EP0380582B1 - Choke coil - Google Patents

Choke coil Download PDF

Info

Publication number
EP0380582B1
EP0380582B1 EP88909509A EP88909509A EP0380582B1 EP 0380582 B1 EP0380582 B1 EP 0380582B1 EP 88909509 A EP88909509 A EP 88909509A EP 88909509 A EP88909509 A EP 88909509A EP 0380582 B1 EP0380582 B1 EP 0380582B1
Authority
EP
European Patent Office
Prior art keywords
core
cores
partial
air gap
choke coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88909509A
Other languages
German (de)
French (fr)
Other versions
EP0380582A1 (en
Inventor
Hanspeter Bitterli
Original Assignee
RIEDI-JOKS Susanne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIEDI-JOKS Susanne filed Critical RIEDI-JOKS Susanne
Publication of EP0380582A1 publication Critical patent/EP0380582A1/en
Application granted granted Critical
Publication of EP0380582B1 publication Critical patent/EP0380582B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/02Adaptations of transformers or inductances for specific applications or functions for non-linear operation
    • H01F38/023Adaptations of transformers or inductances for specific applications or functions for non-linear operation of inductances

Definitions

  • the present invention relates to a choke coil according to the preamble of patent claim 1.
  • Choke coils are used in practically all areas of electrical engineering, both in circuits where high electrical power is processed and in sound and high-frequency circuits. They are built differently depending on the application in terms of size, choice of core material, winding structure, magnetic circuit (e.g. with or without an air gap) etc.
  • the choke coil is designed for a specific working range, with a specific course of the inductance values as a function of the current, the choke coil is also used in vehicles such as trams, trolley buses, rail-bound railcars and Locomotives, the rough tolerance dimensioning already plays a role, since this mainly affects the geometric dimensions and the weight of the choke coil and causes problems that have to be solved.
  • the choke coil according to the invention should have a determinable course of the inductance values as a function of the current, and should therefore be optimally designed with regard to the electrical values, the geometric dimensions, and the weight.
  • the Swiss patent CH 293 283 discloses a choke coil with a magnetic circuit which is formed from two cores and a winding comprising the two cores.
  • One core has a rectangular BH characteristic and has no air gap.
  • the other core has an air gap, such that the magnetization characteristic of the entire magnetic circuit is composed of two approximately straight pieces of different inclinations.
  • the choke coil disclosed has a pronounced step-shaped BH characteristic curve, the induction practically increasing to the maximum value even in the presence of an extremely small field strength. Choke coils with areas where the induction changes strongly with only a small change in field strength (or current change) are particularly suitable for using circuits in a known manner Switch contacts to open and close without a switch fire.
  • Document CH 227 740 discloses a choke coil with a magnetic circuit comprising two toroidal cores without air gap, which are arranged concentrically isolated from one another and which also serves to prevent switching fires.
  • this choke coil too, a steep increase in induction with only a small change in current is desired.
  • Better values are achieved by arranging additional coils on the outer toroid and connecting them in series with main coils comprising both toroids.
  • Document CH 224 775 shows a switching arrangement consisting of a transformer and a switching choke in which the magnetic core of the choke is constructed from the same materials as in the aforementioned examples in order to obtain a rectangular BH characteristic with a small coercive force.
  • the magnetic circuit of the choke coil is coupled to the magnetic circuit of the transformer via a common winding.
  • This choke coil also has the task of preventing switching lights due to its markedly steep rise in induction with only a small change in current.
  • DE-OS 2 156 493 discloses a choke arrangement for connecting thyristors.
  • the main thing here is to limit an impermissibly high inrush current without causing vibrations with impermissibly high current and voltage peaks.
  • the choke arrangement is effective over a relatively short time range and then as a magnetically saturated choke, which is in the load circuit of the thyristors, for the remaining duty cycle of the thyristors is ineffective.
  • the desired current profile for the current limitation at the time of switching on the thyristors can be set by varying the number of turns, the core cross-sections, the quality of the core material and by different air gaps. The settings are made according to the switch-on characteristics and arrangements of the thyristors used.
  • the three partial choke coils are integrated into a choke arrangement, which at the same time has transformer properties, in such a way that two core packages are combined to form a sheath core, the middle leg of which is enclosed by the main winding in the thyristor main circuit, which is designed for the full load current.
  • An auxiliary winding which is terminated with a resistor, is present on an outer leg of one of the core packages and is magnetically coupled to the main winding.
  • choke coils according to the invention are shown in principle in various exemplary embodiments.
  • the individual designs serve to create certain inductance curves as a function of the current.
  • the physical background of their mode of action is also illustrated using various magnetization curves and inductance curves.
  • the basic structure and the functional principle of the choke coil according to the invention are explained in the following description. Furthermore, the embodiments shown are described and their modes of operation are explained.
  • the choke coil according to the invention is called delta-phi choke in the following.
  • the delta phi inductor Before going into detail about the basic structure and the mode of operation of the delta phi inductor, it should be said that it can be operated at least as a pure AC inductor and as a DC-magnetized inductor.
  • the basic structure of the delta-phi inductor in its simplest embodiment comprises at least two magnetically separated partial cores 1 and 2 with different magnetic characteristics and at least one winding A, which wraps around the two partial cores 1 and 2 together.
  • the delta phi inductor this is provided with further additional partial cores 3, ..., n and / or with further additional windings A1, ..., An; B; B1, ..., Bn; C; C1, ..., Cn; D; D1, ..., Dn; E; E1, ..., En.
  • the individual windings are to be connected additively or subtractively in series to winding branches, whereby, under certain conditions, parallel connection and / or the combined connection of individual windings and / or winding branches is also possible.
  • Additive series connection of two windings means that the magnetic induction generated by the current-carrying windings add up.
  • Subtractive series connection of two windings means that the magnetic induction generated by the current-carrying windings subtracts.
  • the course of the inductance as a function of the current can be determined over the entire current range. All inductance behavior of the inductor can be determined using this system.
  • the delta-phi inductor has two partial cores with different overall magnetic properties, the partial core 1 having no air gap and the partial core 2 being equipped with an air gap L2.
  • the winding A wraps around the two cores together.
  • the winding B wraps only around the partial core 1 and the winding C wraps around only the partial core 2.
  • FIG. 2 shows, in principle, a second delta-phi choke according to the invention in an expanded version with three partial cores 1, 2 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2 and L4.
  • the winding A wraps around all three sub-cores together.
  • the winding C wraps around only the partial core 2 and the winding E wraps around only the partial core 4.
  • FIG. 3 shows in principle a third delta-phi choke according to the invention in an expanded version with three partial cores 1, 2 and 3 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2 and L3.
  • the winding A wraps around the sub-cores 1 and 2 and the winding B wraps around the sub-cores 1 and 3.
  • a fourth delta phi choke according to the invention is shown in principle in an expanded version.
  • the delta-phi choke has three partial cores 1, 2 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2 and L4.
  • the winding A wraps around the sub-cores 1 and 2
  • the winding B wraps around the sub-core 1
  • the winding C wraps around the sub-core 2 and 4
  • the winding E wraps around the sub-core 4.
  • FIG. 5 shows the basic structure of a fifth delta phi choke according to the invention with four partial cores 1, 2, 3 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2, L3 and L4, and with five windings A. , B, C, D and E.
  • the winding A wraps around the partial cores 1, 2, 3 and 4
  • the winding B wraps around the partial core 1
  • the winding C wraps around the partial core 2
  • the winding D wraps around the partial core 3 and the winding E. wraps around the sub-core 4.
  • FIG. 6 shows the basic structure of a sixth delta phi choke according to the invention in an expanded version with four partial cores 1, 2, 3 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2, L3 and L4, and with five windings A, B, C, D and E.
  • the winding A wraps around the sub-cores 1 and 2
  • the winding B wraps around the sub-cores 1 and 3
  • the winding C wraps around the sub-cores 2 and 4
  • the winding D wraps around the sub-core 3
  • the winding E wraps around the partial core 4.
  • the magnetic behavior of the partial cores and the inductance behavior of the delta-phi inductor can be strongly influenced by appropriate switching, additive and / or subtractive series connection, parallel connection or combined connection, the choice of the number of turns, the windings.
  • FIG. 7 shows the basic structure of a seventh delta-phi choke according to the invention in an expanded version with four partial cores 1, 2, 3 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2, L3 and L4, and with five windings A, B, C, D and E.
  • the winding A wraps around the partial cores 1, 2 and 3
  • the winding B wraps around the partial core 1
  • the winding C wraps around the.
  • Partial cores 2 and 4 the winding D wraps around the partial core 3 and the winding E wraps around the partial core 4.
  • FIG. 10 shows a core divided into partial cores with different overall magnetic properties.
  • the different overall magnetic properties are achieved in that the partial core 1 has no air gap and the other partial cores have different air gaps.
  • the different overall magnetic properties can also and / or additionally be achieved by using materials with different magnetic properties, induction as a function of the field strength, as shown in FIG. 8.
  • the applicable air gap sections are shown in Figure 11.
  • the influence of the air gap section (s) on the magnetic properties of a core or a partial core, induction as a function of the flooding, is shown in FIG. 9.
  • the magnetic field lines scatter in the zones of the air gap. So that the partial cores do not influence each other magnetically, the individual partial cores must be spaced at least by the distance which corresponds to the largest adjacent air gap.
  • FIG. 12 shows the magnetization curves, induction as a function of the flow, of a delta phi choke according to the invention with two partial cores 1 and 2 with different overall magnetic properties, the partial core 1 having no air gap and the partial core 2 having an air gap.
  • FIG. 13 shows the magnetization curves, induction as a function of the flow, a delta-phi choke according to the invention with three partial cores 1, 2 and 3 or 4 with different overall magnetic properties, partial core 1 having a small air gap, partial core 2 having a larger air gap and Partial core 3 or partial core 4 has an even larger air gap.
  • FIG. 14 shows the magnetization curves, induction as a function of the flow, a delta-phi choke according to the invention with four partial cores 1, 2, 3 and 4 with different overall magnetic properties, partial core 1 having a small air gap, partial core 2 having a somewhat larger air gap, the partial core 3 has an even larger and the partial core 4 has a large air gap.
  • FIG. 15 shows the inductance curve, inductance as a function of the current, of a delta-phi inductor according to the invention with two partial cores.
  • FIG. 16 shows the inductance curve, inductance as a function of the current of a delta-phi inductor according to the invention with three partial cores.
  • FIG. 17 shows the inductance curve, inductance as a function of the current, of a delta-phi inductor according to the invention with four partial cores.
  • the step-shaped inductance behavior comes about because the partial cores are designed magnetically so that the partial core 1 first reaches the magnetic saturation point at a specific current, and the induction of the remaining partial cores 2, 3 and 4 are still in the magnetically unsaturated region at this particular current.
  • the partial core 2 reaches the magnetic saturation point with a further determined current and the induction of the partial cores 3 and 4 are still in the magnetically unsaturated region. This state, due to a further increase in current, is carried out until all partial cores are magnetically saturated.

