EP0384829B1 - Multicolour electroluminescent flat panel display having a memory effect - Google Patents

Multicolour electroluminescent flat panel display having a memory effect Download PDF

Info

Publication number
EP0384829B1
EP0384829B1 EP90400462A EP90400462A EP0384829B1 EP 0384829 B1 EP0384829 B1 EP 0384829B1 EP 90400462 A EP90400462 A EP 90400462A EP 90400462 A EP90400462 A EP 90400462A EP 0384829 B1 EP0384829 B1 EP 0384829B1
Authority
EP
European Patent Office
Prior art keywords
screen according
filters
flat screen
layer
electroluminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90400462A
Other languages
German (de)
French (fr)
Other versions
EP0384829A1 (en
Inventor
Pascal Thioulouse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0384829A1 publication Critical patent/EP0384829A1/en
Application granted granted Critical
Publication of EP0384829B1 publication Critical patent/EP0384829B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/088Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements using a non-linear two-terminal element
    • G09G2300/0885Pixel comprising a non-linear two-terminal element alone in series with each display pixel element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • the present invention relates to a flat screen polychrome electroluminescent memory effect usable in the field of optoelectronics for the color display of complex images or for the color display of alphanumeric characters.
  • a display device is said to have a memory effect if its electro-optical characteristic (luminance-voltage curve) exhibits hysteresis. For the same voltage located inside the hysteresis loop, the device can thus have two stable states: off or on.
  • a memory effect display to display a still image, it suffices to apply simultaneously and continuously to the entire screen a so-called maintenance voltage.
  • the latter can be a sinusoidal signal or in the form of slots for example, but above all, the form and frequency of this maintenance signal can be chosen independently of the complexity of the screen, in particular the number of lines of dots. display. There is therefore in principle no limit to the complexity of a memory effect display screen.
  • bistable plasma screens with alternating excitation of 1200x1200 image points (pixels).
  • ACTFEL thin-film electroluminescence display with capacitive coupling
  • PC-EL memory effect the principle of which is as follows.
  • the photoconductive material When the device is in the off state, the photoconductive material is not very conductive and retains a significant part of the voltage V applied to the assembly. If one increases V to a value Von such that the voltage present at the terminals of the electroluminescent structure exceeds the electroluminescence threshold, the PC-EL device switches to the on state. The photoconductive material is then illuminated by the electroluminescent structure and goes into the conductive state. The voltage across its terminals drops and this results in an increase in the voltage available for the electroluminescent structure. To switch off a PC-EL device, it suffices to decrease the total voltage V to a value Voff lower than Von: this gives a luminance-voltage characteristic comprising a hysteresis.
  • FIG. 1 This structure is shown diagrammatically in FIG. 1. It comprises a glass substrate 10 on which are deposited an electrode 12, a first dielectric layer 14, an electroluminescent layer 16, a second dielectric layer 18, a photoconductive layer 20, a third layer dielectric 21 and finally an electrode 22.
  • the electrodes 12 and 22 are connected to an alternating voltage source 24.
  • the layers PC and EL are thin layers, the thickness of which is of the order of a micrometer.
  • Such a structure is simple to produce because it does not require additional etching steps. Furthermore, the current-voltage behavior of the thin layer photoconductor in the dark is highly non-linear and reproducible. The beneficial consequences are that the electrical ignition of the device is always easy, that the hysteresis depends only slightly on the excitation frequency and that the reproducibility of the hysteresis margin from one manufacturing to another is guaranteed. .
  • the first solution explored intensively for obtaining polychrome screens consists in developing an electroluminescent phosphor with emission spectrum covering at least red, green and blue and called “white” phosphor, and in combining it with a mosaic of colored filters. to produce the red, green or blue emission pixels, in a manner analogous to polychrome liquid crystal screens.
  • This solution is described in particular in the article by C. Brunel and N. Duruy, Opto, n ° 43, March-April 1988, pp. 30-35, "Color in electroluminescent flat screens"
  • the luminance obtained for such polychrome screens is an order of magnitude lower than the levels required for the applications, due to the performance insufficient white phosphorus.
  • Document FR-A-2362552 also discloses a color screen resulting from the association of a screen emitting in white using a three-color electroluminescent mixture, and red, green and blue chromatic filters.
  • the second solution consists in using a first substrate comprising EL layers which is made transparent or semi-transparent by an appropriate choice of rear electrodes.
  • a second so-called “inverted” substrate is associated, equipped with layers E1 and transparent rear electrodes.
  • the first structure is monochrome or bichrome, and the second structure is monochrome and is complementary to the first.
  • a two-color or three-color display device is thus obtained.
  • This solution is described in the article by Brunel and Duruy above and in the article by Christopher N. King et al., "Full-color 320x240 TFEL display panel", p. 14-17, Eurodisplay, London 15-17 September 1987.
  • This structure is relatively complex.
  • the luminance is low for the intended applications and the voltages and electric currents used are relatively high.
  • the subject of the invention is therefore a flat polychrome electroluminescent display screen with memory effect, in particular making it possible to remedy these drawbacks.
  • the flat polychrome display screen comprises, on an insulating substrate defining one of the faces of the screen, a single electroluminescent layer and at least one photoconductive layer, these layers being stacked one on the other. , the assembly of these two layers being interposed between a first system of transparent electrodes and a second system of electrodes, connected to electrical means to excite certain zones of the light-emitting layer, and is characterized in that the light-emitting layer is consisting of a white phosphor and in that at least two series of colored filters are interposed between the light-emitting layer and the observer.
  • white phosphorus is meant an electroluminescent material emitting at least in blue, red and green.
  • the polychrome screen of the invention thanks to the combination of white phosphorus and one or more photoconductive layers, has a high luminance.
  • the PC-EL memory effect makes it possible to increase the excitation frequency of white phosphorus, regardless of the complexity of the screen, for example from 60 Hz to 1 kHz.
  • the screen of the invention is then compatible with all the applications envisaged.
  • the filters of the invention have not only the known role of "coloring" the emission of each pixel but also the advantage of significantly reducing the light intensity of the ambient lighting incident on the PC layer and therefore of avoiding 'accidental lighting of some pixels which are normally off; the hysteresis is then practically insensitive to any ambient light.
  • the most used photoconductive materials for PC-EL structures are CdS x Se 1-x , a-Si 1-x C x : H with x between 0 and 1, CdS, CdSe and a-Si: H.
  • the photoconductive structure with a broad sensitivity spectrum is preferred in order to ensure maximum overlap of this sensitivity spectrum with the emission spectrum of white phosphorus, it is possible to use a single photoconductive material with narrow sensitivity spectrum.
  • the photoconductive material must be chosen so that its sensitivity spectrum is located in the range of wavelengths where the light emitting emission is the most intense, compared to ambient lighting.
  • Adjustable spectrum photoconductive materials such as CdS x Se 1-x and a-Si 1-x C x : H are quite suitable in this case.
  • This material is preferably deposited by the low-power plasma-assisted chemical vapor deposition (PECVD) technique (around 0.1 W / cm2).
  • PECVD low-power plasma-assisted chemical vapor deposition
  • a-Si 1-x C x : H is used with 0 ⁇ x ⁇ 1 and for example 0 ⁇ x ⁇ 0.5.
  • a characteristic of the photoconductivity spectrum of this material is the energy E04 (in eV) for which the absorption coefficient is 104cm ⁇ 1.
  • the sensitivity of the photoconductive material also drops because the radiation is absorbed in all the first layers of the photoconductive layer and photoconduction, sought in the direction normal to the plane of the layers (electrical excitation is prevented because the core of the photoconductive material is not exposed to excitation radiation.
  • the photosensitivity spectrum resulting from a-Si 1-x C x : H, for a layer with a thickness of 1 micrometer, is a wide peak whose width at mid-height is approximately 50 nanometers and whose maximum is E04.
  • the width at half height corresponds to the distance separating the low and high cutoff thresholds from the PC material.
  • the white phosphors which can be used in the invention are those given in the article by Shosaku Tanaka cited above and in the article by Yoshio Abe "Multi-color electroluminescent devices utilizing SrS: Pr, Ce phosphor layers and color filters" to be published in the "Proceedings of the 4th International Workshop on Electroluminescence, Tottori 1988".
  • the following two white phosphors are used because of their increased performance: SrS: Ce, K, Eu and SrS: Pr, Ce.
  • the colored filters which can be used in the invention must have their transmission spectrum and their coloring spectrum adapted to the emission spectrum of the white phosphorus chosen to obtain the purest red, green and blue components possible.
  • the colored filters can be interference filters. These filters make it possible to obtain low pass, high pass and band pass spectra with arbitrary cut-off wavelengths. In addition, they exhibit a brutal spectral transition from the state passing to blocking as well as a great chemical and thermal stability. On the other hand, these filters are often expensive. Also, when possible, colored glasses or organic filters are used instead.
  • Organic filters are in particular those used for polychrome liquid crystal screens such as polymer (or gelatin) layers loaded with dyes or organic pigments; polyimide layers with dyes; organic pigments or dyes evaporated under vacuum: perylene (red), lead phthalocyanine (blue), phthalocyanine copper (green), quinacridone (magenta), isoindolinone (yellow); electroplated pigments.
  • polychrome liquid crystal screens such as polymer (or gelatin) layers loaded with dyes or organic pigments; polyimide layers with dyes; organic pigments or dyes evaporated under vacuum: perylene (red), lead phthalocyanine (blue), phthalocyanine copper (green), quinacridone (magenta), isoindolinone (yellow); electroplated pigments.
  • all known electrode systems for display can be used.
  • one of the electrode systems can consist of point electrodes and the other system consists of a common electrode.
  • the electrode systems each consist of conductive strips parallel to each other, the conductive strips of the first system being crossed relative to the conductive strips of the second system.
  • the device of the invention can operate in reflection or in transmission.
  • one or two of the electrode systems may be transparent.
  • FIG. 2 schematically represents an embodiment of the display device according to the invention.
  • FIG. 3 gives the appearance of the sensitivity and emission spectra which the photoconductive and electroluminescent layers must have, as well as the transmission spectrum of the filters of the device of FIG. 2.
  • FIGS 4 and 5 show alternative embodiments of the device according to the invention.
  • the device according to the invention comprises a first electrode system consisting of conductive strips 30, parallel to each other. These conductive strips 30 are generally reflective and made of aluminum. These electrodes 30 are arranged on a photoconductive layer 32 in a-Si 1-x C x : H, with 0 ⁇ x ⁇ 1, 1 micrometer thick covering an electroluminescent structure consisting of a single emitting layer 34, as shown in the Figure 2, or associated with one or more dielectric layers, as shown in Figure 1 or in document FR-A-2 574 972.
  • the electroluminescent material is in particular one of those mentioned above; its thickness is between 0.5 and 2 micrometers (typically 0.7 m).
  • the dielectric layers 14, 18, 21 possibly associated with the material El can be made of one of the materials chosen from Si3N4, SiO2, SiO x N y , Ta2O5 and have a thickness of 200 nm.
  • the second electrode system 36 consisting of conductive strips parallel to each other and made of a transparent ITO material for example, the electrodes 36 being arranged pependicularly to the electrodes 30.
  • the second system of electrodes 36 is supported by an insulating substrate 38 generally made of glass, provided on its internal face with three series 40, 41, 42 of colored filters respectively red, green and blue.
  • the observation of the display is made by the rear face of the device, that is to say on the side of the substrate 38.
  • the ambient lighting strikes the device on the side of the substrate (white lamp 43 for example) .
  • the filters 40, 41, 42 of the device of the invention allow filtering of the light intensity of the ambient lighting (lamp 43 for example) while coloring the electroluminescent emission of layer 34.
  • These filters are for example in the form of strips parallel to each other and to one of the electrode systems 30 or 36, the red filters 40, green 41 and blue 42 being alternated.
  • the device according to the invention functions essentially like the polychrome devices of the prior art and in particular by using peripheral control circuits 45 of the kind used in flat liquid crystal screens; these circuits deliver appropriate alternating signals and are connected to electrodes 36 and 30; the oscillation frequency of the control signals is 1 kHz for example, the 0-peak amplitude is 150 to 300 volts (typically 130 volts).
  • the emission spectrum 44 of ambient light and the emission spectrum 46 of a white phosphorus are shown.
  • the transmission spectrum of the filters R (red), green V and blue B is shown.
  • PC broadband photoconductive material
  • the red R, green V and blue B transmission spectra of the color filters are contained in the emission spectrum of white phosphorus.
  • the high cut-off frequencies ⁇ B of the blue filter have been symbolized above which light (ambient + that emitted by white phosphorus) is filtered and below which light is transmitted; the low cut-off frequency ⁇ V1 of the green filter below which the light is blocked; the high cut-off frequency ⁇ V2 of the green filter above which the light is blocked and the low cut-off frequency ⁇ R of the red filter below which the light is blocked.
  • These cut-off wavelengths correspond to 50% of the transmitted light intensity.
  • the photoconductive material can be a photoconductive material with a broad sensitivity spectrum (FIG. 3c) which allows maximum overlap with the emission spectrum of white phosphorus. This corresponds to a low cutoff wavelength of the photoconductor ⁇ 1 close to that ⁇ blanc of the white phosphorus and to a high cutoff wavelength ⁇ 3 of the photoconductor close to that ⁇ 4 of the white phosphorus. ⁇ 04 corresponds to the maximum sensitivity wavelength of the photoconductive material.
  • FOG. 3c broad sensitivity spectrum
  • the photoconductive material can also be a material with a narrow sensitivity spectrum (FIG. 3d), this spectrum then being located in a region where the light intensity of the electroluminescent emission is higher than that of ambient light; the PC spectrum can be located in blue as symbolized by curve 48 or in deep red, as symbolized by curve 50.
  • the wavelengths of low and high cutoffs and maximum sensitivity are respectively ⁇ ′1, ⁇ ′04, ⁇ ′2 and ⁇ ⁇ 1, ⁇ ⁇ 04, ⁇ ⁇ 2 for curves 48 and 50.
  • ⁇ ′2 is chosen less than ⁇ B and conversely ⁇ ⁇ 1 is chosen to be greater than ⁇ R.
  • the different layers constituting the display screen of the invention can be arranged in different ways as shown in Figures 4 and 5.
  • the only requirement is that the filters 40, 41, 42 are arranged between the observer and the electroluminescent layer 34.
  • the filters and electrodes 36 it is possible to reverse the position of the filters and electrodes 36 relative to Figure 2; the colored filters are placed between the second series of electrodes 36 and the electroluminescent structure 34.
  • the filters can be deposited by electrodeposition; they then take the form of strips parallel to the electrodes 36. In order to better see this arrangement, the directions of the electrodes 30 and 36 of FIG. 4 have been reversed with respect to FIG. 2.
  • the corresponding screen is subject to parallax effects unless the substrate is thin, that is to say of the order of 0.1 mm.
  • the two electrode systems it is also possible, as shown in FIG. 5, to reverse the location of the two electrode systems.
  • the observation is made from the front face of the display screen.
  • the filters can be deposited by electrodeposition.
  • the electroluminescent material is a-Si 1-x C x : H, with 0 ⁇ x ⁇ 1.
  • a single layer of photoconductive material having a narrow sensitivity spectrum (FIG. 3d, curve 48), located in blue, is used.
  • the photoconductive material a-Si 1-x C x : H of 1 ”m thickness has a wavelength of maximum sensitivity ⁇ ′04 ⁇ 480 nm (that is to say ⁇ B ) which corresponds at E′04 ⁇ 2.58 eV and therefore at a methane concentration C ⁇ 0.85 and therefore at x ⁇ 0.22.
  • the electroluminescent material is SrS: Ce, K, Eu or SrS: Pr, Ce with a thickness of 1 ”m.
  • Example 2 It differs from Example 1 by the use of a photoconductive material having a narrow sensitivity spectrum located in deep red.
  • This material a-Si 1-x C x : H has a wavelength of maximum sensitivity ⁇ ⁇ 04> 625 nm, that is to say> ⁇ R , which corresponds to E ⁇ 04 ⁇ 2.0 eV and therefore at a concentration C ⁇ 0.30 and at x ⁇ 0.03.
  • the colored filters based on gelatin or on polymer conventionally used are to be discarded since these filters are deposited before the electroluminescent and photoconductive materials, during the manufacture of the screen , and therefore that they undergo restrictive thermal cycles, typically from 150 to 200 ° C; these filters only support temperatures ⁇ 100 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

