EP0395490A1 - Process for the recovery of liquid hydrocarbons from a gaseous feed stream, and apparatus for carrying out this process - Google Patents

Process for the recovery of liquid hydrocarbons from a gaseous feed stream, and apparatus for carrying out this process Download PDF

Info

Publication number
EP0395490A1
EP0395490A1 EP90401099A EP90401099A EP0395490A1 EP 0395490 A1 EP0395490 A1 EP 0395490A1 EP 90401099 A EP90401099 A EP 90401099A EP 90401099 A EP90401099 A EP 90401099A EP 0395490 A1 EP0395490 A1 EP 0395490A1
Authority
EP
European Patent Office
Prior art keywords
hydrocarbons
column
mole
absorber
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90401099A
Other languages
German (de)
French (fr)
Other versions
EP0395490B1 (en
Inventor
Henri Paradowski
Michel Leroy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francaise dEtudes et de Construction Technip SA
Technip Energies France SAS
Original Assignee
Francaise dEtudes et de Construction Technip SA
Technip SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francaise dEtudes et de Construction Technip SA, Technip SA filed Critical Francaise dEtudes et de Construction Technip SA
Publication of EP0395490A1 publication Critical patent/EP0395490A1/en
Application granted granted Critical
Publication of EP0395490B1 publication Critical patent/EP0395490B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/06Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas by cooling or compressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/50Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/30Control of a discontinuous or intermittent ("batch") process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the present invention essentially relates to a process for recovering liquid hydrocarbons from a gaseous feed essentially consisting of hydrocarbons and originating, for example, from a unit for treating petroleum fractions by catalytic cracking.
  • This invention also relates to an installation for implementing this method.
  • the gaseous charge is compressed, partially condensed, then sent to absorbers in series which absorb the C3 and heavier hydrocarbons, to produce a gas containing the lighter hydrocarbons. All the liquid hydrocarbons collected at the bottom of the absorber are treated in a column to remove the light C2 compounds and lighter ones.
  • the object of the present invention is to remedy this by proposing a method making it possible to extract all of the C5 and C4 hydrocarbons and at least 98% of the C3 hydrocarbons.
  • the subject of the invention is a process for recovering liquid hydrocarbons contained in a gaseous charge originating for example from a unit for processing petroleum fractions by catalytic cracking and of the type consisting in compressing the charge, in condensing it partially and to inject it into a first absorber to produce a pretreated gas at the top and heavy hydrocarbons at the bottom which are treated in a first distillation column making it possible to remove the light hydrocarbons to produce heavy hydrocarbons, also consisting of washing and drying the pretreated gas, then refrigerating it and injecting it into a second absorber to produce the treated gas at the top and liquid hydrocarbons at the bottom which are treated in a second distillation column making it possible to remove the light hydrocarbons to produce heavier hydrocarbons, characterized in that: - the heavy hydrocarbons from the bottom of the first absorber are injected, after possible reheating, into a debutanization column to obtain on the one hand at the bottom of this column a liquid fraction which contains all of the C6 and heavier hydrocarbon
  • the debutanization column operates at a pressure higher than that of the first absorber by means of a pumping transfer of the liquid hydrocarbons from the bottom of the abovementioned absorber to the debutanization column to allow the gaseous distillate to be mixed with the compressed gas charge.
  • the debutanization column operates at a pressure lower than that of the first absorber, the gaseous distillate being mixed with the gaseous charge upstream of the compression.
  • the operations consisting in cooling the pretreated gas before its injection into the second absorber, reheating the treated gas obtained at the top of the second absorber, condensing the reflux of the deethanizer, reheating the liquid hydrocarbons obtained at the bottom of the second absorber before their injection into the deethanization column, and condensing the gaseous distillate of the deethanizer before its injection at the top of the second absorber, are thermally integrated, the additional refrigeration being provided by a refrigeration cycle.
  • the above-mentioned refrigeration cycle uses a mixed refrigerant consisting of at least one C2 hydrocarbon and one C3 hydrocarbon.
  • the above-mentioned refrigeration cycle uses at least two pressure stages for the vaporization of the refrigerant, previously sub-cooled.
  • the above-mentioned refrigeration cycle uses total condensation of the refrigerant carried out at high pressure and ambient temperature.
  • the invention also relates to an installation for carrying out the process meeting one or the other of the above characteristics and of the type comprising a means for compressing a gaseous charge and several absorption columns, characterized in that that it comprises: an absorption column for C5 and heavier hydrocarbons associated with a debutanization column an absorption column for C3 and heavier hydrocarbons associated with a deethanization column and a heat exchange system connected to a refrigeration circuit; the liquid fraction obtained at the top of the debutanization column being reinjected as reflux into this column and as feed into the top of the absorption column for C5 hydrocarbons, and the gaseous distillate obtained from the debutanization column being recycled to the discharge of compression of the feed gas; the gaseous distillate obtained at the head of the deethanization column being at least partially condensed and injected as feed into the head of the column for absorbing C3 hydrocarbons; and the refrigerant of the refrigeration cycle consisting of a mixture of hydrocarbons in C2 and C3 and more, being fully condensed at high
  • the mixture is transferred via a line 4 to a heat exchanger E1 which refrigerates and partially condenses said mixture.
  • the two-phase mixture leaving the exchanger E1 is injected through a pipe 5 at the bottom of a column A1 for absorbing hydrocarbons at C5 and above.
  • This column has a packing bed.
  • the column head is supplied with liquid via a pipe 9, while the gas leaves it through a pipe 6.
  • the liquid water which may be present at the bottom of the column A1 is removed by a pipe 7, while the liquid hydrocarbons are removed by a pipe 8.
  • the liquid obtained at the bottom of the debutanization column D1 is discharged through a line 21 and constitutes the debutanized gasoline which contains all of the C6 and heavier hydrocarbons and at least 99% of the C5 hydrocarbons and at most 2% of the hydrocarbons in C4 present in the gas charge.
  • the gas obtained at the head of column D1 is discharged through a conduit 12 and it is partially condensed in a condenser E2.
  • the two-phase mixture thus obtained is introduced via a line 13 into a flask B1.
  • the non-condensed gas from this balloon also known as the gaseous distillate from the debutanization column, is evacuated through a line 20 to be injected by a valve V3 into the line 3 to be recycled into the compressed charge.
  • the liquid water which is possibly present is evacuated from the balloon B1 by the line 15.
  • the liquid hydrocarbons recovered in the balloon B1 are, via a line 14, pumped by a pump P2 and discharged into a line 16 to be separated into two parts.
  • a first part ensures the reflux of the column D1 by a conduit 18, a valve V2 and a conduit 19.
  • a second part is injected as absorption liquid at the head of the column A1 by the conduit 17, the valve V1 and the conduit 9.
  • a section 22 of non-stabilized gasoline (rich in C4 hydrocarbons and lighter) is heated in an exchanger E4 and injected through line 23 in the lower part of column D1.
  • the pretreated gas leaving column A1 via line 6 is treated in a conventional washing and drying unit LS which need not be described.
  • the pretreated washed and dried gas leaves this unit via line 25 to be refrigerated in the heat exchanger E6.
  • the two-phase mixture produced in E6 is injected via line 26 into an absorption column A2 for hydrocarbons at C3 and above.
  • This column has a packing bed.
  • the column head is supplied with liquid through a conduit 24, while the gas leaves it through a conduit 27.
  • the liquid hydrocarbons are evacuated from column A2 via a pipe 30.
  • the liquid obtained at the bottom of the deethanization column D2 is discharged through a line 29 and constitutes the liquefied gases (C3 / C4) which contain all of the hydrocarbons in C4 and heavier and at least 98% of the hydrocarbons in C3 and at most 2% of the C2 hydrocarbons present in the pretreated gas.
  • the gas obtained at the head of column D2 is discharged through a pipe 33 and it is partially condensed in a condenser E10.
  • the diplomatic mixture thus obtained is introduced through a conduit 34 into a balloon B2.
  • the uncondensed gas from this balloon also known as the gaseous distillate from the deethanization column, is evacuated through a pipe 37 to be refrigerated and at least partially condensed by a heat exchanger E11.
  • the two-phase mixture is evacuated through the conduit 38 towards the expansion valve V4 to be injected into the column A2 through the conduit 24.
  • the liquid hydrocarbons recovered in the reflux tank B2 are, via a pipe 35, pumped by a pump P4 and discharged into a pipe 36 to be injected by the pipe 36 under reflux in the column D2.
  • the treated gas leaving column A2 via line 27 is warmed to ambient temperature in a heat exchanger E7 to be evacuated through line 28 to the gas network of the refinery.
  • FIG. 2 represents a complete installation in accordance with the present invention and in which the diagram of FIG. 1 is incorporated with the same references and which explains the thermal integration and the refrigeration cycle.
  • the heat exchangers E6, E11, E10, E8 and E7 are here integrated into a heat exchange system SE consisting of plate exchangers; that is to say, they are conduits of this heat exchange system.
  • a refrigerant in a mixture totally condensed at high pressure and ambient temperature is supplied by a pipe 40 to a pipe E12 of the exchange system SE to be sub-cooled there.
  • the sub-cooled refrigerant is evacuated through line 41 to be separated in two parts.
  • a first part circulating in the conduit 50 is expanded at low pressure in the valve V5 to be brought to the conduit E13 of the exchange system SE and to be vaporized there.
  • the vapor thus produced is brought by a conduit 43 to the first stage of the refrigerant compressor C2A to be compressed there to the average pressure and evacuated by the conduit 49.
  • a second part circulating in the conduit 48 is expanded at medium pressure in the valve V6 to be brought via line 47 to line E15 of the heat system SE and to be vaporized there at medium pressure and discharged through line 46.
  • the medium-pressure steam circulating in the pipe 46 is mixed with that which comes from the pipe 49.
  • the mixture is then brought by the pipe 45 to the second stage of the refrigerant compressor C2B to be compressed there to the high pressure and evacuated by the conduit 44 towards a condenser of refrigerant E14 to be cooled there to ambient temperature and completely condensed and evacuated by the conduit 40.
  • the gas to be treated 1 is the gas obtained at the head of a primary fractionation of catalytic cracking (not shown), after condensation of the gasoline. It is available at 40 ° C, 190 kPa and saturated with water. Its flow rate is 1063.1 kmol / h and its composition on an anhydrous basis is as follows: Nitrogen 2.07 mole% Carbon dioxide 0.43 mole% Carbon monoxide 0.15 mole% Hydrogen sulfide 4.68 mole% Hydrogen 16.15 mole% Methane 15.19% mole Ethane 5.64 mole% Ethylene 6.35% mole Propane 3.29% mole Propylene 10.94% mole Isobutane 5.49% mole N-butane 1.90% mole Butenes 10.75 mole% Isopentane 3.29% mole N-pentane 0.73 mole% Pentenes 6.76% mole Hydrocarbons in C6 + 6.20% mole
  • Gas 1 is compressed to 920 kPa by compressor C1; the gas 2 at the outlet of C1 is mixed with 43.24 kmol / h of recycled gas 3; the mixture obtained 4 is cooled in the exchanger E1 to 35 ° C to give the two-phase flow 5 which feeds the absorber A1.
  • the absorption column A1 has a packing bed equivalent to 14 theoretical plates. It is supplied at the top with an absorption liquid 9 rich in C4 hydrocarbons and which is the liquid distillate of the debutanizer D1.
  • Liquid 9 is at 40 ° C, its flow rate is 197.33 kmol / h and its composition is as follows: Nitrogen 0.01% mole Carbon dioxide 0.04% mole Hydrogen sulfide 1.74% mole Hydrogen 0.02 mole% Methane 0.40 mole% Ethane 2.09% mole Ethylene 1.26% mole Propane 5.07% mole Propylene 14.23% mole Isobutane 19.43% mole N-butane 8.15% mole Butenes 46.81% mole Isopentane 0.09 mole% Pentenes 0.65 mole%
  • column A1 the liquid absorbs the compounds at C5 and higher contained in the gas and a pretreated gas is obtained, practically free of C5 and containing all the C3 and 98% of the C4 present in the feed.
  • the gas pressure at 6 is 870 kPa, its temperature is 18.9 ° C and its flow rate is 949.25 kmol / h.
  • Its molar composition is: Nitrogen 2.32 mole% Carbon dioxide 0.48 mole% Carbon monoxide 0.16% mole Hydrogen sulfide 5.33 mole% Hydrogen 18.10 mole% Methane 17.09% mole Ethane 6.48% mole Ethylene 7.24 mole% Propane 4.00% mole Propylene 13.16 mole% Isobutane 7.33 mole% N-butane 2.53 mole% Butenes 15.53 mole% Isopentane 0.04% mole Pentenes 0.21% mole Gas 6 is sent to a washing and drying unit LS where it is freed from hydrogen sulfide, carbon dioxide and water.
  • the dry pretreated gas 25 is at 22 ° C. and 800 kPa; its composition is as follows: Nitrogen 2.46 mole% Carbon monoxide 0.17% mole Hydrogen 19.21% mole Methane 18.15 mole% Ethane 6.88% mole Ethylene 7.69% mole Propane 4.24 mole% Propylene 13.97 mole% Isobutane 7.79% mole N-butane 2.69% mole Butenes 16.48% mole Hydrocarbons in C5 0.27% mole
  • the liquid 8 is pumped by P1 to 1250 kPa, reheated in E3 to give a two-phase mixture 11 at 90 ° C and 1200 kPa which feeds the column D1 to the theoretical plate 14.
  • the D1 debutanizer has 42 theoretical fractionation platforms.
  • the supplies 11 and 23 are respectively injected on stages 17 and 28 of the column, numbered from the top of this column.
  • Column D1 is reboiled by reboiler E5, the heating fluid of which is the intermediate circulating reflux of the primary fractionation (not shown).
  • gasoline 21 is obtained, the flow rate of which is 770.34 kmol / h, with the following composition: Isobutane 0.01% mole N-butane 0.23 mole% Butenes 0.13 mole% Isopentane 7.43 mole% N-pentane 1.91% mole Pentenes 16.16 mole% Hydrocarbons in C6 + 74.13 mole%
  • the gas flow 12 obtained at the head of column D1 is partially condensed and cooled to 40 ° C in the refrigerant E2, then separated in the flask B1 between the gas 20, the aqueous phase 15 and the liquid hydrocarbons 14.
  • the gas 20 has the following composition: Nitrogen 0.28 mole% Carbon dioxide 0.30 mole% Carbon monoxide 0.02 mole% Hydrogen sulfide 6.44% mole Hydrogen 1.30% mole Methane 6.82% mole Ethane 8.12% mole Ethylene 7.11% mole Propane 6.69% mole Propylene 21.84% mole Isobutane 11.87 mole% N-butane 3.74% mole Butenes 25.29 mole% Pentanes 0.02 mole% Pentenes 0.15 mole%
  • This gas available at 970 kPa is injected by the valve V3 into the compressed load upstream of the exchanger E1 as described above.
  • the liquid 14 is pumped by the pump P2 and the flow 16 thus obtained is divided into two parts 17 and 18.
  • the liquid 18 is injected under reflux into the column D1 via the valve V2.
  • the liquid 17 is expanded in the valve V1 to give the flow 9 which is injected at the top of the column A1 as seen previously.
  • the dry gas 25 is refrigerated to -49 ° C. in the conduit E6 of the exchange system SE, consisting of plate exchangers, then injected into the column A2 for absorbing C3 hydrocarbons.
  • the liquid part of this mixture (97%) allows to absorb almost all of the C3 and C4 hydrocarbons present in the gas supplied to column A2.
  • the column at the head produces a treated gas 27 whose temperature is -82 ° C, the flow rate of 487.05 kmol / h and the pressure 770 kPa.
  • This gas 27 is then reheated to 17 ° C in the duct E7 of the heat exchange system SE and leaves the unit at a pressure of 740 kPa.
  • Its composition is as follows: Nitrogen 4.52% mole Carbon monoxide 0.32 mole% Hydrogen 35.27 mole% Methane 33.31% mole Ethane 12.30 mol% Ethylene 14.10% mole Propylene 0.16% mole
  • the liquid hydrocarbons 30 recovered from the bottom of column A2 are at -49.4 ° C. Their flow rate is 490.92 kmol / h and their molar composition is as follows: Nitrogen 0.08 mole% Carbon monoxide 0.01% mole Hydrogen 0.18% mole Methane 2.93 mole% Ethane 7.85% mole Ethylene 6.29% mole Propane 7.73% mole Propylene 25.34% mole Isobutane 14.18% mole N-butane 4.89% mole Butenes 30.02 mole% Hydrocarbons in C5 0.49 mole%
  • the liquid 30 is pumped by the pump P3 and reheated to 17 ° C in the conduit E8 of the exchange system SE. It is then introduced into the deethanization column D2.
  • This column has 28 theoretical fractionation plates, operates under a pressure of 1650 kPa. Its bottom temperature is 70 ° C, which means that its E9 reboiler can be heated with low-level heat.
  • the gas 33 is condensed in the pipe E10 of the heat exchange system SE.
  • the two-phase mixture 34 is introduced into the flask B2 where a vapor phase 37 and a liquid 35 are separated, which is returned to the column D2 under reflux via the pump P4.
  • the vapor phase 37 is at -32 ° C, 1600 kPa; it is refrigerated to -79 ° C and 1550 kPa and partially condensed in the conduit E11 of the exchange system SE; it is then expanded in valve V4 to give flow 24.
  • the liquid 29 obtained at the bottom of column D2 consists almost entirely of C3 and C4 hydrocarbons. Its flow rate is 407.06 kmol / h and its composition is as follows: Ethane 0.39 mole% Ethylene 0.01% mole Propane 9.31% mole Propylene 30.48% mole Isobutane 17.10 mole% N-butane 5.90% mole Butenes 36.21% mole Hydrocarbons in C5 0.59 mole%
  • the refrigerant which provides the necessary refrigeration to the SE exchange system consists of a mixture of hydrocabures whose molar composition is as follows: Ethane 15.00% mole Ethylene 15.00% mole Propane 67.00% mole Propylene 1.00 mole% Hydrocarbons in C4 2.00% mole
  • a first part 50 the flow rate of which is 400 kmol / h, is expanded in the valve V5 to a pressure of 275 kPa and completely vaporized in the conduit E13 of the SE system.
  • the gas 43 obtained by low pressure vaporization of the stream 42 at -25 ° C, 250 kPa is compressed to 830 kPa in the first stage of the refrigerant compressor C2A.
  • the second part of liquid obtained by sharing the flow 41 and which constitutes the flow 48 is expanded to 850 kPa in the valve V6. It is then vaporized in the conduit E15 of the heat exchange system SE from where it is evacuated at 30 ° C and 830 kPa.
  • the gas flow thus formed 46 is mixed with flow 49 to give a gas mixture 45 which is at 32.2 ° C and 830 kPa.
  • This mixture 45 is compressed up to 2450 kPa in the second stage C2B of the refrigerant compressor.
  • the flow 44 evacuated from C2B is completely condensed in the exchanger E14 where it is cooled to 35 ° C to give the flow 40 previously described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Process and plant for recovering liquid hydrocarbons from a gaseous feedstock. <??>This plant comprises essentially: a compressor for compressing the gaseous feedstock (C1), an absorption column (A1) for C5 and heavier hydrocarbons, which is associated with a debutanisation column (D1), an absorption column (A2) for C3 and heavier hydrocarbons, which is associated with a deethanisation column (D2) and with a heat exchange system (SE) connected to a refrigeration circuit. <??>This plant makes it possible to obtain from a gaseous feedstock originating from a catalytic cracking unit a debutanised petrol (21), a liquefied gas cut (C3 and C4 hydrocarbons) and a gas cut (C2 hydrocarbons and lighter gases) in which the losses of C3 and higher hydrocarbons are much smaller than those obtained with the present plants. <IMAGE>