Abstract

The so-called delta-phi choke coil exploits the effects of various core materials and/or air gap sections in the core parts on the magnetization curves of the core materials. It comprises at least two magnetically separated core sections possessing different magnetic properties, on which at least one common coil is wound. When current flows through the coil, the core sections experience the same magnetic flux. The different magnetic properties give rise to different magnetic fields in the core sections, with which selected definable inductance behaviours can be obtained by suitable choice of dimensions. In the case of special definable inductance behaviours, the delta-phi choke coil must be equipped with additional core sections and/or additional coils incorporated in an additive and/or subtractive series circuit, in a parallel circuit and/or a combined circuit.

Description

DrosselspuleChoke coil

Die vorliegende Erfindung bezieht sich auf eine Drosselspule gemäss dem Oberbegriff des Patentanspruches 1.The present invention relates to a choke coil according to the preamble of patent claim 1.

Drosselspulen werden in praktisch allen Bereichen der Elektrotechnik, sowohl in Stromkreisen wo hohe elektrische Leistungen verarbeitet werden als auch in ton- sowie hochfrequenten Stromkreisen eingesetzt. Sie sind entsprechend dem Anwendungsgebiet in bezug auf die Grösse, die Kernmaterialwahl, den Wicklungsaufbau, den magnetischen Kreis (z.B. mit oder ohne Luftspalt) etc. unterschiedlich gebaut.Choke coils are used in practically all areas of electrical engineering, both in circuits where high electrical power is processed and in sound and high-frequency circuits. They are built differently depending on the application in terms of size, choice of core material, winding structure, magnetic circuit (e.g. with or without an air gap) etc.

Eine genaue Berechnung der Induktivität ist bei Drosselspulen mit Eisenkern in einfacher, den Aufwand lohnender Weise nicht möglich, da mehrere Faktoren beteiligt sind, die nicht genau bestimmbar sind.A precise calculation of the inductance is not possible in a simple, cost-effective manner in the case of choke coils with an iron core, since several factors are involved which cannot be determined exactly.

Im allgemeinen sind daher die Toleranzen für die Induktivitätswerte von Drosselspulen nicht zu eng bemessen.In general, the tolerances for the inductance values of choke coils are therefore not too narrow.

In Fällen, wo die Drosselspule nur für einen Arbeitspunkt, einen bestimmten Induktivitätswert für einen bestimmten Strom, ausgelegt ist, und in einer stationären Anlage Anwendung findet, spielt die grobe Toleranzbemessung keine allzu grosse Rolle.In cases where the choke coil is only designed for one operating point, a specific inductance value for a specific current, and is used in a stationary system, the rough tolerance measurement does not play a major role.

In Fällen aber, wo die Drosselspule für einen bestimmten Arbeitsbereich, mit einem bestimmten Verlauf der Induktivitätswerte in Funktion des Stromes, ausgelegt ist, die Drosselspule zudem noch Anwendung in Fahrzeugen, wie Trams, Trolleybussen, schienengebundene Triebwagen und Lokomotiven, findet, spielt die grobe Toleranzbemessung schon eine Rolle, da diese sich hauptsächlich auf die geometrischen Dimensionen und auf das Gewicht der Drosselspule auswirkt und Probleme, welche gelöst werden müssen, nach sich zieht.However, in cases where the choke coil is designed for a specific working range, with a specific course of the inductance values as a function of the current, the choke coil is also used in vehicles such as trams, trolley buses, rail-bound railcars and Locomotives, the rough tolerance dimensioning already plays a role, since this mainly affects the geometric dimensions and the weight of the choke coil and causes problems that have to be solved.

Es ist die Aufgabe der vorliegenden Erfindung, eine Drosselspule zu schaffen, die die erwähnten Probleme löst. Die erfindungsgemässe Drosselspule soll einen den Bedürfnissen entsprechenden bestimmbaren Verlauf der Induktivitätswerte in Funktion des Stromes aufweisen und somit optimal bezüglich der elektrischen Werte, der geometrischen Dimensionen, des Gewichtes, ausgelegt sein.It is the object of the present invention to provide a choke coil which solves the problems mentioned. The choke coil according to the invention should have a determinable course of the inductance values as a function of the current, and should therefore be optimally designed with regard to the electrical values, the geometric dimensions, and the weight.

