EP2205920B1 - Method for liquefying natural gas with high pressure fractioning - Google Patents

Method for liquefying natural gas with high pressure fractioning Download PDF

Info

Publication number
EP2205920B1
EP2205920B1 EP08870150.3A EP08870150A EP2205920B1 EP 2205920 B1 EP2205920 B1 EP 2205920B1 EP 08870150 A EP08870150 A EP 08870150A EP 2205920 B1 EP2205920 B1 EP 2205920B1
Authority
EP
European Patent Office
Prior art keywords
liquid
column
ethane
methane
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08870150.3A
Other languages
German (de)
French (fr)
Other versions
EP2205920A2 (en
Inventor
Béatrice Fischer
Gilles Ferschneider
Anne-Claire Lucquin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2205920A2 publication Critical patent/EP2205920A2/en
Application granted granted Critical
Publication of EP2205920B1 publication Critical patent/EP2205920B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0085Ethane; Ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/0231Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/02Integration in an installation for exchanging heat, e.g. for waste heat recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Definitions

  • the present invention relates to the field of liquefaction of a natural gas.
  • Natural gas is often produced in places far from where it is used.
  • One method used for transportation is to liquefy natural gas at around -160 ° C and then transport it by boat in liquid form at atmospheric pressure.
  • natural gas Before being liquefied, natural gas must undergo various treatments, on the one hand to adjust its composition for sale (sulfur and carbon dioxide content, calorific value), and on the other hand to allow its liquefaction .
  • the fractionation of the natural gas produced by distillation makes it possible to eliminate the hydrocarbons that are too heavy and that risk blocking the pipes and the heat exchangers of the liquefaction plant by crystallization.
  • the fractionation by distillation makes it possible to separately recover compounds such as ethane, propane or butane which can be recovered separately, for example at the sale or as refrigerant fluids used in the liquefaction process.
  • the liquefaction is carried out at a pressure approximately equal to the operating pressure of the fractionation column.
  • the present invention proposes to modify the fractionation step to increase the operating pressure of the fractionation and, consequently, to increase the pressure at which the natural gas is liquefied in order to improve the overall efficiency of the liquefaction process.
  • Document US6401486 B1 discloses a process according to the preamble of claim 1.
  • the invention defines a method of liquefying a natural gas with the features of claim 1.
  • the operating conditions of the fractionation column can be chosen so that said liquid phase comprises a molar amount of methane of between 40% and 70% of the molar amount of ethane.
  • the molar quantity of methane of said liquid phase can be adjusted by modifying the power of a reboiler located at the bottom of the column of
  • the natural gas to be liquefied arrives via the conduit 1 '.
  • Natural gas may have been previously purified to remove acid compounds, water and possibly mercury.
  • the natural gas flowing in the conduit 1 ' is cooled in the heat exchanger E1 at a temperature between 0 ° C and -60 ° C.
  • the refrigeration is carried out by means of the refrigeration closed circuit 100 which operates by compression and expansion of a refrigerant fluid, for example composed of a mixture of ethane and propane.
  • the partially liquefied natural gas in E1 is introduced via line 1 into fractionation column 2, reboiled using heat exchanger 9.
  • the vapor discharged at the top of column 2 through line 3 is partially condensed in the heat exchanger E1, before being introduced into the reflux tank 4.
  • the gaseous fraction discharged at the top of the flask 4 is sent through line 5 into the heat exchanger E2 to be liquefied.
  • the liquid natural gas is removed from E2 by the pipe 5 '.
  • the refrigeration is carried out by means of the refrigeration closed circuit 200 which operates by compression and expansion of a cooling fluid, for example composed of a mixture of nitrogen, methane and ethane.
  • the liquid obtained at the bottom of the flask 4 is introduced by the pump 6 and the duct 7 at the top of the column 2 as reflux.
  • the liquid obtained at the bottom of column 2 is discharged through line 8.
  • the liquid obtained at the bottom of the column 2 through the conduit 8 is cooled in the exchanger 10, for example by water or air, and then expanded in the expansion element V.
  • the cooled and expanded liquid is introduced into the deethanization column 11, reboiled by the heat exchanger 16.
  • the column 11 operates at a pressure between 20 and 35 bar.
  • the gaseous fraction obtained at the top of the column 11 is partially condensed at a temperature between 0 ° C. and 10 ° C. in the heat exchanger 12, by heat exchange with a portion of liquid withdrawn laterally from the column 2.
  • the condensates are separated from the gas phase in the flask 13.
  • the gaseous phase discharged at the top of the flask 13 consists mainly of methane and ethane. It can be sent to the fuel gas network or to liquefaction in the pipe 5.
  • the condensates recovered at the bottom of the separation tank 13 are sent, at a temperature preferably between 0 ° C. and 10 ° C., by the pump 14. at the top of column 11 as reflux.
  • a fraction of the condensates, which consist mainly of ethane, is withdrawn through line 30 to be used, for example, in the composition of refrigerant fluids circulating in circuits 100 or 200.
  • Hydrocarbons heavier than methane are discharged in liquid form at the bottom of column 11 via line 17.
  • the figures 2 and 3 repeat the same elements of the figure 1 by applying different operating conditions. References of figures 2 and 3 identical to those of the figure 1 designate the same elements.
  • the operating conditions of column 2 are chosen so that the methane content of the stream discharged through line 8 is between 10% and 150 mol%, preferably between 40% and 70 mol%, of the ethane from this stream.
  • the temperature or operating pressure of column 2 can be changed.
  • column 2 operates at a pressure of between 40 and 60 bar.
  • the pressure of the column 2 can be adjusted by means of a valve arranged upstream of the column 2, for example on the conduit 1 or 1 '.
  • the operating temperature of the column 2 can be adjusted by modifying the power of the reboiling, that is to say that increases or decreases the amount of heat that the reboiler 9 brings to the bottom of the column 2. Accordingly the adjustment of the power of the reboiler 9, the flow of gas discharged through line 3 and the flow of liquid discharged through line 8 are modified. In general, the power of the reboiler 9 is reduced so as to increase the amount of methane contained in the liquid at the bottom of the column 2 and, consequently, the liquid flow 8 increases.
  • the column 11 may be a distillation column provided with trays.
  • the heat exchanger 12 can perform a low temperature cooling, preferably between -10 ° C and -40 ° C.
  • the condensates recovered at the bottom of the separation flask 13 are sent, at a temperature preferably between -10 ° C. and -40 ° C., by the pump 14 at the top of the column 11 as reflux.
  • a portion of the refrigerant fluid of the first refrigeration circuit 100 is withdrawn via the pipe 101, which is expanded in the valve V1 before exchanging heat in 12 with the effluent discharged at the top of the column 11.
  • a portion of the refrigerant fluid is withdrawn from the first refrigeration circuit 100 via the pipe 101.
  • This fluid is cooled by heat exchange in 9 'with a liquid portion withdrawn laterally from the column 2.
  • the liquid portion is withdrawn between the feed point via line 1 of column 2 and the bottom of column 2.
  • the cooling fluid can be cooled to a temperature between -10 ° C and 20 ° vs.
  • the cooled refrigerant mixture is expanded in the member V1 so as to be partially vaporized at a temperature between -10 ° C and -40 ° C.
  • the partially vaporized fluid is introduced into the exchanger 12 to cool and partially liquefy the gaseous fraction discharged at the top of the column 11.
  • the coolant from the exchanger 12 is returned via the conduit 103 to one of the compressor stripper balloons of the first refrigerant circuit.
  • Liquid is withdrawn from the column 11 through the conduit 18 at a level located between the feed point of the column 11 through the conduit 8 and the point of introduction of reflux.
  • the duct 18 carries out a withdrawal at a plateau located from preferably at least two trays above the feed point.
  • the withdrawn liquid is introduced through the conduit 18 into the side column 20, called "stripping column".
  • the column 20 operates at a pressure substantially equal to the pressure of the column 11, with the pressure losses close.
  • the column 20 is reboiled with the aid of the heat exchanger 19, so as to vaporize the methane present in the liquid withdrawn.
  • At the bottom of column 20 is recovered a cup enriched in ethane and having a very low proportion of methane and propane.
  • the power of the exchanger 19 can be adjusted so as to maintain the liquid at the bottom of the column 20 at a temperature of between 10 ° C. and 20 ° C.
  • the vaporized fraction is discharged at the top of the column 20 to be reintroduced into the column 11.
  • the column 20 is operated so as to obtain a liquid cut comprising more than 92 mol% of ethane, preferably more than 95% molar of ethane.
  • the liquid rich in ethane can be used to form the refrigerant mixtures used in the circuits 100 and 200.
  • a hydrocarbon-enriched liquid heavier than ethane which can be sent via line 17 to a depropanizer column, is discharged.
  • a fraction enriched in propane which can be used to form the refrigerant mixtures used in the circuits 100 and 200.
  • the pretreated and dried natural gas circulates in the duct 1 'at a rate of 35,000 kmol / h, with the following composition: Component Composition (% mol) N2 1 C1 90 C2 5.5 C3 2.1 iC 4 0.5 nC4 0.5 iC5 0.05 nC5 0.05 C6 0.05 C7 0.05 C8 0.05 C9 0.05 Benzene 0.05 Toluene 0.05
  • the gas is cooled in E1 to a temperature of -30 ° C and then introduced into the fractionation column 2.
  • the liquefaction is thus carried out in E2 at a pressure of 40 bar.
  • a total of 162.4 MW of power is required for the two refrigerant cycle compressors.
  • Example 1 the deethanization column 11 has no side column.
  • the flow obtained at the top of the column 1 is cooled only by heat exchange with a side withdrawal of the fractionation column 2, and therefore does not increase the cooling capacity necessary for the operation of the process.
  • the gas to be treated has a composition and a flow rate identical to that of Example 1.
  • the gas is cooled in E1 to a temperature of -30 ° C and then introduced into the fractionation column 2.
  • the liquefaction is thus carried out in E2 at a pressure of 53 bars.
  • a power of 148.3 MW is required in total for the compressors of the two refrigerant cycles, a gain of about 9% compared with Example 1.
  • the counterpart of this efficiency gain lies in the difficulty in recovering a stream enriched with ethane, which is necessary to make the additional heat-transfer fluid of the refrigeration circuits 100 and 200.
  • a simple distillation in the separation column 11 makes it possible to obtain at the top a mixture of C1 and C2 that can be used in the second refrigeration cycle 200, but not in the first cycle 100 which uses a mixture of C2 and C3.
  • the invention proposes, in Example 2, to implement the lateral stripping column 20.
  • the flow at the top of the column 11 is cooled to a temperature of -20 ° C. by heat exchange with a portion of the coolant of the first refrigeration circuit 100.
  • the effluent discharged at the top of the flask 13 must be liquefied. .
  • Example 2 is much more attractive than the procedure of Example 1: it saves about 8% of energy or increases the liquefaction capacity of about 8% with the same gas turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention concerne le domaine de la liquéfaction d'un gaz naturel.The present invention relates to the field of liquefaction of a natural gas.

