EP0391791B1 - Multi-phase synchronous machine with permanent magnets - Google Patents

Multi-phase synchronous machine with permanent magnets Download PDF

Info

Publication number
EP0391791B1
EP0391791B1 EP90400910A EP90400910A EP0391791B1 EP 0391791 B1 EP0391791 B1 EP 0391791B1 EP 90400910 A EP90400910 A EP 90400910A EP 90400910 A EP90400910 A EP 90400910A EP 0391791 B1 EP0391791 B1 EP 0391791B1
Authority
EP
European Patent Office
Prior art keywords
stator
magnets
rotor
separating
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90400910A
Other languages
German (de)
French (fr)
Other versions
EP0391791A1 (en
Inventor
Louis Banon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0391791A1 publication Critical patent/EP0391791A1/en
Application granted granted Critical
Publication of EP0391791B1 publication Critical patent/EP0391791B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a synchronous electrodynamic machine with permanent magnets comprising a rotor of the flux concentration type comprising a shaft or a hub made of non-magnetic material on which rest permanent parallelepipedal radial magnets between which the pole pieces made of sheet metal are placed.
  • ferro-silicon magnetic and a stator comprising a carcass made of ferro-silicon magnetic sheet in which are formed a plurality of semi-closed notches delimited by a stator yoke which receive induced windings, and which defines with the rotor an air gap.
  • the subject of the invention is the production of synchronous machines with permanent magnets with high mass and volume torque, rotating at slow speed which allows direct drive.
  • the ferrite magnets are interesting from the point of view of the cost because their specific price is of the order of fiftieth that of the magnets Samarium - Cobalt currently, and of the twenty-fifth of that which will reach after stabilization the new rare earth magnets high-energy iron neodymiums, which exhibit large coefficients of field loss with increasing temperature. Consequently, the solution according to the invention is competitive compared to traditional solutions with geared motors.
  • magnets of high energy type would bring a significant additional cost with the same structure, but would not bring a significant gain in mass torque because the coefficient of flux concentration would be lower than that practiced for ferrites, sheets magnets used for the stator magnetic circuit, saturating magnetically around a 2 Tesla induction already achieved with the machine according to the invention.
  • the machine according to the invention is characterized in that the magnets are of the ferrite type and that the ratio r1 of the height of the section of a magnet traversed by the induction flux divided by the diameter of air gap bore is between 0.19 and 0.27.
  • the ratio r2 of the height of the section of a magnet crossed by the false induction divided by the length of a peripheral polar half-arc of the rotor separating the facing faces - screw of two consecutive magnets or flux concentration ratio is between 3.1 and 3.9.
  • the ratio r3 between the product of the number of stator teeth multiplied by the thickness of a stator tooth separating two consecutive notches, divided by 4.P times the length of a peripheral polar half-arc of the rotor separating the facing faces of two consecutive magnets, P being the number of pairs of poles of the machine is between 0.75 and 0.95.
  • FIG. 1 shows an axial section of a synchronous motor.
  • the motor essentially comprises a casing (1) in which a stator (2) is mounted, the internal peripheral wall (3) of which co-operates with the external peripheral wall (4) of a rotor (5) mounted in the casing (1) for define an air gap (6) between them.
  • the rotor (5) is mounted rotating in the casing (1) by means of two bearings (7) and (8) each comprising a bearing.
  • the stator (2) shown in Figures 1 and 2 comprises a main stator winding (9) disposed in the semi-closed notches (10) delimited by a stator yoke (11).
  • the rotor (5) also includes magnets (12) mounted in radial notches (13).
  • the magnetic sheets in which the pole pieces (14) and the yoke (11) are made are ordinary sheets made of ferro-silicon alloy.
  • Each of the rotor magnets has a generally rectangular parallelepiped shape and is supported on the non-magnetic shaft or hub (15).
  • the magnets used are ferrite magnets.
  • the magnets each consist of a plurality of elementary parallelepiped magnets (12) assembled together and this for manufacturing facilities.
  • the number of pairs of poles is equal to 6
  • the number of stator teeth (16) is equal to 72.
  • the ratio r4 defined by the formula r4 4.Pc born in which c is the radial thickness of the stator yoke (11) delimiting the stator notches (10), is between 0.60 and 0.75.

