranced aminoplast capsules |
EP1906759A2 (en) * | 2005-07-07 | 2008-04-09 | Ocean Nutrition Canada Limited | Food articles with delivery devices and methods for the preparation thereof |
EP2301517A1 (en) * | 2006-08-01 | 2011-03-30 | The Procter & Gamble Company | Benefit agent containing delivery particle |
MX2009005390A (en) * | 2006-11-22 | 2009-06-02 | Procter & Gamble | Benefit agent containing delivery particle. |
HUE035721T2 (en) * | 2008-02-15 | 2018-08-28 | Procter & Gamble | Delivery particle |
CN104692691B (en) * | 2015-02-05 | 2017-02-22 | 江苏苏博特新材料股份有限公司 | Modified calcium oxide expansion agent for cement concrete and preparation method of modified calcium oxide expansion agent |
EP3061500B1 (en) * | 2015-02-25 | 2019-07-10 | Symrise AG | Stable dispersions |
JP6553215B2 (en) * | 2016-02-03 | 2019-07-31 | 長谷川香料株式会社 | Powder detergent composition for clothing having stable aroma components |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2333042A1 (en) * | 1975-11-28 | 1977-06-24 | Procter & Gamble | GRANULAR COMPOSITION OF BLEACHING FOR PRE-SOAKING / WASHING |
FR2369340A1 (en) * | 1976-10-29 | 1978-05-26 | Procter & Gamble | PERFUMED COMPOSITION USABLE FOR PACKAGING FABRICS |
GB1538085A (en) * | 1977-05-23 | 1979-01-10 | Shell Int Research | Odorant-polyolefin compositions |
DE2928591A1 (en) * | 1979-07-14 | 1981-02-19 | Martens O Dr & Co | Controlled perfume oil release from opt. foamed polyurethane - esp. for space-perfuming, by adding perfume oil to polyurethane raw material |
US4708973A (en) * | 1983-12-19 | 1987-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Thermoplastic polyamide as fragrance carrier |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4234627A (en) * | 1977-02-04 | 1980-11-18 | The Procter & Gamble Company | Fabric conditioning compositions |
-
1990
- 1990-04-30 CA CA002015737A patent/CA2015737C/en not_active Expired - Fee Related
- 1990-05-02 ES ES90201105T patent/ES2072967T3/en not_active Expired - Lifetime
- 1990-05-02 AT AT90201105T patent/ATE120483T1/en active
- 1990-05-02 EP EP90201105A patent/EP0397246B1/en not_active Expired - Lifetime
- 1990-05-02 DE DE69018119T patent/DE69018119T2/en not_active Expired - Fee Related
- 1990-05-02 DK DK90201105.5T patent/DK0397246T3/en active
- 1990-05-07 NZ NZ233579A patent/NZ233579A/en unknown
- 1990-05-10 MA MA22105A patent/MA22039A1/en unknown
- 1990-05-10 AU AU54916/90A patent/AU644358B2/en not_active Ceased
- 1990-05-10 CN CN90104267A patent/CN1027082C/en not_active Expired - Fee Related
- 1990-05-10 IE IE169590A patent/IE66911B1/en not_active IP Right Cessation
- 1990-05-10 KR KR1019900006601A patent/KR970011344B1/en active IP Right Grant
- 1990-05-10 FI FI902340A patent/FI902340A0/en not_active IP Right Cessation
- 1990-05-11 JP JP2122790A patent/JPH0341197A/en active Pending
- 1990-05-11 PT PT94005A patent/PT94005B/en not_active IP Right Cessation
- 1990-05-11 BR BR909002227A patent/BR9002227A/en not_active Application Discontinuation
- 1990-05-11 MX MX020690A patent/MX171352B/en unknown
- 1990-05-11 TR TR00468/90A patent/TR27082A/en unknown
-
1994
- 1994-04-12 CN CN94104208A patent/CN1104693A/en active Pending
-
1995
- 1995-03-30 GR GR940403930T patent/GR3015569T3/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2333042A1 (en) * | 1975-11-28 | 1977-06-24 | Procter & Gamble | GRANULAR COMPOSITION OF BLEACHING FOR PRE-SOAKING / WASHING |
FR2369340A1 (en) * | 1976-10-29 | 1978-05-26 | Procter & Gamble | PERFUMED COMPOSITION USABLE FOR PACKAGING FABRICS |
GB1538085A (en) * | 1977-05-23 | 1979-01-10 | Shell Int Research | Odorant-polyolefin compositions |
