EP0377373A1 - Garniture pour forage à trajectoire contrôlée comportant un élément coude à angle variable et utilisation de cette garniture - Google Patents

Garniture pour forage à trajectoire contrôlée comportant un élément coude à angle variable et utilisation de cette garniture Download PDF

Info

Publication number
EP0377373A1
EP0377373A1 EP89403565A EP89403565A EP0377373A1 EP 0377373 A1 EP0377373 A1 EP 0377373A1 EP 89403565 A EP89403565 A EP 89403565A EP 89403565 A EP89403565 A EP 89403565A EP 0377373 A1 EP0377373 A1 EP 0377373A1
Authority
EP
European Patent Office
Prior art keywords
stabilizer
angle
variable
drilling
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89403565A
Other languages
German (de)
English (en)
Other versions
EP0377373B1 (fr
Inventor
Christian Bardin
Jean Boulet
Pierre Morin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0377373A1 publication Critical patent/EP0377373A1/fr
Application granted granted Critical
Publication of EP0377373B1 publication Critical patent/EP0377373B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/067Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub

Definitions

  • the present invention relates to a drill string with controlled trajectory.
  • the gasket according to the present invention is intended to be placed at the end of a drill string.
  • This lining makes it possible to control variations in direction and inclination of the borehole in real time. In addition, it makes it possible to control the azimuth, the radius of curvature in a precise manner and to reduce the phenomena of friction and to limit the risks of coincidence and this without requiring to raise said lining on the surface.
  • the gasket according to the present invention comprises a drilling tool placed at the lower end of said gasket, a motor for rotating said tool as well as at least one stabilizer and a bent element with variable geometry, that is to say of which the angle is variable.
  • the lining according to the invention may include another stabilizer.
  • the stabilizer may be of fixed geometry or of variable geometry.
  • the bent element and / or the stabilizer may be integrated into said motor.
  • variable geometry stabilizer may include means adapted to vary the distance between the axis of said lining and the bearing surface of at least one blade of the stabilizer and / or means adapted to vary at least axially the position of the bearing surface of at least one blade of said stabilizer.
  • the packing according to the present invention may comprise at least one stabilizer which is integral in rotation with said tool.
  • the lining according to the present invention may comprise at least one stabilizer integral in rotation with the body of the engine.
  • the bent element with variable geometry can be optionally remote-controlled from the surface.
  • the lining according to the present invention may comprise, in addition to the bent element with variable geometry, a stabilizer possibly with variable geometry, as well as two other stabilizers placed on either side of said stabilizer.
  • the bent element can be integrated into said motor.
  • the present invention relates to the use of one of the fittings described above at the end of a train of rods which can be driven in rotation by drive means located on the surface.
  • the gasket according to the invention will be able to control the azimuth (of the direction of drilling), which may be facilitated by a bent element integrated in the downhole motor, no rotation being applied to the drill string from the surface.
  • the control of the radius of curvature is facilitated by the association of an elbow and a stabilizer.
  • a bent element is meant a member introducing or being able to introduce locally, if not punctually a discontinuity in the direction of the axis of the drill string. That is to say that the axis of the drill string is a broken line at the bent element.
  • the reference 1 designates the ground surface from which a well 2 is drilled.
  • the reference 3 designates the surface installation as a whole.
  • the drilling equipment 4 comprises a drill string 5 at the end of which a drilling string 6 is fixed.
  • the drill string 6 corresponds to the lower end of the drilling equipment and can be considered as part of the drill string.
  • a drill string generally has a length of a few tens of meters, of which the thirty meters closest to the drilling tool is generally considered to be active as regards the control of the trajectory.
  • the drill string comprises a drilling tool 7, a bottom motor 8, a variable angle bent element 58 and a stabilizer 9.
  • the drilling tool 7 can be driven in rotation by the bottom motor 8, or by the drill string 5 which can be driven on the surface by motor means 10, such as a rotary table.
  • the stabilizer 9 can be of fixed geometry or of variable geometry, it is understood by this, according to the present invention, that one can act on it to vary the geometric configuration of the support points of the blades on the walls of the drilled well, this variation having to be considered for the same position of the lining in the drilled well.
  • Figures 2 to 4 show different types of stabilizers with variable geometry.
  • the reference 11 designates the portion of rod which carries the stabilizer 12.
  • the stabilizer comprises several blades, two of which are shown: blades 13 and 14.
  • the blades can move so as to vary the distance d which separates the axis 15 from the rod portion 11, from the friction surface 16 of the blade 14 or 13.
  • Figure 3 shows a variable geometry stabilizer in which the blades 18 move axially, as shown by the arrows.
  • the dotted lines represent possible positions of the blades 18.
  • Figure 4 shows the case where there is a single blade 17 which moves.
  • This type of stabilizer is often called "off-set".
  • the same effect of decentering the axis 15 is obtained by having several movable blades placed on the same side of an axial plane containing the axis 15, or by making the blades located from the same side of an axial plane containing the axis 15 as the blades located on the other side of this same plane.
  • the blades may have a helical shape, as shown in Figure 5, especially for the central stabilizer.
  • FIG. 5 represents an embodiment different from that of FIG. 1.
  • the reference 19 designates the drilling tool which is fixed to a shaft 20 driven by the motor 21.
  • the reference 22 designates a stabilizer with fixed geometry comprising blades 23 rectilinear and parallel to the axis of the lining 24.
  • Reference 73 designates a variable angle bent element.
  • the reference 25 designates a stabilizer with fixed geometry comprising blades 26 having friction or cutting surfaces 27.
  • the blades have a helical shape.
  • the reference 28 designates a stabilizer with a fixed geometry with a helical blade 29.
  • the motor 21 can be a "sparrow" type lobe motor, or a turbine supplied with drilling fluid from a passage 30 arranged in the lining, this passage itself being supplied with drilling fluid from the train. of stems which is hollow. After passing through the motor 21 the drilling fluid is directed towards the tool 19 to evacuate the debris.
  • the motor 21 may also be an electric motor supplied for example from the surface via a cable.
  • the stabilizer that is to say the one which is closest to the tool 19, this can be placed either on the external body 32 of the motor 33, as is the case in FIG. 6 , or on the shaft 34 for driving the tool 19 in rotation. This is the case in FIG. 7.
  • the stabilizer bears the reference 31.
  • the elbow element with variable angle can be fixed above the motor, this is the case of the elbow element 80 shown in FIG. 6 or integrated into the motor, this is the case of the elbow element 81 shown in Figure 7.
  • FIG. 8 represents a lining which is particularly efficient and which comprises, with regard to its lower part (about the first 30 meters): -
  • a drilling tool 35 adapted to the ground to be drilled, such as a rotary cutter tool, with a polycrystalline diamond cutting element or any other synthetic material and capable of withstanding a rotation speed consistent with the use of a downhole motor. It is necessary to choose a drilling tool with a long service life.
  • a downhole motor (here volumetric) 36 whose body forms a bent element or variable angle elbow 37 in its lower half and equipped with a stabilizer 38 positioned on the bent part of the motor 36, the elbow 37 will have an angle of preferably less than 3 degrees.
  • a variable diameter stabilizer 39 which can be remotely controlled from the surface.
  • a rod mass 40 comprising measurement means during drilling (MwD) measuring the main directional parameters (Inclination, Azimuth, Tool face) and transmitting them to the surface.
  • MwD measurement means during drilling
  • main directional parameters Inclination, Azimuth, Tool face
  • the lining will then comprise drill collars 42, possibly one or more other stabilizers, heavy rods, a threshing slide, the assembly being connected to the surface by drill rods.
  • variable geometry stabilizer or of a variable angle bent element.
  • FIGS. 9A, 9B and 10 show a particularly advantageous embodiment of a bent element with variable angle.
  • a tubular element has in its upper part a thread 59 allowing the mechanical connection to the drill string and in its lower part a thread 60 on the output shaft 46, in order to screw the tool. drilling 47.
  • the remote control mechanism consists of a shaft 48 which can slide in its upper part in the bore 65 of the body 43 and which can slide in its lower part in the bore 66 of the body 44.
  • This shaft has male grooves 49 meshing in female grooves of the body 43, alternately straight grooves 50 (parallel to the axis of the tubular body 43) and oblique (inclined relative to the axis of the tubular body 43) in which fingers 67 slide along an axis perpendicular to that of the displacement of the shaft 48 and kept in contact with the shaft by springs 68, male splines 51 meshing with female splines of the body 44 only when the shaft 48 is in the high position.