Description

La présente invention a essentiellement pour objet un procédé de récupération d'hydrocarbures liquides à partir d'une charge gazeuse essentiellement constituée d'hydrocarbures et issue par exemple d'une unité de traitement de fractions pétrolières par craquage catalytique.The present invention essentially relates to a process for recovering liquid hydrocarbons from a gaseous feed essentially consisting of hydrocarbons and originating, for example, from a unit for treating petroleum fractions by catalytic cracking.

Cette invention vise également une installation pour la mise en oeuvre de ce procédé.This invention also relates to an installation for implementing this method.

On a déjà proposé des installations industrielles permettant de récupérer les hydrocarbures en C5, C4 et en C3 dans les charges gazeuses issues d'un craquage catalytique.Industrial installations have already been proposed which make it possible to recover the C5, C4 and C3 hydrocarbons in the gaseous feeds resulting from a catalytic cracking.

D'une manière générale, dans ces installations connues, la charge gazeuse est comprimée, partiellement condensée, puis envoyée dans des absorbeurs en série qui absorbent les hydrocarbures en C3 et plus lourds, pour produire un gaz contenant les hydrocarbures plus légers. L'ensemble des hydrocarbures liquides recueillis en fond d'absorbeur est traité dans une colonne pour en éliminer les composés légers en C2 et moins lourds.In general, in these known installations, the gaseous charge is compressed, partially condensed, then sent to absorbers in series which absorb the C3 and heavier hydrocarbons, to produce a gas containing the lighter hydrocarbons. All the liquid hydrocarbons collected at the bottom of the absorber are treated in a column to remove the light C2 compounds and lighter ones.

Toutefois, ce genre d'installations ne permet pas d'extraire plus de 95 % des C3, 98 % des C4 et 99,5 % des C5 contenus dans la charge, dans des conditions favorables. Plus habituellement, dans des conditions normales, on récupère au mieux 90 des C3, 97 % des C4 et 99 % des C5 contenus dans la charge. Il en résulte que de telles installations ne présentent pas un rendement excellent.However, this type of installation does not make it possible to extract more than 95% of the C3, 98% of the C4 and 99.5% of the C5 contained in the charge, under favorable conditions. More usually, under normal conditions, 90 of the C3 are recovered at best, 97% of the C4 and 99% of the C5 contained in the charge. As a result, such installations do not have an excellent yield.

La présente invention a pour but de remédier à cela en proposant un procédé permettant d'extraire la totalité des hydrocarbures en C5 et C4 et au moins 98 % des hydrocarbures en C3.The object of the present invention is to remedy this by proposing a method making it possible to extract all of the C5 and C4 hydrocarbons and at least 98% of the C3 hydrocarbons.

