EP2205920B1 - Method for liquefying natural gas with high pressure fractioning - Google Patents
Method for liquefying natural gas with high pressure fractioning Download PDFInfo
- Publication number
- EP2205920B1 EP2205920B1 EP08870150.3A EP08870150A EP2205920B1 EP 2205920 B1 EP2205920 B1 EP 2205920B1 EP 08870150 A EP08870150 A EP 08870150A EP 2205920 B1 EP2205920 B1 EP 2205920B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- column
- ethane
- methane
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 69
- 238000000034 method Methods 0.000 title claims description 17
- 239000003345 natural gas Substances 0.000 title claims description 15
- 239000007788 liquid Substances 0.000 claims description 32
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 22
- 239000007789 gas Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 239000007791 liquid phase Substances 0.000 claims description 13
- 238000000926 separation method Methods 0.000 claims description 12
- 238000010992 reflux Methods 0.000 claims description 8
- 239000012071 phase Substances 0.000 claims description 6
- 239000002826 coolant Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 description 12
- 238000005194 fractionation Methods 0.000 description 10
- 238000005057 refrigeration Methods 0.000 description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 239000001294 propane Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003949 liquefied natural gas Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulfur dioxide Inorganic materials O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0085—Ethane; Ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/0231—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
- F25J1/0238—Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0249—Controlling refrigerant inventory, i.e. composition or quantity
- F25J1/025—Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/30—Processes or apparatus using separation by rectification using a side column in a single pressure column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/50—Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/02—Integration in an installation for exchanging heat, e.g. for waste heat recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
Definitions
- the present invention relates to the field of liquefaction of a natural gas.
- Natural gas is often produced in places far from where it is used.
- One method used for transportation is to liquefy natural gas at around -160 ° C and then transport it by boat in liquid form at atmospheric pressure.
- natural gas Before being liquefied, natural gas must undergo various treatments, on the one hand to adjust its composition for sale (sulfur and carbon dioxide content, calorific value), and on the other hand to allow its liquefaction .
- the fractionation of the natural gas produced by distillation makes it possible to eliminate the hydrocarbons that are too heavy and that risk blocking the pipes and the heat exchangers of the liquefaction plant by crystallization.
- the fractionation by distillation makes it possible to separately recover compounds such as ethane, propane or butane which can be recovered separately, for example at the sale or as refrigerant fluids used in the liquefaction process.
- the liquefaction is carried out at a pressure approximately equal to the operating pressure of the fractionation column.
- the present invention proposes to modify the fractionation step to increase the operating pressure of the fractionation and, consequently, to increase the pressure at which the natural gas is liquefied in order to improve the overall efficiency of the liquefaction process.
- Document US6401486 B1 discloses a process according to the preamble of claim 1.
- the invention defines a method of liquefying a natural gas with the features of claim 1.
- the operating conditions of the fractionation column can be chosen so that said liquid phase comprises a molar amount of methane of between 40% and 70% of the molar amount of ethane.
- the molar quantity of methane of said liquid phase can be adjusted by modifying the power of a reboiler located at the bottom of the column of
- the natural gas to be liquefied arrives via the conduit 1 '.
- Natural gas may have been previously purified to remove acid compounds, water and possibly mercury.
- the natural gas flowing in the conduit 1 ' is cooled in the heat exchanger E1 at a temperature between 0 ° C and -60 ° C.
- the refrigeration is carried out by means of the refrigeration closed circuit 100 which operates by compression and expansion of a refrigerant fluid, for example composed of a mixture of ethane and propane.
- the partially liquefied natural gas in E1 is introduced via line 1 into fractionation column 2, reboiled using heat exchanger 9.
- the vapor discharged at the top of column 2 through line 3 is partially condensed in the heat exchanger E1, before being introduced into the reflux tank 4.
- the gaseous fraction discharged at the top of the flask 4 is sent through line 5 into the heat exchanger E2 to be liquefied.
- the liquid natural gas is removed from E2 by the pipe 5 '.
- the refrigeration is carried out by means of the refrigeration closed circuit 200 which operates by compression and expansion of a cooling fluid, for example composed of a mixture of nitrogen, methane and ethane.
- the liquid obtained at the bottom of the flask 4 is introduced by the pump 6 and the duct 7 at the top of the column 2 as reflux.
- the liquid obtained at the bottom of column 2 is discharged through line 8.
- the liquid obtained at the bottom of the column 2 through the conduit 8 is cooled in the exchanger 10, for example by water or air, and then expanded in the expansion element V.
- the cooled and expanded liquid is introduced into the deethanization column 11, reboiled by the heat exchanger 16.
- the column 11 operates at a pressure between 20 and 35 bar.
