EP0387627A2 - Heater - Google Patents

Heater Download PDF

Info

Publication number
EP0387627A2
EP0387627A2 EP90104063A EP90104063A EP0387627A2 EP 0387627 A2 EP0387627 A2 EP 0387627A2 EP 90104063 A EP90104063 A EP 90104063A EP 90104063 A EP90104063 A EP 90104063A EP 0387627 A2 EP0387627 A2 EP 0387627A2
Authority
EP
European Patent Office
Prior art keywords
pipe
longitudinal
cylinder
cylindrical
pipe run
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90104063A
Other languages
German (de)
French (fr)
Other versions
EP0387627B1 (en
EP0387627A3 (en
Inventor
Hans Dr. Viessmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT90104063T priority Critical patent/ATE92610T1/en
Publication of EP0387627A2 publication Critical patent/EP0387627A2/en
Publication of EP0387627A3 publication Critical patent/EP0387627A3/en
Application granted granted Critical
Publication of EP0387627B1 publication Critical patent/EP0387627B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/263Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body with a dry-wall combustion chamber

Definitions

  • the invention relates to a boiler for the combustion of liquid or gaseous fuels according to the preamble of the main claim.
  • Boilers of the type mentioned are generally known and in use, so that no special printed evidence is required in this regard. It is also known to surround such pipe runs with a steel sheet casing for reasons of condensate safety. If the pipe run consists of a sheet metal blank with longitudinal ribs folded inwards, it is known to arrange a heat transfer brake layer, for example made of asbestos or the like, between such a pipe run and the outer casing. In this case, the exact shape adaptation between the pipe pull and the outer shell does not play an important role. This is different for boilers in which the pipe run consists of a cast body that sits in the casing over the entire surface. This requires a full-surface cylindrical reworking of the cast body.
  • boilers or pipe runs are also provided in boiler housings which do not have a casing of the type mentioned. Regardless of whether such pipe runs consist of extruded profiles, sheet steel strips, castings or a sheet metal blank with longitudinal ribs folded inwards, which are usually stabilized in the area of the folding rib feet with longitudinal weld seams, such boilers or pipe runs are particularly prone to condensation in the condensate-critical, fume cupboard areas because the pipe draw wall is directly water-cooled due to the lack of a casing. This effect is particularly unavoidable when such boilers are operated as low-temperature boilers, which is common today.
  • the invention is therefore based on the object to improve a boiler of the type mentioned in such a way to provide targeted and intensified heat transfer from the areas of higher heat concentration, namely the longitudinal fin feet with largely condensate-proof pipe pull with simple means and measures.
  • This solution according to the invention is based on the idea of the essentially cylindrical, tube-forming raw body by, no matter how it may be designed, i.e. whether it consists of extruded profiles, sheet metal profiles, sheet metal blanks or cast iron, to form out of round, i.e. polygonal in cross-section according to the number of longitudinal ribs, and to remove the protrusions projecting beyond the circular cross-sectional shape and then on them Pipe pull shrink or press on the steel sheet cylinder, which is thus in thermal contact with the cylindrical strip sections of the pipe pull under the areas of the longitudinal fin feet.
  • the cutting work and the cutting waste are reduced, and on the other hand, it ensures that there is direct thermal contact in the areas of the highly stressed longitudinal rib feet, while the areas located between the longitudinal rib feet and which are particularly susceptible to condensation are, as it were, hollow, with respect to the shrunk-on or pressed-on cylinder accordingly can not cool so quickly.
  • the "out-of-roundness" or the protrusions on the tube drawing body are concerned, they only move in the millimeter range and the column of the tube drawing wall between the fin feet and the cylinder in the fraction of a millimeter.
  • the protrusions of the tube train can also be designed as longitudinal rib-like projections with a small height in relation to the tube wall thickness.