La présente invention a pour objet un écran plat d'affichage polychrome électroluminescent à effet mémoire utilisable dans le domaine de l'optoélectronique pour l'affichage en couleur d'images complexes ou pour l'affichage en couleur de caractères alphanumériques.The present invention relates to a flat screen polychrome electroluminescent memory effect usable in the field of optoelectronics for the color display of complex images or for the color display of alphanumeric characters.

On dit qu'un dispositif d'affichage est à effet mémoire si sa caractéristique électro-optique (courbe luminance-tension) présente une hystérésis. Pour une même tension située à l'intérieur de la boucle d'hystérésis, le dispositif peut ainsi avoir deux états stables : éteint ou allumé.A display device is said to have a memory effect if its electro-optical characteristic (luminance-voltage curve) exhibits hysteresis. For the same voltage located inside the hysteresis loop, the device can thus have two stable states: off or on.

Les avantages d'un affichage à effet mémoire sont appréciables : pour afficher une image fixe, il suffit d'appliquer simultanément et continûment à tout l'écran une tension dite d'entretien. Cette dernière peut être un signal sinusoïdal ou en forme de créneaux par exemple, mais surtout, la forme et la fréquence de ce signal d'entretien peuvent être choisies indépendamment de la complexité de l'écran, notamment du nombre de lignes de points d'affichage. Il n'y a donc en principe pas de limite à la complexité d'un écran d'affichage à effet mémoire. Ainsi, on trouve sur le marché des écrans à plasma bistable et à excitation alternative de 1200x1200 points image (pixels).The advantages of a memory effect display are appreciable: to display a still image, it suffices to apply simultaneously and continuously to the entire screen a so-called maintenance voltage. The latter can be a sinusoidal signal or in the form of slots for example, but above all, the form and frequency of this maintenance signal can be chosen independently of the complexity of the screen, in particular the number of lines of dots. display. There is therefore in principle no limit to the complexity of a memory effect display screen. Thus, there are on the market bistable plasma screens with alternating excitation of 1200x1200 image points (pixels).