Description

La présente invention est relative à une machine électrodynamique synchrone à aimants permanents comportant un rotor du type à concentration de flux comprenant un arbre ou un moyeu réalisé en matériau amagnétique sur lequel reposent des aimants permanents radiaux parallèlépipèdiques entre lesquels sont disposées les pièces polaires réalisées en tôle magnétique ferro-silicium et un stator comportant une carcasse réalisée en tôle magnétique ferro-silicium dans laquelle sont formées une pluralité d'encoches semi-fermées délimitées par une culasse statorique qui recoivent des bobinages induits, et qui définit avec le rotor un entrefer.The present invention relates to a synchronous electrodynamic machine with permanent magnets comprising a rotor of the flux concentration type comprising a shaft or a hub made of non-magnetic material on which rest permanent parallelepipedal radial magnets between which the pole pieces made of sheet metal are placed. ferro-silicon magnetic and a stator comprising a carcass made of ferro-silicon magnetic sheet in which are formed a plurality of semi-closed notches delimited by a stator yoke which receive induced windings, and which defines with the rotor an air gap.

Dans les machines décrites précédemment, pour obtenir un fort couple massique, on utilise des rotors équipés d'aimants dits à haute énergie, de type terres rares (Samarium Cobalt et plus récemment Néodyme-Fer), faisant parfois appel, dans le meilleur des cas, à une structure de rotor aimanté, connue de l'homme de l'art, la structure à concentration de flux. Cette démarche convient à des machines de couples relativement faibles et tournant à des vitesses élevées, donc entraînant des charges par l'intermédiaire de réducteurs.In the machines described above, to obtain a high mass torque, we use rotors fitted with so-called high energy magnets, of rare earth type (Samarium Cobalt and more recently Neodymium-Iron), sometimes calling, in the best of cases , to a magnetic rotor structure, known to those skilled in the art, the flux concentration structure. This approach is suitable for machines with relatively low torques and rotating at high speeds, therefore driving loads via reducers.

Cependant, lorsque l'on désire effectuer l'entraînement direct de charges sans réducteurs, à puissance donnée, le couple nécessaire au niveau du moteur est beaucoup plus élevé que dans la solution à moto-réducteur, on est donc conduit à des machines de dimensions importantes dans lesquelles l'emploi d'aimants terres rares de prix spécifique élevé conduit à un coût très important de la machine dissuadant l'utilisateur d'employer une solution à Entraînement Direct, alors que techniquement, pour des questions de jeu, de raideur, d'augmentation de bande passante d'asservissement, et de simplicité de réalisation mécanique, l'Entraînement Direct est souhaitable.However, when it is desired to carry out direct drive of loads without reducers, at a given power, the torque required at the motor is much higher than in the motor-reducer solution, we are therefore led to machines of dimensions in which the use of rare earth magnets of high specific price leads to a very high cost of the machine dissuading the user from using a Direct Drive solution, while technically, for reasons of play, stiffness, increase in servo bandwidth, and simplicity of mechanical implementation, Direct Drive is desirable.

L'invention a pour objet la réalisation de machines synchrones à aimants permanents à fort couple massique et volumique, tournant à vitesse lente ce qui permet un Entraînement Direct.The subject of the invention is the production of synchronous machines with permanent magnets with high mass and volume torque, rotating at slow speed which allows direct drive.

L'invention a pour but d'obtenir des rapports élevés de concentration de flux afin d'avoir avec des aimants de type ferrites un flux émanant du rotor proche de celui qu'on obtiendrait avec des aimants terres rares à haute énergie. D'autre part, ces rapports importants de concentration de flux permettent d'obtenir une induction statorique proche de l'induction à saturation. Cela est rendu possible par :