  • “Low height” is also to be understood as a height of the order of a millimeter or fractions of a millimeter.
  • the protrusions are essentially formed from the longitudinal weld seams connecting the sheet steel strips or the feet of the folding ribs.
  • the intermediate areas between the fin feet are designed to extend essentially secantially with respect to a circular arc and in cross section. This can easily be accomplished during the cranking process of the sheet metal strips or the folding process of a sheet metal blank.
  • the boiler consists, as can be seen from FIG. 1, of a water-carrying housing 1, which is penetrated by a pipe 3 formed from at least one part and enclosing the heating and flue gas spaces 2.
  • This pipe train 3 has longitudinal ribs 4 projecting inwards on the gas side, between which the cup-shaped combustion chamber 19 is inserted.
  • the casing surrounding the pipe run 3 comprises the pipe run in the form of a sheet steel cylinder 11, which is connected to the front and rear walls 20 of the housing 1 in the penetration areas in a liquid-tight manner.
  • This boiler which is known to this extent, is now designed in such a way that the basic shape of the tubular pipe 3, which is essentially cylindrical, is non-circular with respect to its outer circumference, and the protrusions 9 projecting beyond the circular cross-sectional shape (see FIGS. 5, 6) are cylindrical in the area of the longitudinal rib feet 10 that the steel sheet cylinder 11 is shrunk or pressed onto the pipe run 3 and is in thermal contact with the cylindrical strip sections 12 of the pipe run 3 in the regions of the longitudinal fin feet 10.
  • the large amount of heat flowing to the rib feet 10 from the longitudinal ribs 4 can be transferred directly to the water-cooled steel sheet cylinder 11 via contact surface areas, while the heat transfer from the intermediate areas 15 cannot be transferred directly to the steel sheet cylinder 11 and thus to the water, since limit the intermediate areas 15 between the fin feet with the steel sheet cylinder 11 small gaps 21 and face each other there without contact.
  • a wide variety of embodiments can be used for the pipe run 3, as shown, for example, in FIGS. 2-4, ie it can be a pipe run act, which consists of a plurality of extruded profiles 5 according to FIG. 2 provided with inwardly directed longitudinal ribs 4, which, for example. Assembled into 4 or 5 pieces and longitudinally welded to form the tube train.
  • the pipe run can also consist of a cast body 8, which is practically the same in section as the pipe run made of extruded profiles according to FIG. 2 only with the difference that it is not composed of several extruded profile parts, but forms part. It is also possible to assemble the tube train from a plurality of sheet steel strips 6 bent inwards to form longitudinal ribs 4 as shown in FIG.
  • the projections 9 result to a certain extent inevitably through the longitudinal weld seams 14, with which the sheet metal strips 6 or the feet of the folded longitudinal ribs 4 are connected. Then, after cylindrical welding of the weld seams 14, the tubular steel cylinder 11, which has been correspondingly dimensioned with respect to its inner diameter, is shrunk or pressed onto these tube passes, which have been reworked cylindrically in the area of the projections 9, with suitable means or measures, the contact surface strips in the region of the fin feet 10, on the one hand, being accessible for direct heat transfer and on the other hand columns 21 result.
  • a gap 17 can be arranged between the pipe line 3 and the cylinder 11, in the area of which the pipe line 3 and the cylinder face each other without contact over the entire circumference. This can be easily achieved in that the one and / or other wall of the tube 3 and / or the cylinder 11 in the gap region 17 'with respect to the cylindrical contact surfaces 18 of the tube 3 and cylinder 11 is slightly withdrawn inwards or outwards is.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Details Of Fluid Heaters (AREA)
  • Fire-Extinguishing Compositions (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Thermal Insulation (AREA)
  • Gas Burners (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