  • the shaft 48 is equipped in its lower part with a bore 52 in front of which is a needle 53 coaxial with the movement of the shaft 48.
  • a return spring 54 maintains the shaft in the high position, the splines 51 meshing in the equivalent female splines of the body 44.
  • the bodies 43 and 44 are free to rotate at the level of the rotating surface 69 coaxial with the axes of the bodies 43 and 44 and composed of rows of cylindrical rollers 70 inserted in their raceways 72 and extractable at through the orifices 74 by dismantling the door 71.
  • a reserve of oil 76 is maintained at the pressure of the drilling fluid by means of an annular free piston 77.
  • the oil lubricates the sliding surfaces of the shaft 48 by way of the passage 78.
  • the shaft 48 is machined so that an axial bore 79 allows the passage of the drilling fluid according to the arrow f.
  • the angle variation mechanism proper comprises a tubular body 45 which is integral in rotation with the tubular body 44 by means of a coupling 56.
  • the tubular body 45 can rotate relative to the tubular body 43 at the level of the rotary bearing 63 comprising rollers 75 and having an axis oblique to the axes of the tubular bodies 43 and 45.
  • FIG. 13 One possible embodiment for coupling 56 is shown in FIG. 13.
  • This type of remote control is based on a threshold value of the flow through the mechanism according to the arrow f.
  • the nozzle 52 will surround the needle 53 which will cause a large decrease in the drilling fluid passage section and therefore a large increase in the pressure difference ⁇ P and therefore a significant increase in the force F ensuring the complete descent of the shaft 48, despite the increase in the return force of the spring 54 due to its compression.
  • the fingers 67 will follow the oblique part of the grooves 50 during the downward stroke of the shaft 48 and will therefore cause the body to rotate tubular 44 relative to the tubular body 43, which is made possible by the fact that the male splines 51 will disengage from the corresponding female splines of the body 44 at the start of the downward travel of the shaft 48.
  • FIG. 13 is a developed illustration of parts 97 and 98 which make it possible to transmit the rotation of the tubular body 44 to the tubular body 45 while allowing relative angular movement of these two tubular bodies.
  • the part 97 has housings 99 in which rods 100 cooperate comprising spheres 101.
  • the tubular body integral with the part 97 flexes relative to the tubular body integral with the part 98.
  • variable geometry stabilizer An embodiment of a variable geometry stabilizer is now described.
  • the remote control mechanism of this stabilizer is the same as that described above.
  • FIG. 11 describes the mechanism for varying the position of one or more blades of an integrated stabilizer.
  • Figure 11 can be considered as the lower part of Figure 9A.
  • grooves 92 At the lower end of the body 44 are grooves 92 whose depth differs depending on the angular sector concerned. Apply to the bottom of these grooves pushers 93 on which lean blades 94 straight or helical in shape under the action of leaf return springs 95 positioned under protective covers 96.
  • the pushers 93 will be on a sector of the groove 92 whose depth will be different. This will cause a translation of the blades, either by moving away, or by approaching the axis of the body.
  • FIG. 11 shows on the right side a blade in the "retracted” position and on the left side a blade in the "extended” position.
  • FIG. 12 shows the developed curve of the profile of the bottom of the groove 92. This profile can correspond, for example, to the case of three blades controlled from the same groove.
  • the abscissa represents the radius of the groove bottom as a function of the angle at the center from a reference angular position. Since the three blades are controlled from the same groove and on a lathe, the profile is reproduced identically every 120 degrees. This is why it was only represented on 120 degrees.
  • the finger 93 of a stabilizer blade cooperates with the portion of the groove bottom profile corresponding to the bearing 1A, this blade is in the entered position.
  • a rotation of 40 degrees of the groove causes a modification of the radius of the groove bottom from the position corresponding to the bearing 1A to that corresponding to the bearing 2A and therefore to an intermediate exit position in the blade.
  • Another rotation of 40 degrees leads to an increase in the bottom groove radius corresponding to the bearing 3A and to a maximum output of the blade. Between each landing a ramp X allows a gradual exit of the blade.
  • the ramp Y is a descending ramp which returns the device to the retracted position corresponding to the bearing 4A of the same value as the bearing 1A.
  • the present invention also relates to a method of implementing such a lining, in particular by using the means for driving the entire set of rods in rotation.
  • the radius of curvature of the trajectory of the drilling tool may be modified by variation of the geometry (for example the diameter) of the stabilizer, in addition to the methods currently available (variation of the weight per l tool, variation of the rotation speed etc ).
  • FIG. 14 represents the projection of the trajectory on the vertical plane and FIG. 15 represents the projection of the trajectory on the horizontal plane.
  • Reference 102 designates the substantially vertical phase of drilling. This phase is carried out by turning the entire packing from the drill string. In this case the angle of the bent element does not matter. However, it is preferable that the two articulated parts of this element are aligned so as to reduce the lateral wear of the components of the lining. It is obvious that this position of the bent element is imperative if this phase is carried out only by the use of the downhole motor.
  • the diameter of the variable geometry stabilizer 39 is preferably equal to the diameter of the upper fixed geometry stabilizer 41.
  • the reference 103 designates the initiation of the deviation from 0 to 10 degrees approximately which is obtained by a remote control of the bent element so as to obtain a certain angle between the articulated parts of this element thus causing a lateral force on the tool and by an orientation of the elbow 37 in the desired azimuth of the drilling followed by a rotary drive of the tool 35 from the bottom motor 36, without there being drive of the whole of the lining drilling from the drill string.
  • the radius of curvature of the well can be adjusted by varying the angle of the bent element and / or by varying the diameter of the variable geometry stabilizer 39.
  • Reference 104 designates the phase of angle rise of about 10 degrees to the desired inclination, without intervention on the direction of the well. This phase is achieved by rotating the packing as a whole from the drill string. In this case it is preferable that the articulated parts of the bent element are aligned and that the radius of curvature is adjusted by the diameter of the stabilizer with variable geometry 39.
  • Reference 105 designates an azimuth correction phase which can be carried out with or without angle correction. In the case of Figures 14 and 15, there is no angle correction. This azimuth correction is effected by the orientation of the bent element 37 having a non-zero angle, in the appropriate direction to achieve the desired orientation correction and the drive of the tool by the downhole motor. , without the entire packing being driven by the drill string.
  • variable geometry stabilizer 39 makes it possible to control the radius of curvature of the path.
  • the reference 106 designates a drilling phase at constant inclination without controlling the azimuth. This drilling phase can be carried out by rotating the entire drilling string from the drill string.
  • the phase referenced 107 is an azimuth correction phase of the same type as that described above and which bears the reference 105.
  • the phases referenced 108 and 110 are drilling phases at constant inclination without azimuth control. They are of the same type as the phase which bears the reference 106.
  • the phases referenced 109 and 111 are phases for decreasing the angle of inclination.
  • Reference 112 designates the target to be reached by drilling.
  • FIGS. 16 to 18 illustrate the control of the direction of drilling using a lining comprising three stabilizers, a stabilizer with variable geometry 113, two stabilizers with fixed geometry situated on either side of the stabilizer with variable geometry and a variable angle elbow element 121 remotely controllable.
  • the inclination of the borehole is assumed to be 30 degrees from the vertical.
  • the reference 114 designates the stabilizer with upper fixed geometry and the reference 115 the stabilizer with lower fixed geometry located near the drilling tool 116.
  • the fixed stabilizer 115 is integral with the body of the engine 117 as well as the element angled 121.
  • the intermediate position of the stabilizer blades 113 shown in FIG. 16 corresponds to drilling at a constant angle of inclination, the remote-controlled bent element 121 having a zero angle.
  • the elbow 121 is assumed to have a deflection angle close to 1 degree.
  • the elbow 121 is positioned so as to orient the borehole towards the bottom of the figure in the direction of the arrow 119.
  • This position represented in phantom 122 is qualified by the terms "Low side" by the driller.
  • the angular position of the bent element 121 is generally verified using conventional measurement means positioned in the drill string. The adjustment of this position is obtained by rotation of the drill string by an appropriate angle from the surface.
  • the tool 116 is driven in rotation by the motor 117.
  • variable geometry centering device 113 amplifies the reduction in the angle of inclination.
  • FIG. 18 represents a bend oriented upwards, generally qualified as "high side” by the driller, as represented by the dashed line 123.
  • the angle of inclination is considered with respect to the vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Stored Programmes (AREA)