Diese Aufgabe wird mit einer Drosselspule gelöst, die die im kennzeichnenden Teil des Patentanspruches 1 aufgeführten Merkmale aufweist.This object is achieved with a choke coil which has the features listed in the characterizing part of claim 1.

In der schweizerischen Patentschrift CH 293 283 ist eine Drosselspule mit einem Magnetkreis, der aus zwei Kernen gebildet ist, und einer die beiden Kerne umfassenden Wicklung offenbart. Der eine Kern weist eine rechteckförmige BH-Kennlinie auf und hat keinen Luftspalt. Der andere Kern weist einen Luftspalt auf, derart, dass die Magnetisierungskennlinie des gesamten Magnetkreises sich aus zwei angenähert geradlinigen Stücken von verschiedener Neigung zusammensetzt. Im weiteren weist die offenbarte Drosselspule eine ausgeprägt treppenförmige BH-Kennlinie auf, wobei die Induktion bereits beim Vorhandensein einer äusserst kleinen Feldstärke praktisch auf den Maximalwert ansteigt. Drosselspulen mit Bereichen, wo die Induktion bei lediglich einer kleinen Feldstärkenänderung (bzw. Stromänderung) stark ändert, sind vor allem dazu geeignet, in bekannter Weise Stromkreise mit Schaltkontakten, schaltfeuerfrei zu öffnen und zu schliessen.The Swiss patent CH 293 283 discloses a choke coil with a magnetic circuit which is formed from two cores and a winding comprising the two cores. One core has a rectangular BH characteristic and has no air gap. The other core has an air gap, such that the magnetization characteristic of the entire magnetic circuit is composed of two approximately straight pieces of different inclinations. Furthermore, the choke coil disclosed has a pronounced step-shaped BH characteristic curve, the induction practically increasing to the maximum value even in the presence of an extremely small field strength. Choke coils with areas where the induction changes strongly with only a small change in field strength (or current change) are particularly suitable for using circuits in a known manner Switch contacts to open and close without a switch fire.

Eine Drosselspule mit einem Magnetkreis aus zwei isoliert voneinander konzentrisch angeordneten Ringkernen ohne Luftspalt, die ebenfalls zum Verhindern von Schaltfeuern dient, ist im Dokument CH 227 740 offenbart. Auch in dieser Drosselspule ist ein steiler Induktionsanstieg bei lediglich einer kleinen Stromänderung erwünscht. Bessere Werte werden erreicht, indem auf dem äusseren Ringkern Zusatzspulen angeordnet und mit beide Ringkerne umfassenden Hauptspulen in Reihe geschaltet sind.Document CH 227 740 discloses a choke coil with a magnetic circuit comprising two toroidal cores without air gap, which are arranged concentrically isolated from one another and which also serves to prevent switching fires. In this choke coil too, a steep increase in induction with only a small change in current is desired. Better values are achieved by arranging additional coils on the outer toroid and connecting them in series with main coils comprising both toroids.

Im Dokument CH 224 775 ist eine Schaltanordnung, bestehend aus Transformator und Schaltdrossel gezeigt, bei der der Magnetkern der Drossel zum Erhalten einer rechteckförmigen BH-Kennlinie mit einer kleinen Koerzitivkraft aus den gleichen Materialien aufgebaut ist, wie in den vorgenannten Beispielen. Der Magnetkreis der Drosselspule ist mit dem Magnetkreis des Transformators über eine gemeinsame Wicklung gekoppelt. Auch diese Drosselspule hat zur Aufgabe, durch ihren ausgeprägt steilen Induktionsanstieg bei lediglich kleiner Stromänderung Schaltfeuer zu verhindern.Document CH 224 775 shows a switching arrangement consisting of a transformer and a switching choke in which the magnetic core of the choke is constructed from the same materials as in the aforementioned examples in order to obtain a rectangular BH characteristic with a small coercive force. The magnetic circuit of the choke coil is coupled to the magnetic circuit of the transformer via a common winding. This choke coil also has the task of preventing switching lights due to its markedly steep rise in induction with only a small change in current.

In der DE-OS 2 156 493 ist eine Drosselanordnung zum Beschalten von Thyristoren offenbart. Es geht hier vor allem darum, einen unzulässig hohen Einschaltstromstoss zu begrenzen, ohne dass dabei Schwingungen mit unzulässig hohen Strom- und Spannspitzen entstehen. Es ist vorgesehen, dass die Drosselanordnung über einen relativ kurzen Zeitbereich wirksam ist und dann als magnetisch gesättigte Drossel, die im Lastkreis der Thyristoren liegt, für die restliche Einschaltdauer der Thyristoren unwirksam ist. Die Einstellung des jeweils gewünschten Stromverlaufes für die Strombegrenzung im Einschaltzeitpunkt der Thyristoren kann durch Variation der Windungszahlen, der Kernquerschnitte, der Qualität des Kernmaterials sowie durch unterschiedliche Luftspalte vorgenommen werden. Die Einstellungen erfolgen abgestimmt auf die Einschaltcharakteristiken und Anordnungen der eingesetzten Thyristoren. Konstruktiv sind die ersatzschaltbildmässig drei Teildrosselspulen zu einer Drosselanordnung integriert, die zugleich Transformatoreigenschaften besitzt, in der Weise, dass zwei Kernpakete zu einem Mantelkern zusammengesetzt sind, dessen Mittelschenkel von der im Thyristorhauptstromkreis liegenden, für den vollen Laststrom ausgelegten Hauptwicklung umschlossen ist. Eine Hilfswicklung, die mit einem Widerstand abgeschlossen ist, ist auf einem Aussenschenkel von einem der Kernpakete vorhanden und mit der Hauptwicklung magnetisch gekoppelt.DE-OS 2 156 493 discloses a choke arrangement for connecting thyristors. The main thing here is to limit an impermissibly high inrush current without causing vibrations with impermissibly high current and voltage peaks. It is provided that the choke arrangement is effective over a relatively short time range and then as a magnetically saturated choke, which is in the load circuit of the thyristors, for the remaining duty cycle of the thyristors is ineffective. The desired current profile for the current limitation at the time of switching on the thyristors can be set by varying the number of turns, the core cross-sections, the quality of the core material and by different air gaps. The settings are made according to the switch-on characteristics and arrangements of the thyristors used. In terms of construction, the three partial choke coils are integrated into a choke arrangement, which at the same time has transformer properties, in such a way that two core packages are combined to form a sheath core, the middle leg of which is enclosed by the main winding in the thyristor main circuit, which is designed for the full load current. An auxiliary winding, which is terminated with a resistor, is present on an outer leg of one of the core packages and is magnetically coupled to the main winding.

In den Zeichnungen sind erfindungsgemässe Drosselspulen in verschiedenen beispielsweisen Ausführungsarten prinzipiell dargestellt. Die einzelnen Ausführungsarten dienen zur Schaffung bestimmter Induktivitätskurven in Funktion des Stromes. Weiter sind die physikalischen Hintergründe ihrer Wirkungsweise anhand von verschiedenen Magnetisierungskurven und Induktivitätskurven veranschaulicht. In der nachfolgenden Beschreibung ist der grundsätzliche Aufbau und das Funktionsprinzip der erfindungsgemässen Drosselspule erläutert. Ferner werden die gezeigten Ausführungsarten beschrieben und deren Wirkungsweisen erklärt. Die erfindungsgemässe Drosselspule wird im folgenden Delta-Phi-Drossel genannt.In the drawings, choke coils according to the invention are shown in principle in various exemplary embodiments. The individual designs serve to create certain inductance curves as a function of the current. The physical background of their mode of action is also illustrated using various magnetization curves and inductance curves. The basic structure and the functional principle of the choke coil according to the invention are explained in the following description. Furthermore, the embodiments shown are described and their modes of operation are explained. The choke coil according to the invention is called delta-phi choke in the following.