Le gaz naturel est souvent produit dans des endroits éloignés de son lieu d'utilisation. Une méthode utilisée pour le transport est de liquéfier le gaz naturel aux alentours de -160°C, puis de le transporter par bateau sous forme liquide à pression atmosphérique.Natural gas is often produced in places far from where it is used. One method used for transportation is to liquefy natural gas at around -160 ° C and then transport it by boat in liquid form at atmospheric pressure.

Avant d'être liquéfié, le gaz naturel doit subir divers traitements, d'une part pour ajuster sa composition en vue de la vente (teneur en soufre et en dioxyde de carbone, valeur calorifique), et d'autre part pour permettre sa liquéfaction. En particulier, le fractionnement du gaz naturel réalisé par distillation permet d'éliminer les hydrocarbures trop lourds qui risquent de boucher par cristallisation les conduites et les échangeurs de chaleur de l'usine de liquéfaction. De plus, le fractionnement par distillation permet de récupérer séparément des composés tels que l'éthane, le propane ou le butane qui peuvent être valorisés séparément, par exemple à la vente ou en tant que fluides réfrigérants mis en oeuvre dans le procédé de liquéfaction.Before being liquefied, natural gas must undergo various treatments, on the one hand to adjust its composition for sale (sulfur and carbon dioxide content, calorific value), and on the other hand to allow its liquefaction . In particular, the fractionation of the natural gas produced by distillation makes it possible to eliminate the hydrocarbons that are too heavy and that risk blocking the pipes and the heat exchangers of the liquefaction plant by crystallization. In addition, the fractionation by distillation makes it possible to separately recover compounds such as ethane, propane or butane which can be recovered separately, for example at the sale or as refrigerant fluids used in the liquefaction process.