Abstract

La présente invention concerne une garniture pour forage à trajectoire contrôlée. Cette garniture comprend un moteur de fond (36), un outil de forage (35), au moins un stabilisateur (38) et un élément coudé à angle variable (37) télécommandé.

Description

  • La présente invention concerne une garniture de forage à trajectoire contrôlée. La garniture selon la présente invention est destinée à être placée à l'extrêmité d'un train de tiges de forage. Cette gar­niture permet de maîtriser en temps réel les variations de direction et d'inclinaison du forage. En outre, elle permet de maîtriser l'azimut, le rayon de courbure de façon précise et de réduire les phénomènes de frottement et de limiter les risques de coïncement et ceci sans nécessiter de remonter ladite garniture en surface.
  • La garniture selon la présente invention comprend un outil de forage placé à l'extrêmité inférieure de ladite garniture, un moteur d'entraînement en rotation dudit outil ainsi qu'au moins un stabilisateur et un élément coudé à géométrie variable c'est à dire dont l'angle est variable.
  • La garniture selon l'invention pourra comporter un autre stabilisateur.
  • Le stabilisateur pourra être à géométrie fixe ou à géométrie variable. L'élément coudé et/ou le stabilisateur pourra être intégré audit moteur.
  • Le stabilisateur à géométrie variable pourra comporter des moyens adaptés à faire varier la distance entre l'axe de ladite garniture et la surface d'appui d'au moins une lame du stabilisateur et/ou des moyens adaptés à faire varier au moins axialement la position de la surface d'appui d'au moins une lame dudit stabilisateur.
  • La garniture selon la présente invention pourra comporter au moins un stabilisateur qui est solidaire en rotation dudit outil.
  • La garniture selon la présente invention pourra comporter au moins un stabilisateur solidaire en rotation du corps du moteur.
  • L'élément coudé à géométrie variable pourra être télécommandé éventuellement depuis la surface.
  • La garniture selon la présente invention pourra comporter en plus de l'élément coudé à géométrie variable un stabilisateur éventuellement à géométrie variable, ainsi que deux autres stabilisateurs placés de part et d'autre dudit stabilisateur. L'élément coudé pourra être intégré audit moteur.
  • La présente invention concerne l'utilisation de l'une des garnitures décrites précédemment à l'extrêmité d'un train de tiges pouvant être entraîné en rotation par des moyens d'entraînement situés en surface.
  • Bien entendu la garniture selon l'invention pourra assurer le contrôle de l'azimut (de la direction du forage), ce qui pourra être facilité grâce à un élément coudé intégré dans le moteur de fond aucune rotation n'étant appliquée au train de tiges depuis la surface.
  • La maîtrise du rayon de courbure est facilitée par l'association d'un coude et d'un stabilisateur.
  • Par un élément coudé, on entend un organe introduisant ou pouvant introduire localement, si ce n'est ponctuellement une discontinuité de la direction de l'axe du train de tiges. C'est-à-dire que l'axe de la garniture de forage est une ligne brisée au niveau de l'élément coudé.
  • La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la description qui suit d'exemples particuliers nullement limitatifs illustrés par les figures ci-annexées, parmi lesquelles :
    • - la figure 1 représente un mode de réalisation d'une garniture selon la présente invention,
    • - les figures 2 à 4 montrent différents types de stabilisateurs à géométrie variable,
    • - la figure 5 illustre une garniture comportant trois stabilisateurs à géométrie fixe et un élément coudé à angle variable,
    • - les figures 6 et 7 montrent deux variantes de disposition d'un stabilisateur et de l'élément coudé,
    • - la figure 8 illustre un mode de réalisation particulier comportant trois stabilisateurs dont un est à géométrie variable et un élément coudé à angle variable,
    • - les figures 9A et 9B représentent un mode de réalisation de la présente invention dans lequel on peut faire varier l'angle d'un coude se situant au niveau du joint universel d'un moteur de fond,
    • - la figure 10 représente le dispositif de la figure 9B dans une configuration différente,
    • - la figure 11 représente la partie inférieure d'un deuxième mode de réalisation de la présente invention venant en lieu et place de la figure 9B, dans lequel on peut faire varier la position d'une ou plusieurs lames d'un stabilisateur par rapport à l'axe principal du corps tubulaire extérieur. Cette figure comporte deux demi-coupes représentant deux positions différentes des lames du stabilisateur,
    • - la figure 12 montre une vue développée d'un profil de fond de gorge utilisé dans le dispositif représenté à la figure 11,
    • - la figure 13 illustre un détail d'organe de transmission de couple entre deux éléments tubulaire tout en permettant une flexion entre ces deux éléments, cette figure représente ce détail sous la forme développée,
    • - les figures 14 et 15 représentent la trajectoire d'un forage, et
    • - les figures 16 à 18 montrent la manière de contrôler la trajectoire d'un forage dans le cas d'utilisation d'une garniture comportant trois stabilisateurs dont l'un est à géométrie variable et un élément coudé à angle variable.
  • Dans le mode de réalisation de la figure 1, la référence 1 désigne la surface du sol à partir de laquelle on réalise le forage d'un puits 2. La référence 3 désigne l'installation de surface dans son ensemble.
  • L'équipement de forage 4 comporte un train de tiges de forage 5 à l'extrêmité duquel est fixée une garniture de forage 6.
  • La garniture de forage 6 correspond à l'extrêmité inférieure de l'équipement de forage et peut être considérée comme faisant partie du train de tiges de forage.
  • Une garniture de forage présente généralement une longueur de quelques dizaines de mètres, dont la trentaine de mètres la plus proche de l'outil de forage est généralement considérée comme active en ce qui concerne le contrôle de la trajectoire.
  • Dans le mode de réalisation de la figure 1, la garniture de forage comporte un outil de forage 7, un moteur de fond 8, un élément coudé à angle variable 58 et un stabilisateur 9.
  • Dans ce mode de réalisation l'outil de forage 7 peut être entraîné en rotation par le moteur de fond 8, ou par le train de tiges 5 qui peut être entraîné en surface par des moyens moteurs 10, tels qu'une table tournante.
  • Le stabilisateur 9 peut être à géométrie fixe ou à géométrie variable, on entend par là, selon la présente invention, que l'on peut agir sur celui-ci pour faire varier la configuration géométrique des points d'appuis des lames sur les parois du puits foré, cette variation devant être considérée pour une même position de la garniture dans le puits foré.
  • Sur les figures 2 à 4 on a représenté différents types de stabilisateurs à géométrie variable.
  • La référence 11 désigne la portion de tige qui porte le stabilisateur 12.
  • Sur la figure 2 le stabilisateur comporte plusieurs lames dont deux sont représentées : les lames 13 et 14.
  • Dans ce mode de réalisation les lames peuvent se déplacer de manière à faire varier la distance d qui sépare l'axe 15 de la portion de tige 11, de la surface de frottement 16 de la lame 14 ou 13.