The heater consists of a water-bearing housing, through which there extends a tubular flue (3) which is formed from at least one part, encloses the spaces conducting the heating and smoke gases and is provided with inwardly directed longitudinal ribs (4). This tubular flue (3), which is essentially cylindrical in its basic shape, is at the same time according to the invention of basically non-circular design with regard to its outer circumference. The excess lengths (9) projecting beyond the circular cross-sectional shape are at the same time cylindrical in the region of the longitudinal-rib feet (10), onto which cylindrical regions a sheet steel cylinder (11) is shrunk or pressed onto the tubular flue (3), which cylinder is thus, in the regions of the longitudinal-rib feet (10), in heat-conducting contact with the cylindrical strip sections (12) of the tubular flue (3). <IMAGE>

Description

Die Erfindung betrifft einen Heizkessel für die Verbrennung flüssiger oder gasförmiger Brennstoffe gemäß Oberbegriff des Hauptanspruches.The invention relates to a boiler for the combustion of liquid or gaseous fuels according to the preamble of the main claim.

Heizkessel der genannten Art sind allgemein bekannt und in Benutzung, so daß es diesbezüglich keines besonderen druck­schriftlichen Nachweises bedarf. Bekannt ist auch, derartige Rohrzüge aus Gründen der Kondensatsicherheit mit einer Stahl­blechhülle zu umgeben. Sofern dabei der Rohrzug aus einem Blechzuschnitt mit nach innen gefalteten Längsrippen besteht, ist es bekannt, zwischen einem solchen Rohrzug und der Außen­hülle eine Wärmeübergangsbremsschicht, bspw. aus Asbest od. dgl. anzuordnen. Hierbei spielt also die genaue Formanpassung zwischen Rohrzug und Außenhülle keine wesentliche Rolle. Dies ist anders bei Heizkesseln, bei denen der Rohrzug aus einem Gußkörper besteht, der ganzflächig anliegend in der Hülle sitzt. Hierbei bedarf es einer ganzflächigen zylindrischen Überarbeitung des Gußkörpers. Abgesehen von diesen vorbekann­ten Heizkesselausführungen werden aber auch Rohrzüge in Heiz­kesselgehäusen vorgesehen, die keine Umhüllung der genannten Art aufweisen. Unabhängig davon, ob solche Rohrzüge dabei bspw. aus Strangpreßprofilen, Stahlblechstreifen, Gußkörpern oder aus einem Blechzuschnitt mit nach innen gefalteten Längsrippen bestehen, die in der Regel im Bereich der Faltrippenfüße mit Längsschweißnähten stabilisiert sind, nei­gen derartige Heizkessel bzw. Rohrzüge zu Kondensat-nieder­schlägen insbesondere in den kondensatkritischen, abzugssei­ tigen Bereichen, da die Rohrzugwand mangels einer Hülle di­rekt wassergekühlt ist. Dieser Effekt ist insbesondere dann unvermeidbar, wenn solche Kessel als Niedertemperaturkessel gefahren werden, was heute allgemein üblich ist. Keine Beach­tung hat beim Ganzen bisher auch die Tatsache gefunden, daß die höchste Wärmekonzentration im Bereich der Rippenfüße des Rohrzuges anfällt, und zwar weitgehend unabhängig davon, ob es sich bei den Rippen um abgeköpfte Blechstreifen, Faltrip­pen oder Rippen handelt, die, wie bei Strangpreß- oder Guß­profilen integrale Teile der Rohrzugwand sind. Das bisherige Bestreben, die Wärmeübertragungskontaktfläche zwischen Rohr­zug und Hülle ideal bzw. optimal anzulegen, geht also im grunde zu weit und ist mit einer beträchtlichen spanabheben­den Bearbeitung der äußeren Rohrzugfläche verbunden, die im grunde insbesondere bei Ausbildung des Rohrzuges aus Stahl­blech nicht ohne weiteres praktizierbar ist, wenn man nicht überdimensionierte Blechstärken verwenden will. Dabei bleibt auch unberücksichtigt, daß die einem Kondensatanfall beson­ders zugänglichen Zwischenbereiche zwischen den Längsrippen weniger mit Wärme beaufschlagt sind und demgemäß auch schnel­ler auskühlen, wenn die Kesselwassertemperatur absinkt.Boilers of the type mentioned are generally known and in use, so that no special printed evidence is required in this regard. It is also known to surround such pipe runs with a steel sheet casing for reasons of condensate safety. If the pipe run consists of a sheet metal blank with longitudinal ribs folded inwards, it is known to arrange a heat transfer brake layer, for example made of asbestos or the like, between such a pipe run and the outer casing. In this case, the exact shape adaptation between the pipe pull and the outer shell does not play an important role. This is different for boilers in which the pipe run consists of a cast body that sits in the casing over the entire surface. This requires a full-surface cylindrical reworking of the cast body. Apart from these previously known boiler designs, pipe runs are also provided in boiler housings which do not have a casing of the type mentioned. Regardless of whether such pipe runs consist of extruded profiles, sheet steel strips, castings or a sheet metal blank with longitudinal ribs folded inwards, which are usually stabilized in the area of the folding rib feet with longitudinal weld seams, such boilers or pipe runs are particularly prone to condensation in the condensate-critical, fume cupboard areas because the pipe draw wall is directly water-cooled due to the lack of a casing. This effect is particularly unavoidable when such boilers are operated as low-temperature boilers, which is common today. So far, the fact that the highest heat concentration occurs in the area of the fin feet of the tube drawing, largely irrespective of whether the fins are skimmed sheet metal strips, folding fins or fins which, like extrusion, or cast profiles are integral parts of the pipe wall. The previous endeavor to ideally or optimally create the heat transfer contact surface between the pipe pull and the casing goes too far in principle and is associated with considerable machining of the outer pipe pull surface, which is basically not practicable in particular when the pipe pull is made from sheet steel, if you don't want to use oversized sheet thicknesses. It is also disregarded that the intermediate areas between the longitudinal ribs, which are particularly accessible to condensation, are less exposed to heat and accordingly also cool more quickly when the boiler water temperature drops.

Der Erfindung liegt demgmäß die Aufgabe zugrunde, einen Heiz­kessel der eingangs genannten Art dahingehend zu verbessern, bei weitgehend kondensatsicher ausgestattetem Rohrzug mit einfachen Mitteln und Maßnahmen für einen gezielten und in­tensivierten Wärmeübergang aus den Bereichen höherer Wärme­konzentration, nämlich der Längsrippenfüße zu sorgen.The invention is therefore based on the object to improve a boiler of the type mentioned in such a way to provide targeted and intensified heat transfer from the areas of higher heat concentration, namely the longitudinal fin feet with largely condensate-proof pipe pull with simple means and measures.

Diese Aufgabe ist mit einem Heizkessel der eingangs genannten Art nach der Erfindung durch die im Kennzeichen des Hauptpa­tentanspruches 1 angeführten Merkmale gelöst. Vorteilhafte Weiterbildungen und praktische Ausführungsformen ergeben sich nach den Unteransprüchen.This object is achieved with a boiler of the type mentioned according to the invention by the features stated in the characterizing part of main patent claim 1. Advantageous further developments and practical embodiments result from the subclaims.