Par ailleurs, la technologie de l'affichage par électroluminescence en couches minces et à couplage capacitif (en abrégé ACTFEL) est maintenant parvenue à maturité dans l'industrie. On peut doter ces dispositifs d'un effet mémoire dit inhérent mais au prix d'une dégradation sensible des performances électro-optiques. Une méthode plus attrayante consiste à connecter une structure photoconductrice (PC) en série avec une structure électroluminescente (EL) et à coupler optiquement ces deux structures.In addition, the technology of thin-film electroluminescence display with capacitive coupling (abbreviated to ACTFEL) has now reached maturity in the industry. These devices can be provided with a so-called inherent memory effect but at the cost of a significant deterioration in electro-optical performance. A more attractive method is connecting a photoconductive structure (PC) in series with an electroluminescent structure (EL) and optically coupling these two structures.

On peut ainsi produire un effet mémoire de type extrinsèque que l'on appelle effet mémoire PC-EL dont le principe est le suivant. Quand le dispositif est dans l'état éteint, le matériau photoconducteur est peu conducteur et retient une partie importante de la tension V appliquée à l'ensemble. Si l'on augmente V jusqu'à une valeur Von telle que la tension présente aux bornes de la structure électroluminescente excède le seuil d'électroluminescence, le dispositif PC-EL bascule dans l'état allumé. Le matériau photoconducteur est alors éclairé par la structure électroluminescente et passe à l'état conducteur. La tension à ses bornes chute et il en résulte une augmentation de la tension disponible pour la structure électroluminescente. Pour éteindre un dispositif PC-EL, il suffit de diminuer la tension totale V jusqu'à une valeur Voff inférieure à Von : on obtient ainsi une caractéristique luminance-tension comportant une hystérésis.It is thus possible to produce a memory effect of the extrinsic type which is called PC-EL memory effect, the principle of which is as follows. When the device is in the off state, the photoconductive material is not very conductive and retains a significant part of the voltage V applied to the assembly. If one increases V to a value Von such that the voltage present at the terminals of the electroluminescent structure exceeds the electroluminescence threshold, the PC-EL device switches to the on state. The photoconductive material is then illuminated by the electroluminescent structure and goes into the conductive state. The voltage across its terminals drops and this results in an increase in the voltage available for the electroluminescent structure. To switch off a PC-EL device, it suffices to decrease the total voltage V to a value Voff lower than Von: this gives a luminance-voltage characteristic comprising a hysteresis.

Une structure PC-EL monochrome a été décrite récemment dans le document FR-A-2 574 972 et dans l'article de l'inventeur intitulé "Monolithic Thin-Film Photoconductor-ACEL Structure with Extrinsic Memory by Optical Coupling" et publié dans IEEE Transactions on Electron Devices, vol. ED-33, n° 8, d'août 1986, pages 1149-1153.A monochrome PC-EL structure has recently been described in document FR-A-2 574 972 and in the inventor's article entitled "Monolithic Thin-Film Photoconductor-ACEL Structure with Extrinsic Memory by Optical Coupling" and published in IEEE Transactions on Electron Devices, vol. ED-33, n ° 8, of August 1986, pages 1149-1153.

Cette structure est représentée schématiquement sur la figure 1. Elle comprend un substrat de verre 10 sur lequel sont déposées une électrode 12, une première couche diélectrique 14, une couche électroluminescente 16, une seconde couche diélectrique 18, une couche photoconductrice 20, une troisième couche diélectrique 21 et enfin une électrode 22. Les électrodes 12 et 22 sont reliées à une source de tension alternative 24. Dans cette réalisation, les couches PC et EL sont des couches minces, dont l'épaisseur est de l'ordre du micromètre.This structure is shown diagrammatically in FIG. 1. It comprises a glass substrate 10 on which are deposited an electrode 12, a first dielectric layer 14, an electroluminescent layer 16, a second dielectric layer 18, a photoconductive layer 20, a third layer dielectric 21 and finally an electrode 22. The electrodes 12 and 22 are connected to an alternating voltage source 24. In this embodiment, the layers PC and EL are thin layers, the thickness of which is of the order of a micrometer.

Une telle structure est simple à réaliser car elle ne nécessite pas d'étapes de gravure supplémentaires. Par ailleurs, le comportement courant-tension du photoconducteur en couche mince dans l'obscurité est fortement non-linéaire et reproductible. Les conséquences bénéfiques en sont que l'allumage électrique du dispositif est toujours aisé, que l'hystérésis ne dépend que faiblement de la fréquence d'excitation et que la reproductibilité de la marge d'hystérésis d'une fabrication à l'autre est garantie.Such a structure is simple to produce because it does not require additional etching steps. Furthermore, the current-voltage behavior of the thin layer photoconductor in the dark is highly non-linear and reproducible. The beneficial consequences are that the electrical ignition of the device is always easy, that the hysteresis depends only slightly on the excitation frequency and that the reproducibility of the hysteresis margin from one manufacturing to another is guaranteed. .

Malheureusement cette structure électroluminescente ne permet qu'un affichage monochrome et il n'existe pas actuellement de dispositifs d'affichage polychrome utilisant l'effet PC-EL.Unfortunately, this electroluminescent structure only allows a monochrome display and there are currently no polychrome display devices using the PC-EL effect.

En effet, les dispositifs électroluminescents à affichage polychrome connus sont de deux types.Indeed, the known electroluminescent devices with polychrome display are of two types.

La première solution explorée intensivement pour l'obtention d'écrans polychromes consiste à développer un phosphore électroluminescent à spectre d'émission couvrant au moins les rouge, vert et bleu et appelé phosphore "blanc', et à le combiner à une mosaïque de filtres colorés pour réaliser les pixels d'émission rouge, verte ou bleue, d'une manière analogue aux écrans polychromes à cristaux liquides. Cette solution est décrite en particulier dans l'article de C. Brunel et N. Duruy, Opto, n° 43, mars-avril 1988, p. 30-35, "La couleur dans les écrans plats électroluminescents". Cependant, la luminance obtenue pour de tels écrans polychromes est inférieure d'un ordre de grandeur aux niveaux requis pour les applications, du fait des performances insuffisantes des phosphores blancs.The first solution explored intensively for obtaining polychrome screens consists in developing an electroluminescent phosphor with emission spectrum covering at least red, green and blue and called "white" phosphor, and in combining it with a mosaic of colored filters. to produce the red, green or blue emission pixels, in a manner analogous to polychrome liquid crystal screens. This solution is described in particular in the article by C. Brunel and N. Duruy, Opto, n ° 43, March-April 1988, pp. 30-35, "Color in electroluminescent flat screens" However, the luminance obtained for such polychrome screens is an order of magnitude lower than the levels required for the applications, due to the performance insufficient white phosphorus.

Des exemples de phosphores blancs ainsi que leurs performances insuffisantes sont donnés dans l'article SID 88 Digest, p. 293-296 de Shosaku Tanaka et al., "Bright white-light electroluminescent devices with new phosphor thin films based on SrS".Examples of white phosphorus and their insufficient performance are given in the article SID 88 Digest, p. 293-296 by Shosaku Tanaka et al., "Bright white-light electroluminescent devices with new phosphor thin films based on SrS".

On connait également par le document FR-A-2362552 un écran couleur résultant de l'association d'un écran émettant dans le blanc à l'aide d'un mélange électroluminescent à trois couleurs, et de filtres chromatiques rouges, verts et bleus.Document FR-A-2362552 also discloses a color screen resulting from the association of a screen emitting in white using a three-color electroluminescent mixture, and red, green and blue chromatic filters.

La seconde solution consiste à utiliser un premier substrat comportant des couches EL qui est rendu transparent ou semi-transparent par un choix approprié d'électrodes arrières. A cette structure, on associe un second substrat dit "retourné" équipé de couches El et d'électrodes arrières transparentes. La première structure est monochrome ou bichrome, et la seconde structure est monochrome et est complémentaire de la première. On obtient ainsi un dispositif d'affichage bichrome ou trichrome. Cette solution est décrite dans l'article de Brunel et Duruy ci-dessus et dans l'article de Christopher N. King et al., "Full-color 320x240 TFEL display panel", p. 14-17, Eurodisplay, Londres 15-17 septembre 1987.The second solution consists in using a first substrate comprising EL layers which is made transparent or semi-transparent by an appropriate choice of rear electrodes. To this structure, a second so-called "inverted" substrate is associated, equipped with layers E1 and transparent rear electrodes. The first structure is monochrome or bichrome, and the second structure is monochrome and is complementary to the first. A two-color or three-color display device is thus obtained. This solution is described in the article by Brunel and Duruy above and in the article by Christopher N. King et al., "Full-color 320x240 TFEL display panel", p. 14-17, Eurodisplay, London 15-17 September 1987.

