EP0378838A1 - Verfahren zur Senkung der Rückstreuung elektromagnetischer Strahlung an einseitig offenen Hohlraumstrukturen - Google Patents

Verfahren zur Senkung der Rückstreuung elektromagnetischer Strahlung an einseitig offenen Hohlraumstrukturen Download PDF

Info

Publication number
EP0378838A1
EP0378838A1 EP89123645A EP89123645A EP0378838A1 EP 0378838 A1 EP0378838 A1 EP 0378838A1 EP 89123645 A EP89123645 A EP 89123645A EP 89123645 A EP89123645 A EP 89123645A EP 0378838 A1 EP0378838 A1 EP 0378838A1
Authority
EP
European Patent Office
Prior art keywords
electromagnetic radiation
cavity structure
cavity
reduction
cavity structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89123645A
Other languages
English (en)
French (fr)
Inventor
Joachim Bettermann
Manfred Hochmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Deutsche Aerospace AG
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Aerospace AG, Messerschmitt Bolkow Blohm AG filed Critical Deutsche Aerospace AG
Publication of EP0378838A1 publication Critical patent/EP0378838A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the invention relates to a method for reducing the backscattering of electromagnetic radiation on cavity structures that are open on one side, such as engine inlets of missiles, aircraft and helicopters. It also relates to a cavity structure that is open on one side.
  • Cavity structures such as the engine inlets of missiles, aircraft or helicopters, caused by multiple reflections of the incident radar energy on the inner walls of the inlets and subsequent reflection at the rear end, for example at the first compressor blade ring, show a high degree of backscattering of the incident radar radiation. This gives for a large aspect angle range and a broad frequency band of the incident electromagnetic radiation. Because of this high Reflection rate, such aircraft can be detected even at a comparatively large distance.
  • the object of the invention is therefore to provide a method by means of which the probability of detection of aircraft equipped with such cavity structures is significantly reduced. Furthermore, the invention is intended to provide a cavity structure which is open on one side and has a significantly reduced radar cross section.
  • the invention solves the problem by a method with the characterizing features of claim 1 and to carry out the method, a cavity structure is formed according to the features of the claim.
  • the method according to the invention leads to a broadband lowering of the radar backscatter cross section of such cavity structures, such as engine inlets, while at the same time requiring little space for any additional structural elements that may be used. Furthermore, the arrangement is characterized by an extremely small restriction of the effective inlet cross-section of the cavity structure while at the same time optimally suppressing the reflection of the incident radar radiation.
  • a largely radar-absorbing design of the inner walls of cavity structures with at least one opening, in particular engine inlets, is therefore provided.
  • These inner walls can be designed as a primary, secondary or non-load-bearing structure.
  • the inner walls of the cavity structure can also be the surfaces of inlet dividers, so-called duct splitters, which are designed according to aerodynamic, structural and / or operational aspects.
  • the cavity structure in the inlet area can be filled with a straight or diagonally arranged mesh which, due to its frequency selectivity, only allows radar energy from certain frequency areas to enter the inlet and reflects radar energy from the other frequency areas.
  • the frequency-dependent absorption profiles of the absorbers on the inner walls in front of and behind the grating are advantageously matched to the reflection characteristics of the grating.
  • the geometric shape of the grille depends on its operationally required filter properties and the aerodynamic and structural boundary conditions.
  • the grid can consist of completely or limited conductive or absorbent material.
  • FIG. 1 The arrangement shown in FIG. 1 is a cross-section through an engine inlet 1, the inlet opening 2 of which is located on the left-hand side of the picture and leads to a first stage (not shown in the figure) of a compressor blade.
  • the inlet opening 2 is inserted in relation to the direction of flow mesh grid 3 which is shown in the left part of Fig. 1 again in plan view.
  • a first absorber 4 is arranged in the form of a thin, approximately 1 millimeter thick layer made of a material that absorbs the electromagnetic radiation.
  • a second absorber 5 is arranged in the area of the greatest curvature of the engine inlet 1 over the entire inner circumference, and finally an inlet divider 6 arranged in the center line of the engine inlet 1 is provided with an absorber layer 7 made of an absorber material.
  • the materials for the three absorbers 4, 5 and 7 mentioned are selected so that their maximum adsorption capacity is in each case at different frequencies of the incident radar radiation, so that due to these mutually offset adsorption profiles, as shown in FIG. 2, in combination with the reflection characteristic of the mesh 3, the broadband suppression of the reflection of the incident radar radiation already described sets.
  • the measures described above are suitable both for newly manufactured engine inlets and for retrofitting existing engines. However, they are not on engine intakes limited, but applicable to all cavity structures on an aircraft that are open on one side and whose radar backscatter cross section is to be reduced.
  • the absorbers 4, 5 and 7 are made of elastomer material, but fiber composite materials or thermoplastics, for example, are also suitable as absorber materials.