En général, la liquéfaction est effectuée à une pression environ égale à la pression de fonctionnement de la colonne de fractionnement.In general, the liquefaction is carried out at a pressure approximately equal to the operating pressure of the fractionation column.

La présente invention propose de modifier l'étape de fractionnement pour augmenter la pression d'opération du fractionnement et, en conséquence, augmenter la pression à laquelle le gaz naturel est liquéfié dans le but d'améliorer l'efficacité globale du procédé de liquéfaction. Document US6401486 B1 divulgue un procédé selon la préambule de la revendication 1. De manière générale, l'invention définit un procédé de liquéfaction d'un gaz naturel avec les caractéristiques de la revendication 1. Selon l'invention, on peut choisir les conditions opératoires de la colonne de fractionnement de manière à ce que ladite phase liquide comporte une quantité molaire de méthane comprise entre 40 % et 70 % de la quantité molaire d'éthane. On peut ajuster la quantité molaire de méthane de ladite phase liquide en modifiant la puissance d'un rebouilleur situé en fond de la colonne deThe present invention proposes to modify the fractionation step to increase the operating pressure of the fractionation and, consequently, to increase the pressure at which the natural gas is liquefied in order to improve the overall efficiency of the liquefaction process. Document US6401486 B1 discloses a process according to the preamble of claim 1. In general, the invention defines a method of liquefying a natural gas with the features of claim 1. According to the invention, the operating conditions of the fractionation column can be chosen so that said liquid phase comprises a molar amount of methane of between 40% and 70% of the molar amount of ethane. The molar quantity of methane of said liquid phase can be adjusted by modifying the power of a reboiler located at the bottom of the column of

D'autres avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite ci-après en se référant aux dessins parmi lesquels :

  • la figure 1 schématise un procédé selon l'art antérieur,
  • La figure 2 montre un autre procédé qui n'est pas selon l'invention.
  • La figure 3 montre un procédé selon l'invention.
Other advantages of the invention will be better understood and will become clear from reading the description given below with reference to the drawings in which:
  • the figure 1 schematizes a method according to the prior art,
  • The figure 2 shows another process which is not according to the invention.
  • The figure 3 shows a process according to the invention.

Sur la figure 1, le gaz naturel à liquéfier arrive par le conduit 1'. Le gaz naturel peut avoir été préalablement purifié pour enlever les composés acides, l'eau et éventuellement le mercure. Le gaz naturel circulant dans le conduit 1' est refroidi dans l'échangeur de chaleur E1 à une température comprise entre 0°C et -60°C. Dans E1, la réfrigération est effectuée au moyen du circuit fermé de réfrigération 100 qui fonctionne par compression et détente d'un fluide réfrigérant, par exemple composé d'un mélange d'éthane et de propane.On the figure 1 , the natural gas to be liquefied arrives via the conduit 1 '. Natural gas may have been previously purified to remove acid compounds, water and possibly mercury. The natural gas flowing in the conduit 1 'is cooled in the heat exchanger E1 at a temperature between 0 ° C and -60 ° C. In E1, the refrigeration is carried out by means of the refrigeration closed circuit 100 which operates by compression and expansion of a refrigerant fluid, for example composed of a mixture of ethane and propane.

Le gaz naturel partiellement liquéfié dans E1 est introduit par le conduit 1 dans la colonne de fractionnement 2, rebouillie à l'aide de l'échangeur de chaleur 9. La vapeur évacuée en tête de la colonne 2 par le conduit 3 est partiellement condensée dans l'échangeur de chaleur E1, avant d'être introduite dans le ballon de reflux 4.The partially liquefied natural gas in E1 is introduced via line 1 into fractionation column 2, reboiled using heat exchanger 9. The vapor discharged at the top of column 2 through line 3 is partially condensed in the heat exchanger E1, before being introduced into the reflux tank 4.

La fraction gazeuse évacuée en tête du ballon 4 est envoyée par le conduit 5 dans l'échangeur de chaleur E2 pour être liquéfiée. Le gaz naturel liquide est évacué de E2 par le conduit 5'. Dans E2, la réfrigération est effectuée au moyen du circuit fermé de réfrigération 200 qui fonctionne par compression et détente d'un fluide réfrigérant, par exemple composé d'un mélange d'azote, de méthane et d'éthane.The gaseous fraction discharged at the top of the flask 4 is sent through line 5 into the heat exchanger E2 to be liquefied. The liquid natural gas is removed from E2 by the pipe 5 '. In E2, the refrigeration is carried out by means of the refrigeration closed circuit 200 which operates by compression and expansion of a cooling fluid, for example composed of a mixture of nitrogen, methane and ethane.

Le liquide obtenu en fond du ballon 4 est introduit par la pompe 6 et le conduit 7 en tête de la colonne 2 à titre de reflux. Le liquide obtenu en fond de la colonne 2 est évacué par le conduit 8.The liquid obtained at the bottom of the flask 4 is introduced by the pump 6 and the duct 7 at the top of the column 2 as reflux. The liquid obtained at the bottom of column 2 is discharged through line 8.

Le liquide obtenu en fond de la colonne 2 par le conduit 8 est refroidi dans l'échangeur 10, par exemple par de l'eau ou de l'air, puis détendu dans l'organe de détente V. Le liquide refroidi et détendu est introduit dans la colonne de dééthanisation 11, rebouilli par l'échangeur de chaleur 16. En général, la colonne 11 fonctionne à une pression comprise entre 20 et 35 bars. La fraction gazeuse obtenue en tête de la colonne 11 est partiellement condensée à une température comprise entre 0°C et 10°C dans l'échangeur de chaleur 12, par échange de chaleur avec une portion de liquide soutiré latéralement de la colonne 2.The liquid obtained at the bottom of the column 2 through the conduit 8 is cooled in the exchanger 10, for example by water or air, and then expanded in the expansion element V. The cooled and expanded liquid is introduced into the deethanization column 11, reboiled by the heat exchanger 16. In general, the column 11 operates at a pressure between 20 and 35 bar. The gaseous fraction obtained at the top of the column 11 is partially condensed at a temperature between 0 ° C. and 10 ° C. in the heat exchanger 12, by heat exchange with a portion of liquid withdrawn laterally from the column 2.