Dieser erfindungsgemäßen Lösung liegt der Gedanke zugrunde, den im wesentlichen zylindrischen, rohrzugbildenden Rohkör­ per, egal wie dieser ausgebildet sein mag, d.h., ob aus Strangpreßprofilen, Blechprofilen, Blechzuschnitten oder aus Guß bestehend, unrund auszubilden, d.h., im Querschnitt ent­sprechend der Anzahl der Längsrippen vieleckig, und die über die Kreisquerschnittsform ragenden Überstände zylindrisch abzutragen und dann auf diesen Rohrzug den Stahlblechzylinder aufzuschrumpfen oder aufzupressen, der dadurch unter den Be­reichen der Längsrippenfüße mit den zylindrischen Streifenab­schnitten des Rohrzuges in Wärmeleitkontakt steht. Einmal werden dadurch die Zerspanungsarbeit und der Zerspanungsab­fall reduziert und andererseits wird dadurch dafür gesorgt, daß ein unmittelbarer Wärmeleitkontakt in den Bereichen der hochbelasteten Längsrippenfüße entsteht, während die zwischen den Längsrippenfüßen befindlichen und besonders konden­satanfälligen Bereiche in bezug auf den aufgeschrumpften oder aufgepreßten Zylinder gewissermaßen hohl liegen und demgemäß auch nicht so schnell auskühlen können. Was die "Unrundheit" bzw. die Überstände am Rohrzugrohkörper betrifft, so bewegen sich diese nur im Millimeterbereich und die Spalte der Rohr­zugwandung zwischen den Rippenfüßen und dem Zylinder im Be­reich von Bruchteilen eines Millimeters.This solution according to the invention is based on the idea of the essentially cylindrical, tube-forming raw body by, no matter how it may be designed, i.e. whether it consists of extruded profiles, sheet metal profiles, sheet metal blanks or cast iron, to form out of round, i.e. polygonal in cross-section according to the number of longitudinal ribs, and to remove the protrusions projecting beyond the circular cross-sectional shape and then on them Pipe pull shrink or press on the steel sheet cylinder, which is thus in thermal contact with the cylindrical strip sections of the pipe pull under the areas of the longitudinal fin feet. On the one hand, the cutting work and the cutting waste are reduced, and on the other hand, it ensures that there is direct thermal contact in the areas of the highly stressed longitudinal rib feet, while the areas located between the longitudinal rib feet and which are particularly susceptible to condensation are, as it were, hollow, with respect to the shrunk-on or pressed-on cylinder accordingly can not cool so quickly. As far as the "out-of-roundness" or the protrusions on the tube drawing body are concerned, they only move in the millimeter range and the column of the tube drawing wall between the fin feet and the cylinder in the fraction of a millimeter.

Insbesondere bei Ausbildung des Rohrzuges aus Strang­preßprofilen oder aus Guß können die Überstände des Rohrzuges auch als längsrippenartige Vorsprünge mit in bezug auf die Rohrzugwandstärke geringer Höhe ausgebildet sein. Unter "geringer Höhe" ist hierbei eine Höhe ebenfalls nur in der Größenordnung eines Millimeters oder Bruchteilen eines Milli­meters zu verstehen.In particular when the tube train is formed from extruded profiles or from cast iron, the protrusions of the tube train can also be designed as longitudinal rib-like projections with a small height in relation to the tube wall thickness. “Low height” is also to be understood as a height of the order of a millimeter or fractions of a millimeter.

Sofern der Rohrzug aus zusammengesetzten Stahlblechstreifen oder aus einem mit Faltrippen versehenen Blechzuschnitt be­steht, werden die Überstände im wesentlichen aus den die Stahlblechstreifen oder die Füße der Faltrippen verbindenen Längsschweißnähten gebildet. Um hierbei zylindrische Kon­taktflächenlängsstreifen am Rohrzug zu erreichen, ist es also nicht notwendig in Rücksicht auf die zylindrische Überarbei­ tung Bleche mit größerer Stärke zu benutzen. Um die zy­lindrisch zu überarbeitenden Kontaktflächenbereiche in bezug auf die Überarbeitung zu exponieren, werden die Zwischen­bereiche zwischen den Rippenfüßen bezogen auf einen Kreisbo­gen und im Querschnitt gesehen, im wesentlichen sich sekan­tial erstreckend ausgebildet. Dies ist problemlos beim Ab­kröpfvorgang der Blechstreifen bzw. des Faltvorganges eines Blechzuschnittes zu bewerkstelligen.If the pipe run consists of composite sheet steel strips or a sheet metal blank provided with folding ribs, the protrusions are essentially formed from the longitudinal weld seams connecting the sheet steel strips or the feet of the folding ribs. In order to achieve cylindrical longitudinal contact surface strips on the pipe run, it is therefore not necessary with regard to the cylindrical overwork tion to use thicker sheets. In order to expose the contact surface areas to be cylindrically reworked with respect to the reworking, the intermediate areas between the fin feet are designed to extend essentially secantially with respect to a circular arc and in cross section. This can easily be accomplished during the cranking process of the sheet metal strips or the folding process of a sheet metal blank.

Ebenso problemlos ist dabei eine Ausbildung des Heizkessels derart bewerkstelligbar, daß im insbesondere kondensatkriti­schen, abzugsseitigen Bereich des Rohrzuges zwischen diesem und dem Zylinder ein Spalt angeordnet ist, in dessen Bereich sich Rohrzug und Zylinder in bezug auf den Gesamtumfang kon­taktfrei gegenüberstehen. Dafür wird die eine und/oder andere Wand des Rohrzuges und/oder des Zylinders im Spaltbereich in bezug auf die zylindrische Berührungsfläche von Rohrzug und Zylinder nach innen bzw. nach außen geringfügig zurückgenom­men angelegt.It is equally easy to design the boiler in such a way that a gap is arranged between the pipe and the cylinder in the condensate-critical, exhaust-side area of the pipe pull, in the area of which the pipe pull and cylinder face each other with respect to the entire circumference without contact. For this purpose, the one and / or other wall of the pipe run and / or the cylinder in the gap area with respect to the cylindrical contact surface of the pipe run and cylinder is laid back slightly inwards or outwards.