DE2928591A1 (en) * | 1979-07-14 | 1981-02-19 | Martens O Dr & Co | Controlled perfume oil release from opt. foamed polyurethane - esp. for space-perfuming, by adding perfume oil to polyurethane raw material |
US4708973A (en) * | 1983-12-19 | 1987-11-24 | Henkel Kommanditgesellschaft Auf Aktien | Thermoplastic polyamide as fragrance carrier |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992018601A1 (en) * | 1991-04-16 | 1992-10-29 | Minnesota Mining And Manufacturing Company | Improvements in coated perfume particles |
WO1993005139A1 (en) * | 1991-08-28 | 1993-03-18 | The Procter & Gamble Company | Solid, particulate fabric softener with protected, dryer-activated, cyclodextrin/perfume complex |
WO1993005141A1 (en) * | 1991-08-28 | 1993-03-18 | The Procter & Gamble Company | Solid, particulate detergent composition with protected, dryer-activated, water sensitive material |
WO1993005137A1 (en) * | 1991-08-28 | 1993-03-18 | The Procter & Gamble Company | Liquid fabric softener with protected cyclodextrine/perfume complex |
WO1993005136A1 (en) * | 1991-08-28 | 1993-03-18 | The Procter & Gamble Company | Process for preparing protected particles of water sensitive material |
EP0539025A2 (en) * | 1991-09-25 | 1993-04-28 | Unilever Plc | Fragrance microcapsules for fabric conditioning |
EP0539025A3 (en) * | 1991-09-25 | 1994-07-27 | Unilever Plc | Fragrance microcapsules for fabric conditioning |
WO1993013195A1 (en) * | 1991-12-20 | 1993-07-08 | The Procter & Gamble Company | A process for preparing a perfume capsule composition |
EP0686190A4 (en) * | 1993-02-26 | 1998-01-14 | Procter & Gamble | Laundry additives comprising encapsulated perfumes and modified polyesters |
EP0686190A1 (en) * | 1993-02-26 | 1995-12-13 | The Procter & Gamble Company | Laundry additives comprising encapsulated perfumes and modified polyesters |
EP0622453A1 (en) * | 1993-04-26 | 1994-11-02 | Setric International S.A. | Process for particulate protection of a combustible product against the action of a chlorinated product mixed therewith |
US5425887A (en) * | 1993-07-26 | 1995-06-20 | Lever Brothers Company, Division Of Conopco, Inc. | Encapsualted perfume in fabric conditioning articles |
EP0684301A2 (en) * | 1994-04-28 | 1995-11-29 | The Procter & Gamble Company | Granular detergent composition |
EP0684301A3 (en) * | 1994-04-28 | 1996-08-07 | Procter & Gamble | Granular detergent composition. |
WO1998028396A1 (en) * | 1996-12-23 | 1998-07-02 | Quest International B.V. | Compositions containing perfume |
US6024943A (en) * | 1996-12-23 | 2000-02-15 | Ness; Jeremy Nicholas | Particles containing absorbed liquids and methods of making them |
AU729041B2 (en) * | 1996-12-23 | 2001-01-25 | Quest International B.V. | Compositions containing perfume |
WO1999038945A1 (en) * | 1998-02-02 | 1999-08-05 | Rhodia Chimie | Water dispersible granulates comprising a perfume in a water soluble or water dispersible matrix and preparation method |
FR2774389A1 (en) * | 1998-02-02 | 1999-08-06 | Rhodia Chimie Sa | WATER-DISPERSABLE GRANULES COMPRISING A FRAGRANCE IN A WATER-SOLUBLE OR WATER-DISPERSABLE MATRIX AND METHOD FOR PREPARING THEM |
US6624136B2 (en) * | 1998-02-02 | 2003-09-23 | Rhodia Chimie | Water-dispersible granules comprising a fragrance in a water-soluble or water-dispersible matrix, and process for their preparation |
WO2000017311A1 (en) * | 1998-09-23 | 2000-03-30 | The Procter & Gamble Company | Encapsulated materials and bar compositions containing such materials |