  • l'utilisation de rotors de diamètre élevé (supérieur à 100 mm) compatibles pour l'utilisateur avec les couples requis (de 25 Nm à plusieurs centaines de Nm).
  • l'utilisation de rotors à concentration de flux à grand nombre de pôles ; les pertes magnétiques restant cependant faibles du fait des faibles vitesses de rotation nécessitées par l'Entraînement Direct (quelques tours/s, généralement moins de 3 trs/s).
The object of the invention is to obtain high flux concentration ratios in order to have, with ferrite type magnets, a flux emanating from the rotor close to that which would be obtained with high energy rare earth magnets. On the other hand, these large flux concentration ratios make it possible to obtain a stator induction close to the saturation induction. This is made possible by:
  • the use of large diameter rotors (greater than 100 mm) compatible for the user with the required torques (from 25 Nm to several hundred Nm).
  • the use of flux concentration rotors with a large number of poles; however, the magnetic losses remain low due to the low rotational speeds required by the Direct Drive (a few turns / s, generally less than 3 trs / s).

Les aimants ferrites sont intéressants du point de vue du coût du fait que leur prix spécifique est de l'ordre du cinquantième de celui des aimants Samarium - Cobalt actuellement, et du vingt-cinquième de celui qu'atteindront après stabilisation les nouveaux aimants terres rares néodymes fer à haute énergie, lesquels présentent des coefficients importants de perte de champ avec l'augmentation de la température. En conséquence, La solution selon l'invention est compétitive par rapport aux solutions traditionnelles à moto-réducteurs.The ferrite magnets are interesting from the point of view of the cost because their specific price is of the order of fiftieth that of the magnets Samarium - Cobalt currently, and of the twenty-fifth of that which will reach after stabilization the new rare earth magnets high-energy iron neodymiums, which exhibit large coefficients of field loss with increasing temperature. Consequently, the solution according to the invention is competitive compared to traditional solutions with geared motors.

Notons que le recours à des aimants de type à haute énergie apporterait un surcoût notable avec la même structure, mais n'apporterait pas de gain notable en couple massique car le coefficient de concentration de flux serait inférieur à celui pratiqué pour les ferrites, les tôles magnétiques employées pour le circuit magnétique statorique, saturant magnétiquement autour d'une induction de 2 Tesla déjà atteinte avec la machine selon l'invention.Note that the use of magnets of high energy type would bring a significant additional cost with the same structure, but would not bring a significant gain in mass torque because the coefficient of flux concentration would be lower than that practiced for ferrites, sheets magnets used for the stator magnetic circuit, saturating magnetically around a 2 Tesla induction already achieved with the machine according to the invention.

Pour obtenir ces résultats, la machine selon l'invention est caractérisée en ce que les aimants sont de type ferrites et que le rapport r1 de la hauteur de la section d'un aimant traversée par le flux d'induction divisée par le diamètre d'alésage de l'entrefer est compris entre 0,19 et 0,27.To obtain these results, the machine according to the invention is characterized in that the magnets are of the ferrite type and that the ratio r1 of the height of the section of a magnet traversed by the induction flux divided by the diameter of air gap bore is between 0.19 and 0.27.

Selon une autre caractéristique de l'invention, le rapport r2 de la hauteur de la section d'un aimant traversée par le faux d'induction divisée par la longueur d'un demi-arc polaire périphérique du rotor séparant les faces en vis-à-vis de deux aimants consécutifs ou rapport de concentration de flux est compris entre 3,1 et 3,9. Selon une autre caractéristique, le rapport r3 entre le produit du nombre de dents statoriques multiplié par l'épaisseur d'une dent statorique séparant deux encoches consécutives, divisé par 4.P fois la longueur d'un demi-arc polaire périphérique du rotor séparant les faces en vis-à-vis de deux aimants consécutifs, P étant le nombre de paires de pôles de la machine est compris entre 0,75 et 0,95.According to another characteristic of the invention, the ratio r2 of the height of the section of a magnet crossed by the false induction divided by the length of a peripheral polar half-arc of the rotor separating the facing faces - screw of two consecutive magnets or flux concentration ratio is between 3.1 and 3.9. According to another characteristic, the ratio r3 between the product of the number of stator teeth multiplied by the thickness of a stator tooth separating two consecutive notches, divided by 4.P times the length of a peripheral polar half-arc of the rotor separating the facing faces of two consecutive magnets, P being the number of pairs of poles of the machine is between 0.75 and 0.95.