Der erfindungsgemäße Heizkessel wird nachfolgend anhand der zeichnerischen Darstellung von Ausführungsbeispielen näher erläutert.The boiler according to the invention is explained in more detail below with reference to the drawing of exemplary embodiments.

Es zeigt schematisch

  • Fig. 1 einen Längsschnitt durch einen Heizkessel der hier interessierenden Bauart;
  • Fig. 2-4 im Querschnitt verschiedene Ausführungsformen des Rohrzuges;
  • Fig. 5,6 Teilschnitte durch besondere Rohrzuggestaltungen und
  • Fig. 7 einen Längsschnitt durch den insbesondere konden­satkritischen, abzugsseitigen Bereich des Rohrzu­ges.
It shows schematically
  • 1 shows a longitudinal section through a boiler of the type of interest here.
  • Fig. 2-4 in cross section different embodiments of the pipe train;
  • Fig. 5.6 partial sections through special tube designs and
  • Fig. 7 shows a longitudinal section through the condensate-critical area of the pipe run, in particular the condensate.

Der Heizkessel besteht, wie aus Fig. 1 ersichtlich, aus einem wasserführenden Gehäuse 1, das von einem aus mindestens einem Teil gebildeten, die Heiz- und Rauchgase führenden Räume 2 umschließenden Rohrzug 3 durchgriffen ist. Dieser Rohrzug 3 weist gasseitig nach innen ragende Längsrippen 4 auf, zwi­schen denen die topfförmig ausgebildete Brennkammer 19 einge­schoben ist. Die den Rohrzug 3 umgebende Hülle umfaßt den Rohrzug in Form eines Stahlblechzylinders 11, der flüssig­keitsdicht in den Durchgriffsbereichen mit der Vorder- und Rückwand 20 des Gehäuses 1 verbunden ist. Dieser insoweit be­kannte Heizkessel ist nun dahingehend ausgebildet, daß der in seiner Grundform im wesentlichen zylindrische Rohrzug 3 be­züglich seines Außenumfanges unrund ausgebildet ist und die über die Kreisquerschnittsform ragenden Überstände 9 (siehe Fig. 5, 6) im Bereich der Längsrippenfüße 10 zylindrisch aus­gebildet sind und daß auf den Rohrzug 3 der Stahlblechzylin­der 11 aufgeschrumpft oder ausgepreßt ist, der in den Berei­chen der Längsrippenfüße 10 mit den zylindrischen Streifenab­schnitten 12 des Rohrzuges 3 in Wärmeleitkontakt steht. Da­durch kann die zu den Rippenfüßen 10 aus den Längsrippen 4 fließende große Wärmemenge direkt über Kontaktflächenbereiche auf den wassergekühlten Stahlblechzylinder 11 übertragen wer­den, während die Wärmeübertragung aus den Zwischenbereichen 15 nicht auf direktem Wege in den Stahlblechzylinder 11 und damit an das Wasser übertragen werden kann, da die Zwischen­bereiche 15 zwischen den Rippenfüßen mit dem Stahlblechzy­linder 11 kleine Spalte 21 begrenzen und sich dort kontakt­frei gegenüberstehen.The boiler consists, as can be seen from FIG. 1, of a water-carrying housing 1, which is penetrated by a pipe 3 formed from at least one part and enclosing the heating and flue gas spaces 2. This pipe train 3 has longitudinal ribs 4 projecting inwards on the gas side, between which the cup-shaped combustion chamber 19 is inserted. The casing surrounding the pipe run 3 comprises the pipe run in the form of a sheet steel cylinder 11, which is connected to the front and rear walls 20 of the housing 1 in the penetration areas in a liquid-tight manner. This boiler, which is known to this extent, is now designed in such a way that the basic shape of the tubular pipe 3, which is essentially cylindrical, is non-circular with respect to its outer circumference, and the protrusions 9 projecting beyond the circular cross-sectional shape (see FIGS. 5, 6) are cylindrical in the area of the longitudinal rib feet 10 that the steel sheet cylinder 11 is shrunk or pressed onto the pipe run 3 and is in thermal contact with the cylindrical strip sections 12 of the pipe run 3 in the regions of the longitudinal fin feet 10. As a result, the large amount of heat flowing to the rib feet 10 from the longitudinal ribs 4 can be transferred directly to the water-cooled steel sheet cylinder 11 via contact surface areas, while the heat transfer from the intermediate areas 15 cannot be transferred directly to the steel sheet cylinder 11 and thus to the water, since limit the intermediate areas 15 between the fin feet with the steel sheet cylinder 11 small gaps 21 and face each other there without contact.