A cet effet, l'invention a pour objet un procédé de récupération d'hydrocarbures liquides contenus dans une charge gazeuse issue par exemple d'une unité de traitement de coupes pétrolières par craquage catalytique et du type consistant à comprimer la charge, à la condenser partiellement et à l'injecter dans un premier absorbeur pour produire en tête un gaz prétraité et en fond des hydrocarbures lourds qui sont traités dans une première colonne de distillation permettant d'éliminer les hydrocarbures légers pour produire des hydrocarbures lourds, consistant également à laver et à sécher le gaz prétraité puis à le réfrigérer et à l'injecter dans un second absorbeur pour produire en tête le gaz traité et en fond des hydrocarbures liquides qui sont traités dans une seconde colonne de distillation permettant d'éliminer les hydrocarbures légers pour produire des hydrocarbures plus lourds, caractérisé en ce que :
- les hydrocarbures lourds du fond du premier absorbeur sont injectés, après réchauffage éventuel, dans une colonne de débutanisation pour obtenir d'une part en fond de cette colonne une coupe liquide qui contient la totalité des hydrocarbures en C6 et plus lourds, au moins 99 % des hydrocarbures en C5, au plus 2 % des hydrocarbures en C4 présents dans la charge et qui est totalement exempte d'hydrocarbures en C3 et plus légers, et d'autre part en tête de cette colonne une coupe liquide, riche en hydrocarbures en C4 et plus légers, réinjectée comme reflux dans ladite colonne et comme alimentation en tête du premier absorbeur, et un distillat gazeux recyclé dans la charge gazeuse en amont du premier absorbeur, et
- les hydrocarbures liquides du fond du second absorbeur sont injectés, après réchauffage, dans une colonne de déethanisation pour obtenir d'une part en fond de cette colonne une coupe qui contient au moins 98 % des hydrocarbures en C3 et la totalité des hydrocarbures en C4 présents dans le gaz prétraité et d'autre part en tête de cette colonne une coupe liquide, riche en hydrocarbures en C2 et plus légers, réinjectée comme reflux dans ladite colonne et également un distillat gazeux, riche en hydrocarbures en C2 et plus légers qui après réfrigération et condensation au moins partielle est injecté comme alimentation en tête du second absorbeur,
- de façon que le procédé permette de récupérer au moins 98 % des hydrocarbures en C3 et au moins 99,9 % des hydrocarbures en C4 et plus contenus dans la charge gazeuse, tandis que le gaz prétraité issu du premier absorbeur contient la totalité des hydrocarbures en C3 et moins, au moins 98 % des hydrocarbures en C4, au plus 1 % des hydrocarbures en C5, et qu'il est totalement exempt d'hydrocarbures en C6 et plus.
To this end, the subject of the invention is a process for recovering liquid hydrocarbons contained in a gaseous charge originating for example from a unit for processing petroleum fractions by catalytic cracking and of the type consisting in compressing the charge, in condensing it partially and to inject it into a first absorber to produce a pretreated gas at the top and heavy hydrocarbons at the bottom which are treated in a first distillation column making it possible to remove the light hydrocarbons to produce heavy hydrocarbons, also consisting of washing and drying the pretreated gas, then refrigerating it and injecting it into a second absorber to produce the treated gas at the top and liquid hydrocarbons at the bottom which are treated in a second distillation column making it possible to remove the light hydrocarbons to produce heavier hydrocarbons, characterized in that:
- the heavy hydrocarbons from the bottom of the first absorber are injected, after possible reheating, into a debutanization column to obtain on the one hand at the bottom of this column a liquid fraction which contains all of the C6 and heavier hydrocarbons, at least 99 % of C5 hydrocarbons, at most 2% of C4 hydrocarbons present in the feed and which is completely free of C3 and lighter hydrocarbons, and on the other hand at the top of this column a liquid fraction, rich in hydrocarbons C4 and lighter, reinjected as reflux into said column and as feed at the head of the first absorber, and a gas distillate recycled to the gas feed upstream of the first absorber, and
- the liquid hydrocarbons from the bottom of the second absorber are injected, after reheating, into a deethanization column to obtain, on the one hand, at the bottom of this column, a cut which contains at least 98% of the hydrocarbons in C3 and all the hydrocarbons in C4 present in the pretreated gas and on the other hand at the top of this column a liquid fraction, rich in C2 hydrocarbons and lighter, reinjected as reflux into said column and also a gaseous distillate, rich in C2 hydrocarbons and lighter which after at least partial cooling and condensation is injected as feed at the head of the second absorber,
- so that the process makes it possible to recover at least 98% of the C3 hydrocarbons and at least 99.9% of the C4 hydrocarbons and higher contained in the gaseous feed, while the pretreated gas from the first absorber contains all of the hydrocarbons in C3 and less, at least 98% of the hydrocarbons in C4, at most 1% of the hydrocarbons in C5, and that it is completely free of hydrocarbons in C6 and more.

Suivant une autre caractéristique de ce procédé, la colonne de débutanisation fonctionne à une pression supérieure à celle du premier absorbeur grâce à un pompage transférant les hydrocarbures liquides du fond de l'absorbeur précité vers la colonne de débutanisation pour permettre au distillat gazeux d'être mélangé à la charge gazeuse comprimée.According to another characteristic of this process, the debutanization column operates at a pressure higher than that of the first absorber by means of a pumping transfer of the liquid hydrocarbons from the bottom of the abovementioned absorber to the debutanization column to allow the gaseous distillate to be mixed with the compressed gas charge.

Suivant une autre caractéristique de ce procédé, la colonne de débutanisation fonctionne à une pression inférieure à celle du premier absorbeur, le distillat gazeux étant mélangé à la charge gazeuse en amont de la compression.According to another characteristic of this process, the debutanization column operates at a pressure lower than that of the first absorber, the gaseous distillate being mixed with the gaseous charge upstream of the compression.

Selon encore une autre caractéristique de l'invention, on prévoit l'injection d'une coupe d'essence non stabilisée contenant une proportion notable d'hydrocarbures en C4 et plus légers dans la colonne de débutanisation.According to yet another characteristic of the invention, provision is made for injecting a cut of non-stabilized gasoline containing a significant proportion of C 4 hydrocarbons and lighter in the debutanization column.

Suivant une autre caractéristique de ce procédé, les opérations consistant à refroidir le gaz prétraité avant son injection dans le second absorbeur, réchauffer le gaz traité obtenu en tête du second absorbeur, condenser le reflux du déethaniseur, réchauffer les hydrocarbures liquides obtenus en fond du second absorbeur avant leur injection dans la colonne de déethanisation, et condenser le distillat gazeux du déethaniseur avant son injection en tête du second absorbeur, sont intégrées thermiquement, le complément de réfrigération étant fourni par un cycle de réfrigération.According to another characteristic of this process, the operations consisting in cooling the pretreated gas before its injection into the second absorber, reheating the treated gas obtained at the top of the second absorber, condensing the reflux of the deethanizer, reheating the liquid hydrocarbons obtained at the bottom of the second absorber before their injection into the deethanization column, and condensing the gaseous distillate of the deethanizer before its injection at the top of the second absorber, are thermally integrated, the additional refrigeration being provided by a refrigeration cycle.

Suivant une autre caractéristique du procédé, le cycle de réfrigération précité utilise un réfrigérant en mélange constitué d'au moins un hydrocarbure en C2 et un hydrocarbure en C3.According to another characteristic of the process, the above-mentioned refrigeration cycle uses a mixed refrigerant consisting of at least one C2 hydrocarbon and one C3 hydrocarbon.

Suivant encore une autre caractéristique du procédé, le cycle de réfrigération précité utilise au moins deux étages de pression pour la vaporisation du réfrigérant, préalablement sous-refroidi.According to yet another characteristic of the process, the above-mentioned refrigeration cycle uses at least two pressure stages for the vaporization of the refrigerant, previously sub-cooled.

Suivant une autre caractéristique du procédé, le cycle de réfrigération précité utilise une condensation totale du réfrigérant effectuée à haute pression et température ambiante.According to another characteristic of the process, the above-mentioned refrigeration cycle uses total condensation of the refrigerant carried out at high pressure and ambient temperature.

L'invention vise également une installation pour l'exécution du procédé répondant à l'une ou l'autre des caractéristiques ci-dessus et du type comprenant un moyen de compression d'une charge gazeuse et plusieurs colonnes d'absorption, caractérisée en ce qu'elle comprend : une colonne d'absorption des hydrocarbures en C5 et plus lourds associée à une colonne de débutanisation une colonne d'absorption des hydrocarbures en C3 et plus lourds associée à une colonne de déethanisation et à un système d'échange de chaleur relié à un circuit frigorifique ; la coupe liquide obtenue en tête de la colonne de débutanisation étant réinjectée comme reflux dans cette colonne et comme alimentation dans la tête de la colonne d'absorption des hydrocarbures en C5, et le distillat gazeux obtenu de la colonne de débutanisation étant recyclé au refoulement de la compression du gaz de charge ; le distillat gazeux obtenu en tête de la colonne de déethanisation étant au moins partiellement condensé et injecté comme alimentation dans la tête de la colonne d'absorption des hydrocarbures en C3 ; et le réfrigérant du cycle frigorifique constitué d'un mélange d'hydrocarbures en C2 et en C3 et plus, étant totalement condensé à haute pression et température ambiante et étant, après sous-refroidissement, vaporisé à deux niveaux de pression.The invention also relates to an installation for carrying out the process meeting one or the other of the above characteristics and of the type comprising a means for compressing a gaseous charge and several absorption columns, characterized in that that it comprises: an absorption column for C5 and heavier hydrocarbons associated with a debutanization column an absorption column for C3 and heavier hydrocarbons associated with a deethanization column and a heat exchange system connected to a refrigeration circuit; the liquid fraction obtained at the top of the debutanization column being reinjected as reflux into this column and as feed into the top of the absorption column for C5 hydrocarbons, and the gaseous distillate obtained from the debutanization column being recycled to the discharge of compression of the feed gas; the gaseous distillate obtained at the head of the deethanization column being at least partially condensed and injected as feed into the head of the column for absorbing C3 hydrocarbons; and the refrigerant of the refrigeration cycle consisting of a mixture of hydrocarbons in C2 and C3 and more, being fully condensed at high pressure and ambient temperature and being, after sub-cooling, vaporized at two pressure levels.

Mais d'autres avantages et caractéristiques de l'invention apparaîtront mieux dans la description détaillée qui suit et se réfère aux dessins annexés, donnés uniquement à titre d'exemple, et dans lesquels :

  • - la figure 1 est un schéma de principe illustrant les parties essentielles d'une installation conforme à l'invention ; et
  • - la figure 2 est un schéma illustrant complètement une installation conforme à l'invention et incorporant le schéma de la figure 1 ainsi qu'un système frigorifique à réfrigérant en mélange.
However, other advantages and characteristics of the invention will appear better in the detailed description which follows and which refers to the appended drawings, given solely by way of example, and in which:
  • - Figure 1 is a block diagram illustrating the essential parts of an installation according to the invention; and
  • - Figure 2 is a diagram completely illustrating an installation according to the invention and incorporating the diagram of Figure 1 and a refrigerant system with mixed refrigerant.

On se reportera tout d'abord à la figure 1 illustrant, dans son principe, une installation conforme à l'invention.We will first refer to Figure 1 illustrating, in principle, an installation according to the invention.

Une charge gazeuse, issue par exemple d'une unité de craquage catalytique, est alimentée par une conduite 1, puis est comprimée dans un compresseur C1 et est évacuée par un conduit 2 avant d'être mélangée au distillat gazeux provenant d'une colonne de débutanisation D1 et arrivant par un conduit 3.A gaseous charge, coming for example from a catalytic cracking unit, is supplied by a line 1, then is compressed in a compressor C1 and is evacuated by a line 2 before being mixed with the gaseous distillate coming from a column of debutanization D1 and arriving via a conduit 3.

Le mélange est transféré par un conduit 4 à un échangeur de chaleur E1 qui réfrigère et condense partiellement ledit mélange.The mixture is transferred via a line 4 to a heat exchanger E1 which refrigerates and partially condenses said mixture.

Le mélange diphasique sortant de l'échangeur E1 est injecté par un conduit 5 en fond d'une colonne A1 d'absorption des hydrocarbures en C5 et plus. Cette colonne comporte un lit de garnissage.The two-phase mixture leaving the exchanger E1 is injected through a pipe 5 at the bottom of a column A1 for absorbing hydrocarbons at C5 and above. This column has a packing bed.

La tête de colonne est alimentée en liquide par un conduit 9, tandis que le gaz la quitte par un conduit 6.The column head is supplied with liquid via a pipe 9, while the gas leaves it through a pipe 6.