Les condensats sont séparés de la phase gazeuse dans le ballon 13. La phase gazeuse évacuée en tête du ballon 13 est constituée principalement de méthane et d'éthane. Elle peut être envoyée au réseau de gaz combustible ou à la liquéfaction dans le conduit 5. Les condensats récupérés en fond du ballon de séparation 13 sont envoyés, à une température de préférence comprise entre 0°C et 10°C, par la pompe 14 en tête de la colonne 11 à titre de reflux. Une fraction des condensats, qui sont principalement constitués d'éthane, est prélevée par le conduit 30 pour être utilisée par exemple dans la composition des fluides réfrigérants circulant dans les circuits 100 ou 200.The condensates are separated from the gas phase in the flask 13. The gaseous phase discharged at the top of the flask 13 consists mainly of methane and ethane. It can be sent to the fuel gas network or to liquefaction in the pipe 5. The condensates recovered at the bottom of the separation tank 13 are sent, at a temperature preferably between 0 ° C. and 10 ° C., by the pump 14. at the top of column 11 as reflux. A fraction of the condensates, which consist mainly of ethane, is withdrawn through line 30 to be used, for example, in the composition of refrigerant fluids circulating in circuits 100 or 200.

Les hydrocarbures plus lourds que le méthane sont évacués sous forme liquide en fond de la colonne 11 par le conduit 17.Hydrocarbons heavier than methane are discharged in liquid form at the bottom of column 11 via line 17.

Les figures 2 et 3 reprennent des mêmes éléments de la figure 1 en appliquant des conditions opératoires différentes. Les références des figures 2 et 3 identiques à celles de la figure 1 désignent les mêmes éléments. En référence aux figures 2 et 3, les conditions opératoires de la colonne 2 sont choisies de manière à ce que la teneur de méthane du flux évacué par le conduit 8 soit comprise entre 10 % et 150 % molaire, de préférence entre 40 % et 70 % molaire, de la teneur en éthane de ce flux. Par exemple, on peut modifier la température ou la pression opératoire de la colonne 2. En général, la colonne 2 fonctionne à une pression comprise entre 40 et 60 bars. La pression de la colonne 2 peut être ajustée au moyen d'une vanne disposée en amont de la colonne 2 par exemple sur le conduit 1 ou 1'. La température de fonctionnement de la colonne 2 peut être ajustée en modifiant la puissance du rebouillage, c'est-à-dire qu'on augmente ou on diminue la quantité de chaleur que le rebouilleur 9 apporte en fond de la colonne 2. En conséquence de l'ajustement de la puissance du rebouilleur 9, le débit de gaz évacué par le conduit 3 et le débit de liquide évacué par le conduit 8 sont modifiés. En général, on réduit la puissance du rebouilleur 9 de manière à augmenter la quantité de méthane contenu dans le liquide en fond de la colonne 2 et, en conséquence, le débit de liquide 8 augmente.The figures 2 and 3 repeat the same elements of the figure 1 by applying different operating conditions. References of figures 2 and 3 identical to those of the figure 1 designate the same elements. With reference to figures 2 and 3 the operating conditions of column 2 are chosen so that the methane content of the stream discharged through line 8 is between 10% and 150 mol%, preferably between 40% and 70 mol%, of the ethane from this stream. For example, the temperature or operating pressure of column 2 can be changed. In general, column 2 operates at a pressure of between 40 and 60 bar. The pressure of the column 2 can be adjusted by means of a valve arranged upstream of the column 2, for example on the conduit 1 or 1 '. The operating temperature of the column 2 can be adjusted by modifying the power of the reboiling, that is to say that increases or decreases the amount of heat that the reboiler 9 brings to the bottom of the column 2. Accordingly the adjustment of the power of the reboiler 9, the flow of gas discharged through line 3 and the flow of liquid discharged through line 8 are modified. In general, the power of the reboiler 9 is reduced so as to increase the amount of methane contained in the liquid at the bottom of the column 2 and, consequently, the liquid flow 8 increases.

L'envoi d'une quantité importante de méthane en fond de la colonne 2 permet d'avoir une masse spécifique vapeur plus faible à pression identique, donc un ratio de masse spécifique plus élevé. Par conséquent, le fait d'envoyer une quantité importante de méthane en fond de la colonne 2 selon l'invention permet d'opérer la liquéfaction à une pression plus élevée, ce qui diminue la puissance nécessaire pour effectuer la liquéfaction. Compte tenu que le liquide évacué en fond de la colonne 2 comporte une portion importante de méthane, on applique des conditions de fonctionnement particulières à la colonne de séparation 11. La colonne 11 peut être une colonne de distillation munie de plateaux. On peut imposer une température en tête de la colonne 11 relativement basse, de préférence comprise entre -10°C et -40°C, de manière à améliorer la séparation entre le méthane et les hydrocarbures plus lourds que l'éthane. En référence aux figures 2 et 3, l'échangeur de chaleur 12 peut effectuer un refroidissement à basse température, de préférence comprise entre -10°C et -40°C. Les condensats récupérés en fond du ballon de séparation 13 sont envoyés, à une température de préférence comprise entre -10°C et -40°C, par la pompe 14 en tête de la colonne 11 à titre de reflux.Sending a large quantity of methane at the bottom of column 2 makes it possible to have a lower specific steam mass at identical pressure, and therefore a higher specific mass ratio. Therefore, the fact of sending a large amount of methane at the bottom of the column 2 according to the invention makes it possible to operate the liquefaction at a higher pressure, which decreases the power required to effect the liquefaction. Given that the liquid discharged at the bottom of the column 2 comprises a large portion of methane, particular operating conditions are applied to the separation column 11. The column 11 may be a distillation column provided with trays. We can impose a temperature at the top of the relatively low column 11, preferably between -10 ° C and -40 ° C, so as to improve the separation between methane and heavier hydrocarbons than ethane. With reference to figures 2 and 3 the heat exchanger 12 can perform a low temperature cooling, preferably between -10 ° C and -40 ° C. The condensates recovered at the bottom of the separation flask 13 are sent, at a temperature preferably between -10 ° C. and -40 ° C., by the pump 14 at the top of the column 11 as reflux.