Für den Rohrzug 3 können die verschiedensten Ausfuh­rungsformen zur Anwendung kommen, wie sie bspw. in den Fig. 2 - 4 dargestellt sind, d.h., es kann sich um einen Rohrzug handeln, der aus mehreren mit nach innen gerichteten Längs­rippen 4 versehenen Strangpreßprofilen 5 gemäß Fig.2 besteht, die bspw. zu 4 oder 5 Stück zusammengesetzt und längsver­schweißt den Rohrzug bilden. Der Rohrzug kann aber auch aus einem Gußkörper 8 bestehen, der sich im Schnitt praktisch ge­nauso darstellt wie der Rohrzug aus Strangpreßprofilen gemäß Fig. 2 nur mit dem Unterschied, daß dieser nicht aus mehreren Strangpreßprofilteilen zusammengesetzt ist, sondern ein Teil bildet. Ferner ist es möglich, den Rohrzug aus mehreren, mit zu Längsrippen 4 nach innen abgekröpften Stahlblechstreifen 6 gemäß Fig. 3 zusammenzusetzen oder diesen aus einem mit nach innen gerichteten und gefalteten Längsrippen 4 versehenen Blechzuschnitt 7 zu bilden, wie dies aus Fig. 4 ersichtlich ist. Diese Ausbildungsformen von Rohrzügen sind an sich be­kannt. Die Maßgabe, daß diese Rohrzüge 3 unrund sein sollen, ist dabei so zu verstehen, daß der Rohrzug in seiner Grund­form einerseits im wesentlichen zylindrisch ist, andererseits diese zylindrische Grundform aber im Bereich der Rippenfüße 10 die vorerwähnten Überstände aufweist, wobei dann nur diese die Kreisquerschnittsform überragenden Überstände mit ent­sprechend geringfügiger Spanabtragung abgetragen werden. Diese Form läßt sich bei Strangpreßprofilen bzw. Gußkörpern gemäß Fig. 2 ohne weiteres von der Formgebung her vorgeben und bei den beiden anderen möglichen Ausführungsformen nach den Fig. 3, 4 ist dies ohne weiteres und problemlos dadurch zu bewerkstelligen, daß man die Zwischenbereiche 15 zwischen den Rippenfüßen 10 gerade beläßt, d.h., diese Zwischenberei­che 15 erstrecken sich, bezogen auf den Kreisquerschnitt 12 sekantial, wie dies besser aus den Fig. 5, 6 ersichtlich ist. Wie links unten in Fig. 2 angedeutet, ist es insbesondere bei Ausbildung des Rohrzuges 3 aus Strangpreßprofilen 5 oder aus einem Gußkörper 8 auch möglich, die Überstände 9 des Rohrzu­ges 3 als längsrippenartige Vorsprünge 13 mit in bezug auf die Rohrzugwandstärke geringer Höhe auszubilden. Bei den an­deren Ausführungsformen, bei denen der Rohrzug 3 aus Stahl­bechstreifen 6 oder aus einem gefalteten Blechzuschnitt 7 ge­bildet ist, ergeben sich die Überstände 9 gewissermaßen zwangsläufig durch die Längsschweißnähte 14, mit denen die Blechstreifen 6 bzw. die Füße der eingefalteten Längsrippen 4 verbunden sind. Auf diese im Bereich der Überstände 9 zy­lindrisch überarbeiteten Rohrzüge wird dann nach zylindri­scher Überarbeitung der Schweißnähte 14 der bezüglich seines Innendurchmessers entsprechend bemessene Stahlbechzylinder 11 mit geeigneten Mitteln bzw. Maßnahmen aufgeschrumpft oder aufgepreßt, wobei sich einerseits die einem direkten Wärme­übergang zugänglichen Kontaktflächenstreifen im Bereich der Rippenfüße 10 und andererseits die Spalten 21 ergeben.A wide variety of embodiments can be used for the pipe run 3, as shown, for example, in FIGS. 2-4, ie it can be a pipe run act, which consists of a plurality of extruded profiles 5 according to FIG. 2 provided with inwardly directed longitudinal ribs 4, which, for example. Assembled into 4 or 5 pieces and longitudinally welded to form the tube train. The pipe run can also consist of a cast body 8, which is practically the same in section as the pipe run made of extruded profiles according to FIG. 2 only with the difference that it is not composed of several extruded profile parts, but forms part. It is also possible to assemble the tube train from a plurality of sheet steel strips 6 bent inwards to form longitudinal ribs 4 as shown in FIG. 3, or to form it from a sheet metal blank 7 provided with inwardly directed and folded longitudinal ribs 4, as can be seen in FIG. 4 . These types of training for pipe runs are known per se. The requirement that these pipe runs 3 should be out of round is to be understood in such a way that the pipe run is essentially cylindrical in its basic form on the one hand, but on the other hand this cylindrical basic form has the above-mentioned protrusions in the area of the fin feet 10, in which case only this has the circular cross-sectional shape outstanding protrusions are removed with correspondingly small chip removal. This shape can be specified in the case of extruded profiles or castings according to FIG. 2 without any problems from the shape and in the two other possible embodiments according to FIGS. 3, 4 this can be accomplished easily and without problems by having the intermediate regions 15 between leaves the rib feet 10 straight, ie, these intermediate regions 15 extend secantially with respect to the circular cross section 12, as can be seen better from FIGS. 5, 6. As indicated at the bottom left in FIG. 2, it is also possible, in particular when the tube train 3 is formed from extruded profiles 5 or from a cast body 8, to form the protrusions 9 of the tube train 3 as longitudinal rib-like projections 13 with a small height in relation to the tube wall thickness. In the other embodiments, in which the pipe pull 3 is formed from steel sheet strips 6 or from a folded sheet metal blank 7, the projections 9 result to a certain extent inevitably through the longitudinal weld seams 14, with which the sheet metal strips 6 or the feet of the folded longitudinal ribs 4 are connected. Then, after cylindrical welding of the weld seams 14, the tubular steel cylinder 11, which has been correspondingly dimensioned with respect to its inner diameter, is shrunk or pressed onto these tube passes, which have been reworked cylindrically in the area of the projections 9, with suitable means or measures, the contact surface strips in the region of the fin feet 10, on the one hand, being accessible for direct heat transfer and on the other hand columns 21 result.