Es zeigt:

Figur 1
den prinzipiellen Aufbau der Delta-Phi-Drossel in erweiterter Bauart, bestehend aus dem Teilkern 1 ohne Luftspalt, dem Teilkern 2 mit dem Luftspalt L2 und den Wicklungen A, B und C;
Figur 2
den prinzipiellen Aufbau der Delta-Phi-Drossel in erweiterter Bauart, bestehend aus den Teilkernen 1, 2 und 4 mit den Luftspalten L1, L2 und L4 und den Wicklungen A, C und E;
Figur 3
den prinzipiellen Aufbau der Delta-Phi-Drossel in erweiterter Bauart, bestehend aus den Teilkernen 1, 2 und 3 mit den Luftspalten L1, L2 und L3 und den Wicklungen A und B;
Figur 4
den prinzipiellen Aufbau der Delta-Phi-Drossel in erweiterter Bauart, bestehend aus den Teilkernen 1, 2 und 4 mit den Luftspalten L1, L2 und L3 und den Wicklungen A, B, C und E;
Figur 5
den prinzipiellen Aufbau der Delta-Phi-Drossel in erweiterter Bauart, bestehend aus den Teilkernen 1, 2, 3 und 4 den mit Luftspalten L1, L2, L3 und L4 und den Wicklungen A, B, C, D und E;
Figur 6
den prinzipiellen Aufbau der Delta-Phi-Drossel in erweiterter Bauart, bestehend aus den Teilkernen 1, 2, 3 und 4 mit den Luftspalten L1, L2, L3 und L4 und den Wicklungen A, B, C, D und E;
Figur 7
den prinzipiellen Aufbau der Delta-Phi-Drossel in erweiterter Bauart, bestehend aus den Teilkernen 1, 2, 3 und 4 mit den Luftspalten L1, L2, L3 und L4 und den Wicklungen A, B, C, D und E;
Figur 8
die Magnetisierungskurven Induktion in Funktion der Feldstärke für zwei verschiedene Materialien;
Figur 9
den Einfluss der Luftstrecken auf die Magnetisierungskurven Induktion in Funktion der Durchflutung:
Kurve A:  die Magnetisierungskurve für das Kernblech,
Kurve B:  die Magnetisierungskurve für eine kleine Luftstrecke,
Kurve C:  die Resultierende aus Kurve A und Kurve B,
Kurve D:  die Magnetisierungskurve für eine grosse Luftstrecke,
Kurve E:  die Resultierende aus Kurve A und Kurve D;
Figur 10
einen, aus Teilkernen (1, 2, 3, ..., n-1, n) mit teilweise mit Luftspalten versehenen, aufgebauten Kern:
Teilkern 1:  ohne Luftspalt,
Teilkern 2:  mit einem kleinen Luftspalt,
Teilkern 3:  mit einem grösseren Luftspalt,
Teilkern n-1:  mit zwei Luftspalten,
Teilkern n:  mit vier Luftspalten;
Figur 11
mögliche Luftspaltformen, dabei bedeuten:
  • a) paralleler Luftspalt,
  • b) Luftspalt keilförmig nach unten,
  • c) Luftspalt keilförmig nach oben,
  • d) Luftspalt symmetrisch keilförmig,
  • e) Luftspalt trapezförmig nach unten,
  • f) Luftspalt trapezförmig nach oben,
  • g) Luftspalt symmetrisch trapezförmig;
Figur 12
Magnetisierungskurven Induktion in Funktion der Durchflutung für zwei Teilkerne 1 und 2:
Kurve 1  Teilkern 1 ohne Luftspalt,
Kurve 2  Teilkern 2 mit Luftspalt L2;
Figur 13
Magnetisierungskurven Induktion in Funktion der Durchflutung für drei Teilkerne 1, 2 und 3:
Kurve 1  Teilkern 1 mit Luftspalt L1,
Kurve 2  Teilkern 2 mit Luftspalt L2,
Kurve 3/4  Teilkern 3 mit Luftspalt L3,
oder
Teilkern 4 mit Luftspalt L4;
Figur 14
Magnetisierungskurven Induktion in Funktion der Durchflutung für vier Teilkerne 1, 2, 3 und 4:
Kurve 1  Teilkern 1 mit Luftspalt L1,
Kurve 2  Teilkern 2 mit Luftspalt L2,
Kurve 3  Teilkern 3 mit Luftspalt L3,
Kurve 4  Teilkern 4 mit Luftspalt L4;
Figur 15
Drosselspulencharakteristik Induktivität in Funktion des Stromes für eine Drosselspule mit 2 Teilkernen;
Figur 16
Drosselspulencharakteristik Induktivität in Funktion des Stromes für eine Drosselspule mit 3 Teilkernen;
Figur 17
Drosselspulencharakteristik Induktivität in Funktion des Stromes für eine Drosselspule mit 4 Teilkernen.
It shows:
Figure 1
the basic structure of the delta phi inductor in an expanded design, consisting of the partial core 1 without an air gap, the partial core 2 with the air gap L2 and the windings A, B and C;
Figure 2
the basic structure of the delta phi inductor in an expanded design, consisting of the partial cores 1, 2 and 4 with the air gaps L1, L2 and L4 and the windings A, C and E;
Figure 3
the basic structure of the delta phi inductor in an expanded design, consisting of the partial cores 1, 2 and 3 with the air gaps L1, L2 and L3 and the windings A and B;
Figure 4
the basic structure of the delta phi choke in an expanded design, consisting of the partial cores 1, 2 and 4 with the air gaps L1, L2 and L3 and the windings A, B, C and E;
Figure 5
the basic structure of the delta phi choke in an expanded design, consisting of the partial cores 1, 2, 3 and 4 with the air gaps L1, L2, L3 and L4 and the windings A, B, C, D and E;
Figure 6
the basic structure of the delta phi inductor in an expanded design, consisting of the partial cores 1, 2, 3 and 4 with the air gaps L1, L2, L3 and L4 and the windings A, B, C, D and E;
Figure 7
the basic structure of the delta phi inductor in an expanded design, consisting of the partial cores 1, 2, 3 and 4 with the air gaps L1, L2, L3 and L4 and the windings A, B, C, D and E;
Figure 8
the magnetization curves induction as a function of the field strength for two different materials;
Figure 9
the influence of the air gaps on the magnetization curves induction as a function of the flow:
Curve A: the magnetization curve for the core sheet,
Curve B: the magnetization curve for a small air gap,
Curve C: the resultant of curve A and curve B,
Curve D: the magnetization curve for a large air gap,
Curve E: the resultant of curve A and curve D;
Figure 10
one, made up of partial cores (1, 2, 3, ..., n-1, n) with a core partially provided with air gaps:
Partial core 1: without air gap,
Partial core 2: with a small air gap,
Partial core 3: with a larger air gap,
Partial core n-1: with two air gaps,
Partial core n: with four air gaps;
Figure 11
possible air gap shapes, mean:
  • a) parallel air gap,
  • b) wedge-shaped downward air gap,
  • c) air gap wedge-shaped upwards,
  • d) air gap symmetrically wedge-shaped,
  • e) trapezoidal air gap downwards,
  • f) trapezoidal air gap upwards,
  • g) symmetrical trapezoidal air gap;
Figure 12
Magnetization curves induction as a function of the flow for two partial cores 1 and 2:
Curve 1 partial core 1 without air gap,
Curve 2 partial core 2 with air gap L2;
Figure 13
Magnetization curves induction as a function of the flooding for three partial cores 1, 2 and 3:
Curve 1 partial core 1 with air gap L1,
Curve 2 partial core 2 with air gap L2,
Curve 3/4 partial core 3 with air gap L3,
or
Partial core 4 with air gap L4;
Figure 14
Magnetization curves induction as a function of the flow for four partial cores 1, 2, 3 and 4:
Curve 1 partial core 1 with air gap L1,
Curve 2 partial core 2 with air gap L2,
Curve 3 partial core 3 with air gap L3,
Curve 4 partial core 4 with air gap L4;
Figure 15
Choke coil characteristic Inductance as a function of current for a choke coil with 2 partial cores;
Figure 16
Choke coil characteristic Inductance as a function of current for a choke coil with 3 partial cores;
Figure 17
Choke coil characteristic Inductance as a function of current for a choke coil with 4 partial cores.