L'eau liquide éventuellement présente en fond de la colonne A1, est évacuée par un conduit 7, tandis que les hydrocarbures liquides le sont par un conduit 8.The liquid water which may be present at the bottom of the column A1 is removed by a pipe 7, while the liquid hydrocarbons are removed by a pipe 8.

Ces hydrocarbures liquides sont transférés par des conduits 10, 11 à l'aide d'une pompe P1 vers la partie supérieure d'une colonne de débutanisation D1 après réchauffage dans un échangeur de chaleur E3. La colonne D1 est équipée de plateaux de fractionnement. Elle est rebouillie par un rebouilleur E5 chauffé par un reflux circulant ou par tout autre moyen.These liquid hydrocarbons are transferred via conduits 10, 11 using a pump P1 to the upper part of a debutanization column D1 after reheating in an E3 heat exchanger. Column D1 is equipped with fractionation trays. It is reboiled by an E5 reboiler heated by circulating reflux or by any other means.

Le liquide obtenu en fond de la colonne de débutanisation D1 est évacué par un conduit 21 et constitue l'essence débutanisée qui contient la totalité des hydrocarbures en C6 et plus lourds et au moins 99 % des hydrocarbures en C5 et au plus 2 % des hydrocarbures en C4 présents dans la charge gazeuse.The liquid obtained at the bottom of the debutanization column D1 is discharged through a line 21 and constitutes the debutanized gasoline which contains all of the C6 and heavier hydrocarbons and at least 99% of the C5 hydrocarbons and at most 2% of the hydrocarbons in C4 present in the gas charge.

Le gaz obtenu en tête de la colonne D1 est évacué par un conduit 12 et il est partiellement condensé dans un condenseur E2. Le mélange diphasique ainsi obtenu est introduit par un conduit 13 dans un ballon B1. Le gaz non condensé de ce ballon encore nommé distillat gazeux de la colonne de débutanisation est évacué par un conduit 20 pour être injecté par une vanne V3 dans le conduit 3 pour être recyclé dans la charge comprimée.The gas obtained at the head of column D1 is discharged through a conduit 12 and it is partially condensed in a condenser E2. The two-phase mixture thus obtained is introduced via a line 13 into a flask B1. The non-condensed gas from this balloon, also known as the gaseous distillate from the debutanization column, is evacuated through a line 20 to be injected by a valve V3 into the line 3 to be recycled into the compressed charge.

L'eau liquide qui est éventuellement présente est évacuée du ballon B1 par le conduit 15. Les hydrocarbures liquides récupérés dans le ballon B1 sont, par l'intermédiaire d'un conduit 14, pompés par une pompe P2 et refoulés dans un conduit 16 pour être séparés en deux parties. Une première partie assure le reflux de la colonne D1 par un conduit 18, une vanne V2 et un conduit 19. Une seconde partie est injectée comme liquide d'absorption en tête de la colonne A1 par le conduit 17, la vanne V1 et le conduit 9.The liquid water which is possibly present is evacuated from the balloon B1 by the line 15. The liquid hydrocarbons recovered in the balloon B1 are, via a line 14, pumped by a pump P2 and discharged into a line 16 to be separated into two parts. A first part ensures the reflux of the column D1 by a conduit 18, a valve V2 and a conduit 19. A second part is injected as absorption liquid at the head of the column A1 by the conduit 17, the valve V1 and the conduit 9.

Une coupe 22 d'essence non stabilisée (riche en hydrocarbures en C4 et plus légers) est réchauffée dans un échangeur E4 et injectée par le conduit 23 dans la partie inférieure de la colonne D1.A section 22 of non-stabilized gasoline (rich in C4 hydrocarbons and lighter) is heated in an exchanger E4 and injected through line 23 in the lower part of column D1.

Le gaz prétraité sortant de la colonne A1 via le conduit 6 est traité dans une unité conventionnelle de lavage et séchage LS qui n'a pas besoin d'être décrite. Le gaz prétraité lavé et séché sort de cette unité par le conduit 25 pour être réfrigéré dans l'échangeur de chaleur E6. Le mélange diphasique produit dans E6 est injecté via le conduit 26 dans une colonne d'absorption A2 des hydrocarbures en C3 et plus.The pretreated gas leaving column A1 via line 6 is treated in a conventional washing and drying unit LS which need not be described. The pretreated washed and dried gas leaves this unit via line 25 to be refrigerated in the heat exchanger E6. The two-phase mixture produced in E6 is injected via line 26 into an absorption column A2 for hydrocarbons at C3 and above.

Cette colonne comporte un lit de garnissage.This column has a packing bed.

La tête de colonne est alimentée en liquide par un conduit 24, tandis que le gaz la quitte par un conduit 27.The column head is supplied with liquid through a conduit 24, while the gas leaves it through a conduit 27.

Les hydrocarbures liquides sont évacués de la colonne A2 par un conduit 30.The liquid hydrocarbons are evacuated from column A2 via a pipe 30.

Ces hydrocarbures liquides sont transférés par des conduits 31, 32 à l'aide d'une pompe P3 vers une colonne de déethanisation D2 après réchauffage dans un échangeur de chaleur E8. La colonne D2 est équipée de plateaux de fractionnement. Elle est rebouillie par un rebouilleur E9 chauffé par un reflux circulant ou par tout autre moyen.These liquid hydrocarbons are transferred via conduits 31, 32 using a pump P3 to a deethanization column D2 after reheating in a heat exchanger E8. Column D2 is equipped with fractionation trays. It is reboiled by an E9 reboiler heated by circulating reflux or by any other means.

Le liquide obtenu en fond de la colonne de déethanisation D2 est évacué par un conduit 29 et constitue les gaz liquéfiés (C3/C4) qui contiennent la totalité des hydrocarbures en C4 et plus lourds et au moins 98 % des hydrocarbures en C3 et au plus 2 % des hydrocarbures en C2 présents dans le gaz prétraité.The liquid obtained at the bottom of the deethanization column D2 is discharged through a line 29 and constitutes the liquefied gases (C3 / C4) which contain all of the hydrocarbons in C4 and heavier and at least 98% of the hydrocarbons in C3 and at most 2% of the C2 hydrocarbons present in the pretreated gas.

Le gaz obtenu en tête de la colonne D2 est évacué par un conduit 33 et il est partiellement condensé dans un condenseur E10. Le mélange diplasique ainsi obtenu est introduit par un conduit 34 dans un ballon B2. Le gaz non condensé de ce ballon encore nommé distillat gazeux de la colonne de déethanisation est évacué par un conduit 37 pour être réfrigéré et au moins partiellement condensé un échangeur de chaleur E11. A la sortie de l'échangeur E11, le mélange diphasique est évacué par le conduit 38 vers la vanne de détente V4 pour être injecté dans la colonne A2 par le conduit 24.The gas obtained at the head of column D2 is discharged through a pipe 33 and it is partially condensed in a condenser E10. The diplomatic mixture thus obtained is introduced through a conduit 34 into a balloon B2. The uncondensed gas from this balloon, also known as the gaseous distillate from the deethanization column, is evacuated through a pipe 37 to be refrigerated and at least partially condensed by a heat exchanger E11. At the outlet of the exchanger E11, the two-phase mixture is evacuated through the conduit 38 towards the expansion valve V4 to be injected into the column A2 through the conduit 24.

Les hydrocarbures liquides récupérés dans le ballon de reflux B2 sont, par l'intermédiaire d'un conduit 35, pompés par une pompe P4 et refoulés dans un conduit 36 pour être injectés par le conduit 36 en reflux dans la colonne D2.The liquid hydrocarbons recovered in the reflux tank B2 are, via a pipe 35, pumped by a pump P4 and discharged into a pipe 36 to be injected by the pipe 36 under reflux in the column D2.

Le gaz traité sortant de la colonne A2 via le conduit 27 est réchauffé jusqu'à température ambiante dans un échangeur de chaleur E7 pour être évacué par le conduit 28 vers le réseau de gaz de la raffinerie.The treated gas leaving column A2 via line 27 is warmed to ambient temperature in a heat exchanger E7 to be evacuated through line 28 to the gas network of the refinery.

On se reportera maintenant à la figure 2 qui représente une installation complète conforme à la présente invention et dans laquelle est incorporé le schéma de la figure 1 avec les mêmes repères et qui explicite l'intégration thermique et le cycle frigorifique.Reference will now be made to FIG. 2 which represents a complete installation in accordance with the present invention and in which the diagram of FIG. 1 is incorporated with the same references and which explains the thermal integration and the refrigeration cycle.

Les échangeurs de chaleurs E6, E11, E10, E8 et E7 sont ici intégrés dans un système d'échange de chaleur SE constitué d'échangeurs à plaques ; c'est-à-dire qu'ils sont des conduits de ce système d'échange de chaleur.The heat exchangers E6, E11, E10, E8 and E7 are here integrated into a heat exchange system SE consisting of plate exchangers; that is to say, they are conduits of this heat exchange system.

Un réfrigérant en mélange totalement condensé à haute pression et température ambiante est alimenté par un conduit 40 vers un conduit E12 du système d'échange SE pour y être sous-refroidi. Le réfrigérant sous-refroidi est évacué par le conduit 41 pour être séparé en deux parties. Une première partie circulant dans le conduit 50 est détendue à basse pression dans la vanne V5 pour être amenée au conduit E13 du système d'échange SE et y être vaporisée. La vapeur ainsi produite est amenée par un conduit 43 au premier étage du compresseur de réfrigérant C2A pour y être comprimée jusqu'à la pression moyenne et évacuée par le conduit 49. Une seconde partie circulant dans le conduit 48 est détendue à moyenne pression dans la vanne V6 pour être amenée par le conduit 47 au conduit E15 du système de chaleur SE et y être vaporisée à moyenne pression et évacuée par le conduit 46.A refrigerant in a mixture totally condensed at high pressure and ambient temperature is supplied by a pipe 40 to a pipe E12 of the exchange system SE to be sub-cooled there. The sub-cooled refrigerant is evacuated through line 41 to be separated in two parts. A first part circulating in the conduit 50 is expanded at low pressure in the valve V5 to be brought to the conduit E13 of the exchange system SE and to be vaporized there. The vapor thus produced is brought by a conduit 43 to the first stage of the refrigerant compressor C2A to be compressed there to the average pressure and evacuated by the conduit 49. A second part circulating in the conduit 48 is expanded at medium pressure in the valve V6 to be brought via line 47 to line E15 of the heat system SE and to be vaporized there at medium pressure and discharged through line 46.

La vapeur à moyenne pression circulant dans le conduit 46 est mélangée à celle qui provient du conduit 49. Le mélange est alors amené par le conduit 45 au second étage du compresseur de réfrigérant C2B pour y être comprimé jusqu'à la haute pression et évacué par le conduit 44 vers un condenseur de réfrigérant E14 pour y être refroidi jusqu'à la température ambiante et totalement condensé et évacué par le conduit 40.The medium-pressure steam circulating in the pipe 46 is mixed with that which comes from the pipe 49. The mixture is then brought by the pipe 45 to the second stage of the refrigerant compressor C2B to be compressed there to the high pressure and evacuated by the conduit 44 towards a condenser of refrigerant E14 to be cooled there to ambient temperature and completely condensed and evacuated by the conduit 40.

On donnera ci-après un exemple de réalisation concret et chiffré d'une réalisation conforme au schéma de la figure 2.An example of a concrete and quantified embodiment of an embodiment conforming to the diagram in FIG. 2 will be given below.