- the gaseous fraction obtained at the top of the column 11 is partially condensed at a temperature between 0 ° C. and 10 ° C. in the heat exchanger 12, by heat exchange with a portion of liquid withdrawn laterally from the column 2.
- the condensates are separated from the gas phase in the flask 13.
- the gaseous phase discharged at the top of the flask 13 consists mainly of methane and ethane. It can be sent to the fuel gas network or to liquefaction in the pipe 5.
- the condensates recovered at the bottom of the separation tank 13 are sent, at a temperature preferably between 0 ° C. and 10 ° C., by the pump 14. at the top of column 11 as reflux.
- a fraction of the condensates, which consist mainly of ethane, is withdrawn through line 30 to be used, for example, in the composition of refrigerant fluids circulating in circuits 100 or 200.
- Hydrocarbons heavier than methane are discharged in liquid form at the bottom of column 11 via line 17.
- the figures 2 and 3 repeat the same elements of the figure 1 by applying different operating conditions. References of figures 2 and 3 identical to those of the figure 1 designate the same elements.
- the operating conditions of column 2 are chosen so that the methane content of the stream discharged through line 8 is between 10% and 150 mol%, preferably between 40% and 70 mol%, of the ethane from this stream.
- the temperature or operating pressure of column 2 can be changed.
- column 2 operates at a pressure of between 40 and 60 bar.
- the pressure of the column 2 can be adjusted by means of a valve arranged upstream of the column 2, for example on the conduit 1 or 1 '.
- the operating temperature of the column 2 can be adjusted by modifying the power of the reboiling, that is to say that increases or decreases the amount of heat that the reboiler 9 brings to the bottom of the column 2. Accordingly the adjustment of the power of the reboiler 9, the flow of gas discharged through line 3 and the flow of liquid discharged through line 8 are modified. In general, the power of the reboiler 9 is reduced so as to increase the amount of methane contained in the liquid at the bottom of the column 2 and, consequently, the liquid flow 8 increases.
- the column 11 may be a distillation column provided with trays.
- the heat exchanger 12 can perform a low temperature cooling, preferably between -10 ° C and -40 ° C.
- the condensates recovered at the bottom of the separation flask 13 are sent, at a temperature preferably between -10 ° C. and -40 ° C., by the pump 14 at the top of the column 11 as reflux.
- a portion of the refrigerant fluid of the first refrigeration circuit 100 is withdrawn via the pipe 101, which is expanded in the valve V1 before exchanging heat in 12 with the effluent discharged at the top of the column 11.
- a portion of the refrigerant fluid is withdrawn from the first refrigeration circuit 100 via the pipe 101.
- This fluid is cooled by heat exchange in 9 'with a liquid portion withdrawn laterally from the column 2.
- the liquid portion is withdrawn between the feed point via line 1 of column 2 and the bottom of column 2.
- the cooling fluid can be cooled to a temperature between -10 ° C and 20 ° vs.
- the cooled refrigerant mixture is expanded in the member V1 so as to be partially vaporized at a temperature between -10 ° C and -40 ° C.
- the partially vaporized fluid is introduced into the exchanger 12 to cool and partially liquefy the gaseous fraction discharged at the top of the column 11.
- the coolant from the exchanger 12 is returned via the conduit 103 to one of the compressor stripper balloons of the first refrigerant circuit.
- Liquid is withdrawn from the column 11 through the conduit 18 at a level located between the feed point of the column 11 through the conduit 8 and the point of introduction of reflux.
- the duct 18 carries out a withdrawal at a plateau located from preferably at least two trays above the feed point.
- the withdrawn liquid is introduced through the conduit 18 into the side column 20, called "stripping column".
- the column 20 operates at a pressure substantially equal to the pressure of the column 11, with the pressure losses close.
- the column 20 is reboiled with the aid of the heat exchanger 19, so as to vaporize the methane present in the liquid withdrawn.
- At the bottom of column 20 is recovered a cup enriched in ethane and having a very low proportion of methane and propane.
- the power of the exchanger 19 can be adjusted so as to maintain the liquid at the bottom of the column 20 at a temperature of between 10 ° C. and 20 ° C.
- the vaporized fraction is discharged at the top of the column 20 to be reintroduced into the column 11.
- the column 20 is operated so as to obtain a liquid cut comprising more than 92 mol% of ethane, preferably more than 95% molar of ethane.
- the liquid rich in ethane can be used to form the refrigerant mixtures used in the circuits 100 and 200.
- a hydrocarbon-enriched liquid heavier than ethane which can be sent via line 17 to a depropanizer column, is discharged.