Cette structure est relativement complexe. En outre, la luminance est faible pour les applications envisagées et les tensions et courants électriques utilisés sont relativement élevés.This structure is relatively complex. In addition, the luminance is low for the intended applications and the voltages and electric currents used are relatively high.

Par ailleurs, l'utilisation d'un dispositif d'affichage monochrome du type PC-EL sous un éclairement ambiant intense peut entralner une dégradation sensible de l'hystérésis PC-EL. En effet, l'éclairement par une source externe intense de la couche photoconductrice peut provoquer une diminution de la tension aux bornes de cette dernière et donc un abaissement de la tension d'allumage. En pratique, cela conduit à un allumage accidentel de certains pixels normalement éteints.In addition, the use of a monochrome display device of the PC-EL type under intense ambient lighting can cause significant degradation of the PC-EL hysteresis. Indeed, the illumination by an intense external source of the photoconductive layer can cause a reduction in the voltage across the latter and therefore a lowering of the ignition voltage. In practice, this leads to an accidental ignition of certain pixels which are normally extinct.

L'invention a donc pour objet un écran plat d'affichage polychrome électroluminescent à effet mémoire permettant notamment de remédier à ces inconvénients.The subject of the invention is therefore a flat polychrome electroluminescent display screen with memory effect, in particular making it possible to remedy these drawbacks.

L'écran plat d'affichage polychrome selon l'invention comprend sur un substrat isolant définissant l'une des faces de l'écran, une seule couche électroluminescente et au moins une couche photoconductrice, ces couches étant empilées l'une sur l'autre, l'ensemble de ces deux couches étant intercalé entre un premier système d'électrodes transparentes et un second système d'électrodes, connectés à des moyens électriques pour exciter certaines zones de la couche électroluminescente, et se caractérise en ce que la couche électroluminescente est constituée d'un phosphore blanc et en ce qu'au moins deux séries de filtres colorés sont interposées entre la couche électroluminescente et l'observateur.The flat polychrome display screen according to the invention comprises, on an insulating substrate defining one of the faces of the screen, a single electroluminescent layer and at least one photoconductive layer, these layers being stacked one on the other. , the assembly of these two layers being interposed between a first system of transparent electrodes and a second system of electrodes, connected to electrical means to excite certain zones of the light-emitting layer, and is characterized in that the light-emitting layer is consisting of a white phosphor and in that at least two series of colored filters are interposed between the light-emitting layer and the observer.

Par phosphore blanc, il faut comprendre un matériau électroluminescent émettant au moins dans le bleu, le rouge et le vert.By white phosphorus is meant an electroluminescent material emitting at least in blue, red and green.

L'écran polychrome de l'invention, grâce à l'association du phosphore blanc et d'une ou plusieurs couches photoconductrices, présente une haute luminance. L'effet mémoire PC-EL permet en effet d'augmenter la fréquence d'excitation du phosphore blanc, indépendamment de la complexité de l'écran, par exemple de 60 Hz à 1 kHz. Avec les phosphores blancs de l'état de l'art (voir article ci-dessus de Shosaku Tanaka), on peut alors atteindre 120 Cd/m² pour la luminance du blanc après filtrage (1 kHz), au lieu de 9 Cd/m² à 60 Hz pour une structure sans couche PC et comportant un phosphore blanc et des filtres colorés (voir article de Brunel et Duruy). L'écran de l'invention est alors compatible avec toutes les applications envisagées.The polychrome screen of the invention, thanks to the combination of white phosphorus and one or more photoconductive layers, has a high luminance. The PC-EL memory effect makes it possible to increase the excitation frequency of white phosphorus, regardless of the complexity of the screen, for example from 60 Hz to 1 kHz. With the white phosphors of the state of the art (see article above from Shosaku Tanaka), we can then reach 120 Cd / m² for the luminance of the white after filtering (1 kHz), instead of 9 Cd / m² at 60 Hz for a structure without a PC layer and comprising a white phosphorus and colored filters (see article by Brunel and Duruy). The screen of the invention is then compatible with all the applications envisaged.

Par ailleurs, pour chaque pixel, seule une faible partie de l'énergie rayonnée par la couche électroluminescente est utilisée pour l'affichage du fait du filtrage (<30%) mais tout le spectre d'émission EL et toute l'énergie émise est exploitable pour l'effet PC-EL. Aussi, est-il préférable de choisir une couche PC à spectre de sensibilité large pour renforcer au maximum l'effet PC-EL.Furthermore, for each pixel, only a small part of the energy radiated by the electroluminescent layer is used for display due to filtering (<30%) but the entire EL emission spectrum and all the emitted energy is exploitable for effect PC-EL. It is therefore preferable to choose a PC layer with a broad sensitivity spectrum to maximize the PC-EL effect.

Les filtres de l'invention ont non seulement le rôle connu de "colorer" l'émission de chaque pixel mais aussi l'avantage de réduire sensiblement l'intensité lumineuse de l'éclairage ambiant incident sur la couche PC et donc d'éviter l'allumage accidentel de certains pixels normalement éteints ; l'hystérésis est alors pratiquement insensible à tout éclairement ambiant.The filters of the invention have not only the known role of "coloring" the emission of each pixel but also the advantage of significantly reducing the light intensity of the ambient lighting incident on the PC layer and therefore of avoiding 'accidental lighting of some pixels which are normally off; the hysteresis is then practically insensitive to any ambient light.

Les matériaux photoconducteurs les plus utilisés pour les structures PC-EL sont CdSxSe1-x, a-Si1-xCx:H avec x compris entre 0 et 1, CdS, CdSe et a-Si:H.The most used photoconductive materials for PC-EL structures are CdS x Se 1-x , a-Si 1-x C x : H with x between 0 and 1, CdS, CdSe and a-Si: H.

Ces matériaux présentent des spectres de sensibilité étroits. Aussi, l'association ou l'empilement de deux (ou plus) matériaux photoconducteurs de composition différente permet d'obtenir une structure photoconductrice à large spectre de sensibilité.These materials have narrow sensitivity spectra. Also, the association or stacking of two (or more) photoconductive materials of different composition makes it possible to obtain a photoconductive structure with a broad sensitivity spectrum.

Bien que l'utilisation d'une structure photoconductrice à spectre de sensibilité large soit préférée afin d'assurer un recouvrement maximal de ce spectre de sensibilité avec le spectre d'émission du phosphore blanc, il est possible d'utiliser un unique matériau photoconducteur à spectre de sensibilité étroit. Dans ce cas, le matériau photoconducteur doit être choisi de façon à ce que son spectre de sensibilité soit situé dans la gamme de longueurs d'onde où l'émission électroluminescente est la plus intense, comparée à l'éclairage ambiant.Although the use of a photoconductive structure with a broad sensitivity spectrum is preferred in order to ensure maximum overlap of this sensitivity spectrum with the emission spectrum of white phosphorus, it is possible to use a single photoconductive material with narrow sensitivity spectrum. In this case, the photoconductive material must be chosen so that its sensitivity spectrum is located in the range of wavelengths where the light emitting emission is the most intense, compared to ambient lighting.

Les matériaux photoconducteurs à spectre ajustable tels que CdSxSe1-x et a-Si1-xCx:H sont tout à fait appropriés dans ce cas.Adjustable spectrum photoconductive materials such as CdS x Se 1-x and a-Si 1-x C x : H are quite suitable in this case.

Pour de plus amples renseignements sur la fabrication et sur les propriétés du silicium amorphe hydrogéné et carboné, on peut se référer au document FR-A-2 105 777 déposé au nom de l'inventeur.For further information on the manufacture and on the properties of hydrogenated and carbonated amorphous silicon, reference may be made to document FR-A-2 105 777 filed in the name of the inventor.

Ce matériau est déposé de préférence par la technique de dépôt chimique en phase vapeur assisté par plasma (PECVD), basse puissance (de l'ordre de 0,1 W/cm²). Pour de plus amples détails sur la méthode de dépôt du a-Si1-xCx:H, on peut se référer à l'article de M.P. Schmidt et al., Philosophical Magazine B, 1985, vol. 51, n° 6, p. 581-589, "Influence of carbon incorporation in amorphous hydrogenated silicon".This material is preferably deposited by the low-power plasma-assisted chemical vapor deposition (PECVD) technique (around 0.1 W / cm²). For further details on the a-Si 1-x C x : H deposition method, reference may be made to the article by MP Schmidt et al., Philosophical Magazine B, 1985, vol. 51, n ° 6, p. 581-589, "Influence of carbon incorporation in amorphous hydrogenated silicon".

Pour de plus amples détails sur les spectres de sensibilité des matériaux CdSxSe1-x, on peut se référer au document de Robert et al., Journal of Applied Physics, vol. 48, n° 7, Juillet 1977, p. 3162-3164, "II-VI solid-solution films by spray pyrolysis".For further details on the sensitivity spectra of CdS x Se 1-x materials , reference may be made to the document by Robert et al., Journal of Applied Physics, vol. 48, n ° 7, July 1977, p. 3162-3164, "II-VI solid-solution films by spray pyrolysis".