Selon une autre caractéristique, le rapport r4 de 4.P fois l'épaisseur radiale de la culasse statorique divisé par le produit du nombre de dents statoriques séparant les encoches statoriques par l'épaisseur d'une dent statorique séparant deux encoches consécutives est compris entre 0,60 et 0,75.According to another characteristic, the ratio r4 of 4.P times the radial thickness of the stator yoke divided by the product of the number of stator teeth separating the stator notches by the thickness of a stator tooth separating two consecutive notches 0.60 and 0.75.

On vient ainsi de définir une série de rapports de dimensionnement r1 à r4 qui permettent à partir du choix initial d'un diamètre d'alésage de déterminer l'ensemble des dimensions de la machine permettant d'obtenir un couple massique maximum avec l'utilisation de tôles magnétiques ferro-silicium et d'aimants ferrites. Cette série de rapports optimaux conduit à une structure de rotor à aimants quasi-jointifs à leur extrémité inférieure.We have thus just defined a series of dimensioning ratios r1 to r4 which make it possible, from the initial choice of a bore diameter, to determine the set of dimensions of the machine making it possible to obtain a maximum mass torque with use. ferro-silicon magnetic sheets and ferrite magnets. This series of optimal ratios leads to a rotor structure with quasi-contiguous magnets at their lower end.

On décrira maintenant l'invention en se référant aux dessins annexés dans lesquels :

  • la figure 1 est une vue en coupe axiale d'une machine électrodynamique synchrone.
  • la figure 2 est une vue schématique en coupe transversale du rotor et de la carcasse d'une machine électrodynamique réalisée conformément aux enseignements de la présente invention.
The invention will now be described with reference to the accompanying drawings in which:
  • Figure 1 is an axial sectional view of a synchronous electrodynamic machine.
  • Figure 2 is a schematic cross-sectional view of the rotor and the carcass of an electrodynamic machine produced in accordance with the teachings of the present invention.

On a représenté à la figure 1 une coupe axiale d'un moteur synchrone.FIG. 1 shows an axial section of a synchronous motor.

Le moteur comprend essentiellement un carter (1) dans lequel est monté un stator (2) dont la paroi périphérique interne (3) coopère avec la paroi périphérique externe (4) d'un rotor (5) monté dans le carter (1) pour définir entre elles un entrefer (6). Le rotor (5) est monté tournant dans le carter (1) au moyen de deux paliers (7) et (8) comportant chacun un roulement.The motor essentially comprises a casing (1) in which a stator (2) is mounted, the internal peripheral wall (3) of which co-operates with the external peripheral wall (4) of a rotor (5) mounted in the casing (1) for define an air gap (6) between them. The rotor (5) is mounted rotating in the casing (1) by means of two bearings (7) and (8) each comprising a bearing.

Le stator (2) représenté aux figures 1 et 2 comprend un enroulement principal de stator (9) disposé dans les encoches (10) semi-fermées délimitées par une culasse statorique (11).The stator (2) shown in Figures 1 and 2 comprises a main stator winding (9) disposed in the semi-closed notches (10) delimited by a stator yoke (11).

Le rotor (5) comprend également des aimants (12) montés dans des encoches radiales (13).The rotor (5) also includes magnets (12) mounted in radial notches (13).

Dans le cadre de la présente invention, les tôles magnétiques dans lesquelles sont réalisées les pièces polaires (14) et la culasse (11) sont des tôles ordinaires en alliage de ferro-silicium.In the context of the present invention, the magnetic sheets in which the pole pieces (14) and the yoke (11) are made are ordinary sheets made of ferro-silicon alloy.

Chacun des aimants du rotor a une forme générale parallèlépipédique rectangle et prend appui sur l'arbre ou moyeu amagnétique (15).Each of the rotor magnets has a generally rectangular parallelepiped shape and is supported on the non-magnetic shaft or hub (15).

Les aimants utilisés sont des aimants ferrites. Dans le mode de réalisation présenté, les aimants sont chacun constitués d'une pluralité d'aimants élémentaires parallèlépipédiques (12) assemblés entre eux et ce pour des facilités de fabrication.The magnets used are ferrite magnets. In the embodiment presented, the magnets each consist of a plurality of elementary parallelepiped magnets (12) assembled together and this for manufacturing facilities.