  • Sur la figure 2 les flèches représentent le mouvement des lames. Des positions possibles des lames ont été représentées en pointillés.
  • La figure 3 représente un stabilisateur a géométrie variable dans lequel les lames 18 se déplacent axialement, comme représenté par les flèches. Les pointillés représentent des positions possibles des lames 18.
  • La figure 4 représente le cas où il y a une seule lame 17 qui se déplace. Ce type de stabilisateur est souvent qualifié de "off-set". Bien entendu on obtient le même effet de décentrement de l'axe 15 en ayant plusieurs lames mobiles placées d'un même côté d'un plan axial contenant l'axe 15, ou bien en faisant se mouvoir plus amplement les lames se trouvant d'un même côté d'un plan axial contenant l'axe 15 que les lames se trouvant de l'autre côté de ce même plan.
  • On ne sortira pas du cadre de la présente invention en utilisant des stabilisateurs à géométrie variable d'autres types que ceux décrits précédemment, notamment en utilisant des lames qui combinent les différents mouvements mentionnés précédemment.
  • Bien entendu, les lames pourront avoir une forme hélicoïdale, comme représenté à la figure 5, notamment pour le stabilisateur central.
  • La figure 5 représente un mode de réalisation différent de celui de la figure 1.
  • Dans ce nouveau mode de réalisation la référence 19 désigne l'outil de forage qui est fixé à un arbre 20 entraîné par le moteur 21.
  • La référence 22 désigne un stabilisateur à géométrie fixe comportant des lames 23 rectilignes et parallèles à l'axe de la garniture 24.
  • La référence 73 désigne un élément coudé à angle variable.
  • La référence 25 désigne un stabilisateur à géométrie fixe comportant des lames 26 ayant des surfaces de frottement ou de coupe 27.
  • Dans ce mode de réalisation les lames ont une forme hélicoïdale.
  • La référence 28 désigne un stabilisateur à géométrie fixe à lame hélicoïdale 29.
  • Le moteur 21 peut être un moteur à lobes du type "Moineau", ou une turbine alimentée en fluide de forage à partir d'un passage 30 aménagé dans la garniture, ce passage étant lui-même alimenté en fluide de forage à partir du train de tiges qui est creux. Après avoir traversé le moteur 21 le fluide de forage est dirigé vers l'outil 19 pour évacuer les débris.
  • Le moteur 21 pourra également être un moteur électrique alimenté par exemple depuis la surface par l'intermédiaire d'un câble.
  • Concernant le stabilisateur inférieur, c'est-à-dire celui qui est le plus près de l'outil 19, celui-là pourra être placé soit sur le corps 32 extérieur du moteur 33, comme c'est le cas de la figure 6, soit sur l'arbre 34 d'entraînement en rotation de l'outil 19. C'est le cas de la figure 7. Sur ces deux figures le stabilisateur porte la référence 31.
  • L'élément coudé à angle variable pourra être fixé au-dessus du moteur, c'est le cas de l'élément coudé 80 représenté à la figure 6 ou intégré au moteur, c'est le cas de l'élément coudé 81 représenté à la figure 7.
  • La figure 8 représente une garniture qui est particulièrement performante et qui comporte, en ce qui concerne sa partie inférieure (environ 30 premiers mètres) :
    - un outil de forage 35 adapté aux terrains à forer, tel un outil à molettes, à élément de coupe en diamant polycristallin ou tout autre matériau synthétique et pouvant supporter une vitesse de rotation cohérente avec l'utilisation d'un moteur de fond. Il est nécessaire de choisir un outil de forage dont la durée de vie sera importante.
    - un moteur de fond (ici volumétrique) 36 dont le corps forme un élément coudé ou coude à angle variable 37 dans sa moitié inférieure et équipé d'un stabilisateur 38 positionné sur la partie coudée du moteur 36, le coude 37 aura un angle de préférence inférieur à 3 degrés.
    - un stabilisateur à diamètre variable 39 qui pourra être télécommandé depuis la surface.
    - une masse tige 40 comportant des moyens de mesure en cours de forage (MwD) mesurant les principaux paramètres directionnels (Inclinaison, Azimut, Face outil) et les transmettant vers la surface.
    - un stabilisateur 41 à diamètre constant
    - la garniture comprendra ensuite des masses-tiges 42, éventuellement un ou plusieurs autres stabilisateurs, des tiges lourdes, une coulisse de battage, l'ensemble étant relié à la surface par des tiges de forage.
  • Les figures suivantes montrent des exemples de réalisation d'un stabilisateur à géométrie variable, ou d'un élément coudé à angle variable.
  • Les figures 9A, 9B et 10 montrent un mode de réalisation particulièrement avantageux d'un élément coudé à angle variable. Selon ce mode de réalisation un élément de forme tubulaire comporte dans sa partie supérieure un filetage 59 permettant la liaison mécanique à la garniture de forage et dans sa partie inférieure un filetage 60 sur l'arbre de sortie 46, afin de visser l'outil de forage 47.
  • Les principales fonctions sont assurées :
    • A. par le moteur de fond 55 représenté sur la figure 9A sous forme d'un moteur volumétrique multilobes de type Moineau, mais pouvant être tout type de moteur de fond (volumétrique ou turbine) couramment utilisé pour la foration terrestre et qui ne feront donc pas l'objet d'une description détaillée.
    • B. par un mécanisme de télécommande 62 ayant pour fonction de capter l'information de changement de position et de provoquer la rotation différentielle du corps tubulaire 44 relativement au corps tubulaire 43.
    • C. par un mécanisme 64 d'entraînement et d'encaissement des efforts axiaux et latéraux reliant le moteur de fond 55 à l'arbre de sortie 46 qui ne sera pas décrit ici car il est connu de l'homme de métier.
    • D. par un mécanisme de variation de la géométrie 63 basé sur la rotation du corps tubulaire 44. La référence 57 désigne un joint universel. Celui-ci est utile lorsque le moteur est de type Moineau ou/et lorsqu'il est utilisé un élément coudé 63.
  • Le mécanisme de télécommande se compose d'un arbre 48 pouvant coulisser dans sa partie supérieure dans l'alésage 65 du corps 43 et pouvant coulisser dans sa partie inférieure dans l'alésage 66 du corps 44. Cet arbre comporte des cannelures mâles 49 engrenant dans des cannelures femelles du corps 43, des rainures 50 alternativement droites (parallèles à l'axe du corps tubulaire 43) et obliques (inclinées par rapport à l'axe du corps tubulaire 43) dans lesquelles viennent s engager des doigts 67 coulissant suivant un axe perpendiculaire à celui du déplacement de l'arbre 48 et maintenu en contact avec l'arbre par des ressorts 68, des cannelures mâles 51 engrenant avec des cannelures femelles du corps 44 uniquement lorsque l'arbre 48 est en position haute.
  • L'arbre 48 est équipé dans sa partie basse d'un dusage 52 en face duquel se trouve une aiguille 53 coaxiale au déplacement de l'arbre 48. Un ressort de rappel 54 maintient l'arbre en position haute, les cannelures 51 engrenant dans les cannelures femelles équivalentes du corps 44. Les corps 43 et 44 sont libres en rotation au niveau de la portée tournante 69 coaxiale aux axes des corps 43 et 44 et composée de rangées de galets cylindriques 70 insérés dans leurs chemins de roulement 72 et extractibles à travers les orifices 74 par démontage de la porte 71.