De préférence, on utilise du a-Si1-xCx:H avec 0≦x≦1 et par exemple 0≦x≦0,5. En effet, ce matériau photoconducteur présente un certain nombre d'avantages. En particulier, il présente une chute de sensibilité du côté des grandes longueurs d'onde (c'est-à-dire du côté des faibles énergies) correspondant à une baisse d'absorption optique (bande interdite optique). (On rappelle que (nm)=1240/E(eV)).Preferably, a-Si 1-x C x : H is used with 0 ≦ x ≦ 1 and for example 0 ≦ x ≦ 0.5. Indeed, this photoconductive material has a number of advantages. In particular, it exhibits a drop in sensitivity on the long wavelength side (that is to say on the low energy side) corresponding to a drop in optical absorption (optical band gap). (Remember that (nm) = 1240 / E (eV)).

Une caractéristique du spectre de photoconductivité de ce matériau est l'énergie E₀₄ (en eV) pour laquelle le coefficient d'absorption vaut 10⁴cm⁻¹. Cette énergie E₀₄ peut être ajustée en jouant sur la teneur x en carbone, c'est-à-dire, sur la teneur C en méthane dans le mélange gazeux méthane-silane utilisé pour la fabrication de ce matériau photoconducteur, autrement dit C= [CH₄]/[CH₄+SiH₄].A characteristic of the photoconductivity spectrum of this material is the energy E₀₄ (in eV) for which the absorption coefficient is 10⁴cm⁻¹. This energy E₀₄ can be adjusted by varying the carbon content x, that is to say, the methane content C in the methane-silane gas mixture used for the manufacture of this photoconductive material, in other words C = [ CH₄] / [CH₄ + SiH₄].

Du côté des courtes longueurs d'onde (énergies élevées), la sensibilité du matériau photoconducteur chute aussi car le rayonnement est absorbé dans toutes les premières couches de la couche photoconductrice et la photoconduction, recherchée dans la direction normale au plan des couches (excitation électrique transversale), est empêchée car le coeur du matériau photoconducteur n'est pas exposé au rayonnement d'excitation.On the side of short wavelengths (high energies), the sensitivity of the photoconductive material also drops because the radiation is absorbed in all the first layers of the photoconductive layer and photoconduction, sought in the direction normal to the plane of the layers (electrical excitation is prevented because the core of the photoconductive material is not exposed to excitation radiation.

Le spectre de photosensibilité résultant du a-Si1-xCx:H, pour une couche d'épaisseur d'1 micromètre, est un pic large dont la largeur à mi-hauteur est de 50 nanomètres environ et dont le maximum est à E₀₄. La largeur à mi-hauteur correspond à la distance séparant les seuils de coupure bas et haut du matériau PC.The photosensitivity spectrum resulting from a-Si 1-x C x : H, for a layer with a thickness of 1 micrometer, is a wide peak whose width at mid-height is approximately 50 nanometers and whose maximum is E₀₄. The width at half height corresponds to the distance separating the low and high cutoff thresholds from the PC material.

Les phosphores blancs utilisables dans l'invention sont ceux donnés dans l'article de Shosaku Tanaka cité précédemment et dans l'article de Yoshio Abe "Multi-color electroluminescent devices utilizing SrS:Pr,Ce phosphor layers and color filters" à paraître dans les "Proceedings of the 4th International Workshop on Electroluminescence, Tottori 1988".The white phosphors which can be used in the invention are those given in the article by Shosaku Tanaka cited above and in the article by Yoshio Abe "Multi-color electroluminescent devices utilizing SrS: Pr, Ce phosphor layers and color filters" to be published in the "Proceedings of the 4th International Workshop on Electroluminescence, Tottori 1988".

De préférence, on utilise les deux phosphores blancs suivant du fait de leurs performances accrues :
   SrS:Ce,K,Eu et SrS:Pr,Ce.
Preferably, the following two white phosphors are used because of their increased performance:
SrS: Ce, K, Eu and SrS: Pr, Ce.

L'usage du phosphore blanc SrS:Ce,K,Eu est suggéré dans l'article intitulé "Bright white light electroluminescent devices with new phosphor thin films based on SrS" de S.Tanaka, paru dans SID International Symposium, Digest of Technical Papers, mai 1988, pages 293-296.The use of white phosphorus SrS: Ce, K, Eu is suggested in the article entitled "Bright white light electroluminescent devices with new phosphor thin films based on SrS" by S. Tanaka, published in SID International Symposium, Digest of Technical Papers , May 1988, pages 293-296.

Les filtres colorés utilisables dans l'invention doivent avoir leur spectre de transmission et leur spectre de coloration adaptés au spectre d'émission du phosphore blanc choisi pour obtenir les composantes rouge, verte et bleue les plus pures possibles.The colored filters which can be used in the invention must have their transmission spectrum and their coloring spectrum adapted to the emission spectrum of the white phosphorus chosen to obtain the purest red, green and blue components possible.

Les filtres colorés peuvent être des filtres interférentiels. Ces filtres permettent d'obtenir des spectres passe bas, passe haut et passe bande avec des longueurs d'onde de coupure quelconques. En outre, ils présentent une transition spectrale brutale de l'état passant à bloquant ainsi qu'une grande stabilité chimique et thermique. En revanche, ces filtres sont souvent coûteux. Aussi, lorsque cela est possible, on utilise plutôt des verres colorés ou des filtres organiques.The colored filters can be interference filters. These filters make it possible to obtain low pass, high pass and band pass spectra with arbitrary cut-off wavelengths. In addition, they exhibit a brutal spectral transition from the state passing to blocking as well as a great chemical and thermal stability. On the other hand, these filters are often expensive. Also, when possible, colored glasses or organic filters are used instead.

Les filtres organiques sont en particulier ceux utilisés pour les écrans polychromes à cristaux liquides tels que les couches de polymere (ou gélatine) charge avec des colorants ou des pigments organiques ; les couches de polyimide avec colorants ; les pigments ou colorants organiques évaporés sous vide : pérylène (rouge), phtalocyanine de plomb (bleu), phtalocyanine de cuivre (vert), quinacridone (magenta), isoindolinone (jaune) ; les pigments électrodéposés.Organic filters are in particular those used for polychrome liquid crystal screens such as polymer (or gelatin) layers loaded with dyes or organic pigments; polyimide layers with dyes; organic pigments or dyes evaporated under vacuum: perylene (red), lead phthalocyanine (blue), phthalocyanine copper (green), quinacridone (magenta), isoindolinone (yellow); electroplated pigments.

Conformément à l'invention, tous les systèmes d'électrodes connus pour l'affichage peuvent être utilisés. En particulier, l'un des systèmes d'électrodes peut être constitué d'électrodes point et l'autre système constitué d'une électrode commune. De façon avantageuse, les systèmes d'électrodes sont constitués chacun de bandes conductrices parallèles entre elles, les bandes conductrices du premier système étant croisées par rapport aux bandes conductrices du second système.According to the invention, all known electrode systems for display can be used. In particular, one of the electrode systems can consist of point electrodes and the other system consists of a common electrode. Advantageously, the electrode systems each consist of conductive strips parallel to each other, the conductive strips of the first system being crossed relative to the conductive strips of the second system.

En outre, le dispositif de l'invention peut fonctionner en réflexion ou en transmission. Suivant le type de fonctionnement utilisé, un ou deux des systèmes d'électrodes peuvent être transparents.In addition, the device of the invention can operate in reflection or in transmission. Depending on the type of operation used, one or two of the electrode systems may be transparent.

D'autres caractéristiques et avantages de l'invention ressortiront mieux de la description qui va suivre, donnée à titre illustratif et non limitatif, en référence aux figures 2 à 5 annexées, la figure 1 ayant déjà été décrite.Other characteristics and advantages of the invention will emerge more clearly from the description which follows, given by way of nonlimiting illustration, with reference to the appended FIGS. 2 to 5, FIG. 1 having already been described.

La figure 2 représente schématiquement un mode de réalisation du dispositif d'affichage conforme à l'invention.FIG. 2 schematically represents an embodiment of the display device according to the invention.

La figure 3 donne l'allure des spectres de sensibilité et d'émission que doivent posséder respectivement les couches photoconductrice et électroluminescente ainsi que le spectre de transmission des filtres du dispositif de la figure 2.FIG. 3 gives the appearance of the sensitivity and emission spectra which the photoconductive and electroluminescent layers must have, as well as the transmission spectrum of the filters of the device of FIG. 2.

Les figures 4 et 5 représentent des variantes de réalisation du dispositif conforme à l'invention.Figures 4 and 5 show alternative embodiments of the device according to the invention.