Le gaz à traiter 1 est le gaz obtenu en tête d'un fractionnement primaire de craquage catalytique (non représenté), après condensation de l'essence. Il est disponible à 40°C, 190 kPa et saturé en eau. Son débit est de 1063,1 kmoles/h et sa composition sur base anhydre est la suivante : Azote 2,07 % mole Gaz carbonique 0,43 % mole Oxyde de carbone 0,15 % mole Hydrogène sulfuré 4,68 % mole Hydrogène 16,15 % mole Méthane 15,19 % mole Ethane 5,64 % mole Ethylène 6,35 % mole Propane 3,29 % mole Propylène 10,94 % mole Isobutane 5,49 % mole N-butane 1,90 % mole Butènes 10,75 % mole Isopentane 3,29 % mole N-pentane 0,73 % mole Pentènes 6,76 % mole Hydrocarbures en C6+ 6,20 % mole The gas to be treated 1 is the gas obtained at the head of a primary fractionation of catalytic cracking (not shown), after condensation of the gasoline. It is available at 40 ° C, 190 kPa and saturated with water. Its flow rate is 1063.1 kmol / h and its composition on an anhydrous basis is as follows: Nitrogen 2.07 mole% Carbon dioxide 0.43 mole% Carbon monoxide 0.15 mole% Hydrogen sulfide 4.68 mole% Hydrogen 16.15 mole% Methane 15.19% mole Ethane 5.64 mole% Ethylene 6.35% mole Propane 3.29% mole Propylene 10.94% mole Isobutane 5.49% mole N-butane 1.90% mole Butenes 10.75 mole% Isopentane 3.29% mole N-pentane 0.73 mole% Pentenes 6.76% mole Hydrocarbons in C6 + 6.20% mole

Le gaz 1 est comprimé à 920 kPa par le compresseur C1 ; le gaz 2 au refoulement de C1 est mélangé à 43,24 kmoles/h de gaz recyclé 3; le mélange obtenu 4 est refroidi dans l'échangeur E1 jusqu'à 35°C pour donner le flux diphasique 5 qui alimente l'absorbeur A1.Gas 1 is compressed to 920 kPa by compressor C1; the gas 2 at the outlet of C1 is mixed with 43.24 kmol / h of recycled gas 3; the mixture obtained 4 is cooled in the exchanger E1 to 35 ° C to give the two-phase flow 5 which feeds the absorber A1.

La colonne d'absorption A1 comporte un lit de garnissage équivalent à 14 plateaux théoriques. Elle est alimentée en tête avec un liquide d'absorption 9 riche en hydrocarbures en C4 et qui est le distillat liquide du débutaniseur D1.The absorption column A1 has a packing bed equivalent to 14 theoretical plates. It is supplied at the top with an absorption liquid 9 rich in C4 hydrocarbons and which is the liquid distillate of the debutanizer D1.

Le liquide 9 est à 40°C, son débit est 197,33 kmoles/h et sa composition est la suivante : Azote 0,01 % mole Gaz carbonique 0,04 % mole Hydrogène sulfuré 1,74 % mole Hydrogène 0,02 % mole Méthane 0,40 % mole Ethane 2,09 % mole Ethylène 1,26 % mole Propane 5,07 % mole Propylène 14,23 % mole Isobutane 19,43 % mole N-butane 8,15 % mole Butènes 46,81 % mole Isopentane 0,09 % mole Pentènes 0,65 % mole Liquid 9 is at 40 ° C, its flow rate is 197.33 kmol / h and its composition is as follows: Nitrogen 0.01% mole Carbon dioxide 0.04% mole Hydrogen sulfide 1.74% mole Hydrogen 0.02 mole% Methane 0.40 mole% Ethane 2.09% mole Ethylene 1.26% mole Propane 5.07% mole Propylene 14.23% mole Isobutane 19.43% mole N-butane 8.15% mole Butenes 46.81% mole Isopentane 0.09 mole% Pentenes 0.65 mole%

Dans la colonne A1, le liquide absorbe les composés en C5 et plus contenus dans le gaz et on obtient en tête de colonne un gaz prétraité pratiquement exempt de C5 et contenant tous les C3 et 98 % des C4 présents dans la charge.In column A1, the liquid absorbs the compounds at C5 and higher contained in the gas and a pretreated gas is obtained, practically free of C5 and containing all the C3 and 98% of the C4 present in the feed.

La pression du gaz en 6 est de 870 kPa, sa température est de 18,9°C et son débit est de 949,25 kmoles/h. Sa composition molaire est : Azote 2,32 % mole Gaz carbonique 0,48 % mole Oxyde de carbone 0,16 % mole Hydrogène sulfuré 5,33 % mole Hydrogène 18,10 % mole Méthane 17,09 % mole Ethane 6,48 % mole Ethylène 7,24 % mole Propane 4,00 % mole Propylène 13,16 % mole Isobutane 7,33 % mole N-butane 2,53 % mole Butènes 15,53 % mole Isopentane 0,04 % mole Pentènes 0,21 % mole Le gaz 6 est envoyé à une unité de lavage et de séchage LS où il est débarrassé de l'hydrogène sulfuré du gaz carbonique et de l'eau.The gas pressure at 6 is 870 kPa, its temperature is 18.9 ° C and its flow rate is 949.25 kmol / h. Its molar composition is: Nitrogen 2.32 mole% Carbon dioxide 0.48 mole% Carbon monoxide 0.16% mole Hydrogen sulfide 5.33 mole% Hydrogen 18.10 mole% Methane 17.09% mole Ethane 6.48% mole Ethylene 7.24 mole% Propane 4.00% mole Propylene 13.16 mole% Isobutane 7.33 mole% N-butane 2.53 mole% Butenes 15.53 mole% Isopentane 0.04% mole Pentenes 0.21% mole Gas 6 is sent to a washing and drying unit LS where it is freed from hydrogen sulfide, carbon dioxide and water.

En sortie de cette unité le gaz prétraité sec 25 est à 22°C et 800 kPa ; sa composition est la suivante : Azote 2,46 % mole Oxyde de carbone 0,17 % mole Hydrogène 19,21 % mole Méthane 18,15 % mole Ethane 6,88 % mole Ethylène 7,69 % mole Propane 4,24 % mole Propylène 13,97 % mole Isobutane 7,79 % mole N-butane 2,69 % mole Butènes 16,48 % mole Hydrocarbures en C5 0,27 % mole At the outlet of this unit, the dry pretreated gas 25 is at 22 ° C. and 800 kPa; its composition is as follows: Nitrogen 2.46 mole% Carbon monoxide 0.17% mole Hydrogen 19.21% mole Methane 18.15 mole% Ethane 6.88% mole Ethylene 7.69% mole Propane 4.24 mole% Propylene 13.97 mole% Isobutane 7.79% mole N-butane 2.69% mole Butenes 16.48% mole Hydrocarbons in C5 0.27% mole

Dans la colonne A1, le liquide de fond est décanté de sorte qu'on obtient un courant d'eau 7 et un liquide 8 dont la température et le débit sont respectivement de 32,86°C et 354,42 kmoles/h, la composition molaire étant la suivante : Azote 0,01 % mole Gaz carbonique 0,04 % mole Hydrogène sulfuré 1,50 % mole Hydrogène 0,15 % mole Méthane 0,85 % mole Ethane 1,73 % mole Ethylène 1,24 % mole Propane 2,81 % mole Propylène 8,15 % mole Isobutane 9,09 % mole N-butane 3,90 % mole Butènes 19,80 % mole Isopentane 9,82 % mole N-pentane 2,19 % mole Pentènes 20,08 % mole Hydrocarbures en C6+ 18,59 % mole In column A1, the bottom liquid is decanted so that a stream of water 7 and a liquid 8 are obtained, the temperature and flow rate of which are 32.86 ° C. and 354.42 kmol / h, respectively. molar composition being as follows: Nitrogen 0.01% mole Carbon dioxide 0.04% mole Hydrogen sulfide 1.50 mole% Hydrogen 0.15 mole% Methane 0.85 mole% Ethane 1.73 mole% Ethylene 1.24% mole Propane 2.81 mole% Propylene 8.15% mole Isobutane 9.09 mole% N-butane 3.90% mole Butenes 19.80% mole Isopentane 9.82% mole N-pentane 2.19% mole Pentenes 20.08% mole Hydrocarbons in C6 + 18.59 mole%

Le liquide 8 est pompé par P1 jusqu'à 1250 kPa, réchauffé dans E3 pour donner un mélange diphasique 11 à 90°C et 1200 kPa qui alimente la colonne D1 au plateau théorique 14.The liquid 8 is pumped by P1 to 1250 kPa, reheated in E3 to give a two-phase mixture 11 at 90 ° C and 1200 kPa which feeds the column D1 to the theoretical plate 14.

La colonne D1 est également alimentée par l'essence 22 obtenue au condenseur du fractionnement primaire (non représenté). Cette essence disponible à 40°C et 1250 kPa est réchauffée jusqu'à 120°C dans l'échangeur E4. Le débit de l'essence est de 656,6 kmoles/h et sa composition est la suivante :
Hydrogène sulfuré 0,14 % mole Hydrogène 0,01 % mole Méthane 0,11 % mole Ethane 0,23 % mole Ethylène 0,18 % mole Propane 0,45 % mole Propylène 1,32 % mole Isobutane 1,73 % mole N-butane 0,86 % mole Butènes 5,20 % mole Isopentane 3,44 % mole N-pentane 1,06 % mole Pentènes 8,33 % mole Hydrocarbures en C6+ 76,94 % mole
Column D1 is also supplied with petrol 22 obtained from the primary fractionation condenser (not shown). This petrol available at 40 ° C and 1250 kPa is heated up to 120 ° C in the E4 exchanger. The gasoline flow rate is 656.6 kmol / h and its composition is as follows:
Hydrogen sulfide 0.14% mole Hydrogen 0.01% mole Methane 0.11 mole% Ethane 0.23 mole% Ethylene 0.18% mole Propane 0.45 mole% Propylene 1.32 mole% Isobutane 1.73 mole% N-butane 0.86 mole% Butenes 5.20% mole Isopentane 3.44% mole N-pentane 1.06 mole% Pentenes 8.33 mole% Hydrocarbons in C6 + 76.94% mole

Le débutaniseur D1 comporte 42 plateaux théoriques de fractionnement. Les alimentations 11 et 23 sont respectivement injectées sur les étages 17 et 28 de la colonne, numérotés à partir du sommet de cette colonne. La colonne D1 est rebouillie par le rebouilleur E5 dont le fluide chauffant est le reflux circulant intermédiaire du fractionnement primaire (non représenté).The D1 debutanizer has 42 theoretical fractionation platforms. The supplies 11 and 23 are respectively injected on stages 17 and 28 of the column, numbered from the top of this column. Column D1 is reboiled by reboiler E5, the heating fluid of which is the intermediate circulating reflux of the primary fractionation (not shown).