- a fraction enriched in propane which can be used to form the refrigerant mixtures used in the circuits 100 and 200.
- the pretreated and dried natural gas circulates in the duct 1 'at a rate of 35,000 kmol / h, with the following composition: Component Composition (% mol) N2 1 C1 90 C2 5.5 C3 2.1 iC 4 0.5 nC4 0.5 iC5 0.05 nC5 0.05 C6 0.05 C7 0.05 C8 0.05 C9 0.05 Benzene 0.05 Toluene 0.05
- the gas is cooled in E1 to a temperature of -30 ° C and then introduced into the fractionation column 2.
- the liquefaction is thus carried out in E2 at a pressure of 40 bar.
- a total of 162.4 MW of power is required for the two refrigerant cycle compressors.
- Example 1 the deethanization column 11 has no side column.
- the flow obtained at the top of the column 1 is cooled only by heat exchange with a side withdrawal of the fractionation column 2, and therefore does not increase the cooling capacity necessary for the operation of the process.
- the gas to be treated has a composition and a flow rate identical to that of Example 1.
- the gas is cooled in E1 to a temperature of -30 ° C and then introduced into the fractionation column 2.
- the liquefaction is thus carried out in E2 at a pressure of 53 bars.
- a power of 148.3 MW is required in total for the compressors of the two refrigerant cycles, a gain of about 9% compared with Example 1.
- the counterpart of this efficiency gain lies in the difficulty in recovering a stream enriched with ethane, which is necessary to make the additional heat-transfer fluid of the refrigeration circuits 100 and 200.
- a simple distillation in the separation column 11 makes it possible to obtain at the top a mixture of C1 and C2 that can be used in the second refrigeration cycle 200, but not in the first cycle 100 which uses a mixture of C2 and C3.
- the invention proposes, in Example 2, to implement the lateral stripping column 20.
- the flow at the top of the column 11 is cooled to a temperature of -20 ° C. by heat exchange with a portion of the coolant of the first refrigeration circuit 100.
- the effluent discharged at the top of the flask 13 must be liquefied. .
- Example 2 is much more attractive than the procedure of Example 1: it saves about 8% of energy or increases the liquefaction capacity of about 8% with the same gas turbines.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Separation By Low-Temperature Treatments (AREA)
Description
La présente invention concerne le domaine de la liquéfaction d'un gaz naturel.The present invention relates to the field of liquefaction of a natural gas.
Le gaz naturel est souvent produit dans des endroits éloignés de son lieu d'utilisation. Une méthode utilisée pour le transport est de liquéfier le gaz naturel aux alentours de -160°C, puis de le transporter par bateau sous forme liquide à pression atmosphérique.Natural gas is often produced in places far from where it is used. One method used for transportation is to liquefy natural gas at around -160 ° C and then transport it by boat in liquid form at atmospheric pressure.
Avant d'être liquéfié, le gaz naturel doit subir divers traitements, d'une part pour ajuster sa composition en vue de la vente (teneur en soufre et en dioxyde de carbone, valeur calorifique), et d'autre part pour permettre sa liquéfaction. En particulier, le fractionnement du gaz naturel réalisé par distillation permet d'éliminer les hydrocarbures trop lourds qui risquent de boucher par cristallisation les conduites et les échangeurs de chaleur de l'usine de liquéfaction. De plus, le fractionnement par distillation permet de récupérer séparément des composés tels que l'éthane, le propane ou le butane qui peuvent être valorisés séparément, par exemple à la vente ou en tant que fluides réfrigérants mis en oeuvre dans le procédé de liquéfaction.Before being liquefied, natural gas must undergo various treatments, on the one hand to adjust its composition for sale (sulfur and carbon dioxide content, calorific value), and on the other hand to allow its liquefaction . In particular, the fractionation of the natural gas produced by distillation makes it possible to eliminate the hydrocarbons that are too heavy and that risk blocking the pipes and the heat exchangers of the liquefaction plant by crystallization. In addition, the fractionation by distillation makes it possible to separately recover compounds such as ethane, propane or butane which can be recovered separately, for example at the sale or as refrigerant fluids used in the liquefaction process.
En général, la liquéfaction est effectuée à une pression environ égale à la pression de fonctionnement de la colonne de fractionnement.In general, the liquefaction is carried out at a pressure approximately equal to the operating pressure of the fractionation column.
La présente invention propose de modifier l'étape de fractionnement pour augmenter la pression d'opération du fractionnement et, en conséquence, augmenter la pression à laquelle le gaz naturel est liquéfié dans le but d'améliorer l'efficacité globale du procédé de liquéfaction. Document
D'autres avantages de l'invention seront mieux compris et apparaîtront clairement à la lecture de la description faite ci-après en se référant aux dessins parmi lesquels :
- la
figure 1 schématise un procédé selon l'art antérieur, - La
figure 2 montre un autre procédé qui n'est pas selon l'invention. - La
figure 3 montre un procédé selon l'invention.