Sur la figure 2, le dispositif conforme à l'invention comporte un premier système d'électrodes constitué de bandes conductrices 30, parallèles entre elles. Ces bandes conductrices 30 sont en général réfléchissantes et réalisées en aluminium. Ces électrodes 30 sont disposées sur une couche photoconductrice 32 en a-Si1-xCx:H, avec 0≦x≦1, de 1 micromètre d'épaisseur recouvrant une structure électroluminescente constituée d'une seule couche émettrice 34, comme représenté sur la figure 2, ou associée à une ou plusieurs couches diélectriques, comme représenté sur la figure 1 ou dans le document FR-A-2 574 972.In Figure 2, the device according to the invention comprises a first electrode system consisting of conductive strips 30, parallel to each other. These conductive strips 30 are generally reflective and made of aluminum. These electrodes 30 are arranged on a photoconductive layer 32 in a-Si 1-x C x : H, with 0 ≦ x ≦ 1, 1 micrometer thick covering an electroluminescent structure consisting of a single emitting layer 34, as shown in the Figure 2, or associated with one or more dielectric layers, as shown in Figure 1 or in document FR-A-2 574 972.

Le matériau électroluminescent est en particulier l'un de ceux cités précédemment ; son épaisseur est comprise entre 0,5 et 2 micromètres (typiquement 0,7 m). Les couches diélectriques 14, 18, 21 éventuellement associés au matériau El peuvent être réalisées en l'un des matériaux choisis parmi Si₃N₄, SiO₂, SiOxNy, Ta₂O₅ et avoir une épaisseur de 200 nm.The electroluminescent material is in particular one of those mentioned above; its thickness is between 0.5 and 2 micrometers (typically 0.7 m). The dielectric layers 14, 18, 21 possibly associated with the material El can be made of one of the materials chosen from Si₃N₄, SiO₂, SiO x N y , Ta₂O₅ and have a thickness of 200 nm.

En vue d'une simplification des dessins et de la description correspondante, la suite du texte ne portera que sur une couche électroluminescente 34 seule.In order to simplify the drawings and the corresponding description, the rest of the text will relate only to an electroluminescent layer 34 alone.

Sur la couche électroluminescente 34, on trouve le second système d'électrodes 36 constitué de bandes conductrices parallèles entre elles et constituées en un matériau transparent ITO par exemple, les électrodes 36 étant disposées pependiculairement aux électrodes 30.On the electroluminescent layer 34, there is the second electrode system 36 consisting of conductive strips parallel to each other and made of a transparent ITO material for example, the electrodes 36 being arranged pependicularly to the electrodes 30.

Le second système d'électrodes 36 est supporté par un substrat isolant 38 généralement en verre, pourvu sur sa face interne de trois séries 40, 41, 42 de filtres colorés respectivement rouges, verts et bleus. L'observation de l'affichage se fait par la face arrière du dispositif, c'est-à-dire du côté du substrat 38. De même, l'éclairage ambiant frappe le dispositif du côté du substrat (lampe blanche 43 par exemple).The second system of electrodes 36 is supported by an insulating substrate 38 generally made of glass, provided on its internal face with three series 40, 41, 42 of colored filters respectively red, green and blue. The observation of the display is made by the rear face of the device, that is to say on the side of the substrate 38. Similarly, the ambient lighting strikes the device on the side of the substrate (white lamp 43 for example) .

Les filtres 40, 41, 42 du dispositif de l'invention permettent un filtrage de l'intensité lumineuse de l'éclairage ambiant (lampe 43 par exemple) tout en colorant l'émission électroluminescente de la couche 34.The filters 40, 41, 42 of the device of the invention allow filtering of the light intensity of the ambient lighting (lamp 43 for example) while coloring the electroluminescent emission of layer 34.

Ces filtres se présentent par exemple sous la forme de bandes parallèles entre elles et à l'un des systèmes d'électrodes 30 ou 36, les filtres rouges 40, verts 41 et bleus 42 étant alternés.These filters are for example in the form of strips parallel to each other and to one of the electrode systems 30 or 36, the red filters 40, green 41 and blue 42 being alternated.

Le dispositif conforme à l'invention fonctionne essentiellement comme les dispositifs polychromes de l'art antérieur et en particulier en utilisant des circuits périphériques de commande 45 du genre de ceux utilisés dans les écrans plats à cristaux liquides ; ces circuits délivrent des signaux alternatifs appropriés et sont connectés aux électrodes 36 et 30 ; la fréquence d'oscillation des signaux de commande est de 1 kHz par exemple, l'amplitude 0-crête est de 150 à 300 volts (typiquement de 130 volts).The device according to the invention functions essentially like the polychrome devices of the prior art and in particular by using peripheral control circuits 45 of the kind used in flat liquid crystal screens; these circuits deliver appropriate alternating signals and are connected to electrodes 36 and 30; the oscillation frequency of the control signals is 1 kHz for example, the 0-peak amplitude is 150 to 300 volts (typically 130 volts).

Sur la partie a de la figure 3, on a représenté le spectre 44 d'émission de la lumière ambiante et le spectre d'émission 46 d'un phosphore blanc. Sur la partie b de la figure 3, on a représenté le spectre de transmission des filtres (F) colorés rouges R, verts V et bleus B. Sur la partie c de la figure 3, on a représenté le spectre de sensibilité d'un matériau photoconducteur (PC) à large bande et sur la partie d, le spectre de sensibilité d'un matériau photoconducteur à spectre étroit.In part a of FIG. 3, the emission spectrum 44 of ambient light and the emission spectrum 46 of a white phosphorus are shown. On part b of FIG. 3, the transmission spectrum of the filters R (red), green V and blue B is shown. On part c of FIG. 3, the sensitivity spectrum of a broadband photoconductive material (PC) and on part d the sensitivity spectrum of a narrow spectrum photoconductive material.

Ces spectres donnent les variations de l'intensité lumineuse I en fonction de la longueur d'onde, l'intensité lumineuse étant donnée en unité arbitraire et la longueur d'onde en nanomètre.These spectra give the variations of the light intensity I as a function of the wavelength, the light intensity being given in arbitrary unit and the wavelength in nanometer.

Conformément à l'invention, les spectres de transmission rouges R, verts V et bleus B des filtres colorés sont contenus dans le spectre d'émission du phosphore blanc.According to the invention, the red R, green V and blue B transmission spectra of the color filters are contained in the emission spectrum of white phosphorus.

Sur la figure 3b, on a symbolisé les fréquences de coupure haute λB du filtre bleu au-dessus de laquelle la lumière (ambiante + celle émise par le phosphore blanc) est filtrée et au-dessous de laquelle la lumière est transmise ; la fréquence de coupure basse λV1 du filtre vert au-dessous de laquelle la lumière est bloquée ; la fréquence de coupure haute λV2 du filtre vert au-dessus de laquelle la lumière est bloquée et la fréquence de coupure basse λR du filtre rouge au-dessous de laquelle la lumière est bloquée. Ces longueurs d'onde de coupure correspondent à 50% de l'intensité lumineuse transmise.In FIG. 3b, the high cut-off frequencies λ B of the blue filter have been symbolized above which light (ambient + that emitted by white phosphorus) is filtered and below which light is transmitted; the low cut-off frequency λ V1 of the green filter below which the light is blocked; the high cut-off frequency λ V2 of the green filter above which the light is blocked and the low cut-off frequency λ R of the red filter below which the light is blocked. These cut-off wavelengths correspond to 50% of the transmitted light intensity.

L'utilisation de filtres colorés à spectres de transmission distincts avec une faible zone de recouvrement, c'est-à-dire correspondant à λBV1V2R, permet de filtrer une partie de la lumière ambiante rendant ainsi l'hystérésis de la courbe luminance-tension de la structure PC-El pratiquement insensible à l'éclairement ambiant.The use of colored filters with distinct transmission spectra with a small overlap area, that is to say corresponding to λ BV1V2R , makes it possible to filter part of the ambient light thus rendering the hysteresis of the luminance-voltage curve of the PC-El structure practically insensitive to ambient lighting.

Le matériau photoconducteur peut être un matériau photoconducteur à spectre de sensibilité large (figure 3c) ce qui permet un recouvrement maximal avec le spectre d'émission du phosphore blanc. Ceci correspond à une longueur d'onde de coupure basse du photoconducteur λ₁ proche de celle λ₂ du phosphore blanc et à une longueur d'onde de coupure haute λ₃ du photoconducteur proche de celle λ₄ du phosphore blanc. λ₀₄ correspond à la longueur d'onde de sensibilité maximale du matériau photoconducteur.The photoconductive material can be a photoconductive material with a broad sensitivity spectrum (FIG. 3c) which allows maximum overlap with the emission spectrum of white phosphorus. This corresponds to a low cutoff wavelength of the photoconductor λ₁ close to that λ blanc of the white phosphorus and to a high cutoff wavelength λ₃ of the photoconductor close to that λ₄ of the white phosphorus. λ₀₄ corresponds to the maximum sensitivity wavelength of the photoconductive material.