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Bei einem Verfahren zur Senkung der Rückstreuung elektromagnetischer Strahlung, insbesondere von Radarstrahlung, an einseitig offenen Hohlraumstrukturen werden zumindest Teilbereiche der inneren Oberfläche der Hohlraumstruktur mit einem Belag versehen, der aus einem die elektromagnetische Strahlung adsorbierenden Werkstoff besteht. Die Werkstoffe der einzelnen Absorberbeläge (4, 5) sind dabei so gewählt, daß sie in bezug auf die Frequenz der einfallenden elektromagnetischen Strahlung unterschiedliche Absorptionsverläufe aufweisen. Bei der Hohlraumstruktur kann es sich um einen Triebwerkseinlauf (1) für Flugkörper, Flugzeuge oder Hubschraüber handeln. Die Einlaßöffnung (2) kann zusätzlich durch ein schrägstehend angeordnetes Maschengitter (3) verschlossen sein, ein im Inneren angeordneter Strahlteiler (6) kann ebenfalls mit einer Absorberschicht (7) belegt sein.

Description

  • Die Erfindung betrifft ein Verfahren zur Senkung der Rückstreuung elektromagnetischer Strahlung an einseitig offenen Hohlraumstrukturen, wie Triebwerkseinläufen von Flugkörpern, Flugzeugen und Hubschraübern. Ferner be­trifft sie eine einseitig offene Hohlraumstruktur.
  • Hohlraumstrukturen, wie z.B. die Triebwerkseinläufe von Flugkörpern, Flugzeugen oder Hubschraübern weisen her­vorgerufen durch Mehrfachreflexionen der einfallenden Radarenergie an den Innenwänden der Einläufe und an­schließende Reflexion am rückwärtigen Abschluß, bei­spielsweise am ersten Verdichterschaufelkranz, ein ho­hes Maß an Rückstreuung der einfallenden Radarstrahlung auf. Dies gibt für einen großen Aspektwinkelbereich und ein breites Frequenzband der einfallenden elektroma­gnetischen Strahlung. Aufgrund dieser hohen Reflexionsrate ist eine Detektion derartiger Fluggeräte bereits in einer vergleichsweise großen Entfernung möglich.
  • Aufgabe der Erfindung ist daher, ein Verfahren anzuge­ben, mit dessen Hilfe die Entdeckungswahrscheinlichkeit von mit derartigen Hohlraumstrukturen ausgerüsteten Fluggeräten deutlich herabgesetzt wird. Ferner soll durch die Erfindung eine einseitig offene Hohlraum­struktur mit einem deutlich verminderten Radarquer­schnitt bereitgestellt werden.
  • Die Erfindung löst die Aufgabe durch ein Verfahren mit den kennzeichnenden Merkmalen des Patentanspruches 1 und zur Durchführung des Verfahrens ist ein Hohl­raumstruktur nach den Merkmalen des Anspruches ausgebildet.
  • Das erfindungsgemäße Verfahren führt dabei zu einer breitbandigen Absenkung des Radarrückstreuquerschnittes derartiger Hohlraumstrukturen, wie Triebwerkseinläufen, bei gleichzeitig geringem Raumbedarf für die gegebe­nenfalls zusätzlich eingesetzten Konstruktionselemente. Weiterhin zeichnet sich die Anordnung durch eine äu­ßerst geringe Einschränkung des wirksamen Einlaßquer­schnittes der Hohlraumstruktur bei zugleich optimaler Reflexionsunterdrückung der einfallenden Radarstrahlung aus.
  • Es ist daher eine weitgehende radarabsorbierende Aus­bildung der Innenwände von Hohlraumstrukturen mit we­nigstens einer Öffnung, insbesondere Triebwerkseinläu­fen, vorgesehen. Diese Innenwände können dabei als Primär-, Sekundär- oder aber als nichttragende Struktur ausgebildet sein. Indem erfindungsgemäß vorgesehen ist, daß unterschiedliche, relativ dünne schmalbandige Ma­terialien mit in der Frequenz verschiedenen