Bevor im einzelnen auf den prinzipiellen Aufbau und die Wirkungsweise der Delta-Phi-Drossel eingegangen wird, sei voraus geschickt, dass sie mindestens als reine Wechselstromdrosselspule und als gleichstromvormagnetisierte Drosselspule betrieben werden kann.Before going into detail about the basic structure and the mode of operation of the delta phi inductor, it should be said that it can be operated at least as a pure AC inductor and as a DC-magnetized inductor.

Der prinzipielle Aufbau der Delta-Phi-Drossel umfasst in ihrer einfachsten Ausführung mindestens zwei magnetisch getrennte Teilkerne 1 und 2 mit unterschiedlichen magnetischen Charakteristika und mindestens einer Wicklung A, welche die die beiden Teilkerne 1 und 2 gemeinsam umschlingt.The basic structure of the delta-phi inductor in its simplest embodiment comprises at least two magnetically separated partial cores 1 and 2 with different magnetic characteristics and at least one winding A, which wraps around the two partial cores 1 and 2 together.

Je nach verlangter Charakteristik, Induktivität in Funktion des Stromes, der Delta-Phi-Drossel, ist diese mit weiteren zusätzlichen Teilkernen 3, ..., n und/oder mit weiteren zusätzlichen Wicklungen A1, ..., An; B; B1, ..., Bn; C; C1, ..., Cn; D; D1, ..., Dn; E; E1, ..., En auszurüsten.Depending on the required characteristic, inductance as a function of the current, the delta phi inductor, this is provided with further additional partial cores 3, ..., n and / or with further additional windings A1, ..., An; B; B1, ..., Bn; C; C1, ..., Cn; D; D1, ..., Dn; E; E1, ..., En.

Bei der Anwendung mehrerer Wicklungen, sind die einzelnen Wicklungen additiv oder subtraktiv in Serie zu Wicklungszweigen zu schalten, wobei, unter der Einhaltung gewisser Bedingungen, auch die Parallelschaltung und/oder die kombinierte Schaltung einzelner Wicklungen und/oder Wicklungszweige möglich ist.When using several windings, the individual windings are to be connected additively or subtractively in series to winding branches, whereby, under certain conditions, parallel connection and / or the combined connection of individual windings and / or winding branches is also possible.

Additive Serieschaltung zweier Wicklungen heisst, dass sich die, durch die stromdurchflossenen Wicklungen, erzeugten magnetischen Induktionen addieren.Additive series connection of two windings means that the magnetic induction generated by the current-carrying windings add up.

Subtraktive Serieschaltung zweier Wicklungen heisst, dass sich die, durch die stromdurchflossenen Wicklungen, erzeugten magnetischen Induktionen subtrahieren.Subtractive series connection of two windings means that the magnetic induction generated by the current-carrying windings subtracts.

Werden zwei Teilkerne 1 und 2 mit unterschiedlichen magnetischen Charakteristika von einer vom Strom I durchflossenen Wicklung A mit der Windungszahl w gemeinsam umschlungen, so erfahren beiden Kerne die gleiche Durchflutung I x w. Dadurch, dass die beiden Teilkerne 1 und 2 unterschiedliche magnetische Charakteristika, Induktion in Funktion der Durchflutung, aufweisen, werden in den beiden Teilkernen 1 und 2 entsprechende unterschiedliche Induktionen B1 und B2 erzeugt. Die beiden Teilkerne 1 und 2 weisen auch, entsprechende der Drosselspulenleistung, bestimmte effektive Kernquerschnitte A1 und A2 auf. Die in der Wicklung A induzierte Spannung ist somit: U = 4,44 x f x w x (A1 x B1 + A2 x B2) x 0,0001

Figure imgb0001

dabei ist:

U
= die Drosselspulenspannung in Volt
f
= die Frequenz in Hertz
w
= die Windungszahl der Wicklung A
A1
= der effektive Kernquerschnitt des Teilkernes 1 in cm2
A2
= der effektive Kernquerschnitt des Teilkernes 2 in cm2
B1
= Induktion im Teilkern 1 in Tesla
B2
= Induktion im Teilkern 2 in Tesla
If two sub-cores 1 and 2 with different magnetic characteristics are wound around a winding A through which the current I flows and with the number of turns w, both cores experience the same flux I x w. Characterized in that the two partial cores 1 and 2 have different magnetic characteristics, induction as a function of the flooding, corresponding different induction B1 and B2 are generated in the two partial cores 1 and 2. The two partial cores 1 and 2 also have certain effective core cross sections A1 and A2, corresponding to the choke coil power. The voltage induced in winding A is therefore: U = 4.44 xfxwx (A1 x B1 + A2 x B2) x 0.0001
Figure imgb0001

there is:
U
= the choke coil voltage in volts
f
= the frequency in Hertz
w
= the number of turns of winding A
A1
= the effective core cross section of the partial core 1 in cm2
A2
= the effective core cross section of the partial core 2 in cm2
B1
= Induction in partial core 1 in Tesla
B2
= Induction in partial core 2 in Tesla

Die Impedanz der Drosselspule beim entsprechenden Strom ist somit: Z = U/I = R + jωL

Figure imgb0002

dabei ist:

Z
= Impedanz der Drosselspule in Ohm
U
= die Drosselspulenspannung in Volt
I
= der Drosselspulenstrom in Ampere
R
= ohmscher Widerstand der Wicklung A in Ohm
j
= die imaginäre Einheit der komplexen Schreibweise der Impedanz
ω
= die Kreisfrequenz 2 x π x f
L
= die Induktivität der Drosselspule in Henry
f
= die Frequenz in Hertz
The impedance of the choke coil at the corresponding current is thus: Z = U / I = R + jωL
Figure imgb0002

there is:
Z.
= Impedance of the choke coil in ohms
U
= the choke coil voltage in volts
I.
= the choke coil current in amperes
R
= ohmic resistance of winding A in ohms
j
= the imaginary unit of the complex notation of impedance
ω
= the angular frequency 2 x π xf
L
= the inductance of the choke coil in Henry
f
= the frequency in Hertz

Die Reaktanz der Drosselspule beim entsprechenden Strom ist somit: X = ω L = Z² - R²

Figure imgb0003
The reactance of the choke coil with the corresponding current is thus: X = ω L = Z² - R²
Figure imgb0003

Die Induktivität der Drosselspule beim entsprechenden Strom ist somit: L = X/ω = X/(2 x π x f)

Figure imgb0004
The inductance of the choke coil at the corresponding current is therefore: L = X / ω = X / (2 x π xf)
Figure imgb0004

Der Verlauf der Induktivität in Funktion des Stromes lässt sich auf diese über den ganzen Strombereich bestimmen. Nach diesem System lassen sich alle beliebigen Induktivitätsverhalten der Drosselspule bestimmen.The course of the inductance as a function of the current can be determined over the entire current range. All inductance behavior of the inductor can be determined using this system.