Le matériau photoconducteur peut aussi être un matériau à spectre de sensibilité étroit (figure 3d), ce spectre étant alors situé dans une région où l'intensité lumineuse de l'émission électroluminescente est plus élevée que celle de la lumière ambiante ; le spectre PC peut être situé dans le bleu comme symbolisé par la courbe 48 ou bien dans le rouge profond, comme symbolisé par la courbe 50. Les longueurs d'onde de coupure basses et hautes et de sensibilité maximale sont respectivement λ′₁, λ′₀₄, λ′₂ et λ˝₁, λ˝₀₄, λ˝₂ pour les courbes 48 et 50. En particulier, λ′₂ est choisi inférieur à λB et inversement λ˝₁ est choisi supérieur à λR.The photoconductive material can also be a material with a narrow sensitivity spectrum (FIG. 3d), this spectrum then being located in a region where the light intensity of the electroluminescent emission is higher than that of ambient light; the PC spectrum can be located in blue as symbolized by curve 48 or in deep red, as symbolized by curve 50. The wavelengths of low and high cutoffs and maximum sensitivity are respectively λ′₁, λ′₀₄, λ′₂ and λ˝₁, λ˝₀₄, λ˝₂ for curves 48 and 50. In particular, λ′₂ is chosen less than λ B and conversely λ˝₁ is chosen to be greater than λ R.

Les différentes couches constituant l'écran d'affichage de l'invention peuvent être agencées de différentes façons comme cela apparaît sur les figures 4 et 5. La seule exigence est que les filtres 40, 41, 42 soient disposés entre l'observateur et la couche électroluminescente 34.The different layers constituting the display screen of the invention can be arranged in different ways as shown in Figures 4 and 5. The only requirement is that the filters 40, 41, 42 are arranged between the observer and the electroluminescent layer 34.

Aussi, comme représenté sur la figure 4, il est possible d'inverser la position des filtres et des électrodes 36 par rapport à la figure 2 ; les filtres colorés se trouvent placés entre la seconde série d'électrodes 36 et la structure électroluminescente 34. Dans ce mode de réalisation, les filtres peuvent être déposés par électrodéposition ; ils se présentent alors sous forme de bandes parallèles aux électrodes 36. Afin de mieux voir cette disposition, les directions des électrodes 30 et 36 de la figure 4 ont été interverties par rapport à la figure 2.Also, as shown in Figure 4, it is possible to reverse the position of the filters and electrodes 36 relative to Figure 2; the colored filters are placed between the second series of electrodes 36 and the electroluminescent structure 34. In this embodiment, the filters can be deposited by electrodeposition; they then take the form of strips parallel to the electrodes 36. In order to better see this arrangement, the directions of the electrodes 30 and 36 of FIG. 4 have been reversed with respect to FIG. 2.

Par rapport au mode de réalisation de la figure 2, il est aussi possible d'inverser la position du substrat en verre 38 avec les filtres. Toutefois, l'écran correspondant est sujet à des effets de parallaxe sauf si le substrat est mince, c'est-à-dire de l'ordre de 0,1 mm.Compared to the embodiment of FIG. 2, it is also possible to reverse the position of the glass substrate 38 with the filters. However, the corresponding screen is subject to parallax effects unless the substrate is thin, that is to say of the order of 0.1 mm.

Il est aussi possible, comme représenté sur la figure 5 d'inverser l'emplacement des deux systèmes d'électrodes. Dans ce cas, l'observation se fait par la face avant de l'écran d'affichage. Dans ce mode de réalisation, on trouve, de haut en bas, les filtres colorés 40, 41, 42, les électrodes transparentes 36, la structure électroluminescente 34, une première couche photoconductrice 32a et une seconde couche photoconductrice 32b, les électrodes réfléchissantes 30 et enfin le substrat en verre 38. Là encore, les filtres peuvent être déposés par électrodéposition.It is also possible, as shown in FIG. 5, to reverse the location of the two electrode systems. In this case, the observation is made from the front face of the display screen. In this embodiment, there are, from top to bottom, the color filters 40, 41, 42, the transparent electrodes 36, the electroluminescent structure 34, a first layer photoconductive 32a and a second photoconductive layer 32b, the reflecting electrodes 30 and finally the glass substrate 38. Again, the filters can be deposited by electrodeposition.

L'utilisation des deux couches photoconductrices 32a, 32b permet l'obtention d'une structure photoconductrice à large bande de sensibilité. Bien entendu cet empilement de couches PC peut être utilisé dans les autres modes de réalisation des figures 2 et 4.The use of the two photoconductive layers 32a, 32b makes it possible to obtain a photoconductive structure with a wide sensitivity band. Of course, this stack of PC layers can be used in the other embodiments of FIGS. 2 and 4.

Pour une observation par la face avant, il est aussi possible, d'inverser les dispositions des filtres colorés 40, 41, 42 et des électrodes 36.For observation from the front, it is also possible to reverse the arrangements of the color filters 40, 41, 42 and the electrodes 36.

Il est aussi possible de n'utiliser que deux séries de filtres colorés, verts et rouges par exemple. On obtient ainsi un écran bichrome et non un écran trichrome.It is also possible to use only two sets of colored filters, green and red for example. This gives a two-color screen and not a three-color screen.

On donne ci-après différents exemples de réalisation de l'écran conforme à l'invention. Dans ces exemples, le matériau électroluminescent est du a-Si1-xCx:H, avec 0≦x≦1.Various embodiments of the screen according to the invention are given below. In these examples, the electroluminescent material is a-Si 1-x C x : H, with 0 ≦ x ≦ 1.

Exemple 1Example 1

Dans cet exemple, on utilise une seule couche de matériau photoconducteur ayant un spectre de sensibilité étroite (figure 3d, courbe 48), situé dans le bleu.In this example, a single layer of photoconductive material having a narrow sensitivity spectrum (FIG. 3d, curve 48), located in blue, is used.

Les filtres colorés sont des filtres interférentiels ; le filtre bleu a une longueur d'onde de coupure haute λB=500 nm, le filtre rouge a une longueur d'onde de coupure basse λR=600 nm et le filtre vert des longueurs d'onde de coupure basse λV1 et haute λV2 respectivement de 500 et 600 nm.Color filters are interference filters; the blue filter has a high cut-off wavelength λ B = 500 nm, the red filter has a low cut-off wavelength λ R = 600 nm and the green filter has low cut-off wavelengths λ V1 and high λ V2 of 500 and 600 nm respectively.

Le matériau photoconducteur a-Si1-xCx:H de 1 »m d'épaisseur a une longueur d'onde de sensibilité maximale λ′₀₄<480 nm (c'est-à-dire <λB) ce qui correspond à E′₀₄≧2,58 eV et par conséquent à une concentration C en méthane≧0,85 et donc à x≧0,22.The photoconductive material a-Si 1-x C x : H of 1 ”m thickness has a wavelength of maximum sensitivity λ′₀₄ <480 nm (that is to say <λ B ) which corresponds at E′₀₄ ≧ 2.58 eV and therefore at a methane concentration C ≧ 0.85 and therefore at x ≧ 0.22.

Le matériau électroluminescent est du SrS:Ce,K,Eu ou du SrS:Pr,Ce avec une épaisseur de 1 »m.The electroluminescent material is SrS: Ce, K, Eu or SrS: Pr, Ce with a thickness of 1 ”m.

Exemple 2Example 2

Il se différencie de l'exemple 1 par l'utilisation d'un matériau photoconducteur ayant un spectre de sensibilité étroit situé dans le rouge profond.It differs from Example 1 by the use of a photoconductive material having a narrow sensitivity spectrum located in deep red.

Ce matériau a-Si1-xCx:H a une longueur d'onde de sensibilité maximale λ˝₀₄>625 nm, c'est-à-dire >λR, ce qui correspond à E˝₀₄≦2,0 eV et par conséquent à une concentration C≦0,30 et à x≦0,03.This material a-Si 1-x C x : H has a wavelength of maximum sensitivity λ˝₀₄> 625 nm, that is to say> λ R , which corresponds to E˝₀₄ ≦ 2.0 eV and therefore at a concentration C ≦ 0.30 and at x ≦ 0.03.

Exemple 3Example 3

Dans cet exemple, on utilise une structure photoconductrice composée de deux couches PC superposées et de composition différentes (figure 5), entraînant ainsi une structure PC à large spectre de sensibilité (figure 3c).In this example, we use a photoconductive structure composed of two superimposed PC layers and of different composition (Figure 5), thus resulting in a PC structure with a broad sensitivity spectrum (Figure 3c).

Le premier matériau photoconducteur (32a) a une longueur d'onde λ₀₄₁ de 600 nm, ce qui correspond à E₀₄₁=2,07 eV et donc à C=0,40 et x=0,04.The first photoconductive material (32a) has a wavelength λ₀₄₁ of 600 nm, which corresponds to E₀₄₁ = 2.07 eV and therefore to C = 0.40 and x = 0.04.

Le second matériau photoconducteur (32b) a une longueur d'onde λ₀₄₂ de 500 nm, ce qui correspond à E₀₄₂=2,48 eV et donc à C=0,80 et x=0,20.The second photoconductive material (32b) has a wavelength λ₀₄₂ of 500 nm, which corresponds to E₀₄₂ = 2.48 eV and therefore to C = 0.80 and x = 0.20.