- the
figure 1 schematizes a method according to the prior art, - The
figure 2 shows another process which is not according to the invention. - The
figure 3 shows a process according to the invention.
Sur la
Le gaz naturel partiellement liquéfié dans E1 est introduit par le conduit 1 dans la colonne de fractionnement 2, rebouillie à l'aide de l'échangeur de chaleur 9. La vapeur évacuée en tête de la colonne 2 par le conduit 3 est partiellement condensée dans l'échangeur de chaleur E1, avant d'être introduite dans le ballon de reflux 4.The partially liquefied natural gas in E1 is introduced via
La fraction gazeuse évacuée en tête du ballon 4 est envoyée par le conduit 5 dans l'échangeur de chaleur E2 pour être liquéfiée. Le gaz naturel liquide est évacué de E2 par le conduit 5'. Dans E2, la réfrigération est effectuée au moyen du circuit fermé de réfrigération 200 qui fonctionne par compression et détente d'un fluide réfrigérant, par exemple composé d'un mélange d'azote, de méthane et d'éthane.The gaseous fraction discharged at the top of the flask 4 is sent through
Le liquide obtenu en fond du ballon 4 est introduit par la pompe 6 et le conduit 7 en tête de la colonne 2 à titre de reflux. Le liquide obtenu en fond de la colonne 2 est évacué par le conduit 8.The liquid obtained at the bottom of the flask 4 is introduced by the
Le liquide obtenu en fond de la colonne 2 par le conduit 8 est refroidi dans l'échangeur 10, par exemple par de l'eau ou de l'air, puis détendu dans l'organe de détente V. Le liquide refroidi et détendu est introduit dans la colonne de dééthanisation 11, rebouilli par l'échangeur de chaleur 16. En général, la colonne 11 fonctionne à une pression comprise entre 20 et 35 bars. La fraction gazeuse obtenue en tête de la colonne 11 est partiellement condensée à une température comprise entre 0°C et 10°C dans l'échangeur de chaleur 12, par échange de chaleur avec une portion de liquide soutiré latéralement de la colonne 2.The liquid obtained at the bottom of the column 2 through the
Les condensats sont séparés de la phase gazeuse dans le ballon 13. La phase gazeuse évacuée en tête du ballon 13 est constituée principalement de méthane et d'éthane. Elle peut être envoyée au réseau de gaz combustible ou à la liquéfaction dans le conduit 5. Les condensats récupérés en fond du ballon de séparation 13 sont envoyés, à une température de préférence comprise entre 0°C et 10°C, par la pompe 14 en tête de la colonne 11 à titre de reflux. Une fraction des condensats, qui sont principalement constitués d'éthane, est prélevée par le conduit 30 pour être utilisée par exemple dans la composition des fluides réfrigérants circulant dans les circuits 100 ou 200.The condensates are separated from the gas phase in the
Les hydrocarbures plus lourds que le méthane sont évacués sous forme liquide en fond de la colonne 11 par le conduit 17.Hydrocarbons heavier than methane are discharged in liquid form at the bottom of
Les
L'envoi d'une quantité importante de méthane en fond de la colonne 2 permet d'avoir une masse spécifique vapeur plus faible à pression identique, donc un ratio de masse spécifique plus élevé. Par conséquent, le fait d'envoyer une quantité importante de méthane en fond de la colonne 2 selon l'invention permet d'opérer la liquéfaction à une pression plus élevée, ce qui diminue la puissance nécessaire pour effectuer la liquéfaction. Compte tenu que le liquide évacué en fond de la colonne 2 comporte une portion importante de méthane, on applique des conditions de fonctionnement particulières à la colonne de séparation 11. La colonne 11 peut être une colonne de distillation munie de plateaux. On peut imposer une température en tête de la colonne 11 relativement basse, de préférence comprise entre -10°C et -40°C, de manière à améliorer la séparation entre le méthane et les hydrocarbures plus lourds que l'éthane. En référence aux
Pour effectuer le refroidissement à basse température dans l'échangeur 12, on peut utiliser une portion du fluide réfrigérant du premier circuit de réfrigération 100. En référence à la
En fond de la colonne 11, on évacue un liquide enrichi en hydrocarbures plus lourds que l'éthane, qui peut être envoyé par le conduit 17 vers une colonne de dépropanisation. Ainsi, on peut extraire une coupe enrichie en propane qui peut être utilisée pour constituer les mélanges réfrigérants mis en oeuvre dans les circuits 100 et 200.At the bottom of the
Les exemples numériques présentés ci-après permettent d'illustrer le fonctionnement du procédé selon l'invention.The numerical examples presented below make it possible to illustrate the operation of the method according to the invention.