WO2000032730A1 (en) * | 1998-12-01 | 2000-06-08 | Henkel Kommanditgesellschaft Auf Aktien | Peroxy-containing preparations with stabilized fragrances |
WO2000032735A1 (en) * | 1998-12-01 | 2000-06-08 | Henkel Kommanditgesellschaft Auf Aktien | Active chlorine-containing preparations with stabilized fragrances |
WO2000065019A1 (en) * | 1999-04-22 | 2000-11-02 | Henkel Kommanditgesellschaft Auf Aktien | Detergent containing abrasive material and microcapsules |
WO2001044422A2 (en) * | 1999-12-14 | 2001-06-21 | Henkel Kommanditgesellschaft Auf Aktien | Particulate wetting agent and machine dishwashing agent |
WO2001044422A3 (en) * | 1999-12-14 | 2002-03-14 | Henkel Kgaa | Particulate wetting agent and machine dishwashing agent |
WO2002009663A1 (en) * | 2000-08-02 | 2002-02-07 | Quest International B.V. | Particles |
US6927195B2 (en) | 2000-08-02 | 2005-08-09 | Quest International Services B.V. | Particles |
US7166567B2 (en) | 2000-11-21 | 2007-01-23 | Givaudan Sa | Fragrance compositions |
EP1549729B2 (en) † | 2002-10-11 | 2014-06-04 | Bell Flavors & Fragrances Duft und Aroma GmbH | Method for the production of a solid fragrance concentrate |
DE10247583C5 (en) * | 2002-10-11 | 2009-04-30 | Bell Flavors & Fragrances Duft Und Aroma Gmbh | Process for the preparation of a solid perfume concentrate |
US7485610B2 (en) | 2002-10-11 | 2009-02-03 | Bell Flavors & Fragrances Duft Und Aroma Gmbh | Method for the production of a solid fragrance concentrate |
GB2410749B (en) * | 2004-02-06 | 2007-03-07 | Brendan Ruff | Candle scent delivery pellet |
GB2428250B (en) * | 2004-02-06 | 2007-04-11 | Brendan Ruff | Candle scent delivery pellet |
GB2428250A (en) * | 2004-02-06 | 2007-01-24 | Brendan Ruff | Method for introducing a scent into an unscented candle |
WO2006077049A3 (en) * | 2005-01-21 | 2006-10-26 | Henkel Kgaa | Antiadhesive polymer for prevention of adhesion of microorganisms to textiles and for prevention of laundry odours |
WO2006077049A2 (en) * | 2005-01-21 | 2006-07-27 | Henkel Kommanditgesellschaft Auf Aktien | Antiadhesive polymer for prevention of adhesion of microorganisms to textiles and for prevention of laundry odours |
WO2009126960A2 (en) | 2008-04-11 | 2009-10-15 | Amcol International Corporation | Multilayer fragrance encapsulation |
WO2009126960A3 (en) * | 2008-04-11 | 2010-01-14 | Amcol International Corporation | Multilayer fragrance encapsulation |
US8188022B2 (en) | 2008-04-11 | 2012-05-29 | Amcol International Corporation | Multilayer fragrance encapsulation comprising kappa carrageenan |
EP2221039A1 (en) * | 2009-02-18 | 2010-08-25 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Antiperspirant compositions |
WO2010094546A3 (en) * | 2009-02-18 | 2011-09-15 | Unilever Plc | Antiperspirant compositions |
DE102015205802A1 (en) * | 2015-03-31 | 2016-10-06 | Henkel Ag & Co. Kgaa | Detergent composition with bleach catalyst and perfume capsules |
Also Published As
Publication number | Publication date |
---|---|
TR27082A (en) | 1994-10-18 |
ES2072967T3 (en) | 1995-08-01 |
FI902340A0 (en) | 1990-05-10 |
AU5491690A (en) | 1990-11-15 |
EP0397246A3 (en) | 1991-10-09 |
CA2015737C (en) | 1995-08-15 |
PT94005A (en) | 1991-02-08 |
IE66911B1 (en) | 1996-02-07 |
DK0397246T3 (en) | 1996-02-05 |
BR9002227A (en) | 1991-08-13 |
CN1027082C (en) | 1994-12-21 |
ATE120483T1 (en) | 1995-04-15 |
AU644358B2 (en) | 1993-12-09 |
MX171352B (en) | 1993-10-20 |
DE69018119T2 (en) | 1995-09-28 |
GR3015569T3 (en) | 1995-06-30 |
NZ233579A (en) | 1993-02-25 |
PT94005B (en) | 1996-12-31 |
CN1104693A (en) | 1995-07-05 |
EP0397246B1 (en) | 1995-03-29 |
KR970011344B1 (en) | 1997-07-09 |
CN1047335A (en) | 1990-11-28 |
KR900018348A (en) | 1990-12-21 |
MA22039A1 (en) | 1991-10-01 |
DE69018119D1 (en) | 1995-05-04 |
JPH0341197A (en) | 1991-02-21 |
CA2015737A1 (en) | 1990-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0397246B1 (en) | Coated perfume particles | |
US5137646A (en) | Coated perfume particles in fabric softener or antistatic agents | |
US5188753A (en) | Detergent composition containing coated perfume particles | |
AU639078B2 (en) | Coated perfume particles | |
US5154842A (en) | Coated perfume particles | |
DE69016695T2 (en) | Perfume particles for use in cleaning and conditioning composition. | |
WO1992018601A1 (en) | Improvements in coated perfume particles | |
US4973422A (en) | Perfume particles for use in cleaning and conditioning compositions | |
US6740631B2 (en) | Multi component controlled delivery system for fabric care products | |
US6531444B1 (en) | Controlled delivery system for fabric care products | |
EP4168522B1 (en) | Laundry composition | |
PT96791B (en) | Process for the preparation of a detersive or amorphous composition and fabrics comprising of coated particle compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RHK1 | Main classification (correction) |
Ipc: C11D 3/50 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19920407 |
|
17Q | First examination report despatched |
Effective date: 19930709 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 120483 Country of ref document: AT Date of ref document: 19950415 Kind code of ref document: T |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950421 Year of fee payment: 6 |
|
REF | Corresponds to: |
Ref document number: 69018119 Country of ref document: DE Date of ref document: 19950504 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19950510 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19950511 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19950512 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19950515 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19950516 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950517 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19950530 Year of fee payment: 6 Ref country code: ES Payment date: 19950530 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19950531 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3015569 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19950601 Year of fee payment: 6 |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19950613 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2072967 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960502 Ref country code: GB Effective date: 19960502 Ref country code: DK Effective date: 19960502 Ref country code: AT Effective date: 19960502 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960503 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960531 Ref country code: CH Effective date: 19960531 Ref country code: BE Effective date: 19960531 |
|
BERE | Be: lapsed |
Owner name: THE PROCTER & GAMBLE CY Effective date: 19960531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19961130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19961201 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MM2A Free format text: 3015569 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19960502 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19970131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90201105.5 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19961201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19990301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050502 |