  • Absorptionsverläufen an unterschiedlichen Stellen der Struktur eingesetzt werden, wird insgesamt eine extrem breitbandige Unterdrückung der Reflexion der einfal­lenden Radarenergie erzielt. Die Innenwände der Hohl­raumstruktur können dabei, im Falle eines Triebwerks­einlaufes, auch die Oberflächen von Einlaufteilern, sogenannten Duct-Splittern, sein, die gemäß aerodyna­mischen, strukturellen und/oder operationellen Gesichtpunkten ausgelegt sind. Zusätzlich kann die Hohlraumstruktur im Einlaßbereich mit einem gerade oder schräg stehend angeordneten Maschengitter ausgefüllt sein, das durch seine Frequenzselektivität lediglich Radarenergie aus bestimmten Frequenzbereichen in den Einlauf eindringen läßt und Radarenergie der übrigen Frequenzbereiche wegreflektiert. Die frequenzabhängigen Absorptionsverläufe der Absorber an den Innenwänden vor und hinter dem Gitter sind dabei in vorteilhafter Weise auf die Reflexionscharakteristik des Gitters abge­stimmt. Die geometrische Form des Gitters richtet sich nach dessen operationell geforderten Filtereigenschaften und den aerodynamischen und strukturellen Randbedingungen. Das Gitter kann aus vollständig oder begrenzt leitfähigem bzw. absorbierendem Material bestehen.
  • Im folgenden wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispieles näher erläutert werden. Es zeigen:
    • Fig. 1 einen Querschnitt durch eine Hohlraumstruktur und
    • Fig. 2 eine Darstellung des Verlaufes des Rückstreuquerschnittes für elektromagnetische Strahlung in Abhängigkeit von der Frequenz der einfallenden Strahlung
  • Bei der in Fig. 1 dargestellten Anordnung handelt es sich um einen Querschnitt durch einen Triebwerkseinlauf 1 dessen Einlaßöffnung 2 sich auf der linken Bildseite befindet in der zu einer in der Figur nicht darge­stellten ersten Stufe einer Verdichterschaufel führt. In die Einlaßöffnung 2 ist ein in bezug auf die Strö­mungsrichtung schrägstehend angeordnetes Maschengitter 3 eingesetzt, das im linken Teil von Fig. 1 nochmals in der Draufsicht dargestellt ist.
  • Im Bereich vor dem Maschengitter 3 ist ein erster Absorber 4 in Form einer dünnen etwa 1 Millimeter starken Schicht aus einem die elektromagnetische Strahlung absorbierenden Werkstoff angeordnet. Ein zweiter Absorber 5 ist im Bereich der stärksten Krümmung des Triebwerkseinlaufes 1 über den gesamten inneren Umfang angeordnet, und schließlich ist auch ein in der Mittellinie des Triebwerkseinlaufes 1 angeordneter Einlaufteiler 6 mit einer Absorberschicht 7 aus einem Absorbermaterial versehen.
  • Die Werkstoffe für die drei genannten Absorber 4,5 und 7 sind dabei so ausgewählt, daß ihr maximales Adsorp­tionsvermögen jeweils bei unterschiedlichen Frequenzen der einfallenden Radarstrahlung liegt, so daß sich aufgrund dieser gegeneinander versetzten Adsorptions­verläufe, wie sie in Fig. 2 dargestellt sind in Kombi­nation mit der Reflexionscharakteristik des Maschen­gitters 3, die schon beschriebene breitbandige Unter­drückung der Reflexion der einfallenden Radarstrahlung einstellt.
  • Die vorstehend beschriebenen Maßnahmen eignen sich da­bei sowohl für neu herzustellende Triebwerkseinläufe als auch zur Nachrüstung bereits vorhandener Trieb­werke. Sie sind indessen nicht auf Triebwerkseinläufe beschränkt, sondern für alle an einem Fluggerät be­findlichen, einseitig offenen Hohlraumstrukturen an­wendbar, deren Radarrückstreuquerschnitt verringert werden soll. Die Absorber 4,5 bzw. 7 bestehen im Fall des hier beschriebenen Ausführungsbeispieles aus Elastomermaterial es sind aber als Absorber­materialien beispielsweise auch Faserverbundwerkstoffe oder Thermoplaste geeignet.

Claims (8)

1. Verfahren zur Senkung der Rückstreuung elektroma­gnetischer Strahlung an einseitig offenen Hohlraum­strukturen, wie Triebwerkseinläufen von Flugkör­pern, Flugzeugen und Hubschraübern, dadurch gekenn­zeichnet, daß zumindest Teilbereiche der inneren Oberfläche der Hohlraumstruktur (1) mit einem Belag (4,5,7) aus einem elektromagnetische Strahlung absorbierenden Werkstoff versehen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Beläge (4,5,7) in bezug auf die Frequenz der einfallenden elektromagnetischen Strahlen un­terschiedliche Absorptionsverläufe aufweisen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, daß die Öffnung (2) der Hohlraum­struktur(1) durch ein Maschengitter (3) ver­schlossen wird.
4. Hohlraumstruktur, insbesondere Triebwerkseinlauf zur Durchführung des Verfahrens, dadurch gekenn­zeichnet, daß zumindest Teilbereiche der inneren Oberfläche mit einem Belag (4,5,7) aus einem die elektromagnetische Strahlung absorbierenden Werk­stoff versehen ist.
5. Hohlraumstruktur nach Anspruch 4, dadurch gekenn­zeichnet, daß die in einzelnen Bereichen angeord­neten Beläge (4,5,7) in bezug auf die Frequenz der einfallenden elektromagnetischen Strahlung unter­schiedliche Absorptionsverläufe aufweisen.
6. Hohlraumstruktur nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Eintrittsöffnung (2) durch ein Maschengitter (3) verschlossen ist.
7. Hohlraumstruktur nach Anspruch 6, dadurch gekenn­zeichnet, daß das Maschengitter (3) schrägstehend angeordnet ist.
8. Hohlraumstruktur nach einem der Ansprüche 4 bis 7 in Form eines mit einem Strahlteiler ausgestalteten Triebwerkseinlaufes, dadurch gekennzeichnet, daß der Strahlteiler (6) mit einer Schicht (7) aus Absorbermaterial versehen ist.
EP89123645A 1989-01-14 1989-12-21 Verfahren zur Senkung der Rückstreuung elektromagnetischer Strahlung an einseitig offenen Hohlraumstrukturen Withdrawn EP0378838A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19893901010 DE3901010C1 (de) 1989-01-14 1989-01-14
DE3901010 1989-01-14

Publications (1)

Publication Number Publication Date
EP0378838A1 true EP0378838A1 (de) 1990-07-25

Family

ID=6372114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89123645A Withdrawn EP0378838A1 (de) 1989-01-14 1989-12-21 Verfahren zur Senkung der Rückstreuung elektromagnetischer Strahlung an einseitig offenen Hohlraumstrukturen

Country Status (2)

Country Link
EP (1) EP0378838A1 (de)
DE (1) DE3901010C1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859702A1 (fr) * 1994-07-08 2005-03-18 Aerospatiale Systeme de prise d'air pour aeronef, notamment missile, a conduit double
EP2676099B1 (de) * 2011-02-14 2017-04-26 Leonardo S.P.A. Vorrichtung zur verminderung der radarmarkierung von flugzeugen
EP2675712B1 (de) * 2011-02-14 2018-07-04 Leonardo S.P.A. Flugzeug mit verbesserter aerodynamischer leistung
CN111005807A (zh) * 2019-11-22 2020-04-14 北京机电工程研究所 一种应用吸波材料的腔体结构
CN112448110A (zh) * 2020-11-17 2021-03-05 四川天邑康和通信股份有限公司 一种可应用于5g无源das系统的腔体功分器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4007986C1 (en) * 1990-03-13 1991-09-19 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Aircraft structure with cavities - filled with material absorbing or reflecting radar vanes for camouflage or imaging
DE4121584A1 (de) * 1991-06-29 1993-01-21 Messerschmitt Boelkow Blohm Verfahren und einrichtung zur radartarnung bei triebwerken
DE4216837C2 (de) * 1992-05-21 1995-11-16 Daimler Benz Aerospace Ag Radartarnung für langsamfliegende rollstabilisierte Flugkörper
DE19528343C2 (de) * 1995-08-02 1997-05-22 Markus Muehleisen Vorrichtung zur reflexionsarmen Absorption von Mikrowellen
DE19807556B3 (de) * 1998-02-23 2013-11-28 Friedrich-Ulf Deisenroth Multispektral signaturreduzierend wirkendes Tarnelement
DE102012023718A1 (de) * 2012-12-05 2014-06-05 Eads Deutschland Gmbh Einlauf für ein Triebwerk eines Luftfahrzeugs
RU2623031C1 (ru) * 2016-06-30 2017-06-21 Публичное акционерное общество "Авиационная холдинговая компания "Сухой" Воздухозаборник самолета