Pour effectuer le refroidissement à basse température dans l'échangeur 12, on peut utiliser une portion du fluide réfrigérant du premier circuit de réfrigération 100. En référence à la figure 2, on prélève une portion du fluide réfrigérant, par le conduit 101, qui est détendue dans la vanne V1 avant d'échanger de la chaleur dans 12 avec l'effluent évacué en tête de la colonne 11. En référence à la figure 3, on prélève une portion du fluide réfrigérant du premier circuit de réfrigération 100 par le conduit 101. On refroidit ce fluide par échange de chaleur dans 9' avec une portion de liquide soutirée latéralement de la colonne 2. Par exemple, la portion de liquide est soutirée entre le point d'alimentation par le conduit 1 de la colonne 2 et le fond de la colonne 2. Dans l'échangeur de chaleur 9', le fluide réfrigérant peut être refroidi à une température comprise entre -10°C et 20°C. Le mélange réfrigérant refroidi est détendu dans l'organe V1 de manière à être partiellement vaporisé à une température comprise entre -10°C et -40°C. Le fluide partiellement vaporisé est introduit dans l'échangeur 12 pour refroidir et partiellement liquéfier la fraction gazeuse évacuée en tête de la colonne 11. En référence aux figures 2 et 3, le fluide réfrigérant issu de l'échangeur 12 est renvoyé par le conduit 103 vers un des ballons dévésiculeurs du compresseur du premier circuit réfrigérant. En référence aux figures 2 et 3, on peut effectuer un soutirage latéral de la colonne 11 afin d'extraire une coupe enrichie en éthane. On soutire du liquide de la colonne 11 par le conduit 18 à un niveau situé entre le point d'alimentation de la colonne 11 par le conduit 8 et le point d'introduction du reflux. Le conduit 18 effectue un soutirage au niveau d'un plateau situé de préférence au moins deux plateaux au-dessus du point d'alimentation. Le liquide soutiré est introduit par le conduit 18 dans la colonne latérale 20, dénommée "colonne de stripage". La colonne 20 fonctionne à une pression sensiblement égale à la pression de la colonne 11, aux pertes de charge près. La colonne 20 est rebouillie à l'aide de l'échangeur de chaleur 19, de manière à vaporiser le méthane présent dans le liquide soutiré. On récupère en fond de la colonne 20 une coupe enrichie en éthane et comportant une très faible proportion de méthane et de propane. Selon l'invention, on peut ajuster la puissance de l'échangeur 19 de manière à maintenir le liquide en fond de la colonne 20 à une température comprise entre 10°C et 20°C. La fraction vaporisée est évacuée en tête de la colonne 20 pour être réintroduite dans la colonne 11. De préférence, on opère la colonne 20 de manière à obtenir une coupe liquide comportant plus de 92 % molaire d'éthane, de préférence plus de 95 % molaire d'éthane. Le liquide riche en éthane peut être utilisé pour constituer les mélanges réfrigérants mis en oeuvre dans les circuits 100 et 200.To carry out the cooling at low temperature in the exchanger 12, it is possible to use a portion of the refrigerant fluid of the first refrigeration circuit 100. Referring to FIG. figure 2 a portion of the refrigerant is withdrawn via the pipe 101, which is expanded in the valve V1 before exchanging heat in 12 with the effluent discharged at the top of the column 11. With reference to FIG. figure 3 a portion of the refrigerant fluid is withdrawn from the first refrigeration circuit 100 via the pipe 101. This fluid is cooled by heat exchange in 9 'with a liquid portion withdrawn laterally from the column 2. For example, the liquid portion is withdrawn between the feed point via line 1 of column 2 and the bottom of column 2. In the heat exchanger 9 ', the cooling fluid can be cooled to a temperature between -10 ° C and 20 ° vs. The cooled refrigerant mixture is expanded in the member V1 so as to be partially vaporized at a temperature between -10 ° C and -40 ° C. The partially vaporized fluid is introduced into the exchanger 12 to cool and partially liquefy the gaseous fraction discharged at the top of the column 11. figures 2 and 3 , the coolant from the exchanger 12 is returned via the conduit 103 to one of the compressor stripper balloons of the first refrigerant circuit. With reference to figures 2 and 3 it is possible to carry out a lateral withdrawal of the column 11 in order to extract an ethane enriched cut. Liquid is withdrawn from the column 11 through the conduit 18 at a level located between the feed point of the column 11 through the conduit 8 and the point of introduction of reflux. The duct 18 carries out a withdrawal at a plateau located from preferably at least two trays above the feed point. The withdrawn liquid is introduced through the conduit 18 into the side column 20, called "stripping column". The column 20 operates at a pressure substantially equal to the pressure of the column 11, with the pressure losses close. The column 20 is reboiled with the aid of the heat exchanger 19, so as to vaporize the methane present in the liquid withdrawn. At the bottom of column 20 is recovered a cup enriched in ethane and having a very low proportion of methane and propane. According to the invention, the power of the exchanger 19 can be adjusted so as to maintain the liquid at the bottom of the column 20 at a temperature of between 10 ° C. and 20 ° C. The vaporized fraction is discharged at the top of the column 20 to be reintroduced into the column 11. Preferably, the column 20 is operated so as to obtain a liquid cut comprising more than 92 mol% of ethane, preferably more than 95% molar of ethane. The liquid rich in ethane can be used to form the refrigerant mixtures used in the circuits 100 and 200.