In Figur 1 ist eine erste Ausführung einer erfindungsgemässen Delta-Phi-Drossel prinzipiell dargestellt. Die Delta-Phi-Drossel weist zwei Teilkerne mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften auf, wobei der Teilkern 1 keinen Luftspalt aufweist und der Teilkern 2 mit einem Luftspalt L2 ausgerüstet ist. Die Wicklung A umschlingt beide Teilkerne gemeinsam. Die Wicklung B umschlingt nur den Teilkern 1 und die Wicklung C umschlingt nur den Teilkern 2. Durch die entsprechende Schaltung, additive und/oder subtraktive Serieschaltung, und der Wahl der Windungszahlen der Wicklungen kann das magnetische Verhalten der beiden Teilkerne und somit auch das Induktivitätsverhalten der Delta-Phi-Drossel stark beeinflusst werden.1 shows a first embodiment of a delta-phi inductor according to the invention in principle. The delta-phi inductor has two partial cores with different overall magnetic properties, the partial core 1 having no air gap and the partial core 2 being equipped with an air gap L2. The winding A wraps around the two cores together. The winding B wraps only around the partial core 1 and the winding C wraps around only the partial core 2. Through the appropriate circuit, additive and / or subtractive series circuit, and the choice of the number of turns of the windings, the magnetic behavior of the two partial cores and thus also the inductance behavior of the Delta Phi inductor can be greatly influenced.

Figur 2 zeigt prinzipiell dargestellt eine zweite erfindungsgemässe Delta-Phi-Drossel in erweiterter Ausführung mit drei Teilkernen 1, 2 und 4 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften, wobei alle Teilkerne mit unterschiedlichen Luftspalten L1, L2 und L4 ausgerüstet sind. Die Wicklung A umschlingt alle drei Teilkerne gemeinsam. Die Wicklung C umschlingt nur den Teilkern 2 und die Wicklung E umschlingt nur den Teilkern 4. Durch die entsprechende Schaltung, additive und/oder subtraktive Serieschaltung, der Wahl der Windungszahlen, der Wicklungen kann das magnetische Verhalten der Teilkerne und das Induktivitätsverhalten der Delta-Phi-Drossel stark beeinflusst werden.FIG. 2 shows, in principle, a second delta-phi choke according to the invention in an expanded version with three partial cores 1, 2 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2 and L4. The winding A wraps around all three sub-cores together. The winding C wraps around only the partial core 2 and the winding E wraps around only the partial core 4. By means of the appropriate circuit, additive and / or subtractive series circuit, the choice of the number of turns, the windings, the magnetic behavior of the partial cores and the inductance behavior of the delta phi - Choke can be greatly affected.

Figur 3 zeigt prinzipiell dargestellt eine dritte erfindungsgemässe Delta-Phi-Drossel in erweiterter Ausführung mit drei Teilkernen 1, 2 und 3 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften, wobei alle Teilkerne mit unterschiedlichen Luftspalten L1, L2 und L3 ausgerüstet sind. Die Wicklung A umschlingt die Teilkerne 1 und 2 und die Wicklung B umschlingt die Teilkerne 1 und 3. Durch die entsprechende Schaltung, additive oder subtraktive Serieschaltung oder Parallelschaltung, der Wahl der Windungszahlen, der Wicklungen kann das magnetische Verhalten der Teilkerne und somit das Induktivitätsverhalten der Delta-Phi-Drossel stark beeinflusst werden.FIG. 3 shows in principle a third delta-phi choke according to the invention in an expanded version with three partial cores 1, 2 and 3 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2 and L3. The winding A wraps around the sub-cores 1 and 2 and the winding B wraps around the sub-cores 1 and 3. Through the appropriate circuit, additive or subtractive series connection or parallel connection, the choice of the number of turns, the windings, the magnetic behavior of the sub-cores and thus the inductance behavior of the Delta Phi inductor can be greatly influenced.

In Figur 4 ist eine vierte erfindungsgemässe Delta-Phi-Drossel in erweiterter Ausführung prinzipiell dargestellt. Die Delta-Phi-Drossel weist drei Teilkerne 1, 2 und 4 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften auf, wobei alle Teilkerne mit unterschiedlichen Luftspalten L1, L2 und L4 ausgerüstet sind.In Figure 4, a fourth delta phi choke according to the invention is shown in principle in an expanded version. The delta-phi choke has three partial cores 1, 2 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2 and L4.

Die Wicklung A umschlingt die Teilkerne 1 und 2, die Wicklung B umschlingt den Teilkern 1, die Wicklung C umschlingt die Teilkerne 2 und 4 und die Wicklung E umschlingt den Teilkern 4. Durch die entsprechende Schaltung, additive oder subtraktive Serieschaltung, Parallelschaltung oder kombinierte Schaltung, der Wahl der Windungszahlen, der Wicklungen kann das magnetische Verhalten der Teilkerne und somit auch das Induktivitätsverhalten der Delta-Phi-Drossel stark beeinflusste werden.The winding A wraps around the sub-cores 1 and 2, the winding B wraps around the sub-core 1, the winding C wraps around the sub-core 2 and 4 and the winding E wraps around the sub-core 4. By means of the appropriate circuit, additive or subtractive series circuit, parallel circuit or combined circuit , the choice of the number of turns, the windings, the magnetic behavior of the partial cores and thus also the inductance behavior of the delta-phi inductor can be strongly influenced.

Figur 5 zeigt den prinzipiellen Aufbau einer fünften erfindungsgemässen Delta-Phi-Drossel mit vier Teilkernen 1, 2, 3 und 4 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften, wobei alle Teilkerne mit unterschiedlichen Luftspalten L1, L2, L3 und L4 ausgerüstet sind, und mit fünf Wicklungen A, B, C, D und E. Die Wicklung A umschlingt die Teilkerne 1, 2, 3 und 4, die Wicklung B umschlingt den Teilkern 1, die Wicklung C umschlingt den Teilkern 2, die Wicklung D umschlingt den Teilkern 3 und die Wicklung E umschlingt den Teilkern 4. Durch entsprechende Schaltung, additive und/oder subtraktive Serieschaltung, Parallelschaltung oder kombinierte Schaltung, der Wahl der Windungszahl, der Wicklungen kann das magnetische Verhalten der Teilkerne und das Induktivitätsverhalten der Delta-Phi-Drossel stark beeinflusst werden.FIG. 5 shows the basic structure of a fifth delta phi choke according to the invention with four partial cores 1, 2, 3 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2, L3 and L4, and with five windings A. , B, C, D and E. The winding A wraps around the partial cores 1, 2, 3 and 4, the winding B wraps around the partial core 1, the winding C wraps around the partial core 2, the winding D wraps around the partial core 3 and the winding E. wraps around the sub-core 4. By means of appropriate circuitry, additive and / or subtractive series circuitry, parallel circuitry or combined circuitry, the choice of the number of turns and the windings, the magnetic Behavior of the sub-cores and the inductance behavior of the delta phi inductor can be strongly influenced.

Figur 6 zeigt den prinzipiellen Aufbau einer sechsten erfindungsgemässen Delta-Phi-Drossel in erweiterter Ausführung mit vier Teilkernen 1, 2, 3 und 4 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften, wobei alle Teilkerne mit unterschiedlichen Luftspalten L1, L2, L3 und L4 ausgerüstet sind, und mit fünf Wicklungen A, B, C, D und E. Die Wicklung A umschlingt die Teilkerne 1 und 2, die Wicklung B umschlingt die Teilkerne 1 und 3, die Wicklung C umschlingt die Teilkerne 2 und 4, die Wicklung D umschlingt den Teilkern 3 und die Wicklung E umschlingt den Teilkern 4. Durch entsprechende Schaltung, additive und/oder subtraktive Serieschaltung, Parallelschaltung oder kombinierte Schaltung, der Wahl der Windungszahlen, der Wicklungen kann das magnetische Verhalten der Teilkerne und das Induktivitätsverhalten der Delta-Phi-Drossel stark beeinflusst werden.FIG. 6 shows the basic structure of a sixth delta phi choke according to the invention in an expanded version with four partial cores 1, 2, 3 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2, L3 and L4, and with five windings A, B, C, D and E. The winding A wraps around the sub-cores 1 and 2, the winding B wraps around the sub-cores 1 and 3, the winding C wraps around the sub-cores 2 and 4, the winding D wraps around the sub-core 3 and the winding E wraps around the partial core 4. The magnetic behavior of the partial cores and the inductance behavior of the delta-phi inductor can be strongly influenced by appropriate switching, additive and / or subtractive series connection, parallel connection or combined connection, the choice of the number of turns, the windings.