Dans les modes de réalisation représentés sur les figures 2 et 4, les filtres colorés à base de gélatine ou de polymère classiquement utilisés sont à écarter étant donné que ces filtres sont déposés avant les matériaux électroluminescent et photoconducteur, lors de la fabrication de l'écran, et donc qu'ils subissent des cycles thermiques contraignants, typiquement de 150 à 200°C ; ces filtres ne supportent que des températures <100°C.In the embodiments represented in FIGS. 2 and 4, the colored filters based on gelatin or on polymer conventionally used are to be discarded since these filters are deposited before the electroluminescent and photoconductive materials, during the manufacture of the screen , and therefore that they undergo restrictive thermal cycles, typically from 150 to 200 ° C; these filters only support temperatures <100 ° C.

Claims (12)

  1. Flat polychromatic electroluminescent display screen with a PC-EL memory effect comprising on an insulating substrate (38) defining one of the faces of the screen, a single electroluminescent layer (16, 34) and at least one photoconductive layer (20, 32, 32a, 32b), said layers being stacked on top of one another, the assembly of said two layers being interposed between a first transparent electrode system and a second electrode system connected to the electrical means (45) in order to excite certain zones of the electroluminescent layer, characterized in that the electroluminescent layer (34) is constituted by a white phosphor and that at least two series of coloured filters (40-42) are interposed between the electroluminescent layer (34) and the observer, said filters ensuring the polychromatic display and serving as a screen making it possible to reduce the light intensity of the incident ambient illumination on the photoconductive layer and preventing the accidental lighting up of certain normally extinguished pixels.
  2. Flat screen according to claim 1, characterized in that the coloured filters (40-42) are positioned between the insulating substrate (38) and the first electrode system (36) facing said substrate, which is then transparent.
  3. Flat screen according to claim 1, characterized in that the filters (40-42) are located on the first electrode system (36) (Fig. 5) and constitute the other face of the screen.
  4. Flat screen according to any one of the claims 1 to 3, characterized in that the electroluminescent layer (16) is placed between a first (14) and a second (18) dielectric layer.
  5. Flat screen according to any one of the claims 1 to 4, characterized in that a dielectric layer (21) is located between the PC layer (20) and the facing electrode system (30).
  6. Flat screen according to any one of the claims 1 to 5, characterized in that the electrode systems (30, 36) are in each case constituted by parallel conductive strips, the conductive strips of the first system crossing the conductive strips of the second.
  7. Flat screen according to claim 6, characterized in that it comprises three series of filters, respectively blue, red and green, formed from strips parallel to the conductive strips of the first (36) or second (30) electrode systems.
  8. Flat screen according to any one of the claims 1 to 7, characterized in that the photoconductive layer (32a, 32b, 32) is of carbonated or hydrogenated amorphous silicon of formula a-Si1-xCx:H with 0< x < 1.
  9. Flat screen according to any one of the claims 1 to 8, characterized in that the white phosphor is chosen from among SrS:Ce,K,Eu and SrS:Pr,Ce.
  10. Flat screen according to any one of the claims 1 to 9, characterized in that it comprises several stacked photoconductive layers (32a, 32b).
  11. Flat screen according to claim 1, characterized in that the filters (40-42) are electrodeposited on the first electrode system (36).
  12. Flat screen according to any one of the claims 1 to 11, characterized in that the second electrode system (30) is reflecting.
EP90400462A 1989-02-21 1990-02-20 Multicolour electroluminescent flat panel display having a memory effect Expired - Lifetime EP0384829B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8902222A FR2643488B1 (en) 1989-02-21 1989-02-21 POLYCHROME ELECTROLUMINESCENT DISPLAY WITH MEMORY EFFECT
FR8902222 1989-02-21

Publications (2)

Publication Number Publication Date
EP0384829A1 EP0384829A1 (en) 1990-08-29
EP0384829B1 true EP0384829B1 (en) 1994-07-20

Family

ID=9378969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90400462A Expired - Lifetime EP0384829B1 (en) 1989-02-21 1990-02-20 Multicolour electroluminescent flat panel display having a memory effect

Country Status (4)

Country Link
EP (1) EP0384829B1 (en)
JP (1) JPH02273496A (en)
DE (1) DE69010712T2 (en)
FR (1) FR2643488B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4429835A1 (en) * 1994-08-23 1996-03-21 Heiko Dr Schwertner Flat foldable monitor screen for large screen display and computer
US6188175B1 (en) 1995-04-18 2001-02-13 Cambridge Display Technology Limited Electroluminescent device
US6091382A (en) * 1995-12-30 2000-07-18 Casio Computer Co., Ltd. Display device for performing display operation in accordance with signal light and driving method therefor
JP4482966B2 (en) * 1999-08-20 2010-06-16 Tdk株式会社 EL display device
JP3463866B2 (en) 1999-09-24 2003-11-05 富士電機株式会社 Fluorescent color conversion film, fluorescent color conversion filter using the same, and organic light emitting device including the fluorescent color conversion filter
AU2001239280A1 (en) * 2001-03-07 2002-09-19 John W. Halpern Mobile phone communications system with increased functionality
JP2004047387A (en) 2002-07-15 2004-02-12 Fuji Electric Holdings Co Ltd Organic multicolor luminescent display device and its manufacturing method
CN1320022C (en) 2002-12-25 2007-06-06 株式会社半导体能源研究所 Polymer, electroluminescent device, and light emitting device
JP4251874B2 (en) * 2003-01-21 2009-04-08 三洋電機株式会社 Electroluminescence display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259213A1 (en) * 1986-08-18 1988-03-09 Pascal Thioulouse Electroluminescent photoconductive display with a reduced rate of padding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1594356A (en) * 1976-08-19 1981-07-30 Bbc Brown Boveri & Cie Display panels having electroluminescent layers
EP0129867A1 (en) * 1983-06-21 1985-01-02 Nec Corporation Multi-color flat display panel
JP2531686B2 (en) * 1986-07-03 1996-09-04 株式会社小松製作所 Color display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0259213A1 (en) * 1986-08-18 1988-03-09 Pascal Thioulouse Electroluminescent photoconductive display with a reduced rate of padding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SID INTERNATIONAL SYMPOSIUM, DIGEST OF TECHNICAL PAPERS Mai 1988, pages 293-296, CA, US; S. TANAKA et al.: "Bright White-Light Electroluminescent Devices with New Phosphor Thin-Films Based on Srs" *

Also Published As

Publication number Publication date
FR2643488B1 (en) 1994-04-29
JPH02273496A (en) 1990-11-07
EP0384829A1 (en) 1990-08-29
DE69010712D1 (en) 1994-08-25
DE69010712T2 (en) 1995-01-12
FR2643488A1 (en) 1990-08-24

Similar Documents

Publication Publication Date Title
EP0389350B1 (en) Polychrome display device with electroluminescent photoconductive memory
EP0270392B1 (en) Electroluminescent display device using amorphous hydrogenated and carbonated silicon
EP0610185B1 (en) Optical modulation device having variable-sized cells
EP0384829B1 (en) Multicolour electroluminescent flat panel display having a memory effect
EP0209535B1 (en) Display device with memory effect comprising thin electroluminescent and photoconducting layers
EP0382642A1 (en) Monochromatic display device with a photoconductive electroluminescent memory
EP2277164A1 (en) Improved display device based on pixels with variable chromatic coordinates
EP0392918B1 (en) Electroluminescent display screen with memory and with a particular configuration of electrodes
EP1456831B1 (en) Image display panel consisting of a matrix of electroluminescent cells with shunted memory effect
EP1425592B1 (en) Device indicating voltage presence and electrical appliance comprising the same
EP1419541B1 (en) Image display panel consisting of a matrix of memory-effect electroluminescent cells
EP0259213A1 (en) Electroluminescent photoconductive display with a reduced rate of padding
EP0106717B1 (en) Display device with active addressing using a photoconductor
FR2671218A1 (en) Electroluminescent display device with memory and with several tints
WO2016075386A1 (en) Cholesteric liquid crystal cell with increased reflectivity
FR2923084A1 (en) Electroluminescent diode useful in a device for visualizing the signal values, comprises a substrate, and an organic electroluminescent layer inserted between a lower conductive layer and upper conductive layer
EP0209439A1 (en) Electro-optical display device with liquid crystals
EP0176384A1 (en) Polychrome matrix display system without coupling between lines and columns
FR2557339A1 (en) Display device comprising liquid crystal cells and improved addressing means
WO2017167922A1 (en) Two-state electro-optical obturating device with a transmittance that is optimised over the entire visible spectral band
CH631269A5 (en) Method of manufacturing a device electrochrome evaporative pressure controlled and device obtained thereby.
FR2971345A1 (en) LCD for microdisplay in e.g. headphone, has backlight sources, each including emissive zones, where emissive zones are formed by organic layer of organic LED that emits light in color corresponding to emissive zones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19910202

17Q First examination report despatched

Effective date: 19930521

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRANCE TELECOM

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69010712

Country of ref document: DE

Date of ref document: 19940825

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101