En fond de la colonne D1 est obtenue l'essence 21 dont le débit est de 770,34 kmoles/h, avec la composition suivante : Isobutane 0,01 % mole N-butane 0,23 % mole Butènes 0,13 % mole Isopentane 7,43 % mole N-pentane 1,91 % mole Pentènes 16,16 % mole Hydrocarbures en C6+ 74,13 % mole At the bottom of column D1, gasoline 21 is obtained, the flow rate of which is 770.34 kmol / h, with the following composition: Isobutane 0.01% mole N-butane 0.23 mole% Butenes 0.13 mole% Isopentane 7.43 mole% N-pentane 1.91% mole Pentenes 16.16 mole% Hydrocarbons in C6 + 74.13 mole%

Le flux gazeux 12 obtenu en tête de la colonne D1 est partiellement condensé et refroidi à 40°C dans le réfrigérant E2, puis séparé dans le ballon B1 entre le gaz 20, la phase aqueuse 15 et les hydrocarbures liquides 14. Le gaz 20 a la composition suivante : Azote 0,28 % mole Gaz carbonique 0,30 % mole Oxyde de carbone 0,02 % mole Hydrogène sulfuré 6,44 % mole Hydrogène 1,30 % mole Méthane 6,82 % mole Ethane 8,12 % mole Ethylène 7,11 % mole Propane 6,69 % mole Propylène 21,84 % mole Isobutane 11,87 % mole N-butane 3,74 % mole Butènes 25,29 % mole Pentanes 0,02 % mole Pentènes 0,15 % mole The gas flow 12 obtained at the head of column D1 is partially condensed and cooled to 40 ° C in the refrigerant E2, then separated in the flask B1 between the gas 20, the aqueous phase 15 and the liquid hydrocarbons 14. The gas 20 has the following composition: Nitrogen 0.28 mole% Carbon dioxide 0.30 mole% Carbon monoxide 0.02 mole% Hydrogen sulfide 6.44% mole Hydrogen 1.30% mole Methane 6.82% mole Ethane 8.12% mole Ethylene 7.11% mole Propane 6.69% mole Propylene 21.84% mole Isobutane 11.87 mole% N-butane 3.74% mole Butenes 25.29 mole% Pentanes 0.02 mole% Pentenes 0.15 mole%

Ce gaz disponible à 970 kPa est injecté par la vanne V3 dans la charge comprimée en amont de l'échangeur E1 comme décrit ci-dessus.This gas available at 970 kPa is injected by the valve V3 into the compressed load upstream of the exchanger E1 as described above.

Le liquide 14 est pompé par la pompe P2 et le flux 16 ainsi obtenu est partagé en deux parties 17 et 18. Le liquide 18 est injecté en reflux dans la colonne D1 par l'intermédiaire de la vanne V2. Le liquide 17 est détendu dans la vanne V1 pour donner le flux 9 qui est injecté en tête de colonne A1 comme vue précédemment.The liquid 14 is pumped by the pump P2 and the flow 16 thus obtained is divided into two parts 17 and 18. The liquid 18 is injected under reflux into the column D1 via the valve V2. The liquid 17 is expanded in the valve V1 to give the flow 9 which is injected at the top of the column A1 as seen previously.

Le gaz sec 25 est réfrigéré jusqu'à -49°C dans le conduit E6 du système d'échange SE, constitué d'échangeurs à plaques, puis injecté dans la colonne A2 d'absorption des hydrocarbures en C3.The dry gas 25 is refrigerated to -49 ° C. in the conduit E6 of the exchange system SE, consisting of plate exchangers, then injected into the column A2 for absorbing C3 hydrocarbons.

La colonne A2 opère sous 770 kPa et comporte 14 étages théoriques de séparation. Elle est alimentée en tête par le mélange diphasique 24 dont la température est de -86°C et le débit de 83,87 kmoles/h et dont la composition molaire est la suivante : Azote 0,46 % mole Oxyde de carbone 0,05 % mole Hydrogène 1,06 % mole Méthane 17,16 % mole Ethane 44,06 % mole Ethylène 36,81 % mole Propane 0,01 % mole Propylène 0,39 % mole Column A2 operates at 770 kPa and has 14 theoretical separation stages. It is fed at the head by the two-phase mixture 24 whose temperature is -86 ° C and the flow rate of 83.87 kmol / h and whose molar composition is as follows: Nitrogen 0.46 mole% Carbon monoxide 0.05 mole% Hydrogen 1.06 mole% Methane 17.16 mole% Ethane 44.06 mole% Ethylene 36.81% mole Propane 0.01% mole Propylene 0.39 mole%

La partie liquide de ce mélange (97 %) permet d'absorber la quasi-totalité des hydrocarbures en C3 et C4 présents dans le gaz alimentant la colonne A2.The liquid part of this mixture (97%) allows to absorb almost all of the C3 and C4 hydrocarbons present in the gas supplied to column A2.

La colonne produit en tête un gaz traité 27 dont la température est de -82°C, le débit de 487,05 kmoles/h et la pression 770 kPa.The column at the head produces a treated gas 27 whose temperature is -82 ° C, the flow rate of 487.05 kmol / h and the pressure 770 kPa.

Ce gaz 27 est ensuite réchauffé jusqu'à 17°C dans le conduit E7 du système d'échange de chaleur SE et quitte l'unité à la pression de 740 kPa. Sa composition est la suivante : Azote 4,52 % mole Oxyde de carbone 0,32 % mole Hydrogène 35,27 % mole Méthane 33,31 % mole Ethane 12,30 % mole Ethylène 14,10 % mole Propylène 0,16 % mole This gas 27 is then reheated to 17 ° C in the duct E7 of the heat exchange system SE and leaves the unit at a pressure of 740 kPa. Its composition is as follows: Nitrogen 4.52% mole Carbon monoxide 0.32 mole% Hydrogen 35.27 mole% Methane 33.31% mole Ethane 12.30 mol% Ethylene 14.10% mole Propylene 0.16% mole

Les hydrocarbures liquides 30 récupérés en fond de la colonne A2 sont à -49,4°C. Leur débit est de 490,92 kmoles/h et leur composition molaire est la suivante : Azote 0,08 % mole Oxyde de carbone 0,01 % mole Hydrogène 0,18 % mole Méthane 2,93 % mole Ethane 7,85 % mole Ethylène 6,29 % mole Propane 7,73 % mole Propylène 25,34 % mole Isobutane 14,18 % mole N-butane 4,89 % mole Butènes 30,02 % mole Hydrocarbures en C5 0,49 % mole The liquid hydrocarbons 30 recovered from the bottom of column A2 are at -49.4 ° C. Their flow rate is 490.92 kmol / h and their molar composition is as follows: Nitrogen 0.08 mole% Carbon monoxide 0.01% mole Hydrogen 0.18% mole Methane 2.93 mole% Ethane 7.85% mole Ethylene 6.29% mole Propane 7.73% mole Propylene 25.34% mole Isobutane 14.18% mole N-butane 4.89% mole Butenes 30.02 mole% Hydrocarbons in C5 0.49 mole%

Le liquide 30 est pompé par la pompe P3 et réchauffé jusqu 'à 17°C dans le conduit E8 du système d'échange SE. Il est ensuite introduit dans la colonne D2 de déethanisation.The liquid 30 is pumped by the pump P3 and reheated to 17 ° C in the conduit E8 of the exchange system SE. It is then introduced into the deethanization column D2.

Cette colonne comporte 28 plateaux théoriques de fractionnement, fonctionne sous une pression de 1650 kPa. Sa température de fond est de 70°C, ce qui fait que son rebouilleur E9 peut être chauffé avec de la chaleur de bas niveau thermique.This column has 28 theoretical fractionation plates, operates under a pressure of 1650 kPa. Its bottom temperature is 70 ° C, which means that its E9 reboiler can be heated with low-level heat.

En tête de colonne, le gaz 33 est condensé dans le conduit E10 du système d'échange de chaleur SE. Le mélange diphasique 34 est introduit dans le ballon B2 où on sépare une phase vapeur 37 et un liquide 35 qui est renvoyé vers la colonne D2 en reflux par l'intermédiaire de la pompe P4. La phase vapeur 37 est à -32°C, 1600 kPa ; elle est réfrigérée jusqu'à -79°C et 1550 kPa et partiellement condensée dans le conduit E11 du système d'échange SE ; elle est ensuite détendue dans la vanne V4 pour donner le flux 24.At the head of the column, the gas 33 is condensed in the pipe E10 of the heat exchange system SE. The two-phase mixture 34 is introduced into the flask B2 where a vapor phase 37 and a liquid 35 are separated, which is returned to the column D2 under reflux via the pump P4. The vapor phase 37 is at -32 ° C, 1600 kPa; it is refrigerated to -79 ° C and 1550 kPa and partially condensed in the conduit E11 of the exchange system SE; it is then expanded in valve V4 to give flow 24.

Le liquide 29 obtenu en fond de la colonne D2 est constitué presque uniquement d'hydrocarbures en C3 et C4. Son débit est de 407,06 kmoles/h et sa composition est la suivante : Ethane 0,39 % mole Ethylène 0,01 % mole Propane 9,31 % mole Propylène 30,48 % mole Isobutane 17,10 % mole N-butane 5,90 % mole Butènes 36,21 % mole Hydrocarbures en C5 0,59 % mole The liquid 29 obtained at the bottom of column D2 consists almost entirely of C3 and C4 hydrocarbons. Its flow rate is 407.06 kmol / h and its composition is as follows: Ethane 0.39 mole% Ethylene 0.01% mole Propane 9.31% mole Propylene 30.48% mole Isobutane 17.10 mole% N-butane 5.90% mole Butenes 36.21% mole Hydrocarbons in C5 0.59 mole%

Le réfrigérant qui fournit l'appoint de réfrigération nécessaire au système d'échange SE est constitué d'un mélange d'hydrocabures dont la composition molaire est la suivante : Ethane 15,00 % mole Ethylène 15,00 % mole Propane 67,00 % mole Propylène 1,00 % mole Hydrocarbures en C4 2,00 % mole The refrigerant which provides the necessary refrigeration to the SE exchange system consists of a mixture of hydrocabures whose molar composition is as follows: Ethane 15.00% mole Ethylene 15.00% mole Propane 67.00% mole Propylene 1.00 mole% Hydrocarbons in C4 2.00% mole

Le réfrigérant 40 totalement condensé à 35°C et 2410 kPa dont le débit molaire est de 901,6 kmoles/h est sous-refroidi jusqu'à -49°C dans le conduit E12 du système d'échange de chaleur SE.The refrigerant 40 fully condensed at 35 ° C and 2410 kPa whose molar flow rate is 901.6 kmol / h is sub-cooled to -49 ° C in the duct E12 of the heat exchange system SE.

Le liquide 41 ainsi réfrigéré est partagé en deux parties. Une première partie 50 dont le débit est de 400 kmoles/h est détendue dans la vanne V5 jusqu'à une pression de 275 kPa et vaporisée totalement dans le conduit E13 du système SE.The liquid 41 thus refrigerated is divided into two parts. A first part 50, the flow rate of which is 400 kmol / h, is expanded in the valve V5 to a pressure of 275 kPa and completely vaporized in the conduit E13 of the SE system.

Le gaz 43 obtenu par vaporisation à basse pression du flux 42 à -25°C, 250 kPa est comprimé jusqu'à 830 kPa dans le premier étage du compresseur de réfrigérant C2A.The gas 43 obtained by low pressure vaporization of the stream 42 at -25 ° C, 250 kPa is compressed to 830 kPa in the first stage of the refrigerant compressor C2A.

La seconde partie de liquide obtenue par partage du flux 41 et qui constitue le flux 48 est détendue jusqu'à 850 kPa dans la vanne V6. Elle est ensuite vaporisée dans le conduit E15 du système d'échange de chaleur SE d'où elle est évacuée à 30°C et 830 kPa. Le flux gazeux ainsi formé 46 est mélangé au flux 49 pour donner un mélange gazeux 45 qui est à 32,2°C et 830 kPa. Ce mélange 45 est comprimé jusqu'à 2450 kPa dans le second étage C2B du compresseur de réfrigérant. Le flux 44 évacué de C2B est totalement condensé dans l'échangeur E14 où il est refroidi jusqu'à 35°C pour donner le flux 40 précédemment décrit.The second part of liquid obtained by sharing the flow 41 and which constitutes the flow 48 is expanded to 850 kPa in the valve V6. It is then vaporized in the conduit E15 of the heat exchange system SE from where it is evacuated at 30 ° C and 830 kPa. The gas flow thus formed 46 is mixed with flow 49 to give a gas mixture 45 which is at 32.2 ° C and 830 kPa. This mixture 45 is compressed up to 2450 kPa in the second stage C2B of the refrigerant compressor. The flow 44 evacuated from C2B is completely condensed in the exchanger E14 where it is cooled to 35 ° C to give the flow 40 previously described.