Chaque aimant est aimanté tangentiellement, c'est-à-dire que les lignes de flux sortant par une section latérale S d'un aimant sont sensiblement perpendiculaires aux rayons du rotor. Conformément à l'invention et afin d'obtenir la saturation magnétique maximale, la machine électrodynamique est dimensionnée de façon que le rapport r1 défini par la formule r1 = h d

Figure imgb0001
dans laquelle

  • h est la hauteur radiale de la section S d'un aimant (12) traversée par le flux d'induction, et
  • d est le "diamètre d'alésage" ou diamètre moyen de l'entrefer (6) de la machine électrodynamique, est compris entre 0,19 et 0,27 aux détails de réalisation près.
Each magnet is magnetized tangentially, that is to say that the lines of flux exiting through a lateral section S of a magnet are substantially perpendicular to the radii of the rotor. In accordance with the invention and in order to obtain the maximum magnetic saturation, the electrodynamic machine is dimensioned so that the ratio r1 defined by the formula r1 = h d
Figure imgb0001
in which
  • h is the radial height of the section S of a magnet (12) traversed by the induction flux, and
  • d is the "bore diameter" or average diameter of the air gap (6) of the electrodynamic machine, is between 0.19 and 0.27 to the details of construction.

Selon une autre caractéristique de l'invention le rapport r2 défini par la formule R2 = b a

Figure imgb0002
dans laquelle
- a est la longueur d'un demi-arc polaire périphérique externe du rotor (5) séparant les faces S en vis-à-vis de deux aimants consécutifs (12), est compris entre 3, 1 et 3,9.According to another characteristic of the invention, the ratio r2 defined by the formula R2 = b at
Figure imgb0002
in which
- A is the length of an external peripheral polar half-arc of the rotor (5) separating the faces S facing two consecutive magnets (12), is between 3, 1 and 3.9.

Selon une autre caractéristique de l'invention, le rapport r3 défini par la formule r3 = n.e 4.P.a

Figure imgb0003
dans laquelle

  • n est le nombre de dents statoriques (16) séparant les encoches statoriques (10).
  • e est l'épaisseur d'une dent statorique (16) séparant deux encoches statoriques consécutives (10).
  • P est le nombre de paires de pôles magnétiques, est compris entre 0,75 et 0,95.
According to another characteristic of the invention, the ratio r3 defined by the formula r3 = born 4.Pa
Figure imgb0003
in which
  • n is the number of stator teeth (16) separating the stator notches (10).
  • e is the thickness of a stator tooth (16) separating two consecutive stator notches (10).
  • P is the number of pairs of magnetic poles, is between 0.75 and 0.95.

Selon un mode de réalisation préférentiel, le nombre de paires de pôles est égal à 6, le nombre de dents statoriques (16) est égal à 72.According to a preferred embodiment, the number of pairs of poles is equal to 6, the number of stator teeth (16) is equal to 72.

Selon une autre caractéristique de l'invention, le rapport r4 défini par la formule r4 = 4.P.c n.e

Figure imgb0004
dans laquelle
c est l'épaisseur radiale de la culasse statorique (11) délimitant les encoches statoriques (10), est compris entre 0,60 et 0,75.According to another characteristic of the invention, the ratio r4 defined by the formula r4 = 4.Pc born
Figure imgb0004
in which
c is the radial thickness of the stator yoke (11) delimiting the stator notches (10), is between 0.60 and 0.75.