On opère le schéma de la
Le gaz naturel prétraité et séché circule dans le conduit 1' à un débit de 35 000 kmole/h, avec la composition suivante :
Le gaz est refroidi dans E1 à une température de -30°C, puis introduit dans la colonne de fractionnement 2.The gas is cooled in E1 to a temperature of -30 ° C and then introduced into the fractionation column 2.
Pour pouvoir distiller le gaz dans la colonne 2, il faut rester suffisamment en dessous des conditions critiques. Un critère couramment employé par l'homme du métier est que le rapport des masses spécifiques des phases liquides et vapeur au fond de la colonne 2 doit rester supérieur à une certaine valeur pour pouvoir opérer. Des valeurs entre 3 et 6 sont utilisées par l'homme du métier. Nous utilisons dans cet exemple 1 une valeur de 4,5.To be able to distill the gas in column 2, it is necessary to remain sufficiently below the critical conditions. One criterion commonly used by those skilled in the art is that the ratio of specific masses of the liquid and vapor phases at the bottom of column 2 must remain above a certain value in order to operate. Values between 3 and 6 are used by those skilled in the art. We use in this example 1 a value of 4.5.
La colonne 2 fonctionne à 40,5 bars, le condenseur 4 fonctionne à -60°C, et le rapport C1/C2 en fond de la colonne 2 est de 1%.Column 2 operates at 40.5 bar, condenser 4 operates at -60 ° C, and the ratio C1 / C2 at the bottom of column 2 is 1%.
Dans ces conditions, on obtient en fond de la colonne 2 une masse spécifique de liquide de 404,8 kg/m3 et une masse spécifique de vapeur de 88,95 kg/m3. Ainsi le rapport des masses spécifiques des phases liquide et vapeur au fond de la colonne 2 est de 4,55.Under these conditions, at the bottom of column 2, a specific liquid mass of 404.8 kg / m 3 and a specific mass of 88.95 kg / m 3 . Thus the ratio of the specific masses of the liquid and vapor phases at the bottom of column 2 is 4.55.
La liquéfaction est donc effectuée dans E2 à une pression de 40 bars. Pour l'ensemble de la liquéfaction, une puissance de 162,4 MW est nécessaire au total pour les compresseurs des deux cycles à mélange réfrigérant.The liquefaction is thus carried out in E2 at a pressure of 40 bar. For the entire liquefaction, a total of 162.4 MW of power is required for the two refrigerant cycle compressors.
Dans l'exemple 1, la colonne de dééthanisation 11 ne comporte pas de colonne latérale. De plus, le flux obtenu en tête de la colonne 1 est refroidi uniquement par échange de chaleur avec un soutirage latéral de la colonne de fractionnement 2, et donc n'augmente pas la puissance frigorifique nécessaire au fonctionnement du procédé.In Example 1, the
Le gaz à traiter a une composition et un débit identique à celui de l'exemple 1.The gas to be treated has a composition and a flow rate identical to that of Example 1.
Le gaz est refroidi dans E1 à une température de -30°C, puis introduit dans la colonne de fractionnement 2.The gas is cooled in E1 to a temperature of -30 ° C and then introduced into the fractionation column 2.
La colonne 2 fonctionne à 53,5 bars, le condenseur 4 fonctionne à -60°C, et le rapport C1/C2 en fond de la colonne 2 est de 55 %.Column 2 operates at 53.5 bar, condenser 4 operates at -60 ° C, and the ratio C1 / C2 at the bottom of column 2 is 55%.
Dans ces conditions, on obtient en fond de la colonne 2 une masse spécifique de liquide de 405,6 kg/m3 et une masse spécifique de vapeur de 87,7 kg/m3. Ainsi le rapport des masses spécifiques des phases liquide et vapeur au fond de la colonne 2 est de 4,6.Under these conditions, a liquid density mass of 405.6 kg / m 3 and a specific vapor mass of 87.7 kg / m 3 are obtained at the bottom of column 2. Thus the ratio of the specific masses of the liquid and vapor phases at the bottom of column 2 is 4.6.
La liquéfaction est donc effectuée dans E2 à une pression de 53 bars. Pour l'ensemble de la liquéfaction, une puissance de 148,3 MW est nécessaire au total pour les compresseurs des deux cycles à mélange réfrigérant, soit un gain d'environ 9% par rapport à l'exemple 1.The liquefaction is thus carried out in E2 at a pressure of 53 bars. For all the liquefaction, a power of 148.3 MW is required in total for the compressors of the two refrigerant cycles, a gain of about 9% compared with Example 1.