Bien entendu l'invention n'est nullement limitée au mode de réalisation décrit et illustré qui n'a été donné qu'à titre d'exemple.Of course, the invention is in no way limited to the embodiment described and illustrated, which has been given only by way of example.

Claims (9)

1. Procédé de récupération d'hydrocarbures liquides contenus dans une charge gazeuse (1) issue par exemple d'une unité de traitement de coupes pétrolières par craquage catalytique et du type consistant à comprimer la charge (C1), à la condenser partiellement (E1) et à l'injecter dans un premier absorbeur (A1) pour produire en tête un gaz prétraité (6) et en fond des hydrocarbures lourds (8) qui sont traités dans une première colonne de distillation (D1) permettant d'éliminer les hydrocarbures légers pour produire des hydrocarbures lourds, consistant également à laver et à sécher le gaz prétraité (6) puis à le réfrigérer et à l'injecter dans un second absorbeur (A2) pour produire en tête le gaz traité (27) et en fond des hydrocarbures liquides qui sont traités dans une seconde colonne de distillation (D2) permettant d'éliminer les hydrocarbures légers pour produire des hydrocarbures plus lourds, caractérisé en ce que :
- les hydrocarbures lourds (8) du fond du premier absorbeur (A1) sont injectés, après réchauffage éventuel, dans une colonne de débutanisation (D1) pour obtenir d'une part en fond de cette colonne une coupe liquide (21) qui contient la totalité des hydrocarbures en C6 et plus lourds, au moins 99 % des hydrocarbures en C5, au plus 2 % des hydrocarbures en C4 présents dans la charge et qui est totalement exempte d'hydrocarbures en C3 et plus légers, et d'autre part en tête de cette colonne une coupe liquide (14), riche en hydrocarbures en C4 et plus légers, réinjectée comme reflux dans ladite colonne et comme alimentation en tête (9) du premier absorbeur (A1) et un distillat gazeux (20) recyclé dans la charge gazeuse en amont du premier absorbeur (A1),
- et les hydrocarbures liquides (30) du fond du second absorbeur (A2) sont injectés, après réchauffage (E8) dans une colonne de déethanisation (D2) pour obtenir d'une part en fond de cette colonne une coupe liquide (29) qui contient au moins 98 % des hydrocarbures en C3 et la totalité des hydrocarbures en C4 présents dans le gaz prétraité et d'autre part en tête de cette colonne une coupe liquide (35), riche en hydrocarbures en C2 et plus légers, réinjectée comme reflux dans ladite colonne et également un distillat gazeux (37), riche en hydrocarbures en C2 et plus légers qui après réfrigération et condensation au moins partielle (E11) est injecté comme alimentation en tête (24) du second absorbeur (A2),
- de façon que le procédé permette de récupérer au moins 98 % des hydrocarbures en C3 et au moins 99,9 % des hydrocarbures en C4 et plus contenus dans la charge gazeuse (1), tandis que le gaz prétraité (6) issu du premier absorbeur (A1) contient la totalité des hydrocarbures en C3 et moins, au moins 98 % des hydrocarbures en C4, au plus 1 % des hydrocarbures en C5, et qu'il est totalement exempt d'hydrocarbures en C6 et plus.
1. Method for recovering liquid hydrocarbons contained in a gaseous feed (1) originating for example from a unit for processing petroleum fractions by catalytic cracking and of the type consisting in compressing the feed (C1), in partially condensing it (E1 ) and to inject it into a first absorber (A1) to produce a pretreated gas (6) at the head and heavy hydrocarbons (8) at the bottom which are treated in a first distillation column (D1) making it possible to remove the hydrocarbons light to produce heavy hydrocarbons, also consisting of washing and drying the pretreated gas (6) then refrigerating and injecting it into a second absorber (A2) to produce the treated gas at the head (27) and at the bottom of the liquid hydrocarbons which are treated in a second distillation column (D2) allowing the elimination of light hydrocarbons to produce heavier hydrocarbons, characterized in that:
- the heavy hydrocarbons (8) from the bottom of the first absorber (A1) are injected, after possible reheating, into a debutanization column (D1) to obtain on the one hand at the bottom of this column a liquid cut (21) which contains the all of the C6 and heavier hydrocarbons, at least 99% of the C5 hydrocarbons, at most 2% of the C4 hydrocarbons present in the feedstock and which is completely free of C3 and lighter hydrocarbons, and secondly head of this column a liquid section (14), rich in C4 hydrocarbons and lighter, reinjected as reflux in said column and as feed at the head (9) of the first absorber (A1) and a gaseous distillate (20) recycled in the gas charge upstream of the first absorber (A1),
- And the liquid hydrocarbons (30) from the bottom of the second absorber (A2) are injected, after reheating (E8), into a deethanization column (D2) to obtain, on the one hand, at the bottom of this column a liquid section (29) which contains at least 98% of the C3 hydrocarbons and all of the C4 hydrocarbons present in the pretreated gas and on the other hand at the top of this column a liquid fraction (35), rich in C2 hydrocarbons and lighter, reinjected as reflux in said column and also a gaseous distillate (37), rich in C2 hydrocarbons and lighter which after refrigeration and at least partial condensation (E11) is injected as feed at the top (24) of the second absorber (A2),
- so that the process makes it possible to recover at least 98% of the hydrocarbons in C3 and at least 99.9% of the hydrocarbons in C4 and more contained in the gaseous feed (1), while the pretreated gas (6) from the first absorber (A1) contains all of the hydrocarbons in C3 and less, at least 98% of the hydrocarbons in C4, at most 1% of the hydrocarbons in C5, and that it is completely free of hydrocarbons in C6 and more.
2. Procédé selon la revendication 1, caractérisé en ce que la colonne de débutanisation (D1) fonctionne à une pression supérieure à celle du premier absorbeur (A1) grâce à un pompage (P1) transférant les hydrocarbures liquides du fond de l'absorbeur précité vers la colonne de débutanisation pour permettre au distillat gazeux (20) d'être mélangé à la charge gazeuse comprimée (2).2. Method according to claim 1, characterized in that the debutanization column (D1) operates at a pressure higher than that of the first absorber (A1) by means of a pumping (P1) transferring the liquid hydrocarbons from the bottom of the abovementioned absorber to the debutanization column to allow the gaseous distillate (20) to be mixed with the compressed gaseous charge (2). 3. Procédé selon la revendication 1, caractérisé en ce que la colonne de débutanisation (D1) fonctionne à une pression inférieure à celle du premier absorbeur (A1), le distillat gazeux (20) étant mélangé à la charge gazeuse (1) en amont de la compression (C1).3. Method according to claim 1, characterized in that the debutanization column (D1) operates at a pressure lower than that of the first absorber (A1), the gaseous distillate (20) being mixed with the gaseous charge (1) upstream of the compression (C1). 4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on prévoit l'injection d'une coupe d'essence non stabilisée (22) contenant une proportion notable d'hydrocarbures en C4 et plus légers dans la colonne de débutanisation (D1).4. Method according to one of claims 1 to 3, characterized in that the injection of an unstabilized gasoline cut (22) containing a significant proportion of C4 hydrocarbons and lighter in the column is provided of debutanization (D1). 5 Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les opérations consistant : refroidir (E6) le gaz prétraité (6) avant son injection dans le second absorbeur (A2), réchauffer (E7) le gaz traité obtenu en tête du second absorbeur (A2), condenser (E10) le reflux du déethaniseur (D2), réchauffer (E8) les hydrocarbures liquides obtenus en fond du second absorbeur (A2) avant leur injection dans la colonne de déethanisation (D2) et condenser (E11) le distillat gazeux du déethaniseur avant son injection en tête du second absorbeur (A2), sont intégrées thermiquement, le complément de réfrigération étant fourni par un cycle de réfrigération.5 Method according to one of claims 1 to 4, characterized in that the operations consisting in: cooling (E6) the pretreated gas (6) before its injection into the second absorber (A2), heating (E7) the treated gas obtained in head of the second absorber (A2), condense (E10) the reflux of the deethanizer (D2), reheat (E8) the liquid hydrocarbons obtained at the bottom of the second absorber (A2) before their injection into the deethanization column (D2) and condense ( E11) the gaseous distillate of the deethanizer before its injection at the head of the second absorber (A2), are thermally integrated, the additional refrigeration being provided by a refrigeration cycle. 6. Procédé selon la revendication 5, caractérisé en ce que le cycle de réfrigération précité utilise un réfrigérant en mélange (40) constitué d'au moins un hydrocarbure en (C2) et un hydrocarbure en (C3).6. Method according to claim 5, characterized in that the above-mentioned refrigeration cycle uses a mixed refrigerant (40) consisting of at least one hydrocarbon at (C2) and one hydrocarbon at (C3). 7. Procédé selon la revendication 5 ou 6 caractérisé en ce que le cycle de réfrigération précité utilise au moins deux étages de pression pour la vaporisation du réfrigérant (E13), (E15) préalablement sous-refroidi (E12).7. Method according to claim 5 or 6 characterized in that the above-mentioned refrigeration cycle uses at least two pressure stages for the vaporization of the refrigerant (E13), (E15) previously sub-cooled (E12). 8. Procédé selon l'une des revendications 5 à 7, caractérisé en ce que le cycle de réfrigération précité utilise une condensation totale du réfrigérant effectuée à haute pression et température ambiante.8. Method according to one of claims 5 to 7, characterized in that the above-mentioned refrigeration cycle uses total condensation of the refrigerant carried out at high pressure and ambient temperature 9. Installation pour l'exécution du procédé selon l'une des revendications 1 à 8 du type comprenant un moyen de compression d'une charge gazeuse et plusieurs colonnes d'absorption, caractérisée en ce qu'elle comprend : une colonne d'absorption (A1) des hydrocarbures en (C5) et plus lourds associée à une colonne de débutanisation (D1) ; une colonne d'absorption (A2) des hydrocarbures en (C3) et plus lourds associée à une colonne de déethanisation (D2) et à un système d'échange (SE) de chaleur relié à un circuit frigorifique ; la coupe liquide obtenue en tête (14) de la colonne de débutanisation (D1) étant réinjectée comme reflux dans cette colonne et comme alimentation dans la tête de la colonne d'absorption(A1) des hydrocarbures en (C5) et le distillat gazeux (20) obtenu de la colonne de débutanisation (D1) étant recyclé au refoulement de la compression (C1) du gaz de charge ; le distillat gazeux (37) obtenu en tête de la colonne de déethanisation (D2) étant au moins partiellement condensé (E11) et injecté comme alimentation (24) dans la tête de la colonne d'absorption (A2) des hydrocarbures en (C3) ; et le réfrigérant du cycle frigorifique constitué d'un mélange d'hydrocarbures en (C2) et en (C3) et plus, étant totalement condensé à haute pression et température ambiante (E14) et étant après sous-refroidissement (E12) vaporisé à deux niveaux de pression (E13) et (E15).9. Installation for carrying out the method according to one of claims 1 to 8 of the type comprising a means for compressing a gaseous charge and several absorption columns, characterized in that it comprises: an absorption column (A1) hydrocarbons in (C5) and heavier associated with a debutanization column (D1); an absorption column (A2) for hydrocarbons in (C3) and heavier associated with a deethanization column (D2) and a heat exchange system (SE) connected to a refrigeration circuit; the liquid cut obtained at the top (14) of the debutanization column (D1) being reinjected as reflux in this column and as feed into the head of the absorption column (A1) of hydrocarbons in (C5) and the gaseous distillate ( 20) obtained from the debutanization column (D1) being recycled to the discharge of the compression (C1) of the feed gas; the gaseous distillate (37) obtained at the head of the deethanization column (D2) being at least partially condensed (E11) and injected as feed (24) into the head of the absorption column (A2) of the hydrocarbons in (C3) ; and the refrigerant of the refrigeration cycle consisting of a mixture of hydrocarbons in (C2) and in (C3) and more, being fully condensed at high pressure and ambient temperature (E14) and being after sub-cooling (E12) vaporized in two pressure levels (E13) and (E15).
EP90401099A 1989-04-25 1990-04-24 Process for the recovery of liquid hydrocarbons from a gaseous feed stream, and apparatus for carrying out this process Expired - Lifetime EP0395490B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8905488A FR2646166B1 (en) 1989-04-25 1989-04-25 PROCESS FOR RECOVERING LIQUID HYDROCARBONS FROM A GASEOUS LOAD AND PLANT FOR CARRYING OUT SAID PROCESS
FR8905488 1989-04-25