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509568A (en) * 1968-07-08 1970-04-28 North American Rockwell Inlet attenuator assembly
US4148032A (en) * 1977-10-27 1979-04-03 The United States Of America As Represented By The Secretary Of The Navy Method and means for defocusing engine cavity reflected energy
DE3426990A1 (de) * 1984-07-21 1986-01-30 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Radarschutz an einem fluggeraet
DE3605430A1 (de) * 1986-02-20 1987-08-27 Messerschmitt Boelkow Blohm Einrichtung zur verringerung der radarrueckstrahlung
DE3713875C1 (en) * 1987-04-25 1988-07-07 Messerschmitt Boelkow Blohm Air inlet on aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3509568A (en) * 1968-07-08 1970-04-28 North American Rockwell Inlet attenuator assembly
US4148032A (en) * 1977-10-27 1979-04-03 The United States Of America As Represented By The Secretary Of The Navy Method and means for defocusing engine cavity reflected energy
DE3426990A1 (de) * 1984-07-21 1986-01-30 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Radarschutz an einem fluggeraet
DE3605430A1 (de) * 1986-02-20 1987-08-27 Messerschmitt Boelkow Blohm Einrichtung zur verringerung der radarrueckstrahlung
DE3713875C1 (en) * 1987-04-25 1988-07-07 Messerschmitt Boelkow Blohm Air inlet on aircraft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERNATIONAL SYMPOSIUM DIGEST ANTENNAS AND PROPAGATION, Syracuse, 6.-10. Juni 1988, Band 2, Seiten 790-793, IEEE; Hsueh-Jyh Li et al.: "Diaphanization by Absorber Covering" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2859702A1 (fr) * 1994-07-08 2005-03-18 Aerospatiale Systeme de prise d'air pour aeronef, notamment missile, a conduit double
EP2676099B1 (de) * 2011-02-14 2017-04-26 Leonardo S.P.A. Vorrichtung zur verminderung der radarmarkierung von flugzeugen
EP2675712B1 (de) * 2011-02-14 2018-07-04 Leonardo S.P.A. Flugzeug mit verbesserter aerodynamischer leistung
CN111005807A (zh) * 2019-11-22 2020-04-14 北京机电工程研究所 一种应用吸波材料的腔体结构
CN112448110A (zh) * 2020-11-17 2021-03-05 四川天邑康和通信股份有限公司 一种可应用于5g无源das系统的腔体功分器

Also Published As

Publication number Publication date
DE3901010C1 (de) 1990-08-23

Similar Documents

Publication Publication Date Title
DE3817214C2 (de) Schutzabdeckung für eine Antennenanordnung
EP0378838A1 (de) Verfahren zur Senkung der Rückstreuung elektromagnetischer Strahlung an einseitig offenen Hohlraumstrukturen
DE3534059C1 (en) Fibre composite material
DE2151349B2 (de) Radartarnplane
DE102016221143A1 (de) Radomwandung für Kommunikationsanwendungen
DE3722793A1 (de) Radartarnmaterial
DE69828759T2 (de) Radarabsorbierendes Verbundmaterial und dessen Verwendung
DE2339533A1 (de) Kuenstliches dielektrikum zur steuerung von antennendiagrammen
DE2715796C2 (de) Antennenanordnung, insbesondere Cassegrain-Antennenanordnung, und Verfahren zu deren Herstellung
DE2441638C3 (de) Breitbandantenne mit einer in der Nähe eines Reflektors angeordneten Spirale
EP0397967B1 (de) Radarstrahlen absorbierende Aussenfassade
DE2441540C3 (de) Selbsttragende, reflexionsarme, dielektrische Abdeckung für Mikrowellenantennen
EP0378839A2 (de) Rotorblatt
DE29816114U1 (de) Abdeckung für Richtfunkantennen
EP0918687B1 (de) Lärmschutzhalle für flugzeuge
DE4007986C1 (en) Aircraft structure with cavities - filled with material absorbing or reflecting radar vanes for camouflage or imaging
DE3426990C2 (de) Radarschutz an einem Fluggerät
DE4216837C2 (de) Radartarnung für langsamfliegende rollstabilisierte Flugkörper
EP0310762B1 (de) Geschirmte Zelle zur Erzeugung von elektromagnetischen Wellen des TEM-Typs
DE1265251B (de) Reflexionsarme breitbandige Daempfungsanordnung fuer elektromagnetische Wellen
DE102019101783B4 (de) Flugzeugrumpfstruktur
Hachenberg et al. Untersuchungen über das kontinuierliche Spektrum der Radiostrahlungsausbrüche der Sonne im unteren dm-und im cm-Wellengebiet. Mit 13 Textabbildungen
DE4341806C1 (de) Verfahren zur Herstellung eines selbsttragenden Radoms
DE102022127708A1 (de) Radomwandung für Kommunikationsanwendungen
DE2335845A1 (de) Anordnung zur beeinflussung von elektromagnetischen wellen eines dopplerradargeraetes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB

17Q First examination report despatched

Effective date: 19920904

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE AEROSPACE AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19930508