La contrepartie de ce gain d'efficacité réside dans la difficulté pour récupérer un flux enrichi en éthane, nécessaire pour effectuer l'appoint de fluide caloporteur des circuits de réfrigération 100 et 200. En effet, une simple distillation dans la colonne de séparation 11 permet d'obtenir en tête un mélange de C1 et C2 utilisable dans le deuxième cycle de réfrigération 200, mais pas dans le premier cycle 100 qui met en oeuvre un mélange de C2 et de C3. L'invention propose, dans l'exemple 2, de mettre en oeuvre la colonne de stripage latérale 20.The counterpart of this efficiency gain lies in the difficulty in recovering a stream enriched with ethane, which is necessary to make the additional heat-transfer fluid of the
Le flux en tête de la colonne 11 est refroidi à une température de -20°C par échange de chaleur avec une portion du fluide caloporteur du premier circuit de réfrigération 100. De plus, l'effluent évacué en tête du ballon 13 doit être liquéfié. Ces échanges de chaleur supplémentaires entraînent une perte d'efficacité d'environ 1 % par rapport à l'exemple 1.The flow at the top of the
Au final, le mode opératoire selon l'invention de l'exemple 2 est beaucoup plus attractif que le mode opératoire de l'exemple 1 : il permet d'économiser environ 8% d'énergie ou d'augmenter la capacité de liquéfaction d'environ 8 % avec les mêmes turbines à gaz.Finally, the procedure according to the invention of Example 2 is much more attractive than the procedure of Example 1: it saves about 8% of energy or increases the liquefaction capacity of about 8% with the same gas turbines.
Claims (3)
- Method for liquefying a natural gas that comprises the steps of:a) cooling the natural gas (1') by heat exchange with a coolant flowing in a cooling circuit (100),b) feeding the cooled natural gas (1) into a fractionating column (2) so as to separate a methane-rich gas phase (3) from a liquid phase rich in compounds heavier than ethane (8),c) withdrawing said liquid phase at the bottom of the fractionating column and evacuating said gas phase at the top of the separation column,e) liquefying a bypass flow of the gas phase (5) by heat exchange at a pressure exceeding 50 bar,f) feeding said liquid phase (8) into a separation column (11) so as to separate a methane-rich gas fraction from a liquid fraction containing hydrocarbons heavier than ethane (17), in which:characterised in that- the operational conditions of the fractionating column operating at a pressure in the range 40 to 60 bar are chosen so that said liquid phase comprises a methane molar amount that lies in the range 10% to 150% of the ethane molar amount contained in said liquid phase, and- a reflux liquid (14) at a temperature in the range -10°C and -40°C is fed into the top of the separation column.d) said gas phase (3) is partially liquefied so as to produce a condensate (7) and a gaseous flow (5), said condensate being recycled (6) at the top of the fractionating column by way of reflux and said gaseous flow (5) represents the bypass flow of the gas phase in step e),- said method further includes the steps of:g) withdrawing a liquid portion (18) from the separation column, at a level situated between the feed point and the top of the separation column,h) extracting a liquid flow (15) from said liquid portion, said liquid flow having a molar composition of more than 95% ethane, a part of said liquid portion being vaporised (19) so as to obtain said liquid flow having a molar composition of more than 95% ethane, said vaporised part being fed into the separation column, and- said methane-rich gas fraction obtained in step f) is partially condensed by heat exchange (12) with a portion (101) of said coolant, so as to obtain said reflux liquid fed into the top of the separation column, the portion of coolant (101) being sub-cooled by heat exchange (9'), with a liquid withdrawn from the fractionating column (2).
- Method according to claim 1, wherein the operational conditions of the fractionating column (2) are chosen so that said liquid phase (8) comprises a methane molar amount that lies in the range 40% to 70% of the ethane molar amount contained in said liquid phase.
- Method according to either claim 1 or claim 2, wherein the methane molar amount is adjusted relative to the ethane amount of said liquid phase (8) by modifying the power of a reboiler (9) situated at the bottom of the fractionating column.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0707829A FR2923001B1 (en) | 2007-10-26 | 2007-10-26 | METHOD FOR LIQUEFACTING A NATURAL GAS WITH HIGH PRESSURE FRACTIONATION |
PCT/FR2008/001462 WO2009087308A2 (en) | 2007-10-26 | 2008-10-17 | Method for liquefying natural gas with high pressure fractioning |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2205920A2 EP2205920A2 (en) | 2010-07-14 |
EP2205920B1 true EP2205920B1 (en) | 2018-04-11 |
Family
ID=39556253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08870150.3A Active EP2205920B1 (en) | 2007-10-26 | 2008-10-17 | Method for liquefying natural gas with high pressure fractioning |
Country Status (7)
Country | Link |
---|---|
US (1) | US9222724B2 (en) |
EP (1) | EP2205920B1 (en) |
BR (1) | BRPI0818214B1 (en) |
FR (1) | FR2923001B1 (en) |
NO (1) | NO2205920T3 (en) |
RU (1) | RU2495342C2 (en) |
WO (1) | WO2009087308A2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10082331B2 (en) * | 2009-07-16 | 2018-09-25 | Conocophillips Company | Process for controlling liquefied natural gas heating value |
AP3423A (en) * | 2009-09-30 | 2015-09-30 | Shell Int Research | Method fo fractionating a hydrocarbon stream an apparatus therefor |
CN102168905B (en) * | 2011-04-14 | 2014-03-05 | 北京中油联自动化技术开发有限公司 | Feed gas processing device for natural gas |
CN103542692B (en) * | 2012-07-09 | 2015-10-28 | 中国海洋石油总公司 | Based on the Unconventional forage liquefaction system of wrap-round tubular heat exchanger |
US20140033762A1 (en) * | 2012-08-03 | 2014-02-06 | Air Products And Chemicals, Inc. | Heavy Hydrocarbon Removal From A Natural Gas Stream |
US10436505B2 (en) * | 2014-02-17 | 2019-10-08 | Black & Veatch Holding Company | LNG recovery from syngas using a mixed refrigerant |
US10443930B2 (en) * | 2014-06-30 | 2019-10-15 | Black & Veatch Holding Company | Process and system for removing nitrogen from LNG |
EP3382306A1 (en) * | 2017-03-31 | 2018-10-03 | Linde Aktiengesellschaft | Overhead recycle process apparatus and method of overhead recycle processing of hydrocarbons |
US20210396465A1 (en) * | 2018-10-31 | 2021-12-23 | Azota Gas Processing, Ltd. | Mixed refrigerant system for natural gas processing |
US11561043B2 (en) * | 2019-05-23 | 2023-01-24 | Bcck Holding Company | System and method for small scale LNG production |
US11353261B2 (en) * | 2019-10-31 | 2022-06-07 | Air Products And Chemicals, Inc. | Lights removal from carbon dioxide |
WO2021247713A1 (en) * | 2020-06-03 | 2021-12-09 | Chart Energy & Chemicals, Inc. | Gas stream component removal system and method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU346972A1 (en) * | 1970-07-17 | 1977-04-05 | Краснодарский Филиал Государственного Научно-Исследовательского И Проектно-Конструкторского Института "Южниигипрогаз" | The method of separation of the gas mixture |
FR2578637B1 (en) * | 1985-03-05 | 1987-06-26 | Technip Cie | PROCESS FOR FRACTIONATION OF GASEOUS LOADS AND INSTALLATION FOR CARRYING OUT THIS PROCESS |
US4592767A (en) * | 1985-05-29 | 1986-06-03 | Union Carbide Corporation | Process for separating methane and nitrogen |
FR2646166B1 (en) * | 1989-04-25 | 1991-08-16 | Technip Cie | PROCESS FOR RECOVERING LIQUID HYDROCARBONS FROM A GASEOUS LOAD AND PLANT FOR CARRYING OUT SAID PROCESS |
US5265427A (en) * | 1992-06-26 | 1993-11-30 | Exxon Production Research Company | Refrigerant recovery scheme |
US5659109A (en) * | 1996-06-04 | 1997-08-19 | The M. W. Kellogg Company | Method for removing mercaptans from LNG |
US5953936A (en) * | 1997-10-28 | 1999-09-21 | Air Products And Chemicals, Inc. | Distillation process to separate mixtures containing three or more components |
US6401486B1 (en) * | 2000-05-18 | 2002-06-11 | Rong-Jwyn Lee | Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants |
US6662589B1 (en) * | 2003-04-16 | 2003-12-16 | Air Products And Chemicals, Inc. | Integrated high pressure NGL recovery in the production of liquefied natural gas |
FR2879729B1 (en) * | 2004-12-22 | 2008-11-21 | Technip France Sa | PROCESS AND PLANT FOR PRODUCING PROCESSED GAS, A C3 + HYDROCARBON-RICH CUTTING AND A CURRENT RICH IN ETHANE |
US20070157663A1 (en) * | 2005-07-07 | 2007-07-12 | Fluor Technologies Corporation | Configurations and methods of integrated NGL recovery and LNG liquefaction |
-
2007
- 2007-10-26 FR FR0707829A patent/FR2923001B1/en active Active
-
2008
- 2008-10-17 RU RU2010121144/06A patent/RU2495342C2/en active
- 2008-10-17 WO PCT/FR2008/001462 patent/WO2009087308A2/en active Application Filing