Figur 7 zeigt den prinzipiellen Aufbau einer siebenten erfindungsgemässen Delta-Phi-Drossel in erweiterter Ausführung mit vier Teilkernen 1, 2, 3 und 4 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften, wobei alle Teilkerne mit unterschiedlichen Luftspalten L1, L2, L3 und L4 ausgerüstet sind, und mit fünf Wicklungen A, B, C, D und E. Die Wicklung A umschlimgt die Teilkerne 1, 2 und 3, die Wicklung B umschlingt den Teilkern 1, die Wicklung C umschlingt die. Teilkerne 2 und 4, die Wicklung D umschlingt den Teilkern 3 und die Wicklung E umschlingt den-Teilkern 4. Durch entsprechende Schaltung, additive und/oder subtraktive Serieschaltung, Parallelschaltung und/oder kombinierte Schaltung, der Wahl der Windungszahlen, der Wicklungen kann das magnetische Verhalten der Teilkerne und das Induktivitätsverhalten der Delta-Phi-Drossel stark beeinflusst werden.FIG. 7 shows the basic structure of a seventh delta-phi choke according to the invention in an expanded version with four partial cores 1, 2, 3 and 4 with different overall magnetic properties, all partial cores being equipped with different air gaps L1, L2, L3 and L4, and with five windings A, B, C, D and E. The winding A wraps around the partial cores 1, 2 and 3, the winding B wraps around the partial core 1, the winding C wraps around the. Partial cores 2 and 4, the winding D wraps around the partial core 3 and the winding E wraps around the partial core 4. By means of a corresponding circuit, additive and / or subtractive series connection, parallel connection and / or combined connection, the choice of the number of turns, the windings, the magnetic behavior of the partial cores and the inductance behavior of the delta-phi inductor can be strongly influenced.

Figur 10 zeigt einen in Teilkerne, mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften, aufgeteilten Kern. Die unterschiedlichen magnetischen Gesamtwirkungseigenschaften werden dadurch erreicht, dass der Teilkern 1 keine Luftspaltstrecke und die übrigen Teilkerne unterschiedliche Luftspaltestrecken aufweisen. Die unterschiedlichen magnetischen Gesamtwirkungseigenschaften können zudem und/oder zusätzlich auch dadurch erreicht werden, dass Materialien mit unterschiedlichen magnetischen Eigenschaften, Induktion in Funktion der Feldstärke, wie sie in Figur 8 dargestellt sind, verwendtet werden. Die anwendbaren Luftspaltstrecken sind in Figur 11 dargestellt. Der Einfluss der Luftspaltstrecke(n) auf die magnetischen Eigenschaften eines Kernes oder eines Teilkernes, Induktion in Funktion der Durchflutung, ist in Figur 9 dargestellt. In den Zonen der Luftspaltstrecken streuen die magnetischen Feldlinien aus. Damit die Teilkerne sich nicht magnetisch gegenseitig beeinflussen, sind die einzelnen Teilkerne um mindestens die Distanz, welche der grössten benachbarten Luftspaltstrecke entspricht, zu distanzieren.FIG. 10 shows a core divided into partial cores with different overall magnetic properties. The different overall magnetic properties are achieved in that the partial core 1 has no air gap and the other partial cores have different air gaps. The different overall magnetic properties can also and / or additionally be achieved by using materials with different magnetic properties, induction as a function of the field strength, as shown in FIG. 8. The applicable air gap sections are shown in Figure 11. The influence of the air gap section (s) on the magnetic properties of a core or a partial core, induction as a function of the flooding, is shown in FIG. 9. The magnetic field lines scatter in the zones of the air gap. So that the partial cores do not influence each other magnetically, the individual partial cores must be spaced at least by the distance which corresponds to the largest adjacent air gap.

Figur 12 zeigt die Magnetisierungskurven, Induktion in Funktion der Durchflutung, einer erfindungsgemässen Delta-Phi-Drossel mit zwei Teilkernen 1 und 2 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften, wobei der Teilkern 1 keinen Luftspalt und der Teilkern 2 einen Luftspalt aufweist.FIG. 12 shows the magnetization curves, induction as a function of the flow, of a delta phi choke according to the invention with two partial cores 1 and 2 with different overall magnetic properties, the partial core 1 having no air gap and the partial core 2 having an air gap.

Figur 13 zeigt die Magnetisierungskurven, Induktion in Funktion der Durchflutung, einer erfindungsgemässen Delta-Phi-Drossel mit drei Teilkernen 1, 2 und 3 respektive 4 mit unterschiedlichen magnetischen Gesamtwikrungseigenschaften, wobei der Teilkern 1 einen kleinen Luftspalt, der Teilkern 2 einen grösseren Luftspalt und der Teilkern 3 respektive Teilkern 4 einen noch grösseren Luftspalt aufweist.FIG. 13 shows the magnetization curves, induction as a function of the flow, a delta-phi choke according to the invention with three partial cores 1, 2 and 3 or 4 with different overall magnetic properties, partial core 1 having a small air gap, partial core 2 having a larger air gap and Partial core 3 or partial core 4 has an even larger air gap.

Figur 14 zeigt die Magnetisierungskurven, Induktion in Funktion der Durchflutung, einer erfindungsgemässen Delta-Phi-Drossel mit vier Teilkernen 1, 2, 3 und 4 mit unterschiedlichen magnetischen Gesamtwirkungseigenschaften, wobei der Teilkern 1 einen kleinen Luftspalt, der Teilkern 2 einen etwas grösseren Luftspalt, der Teilkern 3 einen noch grösseren und der Teilkern 4 einen grossen Luftspalt aufweist.FIG. 14 shows the magnetization curves, induction as a function of the flow, a delta-phi choke according to the invention with four partial cores 1, 2, 3 and 4 with different overall magnetic properties, partial core 1 having a small air gap, partial core 2 having a somewhat larger air gap, the partial core 3 has an even larger and the partial core 4 has a large air gap.

Figur 15 zeigt die Induktivitätskurve, Induktivität in Funktion des Stromes, einer erfindungsgemässen Delta-Phi-Drossel mit zwei Teilkernen.FIG. 15 shows the inductance curve, inductance as a function of the current, of a delta-phi inductor according to the invention with two partial cores.

Figur 16 zeigt die Induktivitätskurve, Induktivität in Funktion des Stromes einer erfindungsgemässen Delta-Phi-Drossel mit drei Teilkernen.FIG. 16 shows the inductance curve, inductance as a function of the current of a delta-phi inductor according to the invention with three partial cores.

Figur 17 zeigt die Induktivitätskurve, Induktivität in Funktion des Stromes, einer erfindungsgemässen Delta-Phi-Drossel mit vier Teilkernen.FIG. 17 shows the inductance curve, inductance as a function of the current, of a delta-phi inductor according to the invention with four partial cores.