Im eigentlichen, kondensatkritischen, abzugsseitigen Bereich 16 (siehe Fig. 1 und 7) kann dabei zwischen dem Rohrzug 3 und dem Zylinder 11 ein Spalt 17 angeordnet sein, in dessen Be­reich sich Rohrzug 3 und Zylinder über den gesamten Umfang kontaktfrei gegenüberstehen. Dies ist einfach dadurch zu ver­wirklichen, daß die eine und/oder andere Wand des Rohrzuges 3 und/oder des Zylinders 11 im Spaltbereich 17′ in bezug auf die zylindrischen Berührungsflächen 18 von Rohrzug 3 und Zy­linder 11 geringfügig nach innen bzw. nach außen zu­rückgenommen ausgebildet ist.In the actual condensate-critical area 16 on the fume cupboard side (see FIGS. 1 and 7), a gap 17 can be arranged between the pipe line 3 and the cylinder 11, in the area of which the pipe line 3 and the cylinder face each other without contact over the entire circumference. This can be easily achieved in that the one and / or other wall of the tube 3 and / or the cylinder 11 in the gap region 17 'with respect to the cylindrical contact surfaces 18 of the tube 3 and cylinder 11 is slightly withdrawn inwards or outwards is.

Claims (6)

1. Heizkessel, bestehend aus einem wasserführenden Gehäuse (1), das von einem aus mindestens einem Teil gebildeten, die Heiz- und Rauchgase führenden Räume (2) umschließen­den mit nach innen gerichteten Längsrippen (4) verse­henen Rohrzug (3) durchgriffen ist,
dadurch gekennzeichnet,
daß der Rohrzug (3) an seinem Außenumfang in den Bereich der Längsrippenfüße (10) mit zylindrischen, sich paral­lel zur Längsachse (2′) erstreckenden Streifenabschnit­ten (12) versehen ist, und daß auf den Rohrzug (3) ein Stahlblechzylinder (11) aufgeschrumpft oder aufgepreßt ist, der mit den Streifenabschnitten (12) in Wärmeleit­kontakt steht.
1. Boiler, consisting of a water-carrying housing (1), which is penetrated by a tube (3) provided with at least one part and enclosing the heating and flue gas spaces (2) and having inwardly directed longitudinal ribs (4),
characterized,
that the pipe run (3) is provided on its outer circumference in the region of the longitudinal rib feet (10) with cylindrical, parallel to the longitudinal axis (2 ') extending strip sections (12), and that a sheet steel cylinder (11) shrunk onto the pipe run (3) or is pressed on, which is in thermal contact with the strip sections (12).
2. Heizkessel nach Ansprucz 1 mit einem Rohrzug (3) aus Strangpreßprofilen (5) oder als Gußkörper (8), daß die Überstände des Rohrzuges (3) als längs-rippenar­tige Vorsprünge (13) mit in bezug auf die Rohrzugwand­stärke geringer Höhe ausgebildet sind (Fig. 2).2. Boiler according to claim 1 with a pipe run (3) made of extruded profiles (5) or as a cast body (8) that the protrusions of the pipe run (3) are formed as longitudinal rib-like projections (13) with a small height in relation to the pipe wall thickness (Fig. 2). 3. Heizkessel nach Anspruch 1 mit einem Rohrzug (3) aus zu­sammengesetzten Stahlblechstreifen (6) oder aus einem mit Faltrippen versehenen Blechzuschnitt,
dadurch gekennzeichnet,
daß die Überstände im wesentlichen aus den die Stahl­ blechstreifen (6) oder die Füße (10) der Faltrippen (4′) verbindenden Längsschweißnähten (14) gebildet sind.
3. Boiler according to claim 1 with a pipe pull (3) made of composite sheet steel strips (6) or from a sheet metal blank provided with folding ribs,
characterized,
that the supernatants essentially consist of the steel Sheet metal strips (6) or the feet (10) of the folding ribs (4 ') connecting longitudinal weld seams (14) are formed.
4. Heizkessel nach Anspruch 2 oder 3,
dadurch gekennzeichnet,
daß die Zwischenbereiche (15) zwischen den Rippenfüßen (10), bezogen auf einen Kreisbogen und im Querschnitt gesehen, im wesentlichen sich sekantial erstreckend aus­gebildet sind.
4. Boiler according to claim 2 or 3,
characterized,
that the intermediate areas (15) between the rib feet (10), based on a circular arc and seen in cross section, are essentially secantially extending.
5. Heizkessel nach einem der Ansprüche 1 bis 4
dadurch gekennzeichnet,
daß im kondensatkritischen, abzugsseitigen Bereich (16) des Rohrzuges (3) zwischen diesem und dem Zylinder (11) ein Spalt (17) angeordnet ist, in dessen Bereich sich Rohrzug (3) und Zylinder (11) kontaktfrei gegenüberste­hen.
5. Boiler according to one of claims 1 to 4
characterized,
that in the condensate-critical area (16) of the pipe run (3) between the pipe and the cylinder (11) there is a gap (17) in the area of which the pipe run (3) and the cylinder (11) face each other without contact.
6. Heizkessel nach Anspruch 5,
dadurch gekennzeichnet,
daß die eine und/oder andere Wand des Rohrzuges (3) und/oder des Zylinders (11) nach innen bzw. nach außen zurückgenommen ausgebildet ist.
6. A boiler according to claim 5,
characterized,
that the one and / or other wall of the tube train (3) and / or the cylinder (11) is designed to be withdrawn inwards or outwards.
EP90104063A 1989-03-11 1990-03-02 Heater Expired - Lifetime EP0387627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90104063T ATE92610T1 (en) 1989-03-11 1990-03-02 BOILER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3907950 1989-03-11
DE3907950A DE3907950A1 (en) 1989-03-11 1989-03-11 BOILER