- 2008-10-17 US US12/739,243 patent/US9222724B2/en active Active
- 2008-10-17 NO NO08870150A patent/NO2205920T3/no unknown
- 2008-10-17 BR BRPI0818214-0A patent/BRPI0818214B1/en active IP Right Grant
- 2008-10-17 EP EP08870150.3A patent/EP2205920B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
NO2205920T3 (en) | 2018-09-08 |
WO2009087308A3 (en) | 2011-12-08 |
RU2495342C2 (en) | 2013-10-10 |
WO2009087308A2 (en) | 2009-07-16 |
RU2010121144A (en) | 2011-12-10 |
FR2923001A1 (en) | 2009-05-01 |
US9222724B2 (en) | 2015-12-29 |
BRPI0818214B1 (en) | 2020-10-13 |
US20110048067A1 (en) | 2011-03-03 |
FR2923001B1 (en) | 2015-12-11 |
EP2205920A2 (en) | 2010-07-14 |
BRPI0818214A2 (en) | 2016-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2205920B1 (en) | Method for liquefying natural gas with high pressure fractioning | |
EP1454104B1 (en) | Method and installation for separating a gas mixture containing methane by distillation | |
EP2452140B1 (en) | Method for producing methane-rich stream and c2+ hydrocarbon-rich stream, and related facility | |
EP1352203B1 (en) | Method for refrigerating liquefied gas and installation therefor | |
EP1828697B1 (en) | Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream | |
EP0572590B1 (en) | Method of denitrogenating a charge of a hydrocarbon mixture consisting mainly of methane and containing at least 2 % mol nitrogen | |
EP2344821B1 (en) | Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant | |
FR2923000A1 (en) | Raw natural gas liquefaction method for producing liquid natural gas, involves recycling portion of fraction enriched in ethane by introducing portion of fraction in disengager, and liquefying gas phase to produce liquid natural gas | |
FR3066491B1 (en) | PROCESS FOR RECOVERING A C2 + HYDROCARBON CURRENT IN A REFINERY RESIDUAL GAS AND ASSOCIATED INSTALLATION | |
CA2756632C (en) | Method for processing a natural load gas for obtaining a natural processed gas and a reduction in c5+ hydrocarbons, and associated installation | |
EP1118827B1 (en) | Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas | |
EP3117163A1 (en) | Process and apparatus for heavy hydrocarbon removal from lean natural gas before liquefaction | |
FR2772896A1 (en) | METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION | |
EA011523B1 (en) | Ngl recovery methods and plant therefor | |
WO2010122256A2 (en) | Method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a natural feed gas stream, and corresponding equipment | |
FR2969745A1 (en) | PROCESS FOR PRODUCING METHANE - RICH CURRENT AND CURRENT HYDROCARBON - RICH CURRENT AND ASSOCIATED PLANT. | |
EP2494295B1 (en) | Method for fractionating a cracked gas flow in order to obtain an ethylene-rich cut and a fuel flow, and associated facility | |
RU2514804C2 (en) | Method of nitrogen removal | |
EP2661479A1 (en) | Method for producing a c3+ hydrocarbon-rich fraction and a methane- and ethane-rich stream from a hydrocarbon-rich feed stream, and related facility | |
FR3012150A1 (en) | METHOD OF FRACTIONING A CRAB GAS CURRENT USING AN INTERMEDIATE RECYCLE CURRENT, AND ASSOCIATED INSTALLATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IFP ENERGIES NOUVELLES |
|
DAX | Request for extension of the european patent (deleted) | ||
R17D | Deferred search report published (corrected) |
Effective date: 20111208 |
|
17P | Request for examination filed |
Effective date: 20120608 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20161121 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IFP ENERGIES NOUVELLES |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EX |
|
INTG | Intention to grant announced |
Effective date: 20171121 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 988488 Country of ref document: AT Kind code of ref document: T Effective date: 20180415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008054834 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180711 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180712 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 988488 Country of ref document: AT Kind code of ref document: T Effective date: 20180411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180813 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008054834 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
26N | No opposition filed |
Effective date: 20190114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181017 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081017 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180811 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NO Payment date: 20231025 Year of fee payment: 16 Ref country code: FR Payment date: 20231024 Year of fee payment: 16 Ref country code: DE Payment date: 20231020 Year of fee payment: 16 |