En fond de la colonne 11, on évacue un liquide enrichi en hydrocarbures plus lourds que l'éthane, qui peut être envoyé par le conduit 17 vers une colonne de dépropanisation. Ainsi, on peut extraire une coupe enrichie en propane qui peut être utilisée pour constituer les mélanges réfrigérants mis en oeuvre dans les circuits 100 et 200.At the bottom of the column 11, a hydrocarbon-enriched liquid heavier than ethane, which can be sent via line 17 to a depropanizer column, is discharged. Thus, it is possible to extract a fraction enriched in propane which can be used to form the refrigerant mixtures used in the circuits 100 and 200.

Les exemples numériques présentés ci-après permettent d'illustrer le fonctionnement du procédé selon l'invention.The numerical examples presented below make it possible to illustrate the operation of the method according to the invention.

Exemple 1 :Example 1

On opère le schéma de la figure 1 selon l'art antérieur.The scheme of the figure 1 according to the prior art.

Le gaz naturel prétraité et séché circule dans le conduit 1' à un débit de 35 000 kmole/h, avec la composition suivante : Composant Composition (% mol) N2 1 C1 90 C2 5.5 C3 2.1 iC4 0.5 nC4 0.5 iC5 0.05 nC5 0.05 C6 0.05 C7 0.05 C8 0.05 C9 0.05 Benzène 0.05 Toluène 0.05 The pretreated and dried natural gas circulates in the duct 1 'at a rate of 35,000 kmol / h, with the following composition: Component Composition (% mol) N2 1 C1 90 C2 5.5 C3 2.1 iC 4 0.5 nC4 0.5 iC5 0.05 nC5 0.05 C6 0.05 C7 0.05 C8 0.05 C9 0.05 Benzene 0.05 Toluene 0.05

Le gaz est refroidi dans E1 à une température de -30°C, puis introduit dans la colonne de fractionnement 2.The gas is cooled in E1 to a temperature of -30 ° C and then introduced into the fractionation column 2.

Pour pouvoir distiller le gaz dans la colonne 2, il faut rester suffisamment en dessous des conditions critiques. Un critère couramment employé par l'homme du métier est que le rapport des masses spécifiques des phases liquides et vapeur au fond de la colonne 2 doit rester supérieur à une certaine valeur pour pouvoir opérer. Des valeurs entre 3 et 6 sont utilisées par l'homme du métier. Nous utilisons dans cet exemple 1 une valeur de 4,5.To be able to distill the gas in column 2, it is necessary to remain sufficiently below the critical conditions. One criterion commonly used by those skilled in the art is that the ratio of specific masses of the liquid and vapor phases at the bottom of column 2 must remain above a certain value in order to operate. Values between 3 and 6 are used by those skilled in the art. We use in this example 1 a value of 4.5.

La colonne 2 fonctionne à 40,5 bars, le condenseur 4 fonctionne à -60°C, et le rapport C1/C2 en fond de la colonne 2 est de 1%.Column 2 operates at 40.5 bar, condenser 4 operates at -60 ° C, and the ratio C1 / C2 at the bottom of column 2 is 1%.

Dans ces conditions, on obtient en fond de la colonne 2 une masse spécifique de liquide de 404,8 kg/m3 et une masse spécifique de vapeur de 88,95 kg/m3. Ainsi le rapport des masses spécifiques des phases liquide et vapeur au fond de la colonne 2 est de 4,55.Under these conditions, at the bottom of column 2, a specific liquid mass of 404.8 kg / m 3 and a specific mass of 88.95 kg / m 3 . Thus the ratio of the specific masses of the liquid and vapor phases at the bottom of column 2 is 4.55.

La liquéfaction est donc effectuée dans E2 à une pression de 40 bars. Pour l'ensemble de la liquéfaction, une puissance de 162,4 MW est nécessaire au total pour les compresseurs des deux cycles à mélange réfrigérant.The liquefaction is thus carried out in E2 at a pressure of 40 bar. For the entire liquefaction, a total of 162.4 MW of power is required for the two refrigerant cycle compressors.

Dans l'exemple 1, la colonne de dééthanisation 11 ne comporte pas de colonne latérale. De plus, le flux obtenu en tête de la colonne 1 est refroidi uniquement par échange de chaleur avec un soutirage latéral de la colonne de fractionnement 2, et donc n'augmente pas la puissance frigorifique nécessaire au fonctionnement du procédé.In Example 1, the deethanization column 11 has no side column. In addition, the flow obtained at the top of the column 1 is cooled only by heat exchange with a side withdrawal of the fractionation column 2, and therefore does not increase the cooling capacity necessary for the operation of the process.

Exemple 2 :Example 2

Le gaz à traiter a une composition et un débit identique à celui de l'exemple 1.The gas to be treated has a composition and a flow rate identical to that of Example 1.

Le gaz est refroidi dans E1 à une température de -30°C, puis introduit dans la colonne de fractionnement 2.The gas is cooled in E1 to a temperature of -30 ° C and then introduced into the fractionation column 2.

La colonne 2 fonctionne à 53,5 bars, le condenseur 4 fonctionne à -60°C, et le rapport C1/C2 en fond de la colonne 2 est de 55 %.Column 2 operates at 53.5 bar, condenser 4 operates at -60 ° C, and the ratio C1 / C2 at the bottom of column 2 is 55%.

Dans ces conditions, on obtient en fond de la colonne 2 une masse spécifique de liquide de 405,6 kg/m3 et une masse spécifique de vapeur de 87,7 kg/m3. Ainsi le rapport des masses spécifiques des phases liquide et vapeur au fond de la colonne 2 est de 4,6.Under these conditions, a liquid density mass of 405.6 kg / m 3 and a specific vapor mass of 87.7 kg / m 3 are obtained at the bottom of column 2. Thus the ratio of the specific masses of the liquid and vapor phases at the bottom of column 2 is 4.6.

La liquéfaction est donc effectuée dans E2 à une pression de 53 bars. Pour l'ensemble de la liquéfaction, une puissance de 148,3 MW est nécessaire au total pour les compresseurs des deux cycles à mélange réfrigérant, soit un gain d'environ 9% par rapport à l'exemple 1.The liquefaction is thus carried out in E2 at a pressure of 53 bars. For all the liquefaction, a power of 148.3 MW is required in total for the compressors of the two refrigerant cycles, a gain of about 9% compared with Example 1.