Claims (5)

  1. A synchronous electrodynamic machine with permanent magnets comprising a rotor (5) of the flux concentration type comprising a shaft or a hub (15) constructed in non-magnetic material on which rest parallelepipedic radial permanent magnets (12) between which are disposed the polar pieces(14) constructed in ferrosilicon magnetic sheet and a stator (2) comprising a frame constructed in ferrosilicon magnetic sheet in which are formed a plurality of semi-closed slots (10) delimited by a stator yoke (11) which receive armature windings (9) and which defines with the rotor (5) an air gap (6) characterised in that the magnets (12) are of ferrite type and in that the ratio r1 of the height (h) of the section (S) of a magnet (12) through which passes the induction flux divided by the bore diameter (d) of the air gap is between 0.19 and 0.27.
  2. The machine according to Claim 1 characterised in that the ratio r2 of the height (h) of the section (S) of a magnet through which passes the induction flux divided by the length (a) of a peripheral polar half-arc of the rotor (5) separating the opposite faces of two consecutive magnets (12) or flux concentration ratio is between 3.1 and 3.9.
  3. The machine according to any one of the preceding claims, characterised in that the ratio r3 between the product of the number (n) of stator teeth (16) multiplied by the thickness (e) of one stator tooth (16) separating two consecutive slots (10) divided by 4.P times the length (a) of a peripheral polar half-arc of the rotor (5) separating the opposite faces of two consecutive magnets (12), P being the number of pairs of magnetic poles, is between 0.75 and 0.95.
  4. The machine according to any one of the preceding claims characterised in that the ratio r4 of 4.P times the radial thickness (c) of the stator yoke (11) divided by the product of the number (n) of stator teeth (16) separating the stator slots (10) by the thickness (e) of one stator tooth (16) separating two consecutive slots (10) is between 0.60 and 0.75.
  5. The machine according to any of the preceding claims characterised in that the number P of pairs of magnetic poles is equal to 6.
EP90400910A 1989-04-04 1990-04-03 Multi-phase synchronous machine with permanent magnets Expired - Lifetime EP0391791B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8904414 1989-04-04
FR8904414A FR2645364B1 (en) 1989-04-04 1989-04-04 SYNCHRONOUS POLYPHASE MACHINE WITH PERMANENT MAGNETS

Publications (2)

Publication Number Publication Date
EP0391791A1 EP0391791A1 (en) 1990-10-10
EP0391791B1 true EP0391791B1 (en) 1994-10-12

Family

ID=9380369

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90400910A Expired - Lifetime EP0391791B1 (en) 1989-04-04 1990-04-03 Multi-phase synchronous machine with permanent magnets

Country Status (5)

Country Link
US (1) US5066880A (en)
EP (1) EP0391791B1 (en)
DE (1) DE69013202T2 (en)
ES (1) ES2063302T3 (en)
FR (1) FR2645364B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020107582A1 (en) * 2018-11-29 2020-06-04 深圳市大疆创新科技有限公司 Electric motor, power device and robot