  • Une réserve d'huile 76 est maintenue à la pression du fluide de forage par l'intermédiaire d'un piston libre annulaire 77. L'huile vient lubrifier les surfaces coulissantes de l'arbre 48 par l'intermédiaire du passage 78.
  • L'arbre 48 est usiné de telle sorte qu'un alésage 79 axial autorise le passage du fluide de forage selon la flêche f.
  • Le mécanisme de variation d'angle à proprement parler comporte un corps tubulaire 45 qui est solidaire en rotation du corps tubulaire 44 par l'intermédiaire d'un accouplement 56. Le corps tubulaire 45 peut tourner par rapport au corps tubulaire 43 au niveau de la portée tournante 63 comprenant des galets 75 et ayant un axe oblique par rapport aux axes des corps tubulaires 43 et 45.
  • Un mode de réalisation envisageable pour l'accouplement 56 est représenté sur la figure 13.
  • Le fonctionnement du mécanisme de télécommande est décrit ci-après. Ce type de télécommande se fonde sur une valeur-seuil du débit traversant le mécanisme suivant la flêche f.
  • Quand un débit Q traverse l'arbre 48 il se produit une différence de pression Δ P entre la partie amont 82 et la partie aval 83 de l'arbre 6. Cette différence de pression augmente quand le débit Q augmente, en suivant une loi de variation du type Δ P = kQn, k étant une constante et n compris entre 1,5 et 2,0 en fonction des caractéristiques du fluide de forage. Cette différence de pression Δ P s'applique sur la section S de l'arbre 48 et crée une force F tendant à déplacer par translation l'arbre 48 vers le bas en comprimant le ressort de rappel 54. Pour une valeur-seuil du débit cette force F deviendra suffisamment importante pour vaincre la force de rappel du ressort et provoquera une légère translation de l'arbre. Du fait de cette translation la duse 52 viendra entourer l'aiguille 53 qui provoquera une forte diminution de la section de passage du fluide de forage et donc une forte augmentation de la différence de pression Δ P et donc une augmentation importante de la force F assurant la descente complète de l'arbre 48, malgré l'augmentation de la force de rappel du ressort 54 dûe à sa compression.
  • De par la forme de l'usinage des gorges 50 décrite dans le brevet FR-2.432.079, les doigts 67 vont suivre la partie oblique des gorges 50 lors de la course descendante de l'arbre 48 et vont donc provoquer la rotation du corps tubulaire 44 par rapport au corps tubulaire 43, ce qui est rendu possible par le fait que les cannelures mâles 51 vont se désengager des cannelures femelles correspondantes du corps 44 au début de la course descendante de l'arbre 48.
  • L'arbre étant arrivé en butée basse, le fait de couper le débit va permettre au ressort de rappel 54 de pousser l'arbre 48 vers le haut. Les doigts 67 suivront pendant cette course ascendante les parties rectilignes des gorges 50. En fin de course les cannelures 51 vont s'enclencher de nouveau afin de solidariser en rotation les corps tubulaires 43 et 44.
  • La figure 13 représente de manière développée des pièces 97 et 98 qui permettent de transmettre la rotation du corps tubulaire 44 au corps tubulaire 45 tout en permettant un mouvement angulaire relatif de ces deux corps tubulaires.
  • La pièce 97 comporte des logements 99 dans lesquels viennent coopérer des tiges 100 comportant des sphères 101. Ainsi bien que corps tubulaire solidaire de la pièce 97 fléchisse relativement au corps tubulaire solidaire de la pièce 98. Il y a entraînement en rotation d'un corps tubulaire par l'autre. Ainsi ces deux pièces ont le même rôle qu'un joint de cardan creux.
  • La variation de l'angle est obtenue par la rotation du corps tubulaire 44 relativement au corps tubulaire 43 qui provoque par l'intermédiaire du mécanisme d'entraînement 56 la rotation du corps tubulaire 45 par rapport à ce même corps tubulaire 43. Cette rotation se faisant autour d'un axe oblique par rapport aux deux axes des corps 43 et 45 va provoquer une modification de l'angle que forment les axes des corps 43 et 45. Cette variation d'angle est détaillée dans le brevet FR-2.432.079. La figure 10 montre la même partie du dispositif que celle représentée à la figure 9B, mais dans une position géométriquement différente.
  • Il est décrit maintenant un mode de réalisation d'un stabilisateur à géométrie variable. Le mécanisme de télécommande de ce stabilisateur est le même que celui décrit précédemment.
  • La figure 11 décrit le mécanisme de variation de position d'une ou plusieurs lames d'un stabilisateur intégré. La figure 11 peut être considérée comme étant la partie inférieure de la figure 9A.
  • A l'extrêmité inférieure du corps 44 sont usinées des gorges 92 dont la profondeur diffère en fonction du secteur angulaire concerné. Viennent s'appliquer au fond de ces gorges des poussoirs 93 sur lesquels s'appuient des lames 94 droites ou de forme hélicoïdale sous l'effet de ressorts de rappel à lames 95 positionnés sous des capots de protection 96.
  • Le fonctionnement du mécanisme de variation de position d'une ou de plusieurs lames est indiqué ci-dessous.
  • Lors de la rotation du corps tubulaire 44 par rapport au corps tubulaire 43 provoquée par le déplacement de l'arbre 48, les poussoirs 93 vont se trouver sur un secteur de la gorge 92 dont la profondeur sera différente. Cela provoquera une translation des lames, soit en s'éloignant, soit en se rapprochant de l'axe du corps.
  • La figure 11 montre du côté droit une lame en position "rentrée" et du côté gauche une lame en position "sortie". Plusieurs positions intermédiaires sont envisageables, selon le pas de rotation angulaire du mécanisme télécommandé de rotation.
  • La figure 12 montre la courbe développée du profil du fond de la gorge 92. Ce profil peut correspondre, par exemple, au cas de trois lames commandées à partir d'une même gorge.
  • L'abscisse représente le rayon du fond de gorge en fonction de l'angle au centre à partir d'une position angulaire de référence. Etant donné que l'on commande les trois lames à partir d'une même gorge et sur un tour, le profil se reproduit à l'identique tous les 120 degrés. C'est pour cela qu'il n'a été représenté que sur 120 degres. Lorsque le doigt 93 d'une lame du stabilisateur coopère avec la portion du profil de fond de gorge correspondant au palier 1A, cette lame est en position entrée. Une rotation de 40 degrés de la gorge entraîne une modification du rayon de fond de gorge de la position correspondant au palier 1A à celle correspondant au palier 2A et donc à une position intermédiaire de sortie dans la lame. Une autre rotation de 40 degrés entraîne une augmentation du rayon de fond de gorge correspondant au palier 3A et à une sortie maximum de la lame. Entre chaque palier une rampe X permet une sortie progressive de la lame.
  • La rampe Y est une rampe descendante qui ramène le dispositif à la position rentrée correspondant au palier 4A de même valeur que le palier 1A.
  • La présente invention concerne également une méthode de mise en oeuvre d'une telle garniture notamment en utilisant les moyens d'entraînement en rotation de l'ensemble du train de tiges.