La contrepartie de ce gain d'efficacité réside dans la difficulté pour récupérer un flux enrichi en éthane, nécessaire pour effectuer l'appoint de fluide caloporteur des circuits de réfrigération 100 et 200. En effet, une simple distillation dans la colonne de séparation 11 permet d'obtenir en tête un mélange de C1 et C2 utilisable dans le deuxième cycle de réfrigération 200, mais pas dans le premier cycle 100 qui met en oeuvre un mélange de C2 et de C3. L'invention propose, dans l'exemple 2, de mettre en oeuvre la colonne de stripage latérale 20.The counterpart of this efficiency gain lies in the difficulty in recovering a stream enriched with ethane, which is necessary to make the additional heat-transfer fluid of the refrigeration circuits 100 and 200. In fact, a simple distillation in the separation column 11 makes it possible to obtain at the top a mixture of C1 and C2 that can be used in the second refrigeration cycle 200, but not in the first cycle 100 which uses a mixture of C2 and C3. The invention proposes, in Example 2, to implement the lateral stripping column 20.

Le flux en tête de la colonne 11 est refroidi à une température de -20°C par échange de chaleur avec une portion du fluide caloporteur du premier circuit de réfrigération 100. De plus, l'effluent évacué en tête du ballon 13 doit être liquéfié. Ces échanges de chaleur supplémentaires entraînent une perte d'efficacité d'environ 1 % par rapport à l'exemple 1.The flow at the top of the column 11 is cooled to a temperature of -20 ° C. by heat exchange with a portion of the coolant of the first refrigeration circuit 100. In addition, the effluent discharged at the top of the flask 13 must be liquefied. . These additional heat exchanges lead to a loss of efficiency of about 1% compared to Example 1.

Au final, le mode opératoire selon l'invention de l'exemple 2 est beaucoup plus attractif que le mode opératoire de l'exemple 1 : il permet d'économiser environ 8% d'énergie ou d'augmenter la capacité de liquéfaction d'environ 8 % avec les mêmes turbines à gaz.Finally, the procedure according to the invention of Example 2 is much more attractive than the procedure of Example 1: it saves about 8% of energy or increases the liquefaction capacity of about 8% with the same gas turbines.

Claims (3)

  1. Method for liquefying a natural gas that comprises the steps of:
    a) cooling the natural gas (1') by heat exchange with a coolant flowing in a cooling circuit (100),
    b) feeding the cooled natural gas (1) into a fractionating column (2) so as to separate a methane-rich gas phase (3) from a liquid phase rich in compounds heavier than ethane (8),
    c) withdrawing said liquid phase at the bottom of the fractionating column and evacuating said gas phase at the top of the separation column,
    e) liquefying a bypass flow of the gas phase (5) by heat exchange at a pressure exceeding 50 bar,
    f) feeding said liquid phase (8) into a separation column (11) so as to separate a methane-rich gas fraction from a liquid fraction containing hydrocarbons heavier than ethane (17), in which:
    - the operational conditions of the fractionating column operating at a pressure in the range 40 to 60 bar are chosen so that said liquid phase comprises a methane molar amount that lies in the range 10% to 150% of the ethane molar amount contained in said liquid phase, and
    - a reflux liquid (14) at a temperature in the range -10°C and -40°C is fed into the top of the separation column.
    characterised in that
    d) said gas phase (3) is partially liquefied so as to produce a condensate (7) and a gaseous flow (5), said condensate being recycled (6) at the top of the fractionating column by way of reflux and said gaseous flow (5) represents the bypass flow of the gas phase in step e),
    - said method further includes the steps of:
    g) withdrawing a liquid portion (18) from the separation column, at a level situated between the feed point and the top of the separation column,
    h) extracting a liquid flow (15) from said liquid portion, said liquid flow having a molar composition of more than 95% ethane, a part of said liquid portion being vaporised (19) so as to obtain said liquid flow having a molar composition of more than 95% ethane, said vaporised part being fed into the separation column, and
    - said methane-rich gas fraction obtained in step f) is partially condensed by heat exchange (12) with a portion (101) of said coolant, so as to obtain said reflux liquid fed into the top of the separation column, the portion of coolant (101) being sub-cooled by heat exchange (9'), with a liquid withdrawn from the fractionating column (2).
  2. Method according to claim 1, wherein the operational conditions of the fractionating column (2) are chosen so that said liquid phase (8) comprises a methane molar amount that lies in the range 40% to 70% of the ethane molar amount contained in said liquid phase.
  3. Method according to either claim 1 or claim 2, wherein the methane molar amount is adjusted relative to the ethane amount of said liquid phase (8) by modifying the power of a reboiler (9) situated at the bottom of the fractionating column.
EP08870150.3A 2007-10-26 2008-10-17 Method for liquefying natural gas with high pressure fractioning Active EP2205920B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0707829A FR2923001B1 (en) 2007-10-26 2007-10-26 METHOD FOR LIQUEFACTING A NATURAL GAS WITH HIGH PRESSURE FRACTIONATION
PCT/FR2008/001462 WO2009087308A2 (en) 2007-10-26 2008-10-17 Method for liquefying natural gas with high pressure fractioning

Publications (2)

Publication Number Publication Date
EP2205920A2 EP2205920A2 (en) 2010-07-14
EP2205920B1 true EP2205920B1 (en) 2018-04-11

Family

ID=39556253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08870150.3A Active EP2205920B1 (en) 2007-10-26 2008-10-17 Method for liquefying natural gas with high pressure fractioning

Country Status (7)

Country Link
US (1) US9222724B2 (en)
EP (1) EP2205920B1 (en)
BR (1) BRPI0818214B1 (en)
FR (1) FR2923001B1 (en)
NO (1) NO2205920T3 (en)
RU (1) RU2495342C2 (en)
WO (1) WO2009087308A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082331B2 (en) * 2009-07-16 2018-09-25 Conocophillips Company Process for controlling liquefied natural gas heating value
AP3423A (en) * 2009-09-30 2015-09-30 Shell Int Research Method fo fractionating a hydrocarbon stream an apparatus therefor
CN102168905B (en) * 2011-04-14 2014-03-05 北京中油联自动化技术开发有限公司 Feed gas processing device for natural gas
CN103542692B (en) * 2012-07-09 2015-10-28 中国海洋石油总公司 Based on the Unconventional forage liquefaction system of wrap-round tubular heat exchanger
US20140033762A1 (en) * 2012-08-03 2014-02-06 Air Products And Chemicals, Inc. Heavy Hydrocarbon Removal From A Natural Gas Stream
US10436505B2 (en) * 2014-02-17 2019-10-08 Black & Veatch Holding Company LNG recovery from syngas using a mixed refrigerant
US10443930B2 (en) * 2014-06-30 2019-10-15 Black & Veatch Holding Company Process and system for removing nitrogen from LNG
EP3382306A1 (en) * 2017-03-31 2018-10-03 Linde Aktiengesellschaft Overhead recycle process apparatus and method of overhead recycle processing of hydrocarbons
US20210396465A1 (en) * 2018-10-31 2021-12-23 Azota Gas Processing, Ltd. Mixed refrigerant system for natural gas processing
US11561043B2 (en) * 2019-05-23 2023-01-24 Bcck Holding Company System and method for small scale LNG production
US11353261B2 (en) * 2019-10-31 2022-06-07 Air Products And Chemicals, Inc. Lights removal from carbon dioxide
WO2021247713A1 (en) * 2020-06-03 2021-12-09 Chart Energy & Chemicals, Inc. Gas stream component removal system and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU346972A1 (en) * 1970-07-17 1977-04-05 Краснодарский Филиал Государственного Научно-Исследовательского И Проектно-Конструкторского Института "Южниигипрогаз" The method of separation of the gas mixture
FR2578637B1 (en) * 1985-03-05 1987-06-26 Technip Cie PROCESS FOR FRACTIONATION OF GASEOUS LOADS AND INSTALLATION FOR CARRYING OUT THIS PROCESS
US4592767A (en) * 1985-05-29 1986-06-03 Union Carbide Corporation Process for separating methane and nitrogen
FR2646166B1 (en) * 1989-04-25 1991-08-16 Technip Cie PROCESS FOR RECOVERING LIQUID HYDROCARBONS FROM A GASEOUS LOAD AND PLANT FOR CARRYING OUT SAID PROCESS
US5265427A (en) * 1992-06-26 1993-11-30 Exxon Production Research Company Refrigerant recovery scheme
US5659109A (en) * 1996-06-04 1997-08-19 The M. W. Kellogg Company Method for removing mercaptans from LNG
US5953936A (en) * 1997-10-28 1999-09-21 Air Products And Chemicals, Inc. Distillation process to separate mixtures containing three or more components
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US6662589B1 (en) * 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
FR2879729B1 (en) * 2004-12-22 2008-11-21 Technip France Sa PROCESS AND PLANT FOR PRODUCING PROCESSED GAS, A C3 + HYDROCARBON-RICH CUTTING AND A CURRENT RICH IN ETHANE
US20070157663A1 (en) * 2005-07-07 2007-07-12 Fluor Technologies Corporation Configurations and methods of integrated NGL recovery and LNG liquefaction

Also Published As

Publication number Publication date
NO2205920T3 (en) 2018-09-08
WO2009087308A3 (en) 2011-12-08
RU2495342C2 (en) 2013-10-10
WO2009087308A2 (en) 2009-07-16
RU2010121144A (en) 2011-12-10
FR2923001A1 (en) 2009-05-01
US9222724B2 (en) 2015-12-29
BRPI0818214B1 (en) 2020-10-13
US20110048067A1 (en) 2011-03-03
FR2923001B1 (en) 2015-12-11
EP2205920A2 (en) 2010-07-14
BRPI0818214A2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
EP2205920B1 (en) Method for liquefying natural gas with high pressure fractioning
EP1454104B1 (en) Method and installation for separating a gas mixture containing methane by distillation
EP2452140B1 (en) Method for producing methane-rich stream and c2+ hydrocarbon-rich stream, and related facility
EP1352203B1 (en) Method for refrigerating liquefied gas and installation therefor
EP1828697B1 (en) Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream
EP0572590B1 (en) Method of denitrogenating a charge of a hydrocarbon mixture consisting mainly of methane and containing at least 2 % mol nitrogen
EP2344821B1 (en) Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant
FR2923000A1 (en) Raw natural gas liquefaction method for producing liquid natural gas, involves recycling portion of fraction enriched in ethane by introducing portion of fraction in disengager, and liquefying gas phase to produce liquid natural gas
FR3066491B1 (en) PROCESS FOR RECOVERING A C2 + HYDROCARBON CURRENT IN A REFINERY RESIDUAL GAS AND ASSOCIATED INSTALLATION
CA2756632C (en) Method for processing a natural load gas for obtaining a natural processed gas and a reduction in c5+ hydrocarbons, and associated installation
EP1118827B1 (en) Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas
EP3117163A1 (en) Process and apparatus for heavy hydrocarbon removal from lean natural gas before liquefaction
FR2772896A1 (en) METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION
EA011523B1 (en) Ngl recovery methods and plant therefor
WO2010122256A2 (en) Method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a natural feed gas stream, and corresponding equipment
FR2969745A1 (en) PROCESS FOR PRODUCING METHANE - RICH CURRENT AND CURRENT HYDROCARBON - RICH CURRENT AND ASSOCIATED PLANT.
EP2494295B1 (en) Method for fractionating a cracked gas flow in order to obtain an ethylene-rich cut and a fuel flow, and associated facility
RU2514804C2 (en) Method of nitrogen removal
EP2661479A1 (en) Method for producing a c3+ hydrocarbon-rich fraction and a methane- and ethane-rich stream from a hydrocarbon-rich feed stream, and related facility
FR3012150A1 (en) METHOD OF FRACTIONING A CRAB GAS CURRENT USING AN INTERMEDIATE RECYCLE CURRENT, AND ASSOCIATED INSTALLATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20111208

17P Request for examination filed

Effective date: 20120608

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161121

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EX

INTG Intention to grant announced

Effective date: 20171121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008054834

Country of ref document: DE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20180411

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180411

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 988488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008054834

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

26N No opposition filed

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181017

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081017

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231025

Year of fee payment: 16

Ref country code: FR

Payment date: 20231024

Year of fee payment: 16

Ref country code: DE

Payment date: 20231020

Year of fee payment: 16