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423620A1 (en) * 1994-07-06 1996-01-11 Philips Patentverwaltung Electric motor excitable by means of permanent magnets, in particular internal rotor or external rotor motor
EP0875091A1 (en) * 1996-01-18 1998-11-04 Shibaura Engineering Works Company, Ltd. A motor mounted in a vehicle
JP3415406B2 (en) * 1997-09-05 2003-06-09 トヨタ自動車株式会社 Magnet-embedded AC motor and its design method
DE19757502A1 (en) * 1997-12-23 1999-06-24 Vlado Dr Ostovic Electric machine with permanent magnet excitation
ES2246083T3 (en) * 1998-03-27 2006-02-01 Isa Innovations Sa ELECTRIC MOTOR.
FR2786956B1 (en) * 1998-12-07 2001-02-16 Centre Nat Rech Scient DOUBLE EXCITATION ROTATING ELECTRIC MACHINE
US6891299B2 (en) * 2000-05-03 2005-05-10 Moteurs Leroy-Somer Rotary electric machine having a flux-concentrating rotor and a stator with windings on teeth
CN1153908C (en) * 2000-12-14 2004-06-16 欧阳宝武 Submerged pump with gasket-type seal
US20020171305A1 (en) * 2001-04-17 2002-11-21 Moteurs Leroy-Somer Electric machine having an outer rotor
FR2823614B1 (en) 2001-04-17 2008-07-11 Leroy Somer Moteurs ELECTRICAL ROTATING MACHINE HAVING A STATOR FORM OF ASSEMBLED SECTORS
JP2003079079A (en) * 2001-09-03 2003-03-14 Honda Motor Co Ltd Current collecting/distributing ring for rotary electric machine
DE10156586A1 (en) * 2001-11-20 2003-06-05 Brumme Kg Effbe Werk Electric motor actuator drive e.g. for vehicle turbocharger, has drive unit that interacts with actuation element and has electronically commutated electric motor(s) in form of modular permanent magnet machine
US20050093391A1 (en) * 2003-11-03 2005-05-05 Mcmullen Patrick T. Sleeveless permanent magnet rotor construction
US7301310B2 (en) * 2005-08-24 2007-11-27 Honeywell International, Inc. Excitation controlled synchronous permanent magnet machine
ES2302434B1 (en) * 2006-06-14 2009-05-08 GAMESA INNOVATION & TECHNOLOGY, S.L. ROTOR OF ELECTRIC MACHINE OF PERMANENT MAGNETS OF LOW INERTIA.
DE102006058064A1 (en) * 2006-12-07 2008-06-19 Ipgate Ag Electric induction machine
WO2008149649A1 (en) * 2007-06-06 2008-12-11 Kabushiki Kaisha Yaskawa Denki Revolving electric device, and its manufacturing method
JP5254310B2 (en) * 2008-03-13 2013-08-07 パナソニック株式会社 Electric motor and electric device including the same
US8063547B2 (en) 2008-07-28 2011-11-22 Kabushiki Kaisha Yaskawa Denki Rotating electric machine and manufacturing method thereof
FR2983658B1 (en) * 2011-12-01 2014-09-12 Valeo Equip Electr Moteur ROTOR OF ROTATING ELECTRIC MACHINE AND ROTATING ELECTRIC MACHINE COMPRISING SUCH A ROTOR
FR2983657B1 (en) * 2011-12-01 2014-09-05 Valeo Equip Electr Moteur ROTOR OF ROTATING ELECTRIC MACHINE AND ROTATING ELECTRIC MACHINE COMPRISING SUCH A ROTOR
FR2984628B1 (en) * 2011-12-14 2014-11-21 Valeo Equip Electr Moteur ROTOR OF ROTATING ELECTRIC MACHINE AND ROTATING ELECTRIC MACHINE COMPRISING SUCH A ROTOR
EP2639934B1 (en) * 2012-03-16 2015-04-29 Siemens Aktiengesellschaft Rotor with permanent excitation, electrical machine with such a rotor and method for producing the rotor
DE102012205672A1 (en) * 2012-04-05 2013-10-10 Robert Bosch Gmbh Electrically powered two-wheeler
EP2814141A1 (en) * 2013-06-11 2014-12-17 Robert Bosch GmbH Rotor for an electronically-commutated motor
FR3011145B1 (en) * 2013-09-20 2017-04-14 Valeo Equip Electr Moteur DEVICE FOR DETERMINING AN ANGULAR POSITION AND / OR THE ROTATION SPEED OF A ROTOR OF A POLYPHASE ELECTRIC MOTOR AND CORRESPONDING ELECTRIC MOTOR
JP6385712B2 (en) * 2014-04-30 2018-09-05 マブチモーター株式会社 Rotor and brushless motor
JP5951897B1 (en) * 2015-02-23 2016-07-13 成田 憲治 Synchronous motor
FR3064837B1 (en) * 2017-04-03 2020-01-17 Moving Magnet Technologies ROTOR FOR ELECTRIC MACHINE WITH INTERNAL PERMANENT MAGNETS