  • Une application de cette méthode est décrite ci-après, elle fait référence à la garniture de la figure 8.
  • Cette garniture est particulièrement bien adaptée pour forer une section d'un puits, cette section forée comprenant :
    • 1. une phase verticale ;
    • 2. une amorce de déviation dans un azimut donné de 0 degré à 10 degrés, par exemple, en suivant une trajectoire précise ;
    • 3. une phase de montée en angle en suivant une trajectoire (rayon de courbure) donnée, par exemple 10 à 30 degrés, 40 degrés, voire 50 degrés etc..
    • 4. une correction éventuelle d'azimut, pendant ou après la troisième phase.
    • 5. forage d'une partie à angle constant
    • 6. correction d'angle et/un azimut.
  • Cela est rendu possible par la combinaison du moteur de fond coudé et du stabilisateur à diamètre variable.
  • Cette combinaison est parfaitement exploitée en alternant les périodes de forage avec rotation de la garniture de forage depuis la surface avec les périodes de forage directionnel où la garniture est maintenue dans une position (tool face) donnée. Lors de ces deux types de période, le rayon de courbure de la trajectoire de l'outil de forage pourra être modifié par variation de la géométrie (par exemple le diamètre) du stabilisateur, en plus des méthodes actuellement disponibles (variation du poids à l'outil, variation de la vitesse de rotation etc....).
  • La figure 14 représente la projection de la trajectoire sur le plan vertical et la figure 15 représente la projection de la trajectoire sur le plan horizontal.
  • La référence 102 désigne la phase sensiblement verticale du forage. Cette phase est effectuée en tournant l'ensemble de la garniture à partir du train de tiges. Dans ce cas l'angle de l'élément coudé importe peu. Toutefois il est préférable que les deux parties articulées de cet élément soient alignées de manière à réduire l'usure latérale des composants de la garniture. Il est bien évident que cette position de l'élément coudé est impérative si cette phase s'effectue uniquement par l'utilisation du moteur de fond. Le diamètre du stabilisateur à géométrie variable 39 est de préférence égal au diamètre du stabilisateur à géométrie fixe supérieur 41.
  • La référence 103 désigne l'amorce de la déviation de 0 à 10 degrés environ qui s'obtient par une télécommande de l'élément coudé de manière à obtenir un certain angle entre les parties articulées de cet élément provoquant ainsi une force latérale sur l'outil et par une orientation du coude 37 dans l'azimut souhaité du forage suivie d'un entraînement en rotation de l'outil 35 à partir du moteur de fond 36, sans qu'il y ait entraînement de l'ensemble de la garniture de forage à partir du train de tiges. Le rayon de courbure du puits peut être règlé par la variation de l'angle de l'élément coudé et/ou par la variation du diamètre du stabilisateur à géométrie variable 39.
  • La référence 104 désigne la phase de montée en angle de 10 degrés environ jusqu'à l'inclinaison souhaitée, sans intervention sur la direction du puits. Cette phase s'obtient en faisant tourner la garniture dans son ensemble à partir du train de tiges. Dans ce cas il est préférable que les parties articulées de l'élément coudé soient alignées et que le rayon de courbure soit ajusté par le diamètre du stabilisateur à géométrie variable 39.
  • La référence 105 désigne une phase de correction de l'azimut qui peut s'effectuer avec ou sans correction d'angle. Dans le cas des figures 14 et 15, il n'y a pas de correction d'angle. Cette correction d'azimut s'effectue par l'orientation de l'élément coudé 37 présentant un angle non nul, dans la direction appropriée pour aboutir à la correction d'orientation souhaitée et l'entraînement de l'outil par le moteur de fond, sans qu'il y ait un entraînement de l'ensemble de la garniture par le train de tiges.
  • Le choix du diamètre du stabilisateur à géométrie variable 39 ainsi que la valeur de l'angle de l'élément coudé permettent de contrôler le rayon de courbure de la trajectoire.
  • la référence 106 désigne une phase de forage à inclinaison constante sans contrôle de l'azimut. Cette phase de forage peut être réalisée par un entraînement en rotation de l'ensemble de la garniture de forage à partir du train de tiges.
  • La phase référencée 107 est une phase de correction d'azimut du même type que celle décrite précédemment et qui porte la référence 105.
  • Les phases référencées 108 et 110 sont des phases de forage à inclinaison constante sans contrôle de l'azimut. Elles sont du même type que la phase qui porte la référence 106.
  • Les phases référencées 109 et 111 sont des phases de diminution de l'angle d'inclinaison.
  • Les phases décrites précédemment se suivent dans le temps dans l'ordre des numéros des références qui leur sont affectés, allant de 102 à 111.
  • La référence 112 désigne la cible à atteindre par le forage.
  • Bien entendu, pour d'autres applications la succession des différentes phases et leur type pourront varier en fonction de conditions rencontrées en cours de forage et des objectifs à atteindre.
  • Les figures 16 à 18 illustrent le contrôle de la direction du forage à l'aide d'une garniture comportant trois stabilisateurs, un stabilisateur à géométrie variable 113, deux stabilisateurs a géométrie fixe situés de part et d'autre du stabilisateur à géométrie variable et un élément coudé à angle variable 121 télécommandable.
  • L'inclinaison du forage est supposée être à 30 degrés par rapport à la verticale. La référence 114 désigne le stabilisateur à géométrie fixe supérieur et la référence 115 le stabilisateur à géométrie fixe inférieur situé près de l'outil de forage 116. Dans cet exemple le stabilisateur fixe 115 est solidaire du corps du moteur 117 de même que l'élément coudé 121.
  • La position intermédiaire des lames du stabilisateur 113 représentée à la figure 16 correspond à un forage à angle d'inclinaison constant, l'élément coudé télécommandable 121 présentant un angle nul.
  • Sur les figures 17 et 18 le coude 121 est supposé présenter un angle de déviation voisin de 1 degré.
  • Sur la figure 17 le coude 121 est positionné de manière à orienter le forage vers le bas de la figure dans le sens de la flèche 119. Cette position représentée en trait mixte 122 est qualifiée par les termes de "Low side" par le foreur.
  • La vérification de la position angulaire de l'élément coudé 121 se fait généralement à l'aide de moyens de mesure classiques positionnés dans la garniture de forage. Le règlage de cette position est obtenu par rotation du train de tiges d'un angle approprié depuis la surface.
  • Dans ce mode de fonctionnement l'entraînement en rotation de l'outil 116 se fait par le moteur 117.
  • Sur la figure 17 le centreur à géométrie variable 113 amplifie la diminution de l'angle d'inclinaison.
  • La figure 18 représente un coude orienté vers le haut position généralement qualifiée de "high side" par le foreur, comme représenté par le trait mixte 123.
  • Dans ce mode de réglage l'angle d'inclinaison du forage augmente.
  • Le contrôle et le maintien de la position du coude 121 se fait de la même manière qu'expliqué précédemment.
  • Dans la présente demande l'angle d'inclinaison est considéré par rapport à la direction verticale.