Publications (2)

Publication Number Publication Date
EP0395490A1 true EP0395490A1 (en) 1990-10-31
EP0395490B1 EP0395490B1 (en) 1992-06-24

Family

ID=9381116

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90401099A Expired - Lifetime EP0395490B1 (en) 1989-04-25 1990-04-24 Process for the recovery of liquid hydrocarbons from a gaseous feed stream, and apparatus for carrying out this process

Country Status (8)

Country Link
US (1) US5114450A (en)
EP (1) EP0395490B1 (en)
JP (1) JP2765697B2 (en)
DE (2) DE69000163T2 (en)
FR (1) FR2646166B1 (en)
MY (1) MY105647A (en)
PT (1) PT93865B (en)
RU (1) RU2014343C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072672A1 (en) * 1999-07-28 2001-01-31 Technip Process and device for gas purification
FR3085281A1 (en) * 2018-09-04 2020-03-06 Calogero Alfano PROCESS AND PLANT FOR PURIFYING CRUDE GAS WITH LIQUID SOLVENT
RU2735208C1 (en) * 2020-03-02 2020-10-28 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Method of recycling valanginian weathering gas from buffer separators of saturated methanol

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1241471B (en) * 1990-07-06 1994-01-17 Tpl PROCESS AND EQUIPMENT FOR THE MAXIMUM RECOVERY OF ETHYLENE AND PROPYLENE FROM THE GAS PRODUCED BY HYDROCARBON PYROLYSIS.
US7014835B2 (en) * 2002-08-15 2006-03-21 Velocys, Inc. Multi-stream microchannel device
US6969505B2 (en) * 2002-08-15 2005-11-29 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction in a single stage process channel
US9192929B2 (en) 2002-08-15 2015-11-24 Velocys, Inc. Integrated combustion reactor and methods of conducting simultaneous endothermic and exothermic reactions
US6622519B1 (en) * 2002-08-15 2003-09-23 Velocys, Inc. Process for cooling a product in a heat exchanger employing microchannels for the flow of refrigerant and product
US7250151B2 (en) 2002-08-15 2007-07-31 Velocys Methods of conducting simultaneous endothermic and exothermic reactions
WO2005009930A1 (en) * 2003-07-24 2005-02-03 Toyo Engineering Corporation Method and apparatus for separating hydrocarbon
FR2875237B1 (en) * 2004-09-10 2007-07-27 Total Sa PROCESS AND INSTALLATION FOR EXTRACTING MERCAPTANS FROM A GASEOUS MIXTURE OF HYDROCARBONS
JP2009500485A (en) * 2005-07-06 2009-01-08 イネオス ユーロープ リミテッド Olefin production method
CN101506607B (en) * 2006-08-23 2012-09-05 国际壳牌研究有限公司 Method and apparatus for the vaporization of a liquid hydrocarbon stream
FR2923001B1 (en) * 2007-10-26 2015-12-11 Inst Francais Du Petrole METHOD FOR LIQUEFACTING A NATURAL GAS WITH HIGH PRESSURE FRACTIONATION
US8062145B1 (en) * 2009-06-04 2011-11-22 Callaway Golf Company Device to measure the motion of a golf club
US20120085128A1 (en) * 2010-10-07 2012-04-12 Rajeev Nanda Method for Recovery of Propane and Heavier Hydrocarbons
US8635885B2 (en) * 2010-10-15 2014-01-28 Fluor Technologies Corporation Configurations and methods of heating value control in LNG liquefaction plant
RU2483783C1 (en) * 2012-03-07 2013-06-10 Общество с ограниченной ответственностью "Петон" Method of gas separation
FR3058508B1 (en) * 2016-11-08 2020-01-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PROCESS FOR CRYOGENIC SEPARATION OF A NATURAL GAS STREAM
FR3058509B3 (en) 2016-11-08 2019-02-01 Air Liquide BATHTUB-CONDENSER FOR A PROCESS FOR CRYOGENIC SEPARATION OF A NATURAL GAS CURRENT
WO2019050940A1 (en) * 2017-09-06 2019-03-14 Linde Engineering North America, Inc. Methods for providing refrigeration in natural gas liquids recovery plants
US11320196B2 (en) * 2017-12-15 2022-05-03 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
CN115253604B (en) * 2022-08-09 2024-01-26 大连理工大学 Device and method for separating carbon-rich two-carbon three-dry gas by NMP

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185253A2 (en) * 1984-12-17 1986-06-25 Linde Aktiengesellschaft Process and apparatus for recovering C2+ or C3+ hydrocarbons
FR2600338A2 (en) * 1985-06-26 1987-12-24 Petrol Engineering Sa Process for the treatment of oilfield effluents

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150199A (en) * 1960-10-27 1964-09-22 Pullman Inc Separation of hydrocarbons
CA1054509A (en) * 1975-09-09 1979-05-15 Union Carbide Corporation Ethylene production with utilization of lng refrigeration
US4235613A (en) * 1979-05-29 1980-11-25 Atlantic Richfield Company Preparation of sales gas
US4285708A (en) * 1979-08-10 1981-08-25 Phillips Petroleum Co. De-ethanizing means
US4370156A (en) * 1981-05-29 1983-01-25 Standard Oil Company (Indiana) Process for separating relatively pure fractions of methane and carbon dioxide from gas mixtures
FR2571129B1 (en) * 1984-09-28 1988-01-29 Technip Cie PROCESS AND PLANT FOR CRYOGENIC FRACTIONATION OF GASEOUS LOADS
DE3445961A1 (en) * 1984-12-17 1986-06-26 Linde Ag, 6200 Wiesbaden METHOD FOR SEPARATING C (DOWN ARROW) 3 (DOWN ARROW) (DOWN ARROW) + (DOWN ARROW) HYDROCARBONS FROM A GAS FLOW
DE3544855A1 (en) * 1985-12-18 1987-06-19 Linde Ag METHOD FOR SEPARATING C (DOWN ARROW) 5 (DOWN ARROW) (DOWN ARROW) + (DOWN ARROW) HYDROCARBONS FROM A GAS FLOW
US4897098A (en) * 1986-10-16 1990-01-30 Enterprise Products Company Fractionation system for stabilizing natural gasoline
IT1222733B (en) * 1987-09-25 1990-09-12 Snmprogetti S P A FRACTIONING PROCESS OF HYDROCARBON GASEOUS MIXTURES WITH HIGH CONTENT OF ACID GASES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0185253A2 (en) * 1984-12-17 1986-06-25 Linde Aktiengesellschaft Process and apparatus for recovering C2+ or C3+ hydrocarbons
FR2600338A2 (en) * 1985-06-26 1987-12-24 Petrol Engineering Sa Process for the treatment of oilfield effluents

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072672A1 (en) * 1999-07-28 2001-01-31 Technip Process and device for gas purification
FR2796858A1 (en) * 1999-07-28 2001-02-02 Technip Cie PROCESS AND PLANT FOR PURIFYING A GAS AND PRODUCTS THUS OBTAINED
US6368385B1 (en) 1999-07-28 2002-04-09 Technip Process and apparatus for the purification of natural gas and products
FR3085281A1 (en) * 2018-09-04 2020-03-06 Calogero Alfano PROCESS AND PLANT FOR PURIFYING CRUDE GAS WITH LIQUID SOLVENT
WO2020049006A1 (en) * 2018-09-04 2020-03-12 Alfano, Calogero Method and plant for purifying a crude gas using a liquid solvent
RU2735208C1 (en) * 2020-03-02 2020-10-28 Общество с ограниченной ответственностью "Газпром добыча Уренгой" Method of recycling valanginian weathering gas from buffer separators of saturated methanol

Also Published As

Publication number Publication date
PT93865B (en) 1996-09-30
DE69000163T2 (en) 1993-02-18
MY105647A (en) 1994-11-30
EP0395490B1 (en) 1992-06-24
FR2646166B1 (en) 1991-08-16
JP2765697B2 (en) 1998-06-18
DE69000163D1 (en) 1992-07-30
US5114450A (en) 1992-05-19
RU2014343C1 (en) 1994-06-15
DE395490T1 (en) 1991-11-28
JPH03115390A (en) 1991-05-16
FR2646166A1 (en) 1990-10-26
PT93865A (en) 1990-11-20

Similar Documents

Publication Publication Date Title
EP0395490B1 (en) Process for the recovery of liquid hydrocarbons from a gaseous feed stream, and apparatus for carrying out this process
KR101619563B1 (en) Hydrocarbon gas processing
US9939195B2 (en) Hydrocarbon gas processing including a single equipment item processing assembly
US9074814B2 (en) Hydrocarbon gas processing
CA2364354C (en) Recovery and purification process and installation of ethylene manufactured through hydrocarbon pyrolysis, and gases obtained from this process
EP0783031B1 (en) Process for the dewatering, deactification and degasolination of natural gas, using a mixture of solvents
EP2205920B1 (en) Method for liquefying natural gas with high pressure fractioning
FR2814379A1 (en) Process for the temperature controlled deacidification of a gas by absorption in a solvent
KR20160143684A (en) Process and apparatus for heavy hydrocarbon removal from lean natural gas before liquefaction
CN102596361B (en) Hydrocarbon gas processing
FR2845392A1 (en) PROCESS FOR DEACIDIFYING A NATURAL GAS
WO2011124818A2 (en) Process for treating a stream of cracked gas coming from a hydrocarbon pyrolysis plant, and associated plant
CN102460049A (en) Hydrocarbon gas processing
FR2822839A1 (en) Dehydrating and fractionating process, for wet natural gas, is integrated using methanol which is later recovered
EP3013924B1 (en) Method for recovering an ethylene stream from a carbon monoxide rich feed stream
AU2011233579B2 (en) Hydrocarbon gas processing
EP0768106B1 (en) Process for fractionating a fluid containing separable multi-components, e.g. a natural gas
CN102472573A (en) Hydrocarbon gas processing
KR101680922B1 (en) Hydrocarbon gas processing
KR101676069B1 (en) Hydrocarbon gas processing
KR101687851B1 (en) Hydrocarbon gas processing
EP0556875B1 (en) Process for the simultaneous elimination of CO2 and gasoline from a gaseous hydrocarbon mixture comprising methane, C2 and higher hydrocarbons and also CO2
EP3769022A1 (en) Method and appliance for separating a synthesis gas by cryogenic distillation
FR3012150A1 (en) METHOD OF FRACTIONING A CRAB GAS CURRENT USING AN INTERMEDIATE RECYCLE CURRENT, AND ASSOCIATED INSTALLATION
FR2990989A1 (en) Method for producing electricity, involves slackening obtained vaporized coolant in turbine driven by generator to produce electricity, and reinjecting part of condensed fluid into column

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19901215

17Q First examination report despatched

Effective date: 19910517

ITCL It: translation for ep claims filed

Representative=s name: DE DOMINICIS & MAYER S.R.L.

GBC Gb: translation of claims filed (gb section 78(7)/1977)
DET De: translation of patent claims
TCNL Nl: translation of patent claims filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 69000163

Country of ref document: DE

Date of ref document: 19920730

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020424

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020426

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030430

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031101

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050424