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR17767E (en) * 1912-05-01 1913-11-15 Compagnie Universelle De Telegraphie Et De Telepho Armature for electrical machines
FR994928A (en) * 1945-02-22 1951-11-23 Rotating magnetic inductor particularly for magneto
FR1184491A (en) * 1956-10-19 1959-07-22 Philips Nv Rotor with a number of permanent magnets on its periphery
FR1214249A (en) * 1957-10-22 1960-04-07 Philips Nv Rotor provided with a number of permanent magnets at its periphery
FR1272067A (en) * 1960-07-19 1961-09-22 Comp Generale Electricite Alternator rotor
US3242364A (en) * 1960-12-05 1966-03-22 Bendix Corp Electrical apparatus
DE2062486A1 (en) * 1970-12-18 1972-07-06 Siemens Ag Permanently excited electrical machine
US4336649A (en) * 1978-12-26 1982-06-29 The Garrett Corporation Method of making rotor assembly having anchor with undulating sides
GB2075274A (en) * 1980-05-02 1981-11-11 Inst Elektropromishlenost Permanent-magnet rotors for electrical machines
JPS5752335A (en) * 1980-09-12 1982-03-27 Hitachi Ltd Rotor shaft for motor
JPS59117451A (en) * 1982-12-24 1984-07-06 Fanuc Ltd Synchronous electric rotary machine
US4709179A (en) * 1984-01-17 1987-11-24 Regie Nationale Des Usines Renault Permanent-magnet six-pole synchronous electrodynamic machine
FR2580874B3 (en) * 1985-04-23 1987-10-09 Renault ELECTRODYNAMIC SYNCH MACHINE
BG39783A1 (en) * 1984-05-08 1986-08-15 Popov Rotor with permanent magnets for electric machine
JPS6464548A (en) * 1987-09-03 1989-03-10 Fanuc Ltd Rotor construction of synchronous motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020107582A1 (en) * 2018-11-29 2020-06-04 深圳市大疆创新科技有限公司 Electric motor, power device and robot

Also Published As

Publication number Publication date
DE69013202D1 (en) 1994-11-17
FR2645364A1 (en) 1990-10-05
EP0391791A1 (en) 1990-10-10
ES2063302T3 (en) 1995-01-01
DE69013202T2 (en) 1995-02-16
FR2645364B1 (en) 1996-01-26
US5066880A (en) 1991-11-19

Similar Documents

Publication Publication Date Title
EP0391791B1 (en) Multi-phase synchronous machine with permanent magnets
EP0155877B1 (en) Electrodynamic vernier machine
CH347889A (en) Synchronous motor
FR2472866A1 (en) MOTOR NOT TO NO ELECTRICAL
EP2209193B1 (en) Rotating electric machine with saliant poles
FR2548843A1 (en) IMPROVEMENT IN ROTARY MAGNET ROTOR MACHINES
CA2482125A1 (en) Transverse flow electric machine with a toothed rotor
EP0123347A1 (en) Collectorless direct current motor with electronic commutation
EP0201022A2 (en) Electric synchronous motor with a disc-shaped rotor
EP2999102A2 (en) Rotary electrical machine comprising at least one stator and at least two rotors
FR2544138A1 (en) MOTOR NOT TO NO ELECTRICAL
MY122874A (en) Motor and light amount adjusting apparatus
EP0383916A1 (en) Multipole rotor of electric machine
US4110649A (en) Variable speed DC motor
EP0008250A1 (en) Rotor for an electric machine with salient poles
EP0312464B1 (en) Electric machine in particular with radial air-gaps
EP3229348B1 (en) Rotor for an electrical machine
EP2982022B1 (en) Electric motor having a low short-circuit torque, drive device with a plurality of motors and method for producing such a motor
EP0072297B1 (en) Direct current electrical machine with cylindrical air gap and permanent excitation
EP0198986B1 (en) Six pole dynamic-electric synchronous machine with permanent magnet
FR3086118A1 (en) ROTATING ELECTRIC MACHINE WITH REDUCED MASS ROTOR
CH622914A5 (en) Electric motor
EP0448693B1 (en) Improvement to electric motor of the brushless direct current motor type
EP0680130A1 (en) Synchronous electric machine with smooth poles and constant air gap
CH368856A (en) Rotating electric machine with axial air gap

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19920916

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 69013202

Country of ref document: DE

Date of ref document: 19941117

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941020

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2063302

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: INVENTION S.N.C.

EAL Se: european patent in force in sweden

Ref document number: 90400910.7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

Free format text: CORRECTION

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LOUIS BANON TRANSFER- ALXION AUTOMATIQUE ET PRODUC

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080317

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080318

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080125

Year of fee payment: 19

Ref country code: ES

Payment date: 20080422

Year of fee payment: 19

Ref country code: DE

Payment date: 20080411

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080419

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080408

Year of fee payment: 19

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090404