Claims (9)

1. Garniture pour forage à trajectoire contrôlée comprenant un outil de forage, placé à l'extrêmité de ladite garniture, un moteur d'entraînement en rotation dudit outil, caractérisée en ce qu'elle comporte au moins un stabilisateur (9 ; 27 ; 31 ; 39 ; 38 ; 115) et un élément coudé à angle variable télécommandé (37 ; 58 ; 64 ; 73 ; 80 ; 81 ; 121).
2. Garniture selon la revendication 1, caractérisée en ce qu'elle comporte au moins un stabilisateur à géométrie variable (12 ; 39 ; 113).
3. Garniture selon l'une des revendications 1 ou 2, caractérisée en ce que ledit élément coudé (64) est intégré audit moteur (55).
4. Garniture selon l'une des revendications précédentes, caractérisée en ce qu'il comporte un stabilisateur qui est solidaire en rotation dudit outil (fig. 7).
5. Garniture selon l'une des revendications précédentes, caractérisée en ce qu'il comporte au moins un stabilisateur solidaire en rotation du corps du moteur (fig. 6).
6. Garniture selon l'une des revendications précédentes, caractérisée en ce que ledit élément coudé est télécommandé à distance depuis la surface (fig. 9A, 9B et 10).
7. Garniture selon l'une des revendications précédentes caractérisée en ce que l'élément coudé est situé au voisinage de l'outil de forage.
8. Garniture selon la revendication 8 caractérisée en ce qu'elle comporte un stabilisateur à géométrie fixe situé au voisinage de l'outil de forage.
9. Utilisation de la garniture selon l'une des revendications précédentes à l'extrêmité d'un train de tiges pouvant être entraîné en rotation par des moyens d'entraînement de surface.
EP89403565A 1988-12-30 1989-12-19 Garniture pour forage à trajectoire contrôlée comportant un élément coude à angle variable et utilisation de cette garniture Expired - Lifetime EP0377373B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817598 1988-12-30
FR8817598A FR2641316B1 (fr) 1988-12-30 1988-12-30 Garniture pour forage a trajectoire controlee comportant un element coude a angle variable et utilisation de cette garniture

Publications (2)

Publication Number Publication Date
EP0377373A1 true EP0377373A1 (fr) 1990-07-11
EP0377373B1 EP0377373B1 (fr) 1993-08-04

Family

ID=9373721

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403565A Expired - Lifetime EP0377373B1 (fr) 1988-12-30 1989-12-19 Garniture pour forage à trajectoire contrôlée comportant un élément coude à angle variable et utilisation de cette garniture

Country Status (5)

Country Link
US (1) US5273123A (fr)
EP (1) EP0377373B1 (fr)
CA (1) CA2006927C (fr)
FR (1) FR2641316B1 (fr)
NO (1) NO301783B1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497420A1 (fr) * 1991-02-01 1992-08-05 Anadrill International SA Procédé et appareil de forage directionnel contrôlé
GB2258875B (en) * 1991-08-17 1995-05-10 Baroid Technology Inc Drill bit steering
WO1999058807A1 (fr) * 1998-05-13 1999-11-18 Rotech Holdings Limited Dispositif de guidage
US6467557B1 (en) 1998-12-18 2002-10-22 Western Well Tool, Inc. Long reach rotary drilling assembly
US6708783B2 (en) 1999-04-14 2004-03-23 Western Well Tool, Inc. Three-dimensional steering tool for controlled downhole extended-reach directional drilling
RU2722090C1 (ru) * 2017-01-05 2020-05-26 Дженерал Электрик Компани Система для наклонно-направленного бурения роторным способом с активным стабилизатором

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9202163D0 (en) * 1992-01-31 1992-03-18 Neyrfor Weir Ltd Stabilisation devices for drill motors
FR2699222B1 (fr) * 1992-12-14 1995-02-24 Inst Francais Du Petrole Dispositif et méthode d'actionnement à distance d'un équipement comportant des moyens de temporisation - Application à une garniture de forage.
US5669457A (en) * 1996-01-02 1997-09-23 Dailey Petroleum Services Corp. Drill string orienting tool
EA002048B1 (ru) * 1998-06-10 2001-12-24 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Фрезерное устройство, размещаемое в скважине
US7798253B2 (en) * 2007-06-29 2010-09-21 Validus Method and apparatus for controlling precession in a drilling assembly
CN106609657A (zh) * 2015-10-22 2017-05-03 中国石油化工股份有限公司 钻具组合和使用其进行钻井的方法
CN108930515B (zh) * 2018-07-23 2021-06-08 徐芝香 歪头旋转导向工具
CN108952576A (zh) * 2018-07-24 2018-12-07 徐芝香 歪头静态推靠式旋转导向工具
CN108979534A (zh) * 2018-07-24 2018-12-11 徐芝香 歪头偏心圆筒推靠式旋转导向工具
CN108952575A (zh) * 2018-07-24 2018-12-07 徐芝香 歪头静态指向式旋转导向工具
CN111322011A (zh) * 2020-04-17 2020-06-23 长江大学 一种井下方位定向方法及其定向工具
CN116753243A (zh) * 2023-08-18 2023-09-15 凌远科技股份有限公司 一种动态指向式旋转导向的传力轴承系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500267A (en) * 1945-03-26 1950-03-14 John A Zublin Apparatus for drilling deflecting well bores
US2890859A (en) * 1957-02-25 1959-06-16 Eastware Oil Well Survey Compa Turbine well drilling apparatus
FR1247454A (fr) * 1959-10-22 1960-12-02 Dispositif pour le guidage d'un outil de forage
US3888319A (en) * 1973-11-26 1975-06-10 Continental Oil Co Control system for a drilling apparatus
US4040495A (en) * 1975-12-22 1977-08-09 Smith International, Inc. Drilling apparatus
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
FR2432079A1 (fr) * 1978-07-24 1980-02-22 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges
FR2445431A1 (fr) * 1978-12-29 1980-07-25 Inst Francais Du Petrole Garniture de forage avec etages de stabilisation a lames retractables
DE3423465C1 (de) * 1984-06-26 1985-05-02 Norton Christensen, Inc., Salt Lake City, Utah Vorrichtungen zum wahlweisen Geradeaus- oder Richtungsbohren in unterirdische Gesteinsformationen
DE3403239C1 (de) * 1984-01-31 1985-06-27 Christensen, Inc., Salt Lake City, Utah Vorrichtungen zum wahlweisen Geradeaus- oder Richtungsbohren in unterirdische Gesteinsformationen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4077657A (en) * 1976-03-22 1978-03-07 Smith, International, Inc. Adjustable bent sub
US4739842A (en) * 1984-05-12 1988-04-26 Eastman Christensen Company Apparatus for optional straight or directional drilling underground formations
FR2617533B1 (fr) * 1987-06-30 1994-02-11 Smf International Dispositif de reglage a distance de l'orientation relative de deux troncons d'une colonne de forage
US4817740A (en) * 1987-08-07 1989-04-04 Baker Hughes Incorporated Apparatus for directional drilling of subterranean wells
US4877092A (en) * 1988-04-15 1989-10-31 Teleco Oilfield Services Inc. Near bit offset stabilizer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500267A (en) * 1945-03-26 1950-03-14 John A Zublin Apparatus for drilling deflecting well bores
US2890859A (en) * 1957-02-25 1959-06-16 Eastware Oil Well Survey Compa Turbine well drilling apparatus
FR1247454A (fr) * 1959-10-22 1960-12-02 Dispositif pour le guidage d'un outil de forage
US3888319A (en) * 1973-11-26 1975-06-10 Continental Oil Co Control system for a drilling apparatus
US4040495A (en) * 1975-12-22 1977-08-09 Smith International, Inc. Drilling apparatus
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
FR2432079A1 (fr) * 1978-07-24 1980-02-22 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges
FR2445431A1 (fr) * 1978-12-29 1980-07-25 Inst Francais Du Petrole Garniture de forage avec etages de stabilisation a lames retractables
DE3403239C1 (de) * 1984-01-31 1985-06-27 Christensen, Inc., Salt Lake City, Utah Vorrichtungen zum wahlweisen Geradeaus- oder Richtungsbohren in unterirdische Gesteinsformationen
DE3423465C1 (de) * 1984-06-26 1985-05-02 Norton Christensen, Inc., Salt Lake City, Utah Vorrichtungen zum wahlweisen Geradeaus- oder Richtungsbohren in unterirdische Gesteinsformationen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497420A1 (fr) * 1991-02-01 1992-08-05 Anadrill International SA Procédé et appareil de forage directionnel contrôlé
GB2258875B (en) * 1991-08-17 1995-05-10 Baroid Technology Inc Drill bit steering
WO1999058807A1 (fr) * 1998-05-13 1999-11-18 Rotech Holdings Limited Dispositif de guidage
US6467557B1 (en) 1998-12-18 2002-10-22 Western Well Tool, Inc. Long reach rotary drilling assembly
US6708783B2 (en) 1999-04-14 2004-03-23 Western Well Tool, Inc. Three-dimensional steering tool for controlled downhole extended-reach directional drilling
RU2722090C1 (ru) * 2017-01-05 2020-05-26 Дженерал Электрик Компани Система для наклонно-направленного бурения роторным способом с активным стабилизатором

Also Published As

Publication number Publication date
FR2641316A1 (fr) 1990-07-06
NO301783B1 (no) 1997-12-08
EP0377373B1 (fr) 1993-08-04
NO895303L (no) 1990-07-02
US5273123A (en) 1993-12-28
FR2641316B1 (fr) 1995-09-08
CA2006927A1 (fr) 1990-06-30
NO895303D0 (no) 1989-12-28
CA2006927C (fr) 1999-10-05

Similar Documents

Publication Publication Date Title
EP0376805B1 (fr) Garniture de forage à trajectoire contrôlée comportant un stabilisateur à géométrie variable et utilisation de cette garniture
EP0380893B1 (fr) Equipement pour garniture de forage comportant un élément à actionner, un moteur et des moyens de commande
EP0377373B1 (fr) Garniture pour forage à trajectoire contrôlée comportant un élément coude à angle variable et utilisation de cette garniture
EP0376811B1 (fr) Dispositif d'actionnement à distance comportant un système duse-aiguille
CA2647397C (fr) Dispositif d'orientation d'outils de forage
EP0201398B1 (fr) Ensemble permettant d'effectuer des forages orientés
EP0190529B1 (fr) Dispositif d'actionnement à distance à commande de débit, en particulier pour l'actionnement d'un stabilisateur d'un train de tiges de forage
BE1012191A5 (fr) Couronne de trepan pivotante/inclinable pour forages dans le sol.
CA2276851C (fr) Dispositif et methode de controle de la trajectoire d'un forage
FR2843418A1 (fr) Dispositif stabilisateur d'un train de tiges de forage rotatif a frottement reduit
EP0517874A1 (fr) Dispositif comportant deux elements articules dans un plan, applique a un equipement de forage.
FR2913052A1 (fr) Commande des aubes a angle de calage variable
EP1746213A1 (fr) Installation de réalisation de paroi enterrée par mélange du sol avec un liant et procédé de correction de trajectoire de la tête de forage d'une telle installation
FR2649154A1 (fr) Carter de moteur coude pour forage curviligne
FR2580720A1 (fr) Systeme de forage de puits par vibrations
EP0904481A1 (fr) Carottier
CA2384281C (fr) Procede et dispositif de forage rotary d'un puits
FR2579662A1 (fr) Dispositif de forage a trajectoire controlee
FR3096072A1 (fr) Turbomachine comprenant un amortisseur de palier d’arbre à viscance variable
EP3775499B1 (fr) Dispositif de prélèvement d'air pour un moteur d'aéronef
EP0546135A1 (fr) Dispositif de reglage de l'azimut de la trajectoire d'un outil de forage en mode rotary.
EP4382722A1 (fr) Dispositif de guidage en rotation d'un outil de forage et procédé associé
FR3085431A1 (fr) Moteur a rapport volumetrique pilote
FR2556419A1 (fr) Machine d'attaque a helice pour le forage de puits
FR2612983A2 (fr) Dispositif de forage a trajectoire controlee et procede de reglage de trajectoire correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT NL

17Q First examination report despatched

Effective date: 19920311

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031124

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031223

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041219

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051219