Publications (3)

Publication Number Publication Date
EP0387627A2 true EP0387627A2 (en) 1990-09-19
EP0387627A3 EP0387627A3 (en) 1991-05-15
EP0387627B1 EP0387627B1 (en) 1993-08-04

Family

ID=6376120

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90104063A Expired - Lifetime EP0387627B1 (en) 1989-03-11 1990-03-02 Heater

Country Status (4)

Country Link
EP (1) EP0387627B1 (en)
AT (1) ATE92610T1 (en)
DE (2) DE3907950A1 (en)
ES (1) ES2044272T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628774A1 (en) * 1993-06-11 1994-12-14 VIESSMANN WERKE GmbH &amp; CO. Heater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9308702U1 (en) * 1993-06-11 1993-08-19 Viesmann Hans Dr boiler
DE9310296U1 (en) * 1993-07-10 1994-11-10 Viesmann Hans Dr Boiler component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3418921A1 (en) * 1984-05-21 1985-11-28 Hans Dr.h.c. 3559 Battenberg Vießmann Heating boiler for liquid or gaseous fuels

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3222944C1 (en) * 1982-06-18 1987-11-12 Stahl- und Apparatebau Josef Schuster, 8783 Hammelburg Internally ribbed tube for central heating boilers - consists of welded rolled or bevelled profiles of T=shape, or U=shape

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3418921A1 (en) * 1984-05-21 1985-11-28 Hans Dr.h.c. 3559 Battenberg Vießmann Heating boiler for liquid or gaseous fuels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628774A1 (en) * 1993-06-11 1994-12-14 VIESSMANN WERKE GmbH &amp; CO. Heater

Also Published As

Publication number Publication date
DE59002139D1 (en) 1993-09-09
ATE92610T1 (en) 1993-08-15
DE3907950A1 (en) 1990-09-13
ES2044272T3 (en) 1994-01-01
EP0387627B1 (en) 1993-08-04
EP0387627A3 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
EP0576963B1 (en) Residual heat exchanger for mounting in the boiler casing
DE2613186C3 (en) Heating boilers for liquid or gaseous fuels
DE2308480A1 (en) HEAT EXCHANGER
EP0387627B1 (en) Heater
DE2552388C3 (en) Heating boilers for liquid or gaseous fuels
EP0120435B1 (en) Shape of fuel gas passages in boilers
DE3205119C2 (en) Heating boilers for liquid or gaseous fuels
EP0430061B1 (en) Boiler
DE3819071C1 (en)
EP0662592B1 (en) Three-pass boiler
DE2856338A1 (en) Liq. or gaseous fuel fired boiler - has sheet metal flue sections with central web and opposite obtuse flanges
EP0387584A2 (en) Heating gas draft tube
DE1679452C (en) Heating boilers, in particular for liquid or gaseous fuels
DE2620168B2 (en) Heating boilers for liquid and gaseous fuels
EP0168024A2 (en) Heater for liquid or gaseous combustibles, especialy for high-capacity purposes
DE2819145C2 (en) Fireplace insert
EP0331141B1 (en) Boiler
DE3612909A1 (en) Heating boiler
DE3310098A1 (en) Heating boiler
EP0724121A1 (en) Furnace
DE1804020A1 (en) Boiler for hot water heating
DE2036012A1 (en) Radiator section, in particular for gas heating with water as the heat carrier
DE3521043A1 (en) Furnace, in particular heating boiler
DE1679452B1 (en) Boilers, especially for liquid or gaseous fuels
DE1990351U (en) Smoke, gas or flame pipe or the like, especially in boilers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19910730

17Q First examination report despatched

Effective date: 19920206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 92610

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59002139

Country of ref document: DE

Date of ref document: 19930909

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2044272

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990225

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990303

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990315

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990331

Year of fee payment: 10

Ref country code: FR

Payment date: 19990331

Year of fee payment: 10

Ref country code: DE

Payment date: 19990331

Year of fee payment: 10

Ref country code: AT

Payment date: 19990331

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000302

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000331

BERE Be: lapsed

Owner name: VIESSMANN HANS

Effective date: 20000331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000302

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050302