Das treppenförmige Induktivitätsverhalten, wie sie die Figuren 15, 16 und 17 darstellen, kommen dadurch zustande, dass die Teilkerne magnetisch so ausgelegt sind, dass zuerst der Teilkern 1 bei einem bestimmten Strom den magnetischen Sättigungspunkt erreicht, und die Induktionen der übrigen Teilkerne 2, 3 und 4 bei diesem bestimmten Strom sich noch im magnetisch ungesättigten Bereich befinden. Bei einem weiteren Anstieg des Stromes erreicht der Teilkern 2 bei einem weitern bestimmten Strom den magnetischen Sättigungspunkt und die Induktionen der Teilkerne 3 und 4 sich immernoch im magnetisch ungesättigten Bereich befinden. Dieser Zustand, durch einen weiteren Stromanstieg, wird bis zur magnetischen Sättigung aller Teilkerne durchgeführt.The step-shaped inductance behavior, as shown in FIGS. 15, 16 and 17, comes about because the partial cores are designed magnetically so that the partial core 1 first reaches the magnetic saturation point at a specific current, and the induction of the remaining partial cores 2, 3 and 4 are still in the magnetically unsaturated region at this particular current. With a further increase in the current, the partial core 2 reaches the magnetic saturation point with a further determined current and the induction of the partial cores 3 and 4 are still in the magnetically unsaturated region. This state, due to a further increase in current, is carried out until all partial cores are magnetically saturated.

Entsprechend der magnetischen Auslegung der Teilkerne, der Wahl der Windungszahlen und der Wahl der Schaltungen der Wicklungen können alle beliebigen Indktivitätsverhalten, Induktivität in Funktion des Stromes, erreicht werden.According to the magnetic design of the partial cores, the choice of the number of turns and the choice of the circuits of the windings, any inductance behavior, inductance as a function of the current can be achieved.

Claims (2)

  1. Choke coil, especially for use in traction vehicles, with a core which has at least two part cores (1, 2, 3, ..., n) spaced apart each with a different magnetic characteristic curve (B=f(H)), at most one of the part cores being without air gap and all other part cores having at least one air gap (L1, L2, L3, ...), by which air gap the magnetic characteristic curve of the respective part core is essentially determined, as well as at least a first coil (A), which encloses at least two of the part cores, the magnetic characteristic curves of the individual part cores being harmonized in such a way that the inductivity of the choke coil decreases with increasing current essentially stair-like up to the saturation of all the part cores, and thereby that one part core after the other reaches magnetic saturation, the number of stairs of the stairway corresponding to the number of part cores, and there being at least one further coil (B, C, D, ...), which encloses at least one of the part cores (1, 2, 3, ..., n), characterized in that the coils are electrically connected together in series and/or in parallel.
  2. Choke coil according to claim 1, characterized in that the individual part cores (1, 2, 3, ..., n) are spaced apart from one another by at least the distance corresponding to the largest air gap of part cores adjacent to one another.
EP88909509A 1988-02-11 1988-11-17 Choke coil Expired - Lifetime EP0380582B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH486/88A CH678773A5 (en) 1988-02-11 1988-02-11
CH486/88 1988-02-11
PCT/CH1988/000214 WO1989007828A1 (en) 1988-02-11 1988-11-17 Choke coil

Publications (2)

Publication Number Publication Date
EP0380582A1 EP0380582A1 (en) 1990-08-08
EP0380582B1 true EP0380582B1 (en) 1995-02-01

Family

ID=4188113

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88909509A Expired - Lifetime EP0380582B1 (en) 1988-02-11 1988-11-17 Choke coil

Country Status (7)

Country Link
EP (1) EP0380582B1 (en)
JP (1) JPH02503251A (en)
AT (1) ATE118115T1 (en)
CH (1) CH678773A5 (en)
DE (1) DE3852951D1 (en)
RU (1) RU1838841C (en)
WO (1) WO1989007828A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065448A (en) * 1992-06-22 1994-01-14 Matsushita Electric Ind Co Ltd Choke coil and power source
JPH07297055A (en) * 1994-04-26 1995-11-10 Matsushita Electric Ind Co Ltd Choke coil
US7969266B2 (en) * 2007-01-24 2011-06-28 Sumida Corporation Inductor
DE102010015410A1 (en) * 2010-04-19 2011-10-20 SUMIDA Components & Modules GmbH Inductive component with variable core properties and method for their adjustment
EP2631920A1 (en) * 2012-02-27 2013-08-28 ABB Oy Integrated common mode and differential mode choke

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952072A (en) * 1932-02-12 1934-03-27 Gen Electric Electrical instrument
CH227740A (en) * 1941-02-11 1943-06-30 Hermes Patentverwertungs Gmbh Arrangement for closing and interrupting an alternating current circuit.
CH224775A (en) * 1941-05-03 1942-12-15 Floris Dr Ing Koppelmann Switching arrangement, consisting of transformer and switching reactor.
CH293283A (en) * 1944-11-02 1953-09-15 Licentia Gmbh Choke iron core, especially for contact converters.
CH537672A (en) * 1971-10-29 1973-05-31 Bbc Brown Boveri & Cie Circuit arrangement for the thyristor circuit of high-voltage valves
JPS504524A (en) * 1973-05-18 1975-01-17
JPS5792815A (en) * 1980-12-01 1982-06-09 Tohoku Metal Ind Ltd Choke coil
JPS59182514A (en) * 1983-03-31 1984-10-17 Hitachi Metals Ltd Magnetic core for choke coil

Also Published As

Publication number Publication date
EP0380582A1 (en) 1990-08-08
ATE118115T1 (en) 1995-02-15
CH678773A5 (en) 1991-10-31
JPH02503251A (en) 1990-10-04
DE3852951D1 (en) 1995-03-16
RU1838841C (en) 1993-08-30
WO1989007828A1 (en) 1989-08-24

Similar Documents

Publication Publication Date Title
DE10260246A1 (en) Coil arrangement with variable inductance
EP2546842A2 (en) Coil for limiting energy
EP0380582B1 (en) Choke coil
CH676763A5 (en)
DE102013204638B4 (en) Device for detecting fault currents
DE202005008726U1 (en) Dispersive transformer e.g. for DC-DC converter power pack, has one part of winding enclosing two limbs, of which one has an air-gap
CH666770A5 (en) Current-limiting system for power transmission network
DE3423160C2 (en) Controllable, voltage converting electrical machine
EP0183015A1 (en) Current-limiting device
DE19829424A1 (en) Unipolar filter for reducing zero currents in electric power supply
DE1638885A1 (en) High voltage winding
DE706800C (en) Double throttle
DE1438234B2 (en) ARRANGEMENT FOR MONITORING THE FLOW OF CURRENTS IN ELECTRIC CIRCUITS
DE270072C (en)
WO2023180018A1 (en) Llc dc/dc converter with current-measuring transformer integrated into the inductance
EP0451628A1 (en) Choke-coil/transformer combination for operating high pressure metal vapor lamps of vehicle electrical systems
DE19612319A1 (en) Transformer, in particular, for a welding unit
DE1918577A1 (en) DC control arrangement
DE4001840A1 (en) Road vehicle discharge lamp supply transformer - has secondary winding stages coupled in series for voltage summation
DE403436C (en) Low distortion electric coil line
AT94070B (en) Safety system for the automatic shutdown of faulty sections of electrical line networks.
EP2862251B1 (en) Device for a three-phase load
DE1438234C (en) Arrangement for monitoring the level of currents in circuits
AT200618B (en) Device for reducing the touch voltage and step voltage
DE4116740A1 (en) POWER SWITCHING TRANSFORMER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL SE

17Q First examination report despatched

Effective date: 19920806

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950201

Ref country code: GB

Effective date: 19950201

Ref country code: NL

Effective date: 19950201

Ref country code: BE

Effective date: 19950201

REF Corresponds to:

Ref document number: 118115

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3852951

Country of ref document: DE

Date of ref document: 19950316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950501

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19951117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST