EP0376827A1 - Tube à faisceau d'électrons refroidi partiellement par rayonnement direct - Google Patents

Tube à faisceau d'électrons refroidi partiellement par rayonnement direct Download PDF

Info

Publication number
EP0376827A1
EP0376827A1 EP89403626A EP89403626A EP0376827A1 EP 0376827 A1 EP0376827 A1 EP 0376827A1 EP 89403626 A EP89403626 A EP 89403626A EP 89403626 A EP89403626 A EP 89403626A EP 0376827 A1 EP0376827 A1 EP 0376827A1
Authority
EP
European Patent Office
Prior art keywords
fins
collector
electron beam
beam tube
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89403626A
Other languages
German (de)
English (en)
Inventor
André Pelletier
Dominique Henry
Henri Desmur
Marc Bizet
Jean-Claude Bedu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP0376827A1 publication Critical patent/EP0376827A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • H01J23/033Collector cooling devices

Definitions

  • the present invention relates to electron beam tubes of the type with longitudinal interaction or cross fields used in particular in space.
  • This invention applies more particularly to traveling wave tubes or klystrons which are frequently used on board telecommunication or television broadcasting satellites, where they serve as power amplifiers. For the satellite, they represent the main source of heat dissipation.
  • traveling wave tubes used on broadcast satellites represent a heat source of approximately 100 watts.
  • One third of this power is dissipated by the cannon-line assembly and the remaining two thirds are dissipated by the collector.
  • the power of the traveling wave tube is dissipated by conduction on a panel fixed to the satellite, radiating in space vacuum.
  • This panel has a temperature close to the terrestrial ambient temperature, that is to say of the order of 300 ° K. In this case, to dissipate a hundred watts, an area of approximately 0.3 m2 is necessary. It is a large area.
  • the collector can operate at high temperature and can radiate directly without the intermediary of a radiant panel.
  • the collector of a traveling wave tube has one or more electrodes surrounded by a cylinder-shaped metal wall. The electrodes are in thermal contact with the wall. If there are several electrodes, they are brought to different voltages adapted to the speed dispersion of the electrons in the beam.
  • This cylinder is generally made of stainless steel or copper.
  • the collector wall For the collector wall to radiate directly, its temperature must be increased. However, the collector must have a sufficient external surface and for this it is necessary to increase its dimensions and therefore its mass.
  • the outer wall of the alumina collector is generally covered so that it comes as close as possible to a black body.
  • the manufacturer must make special collectors for tubes for space use. These collectors are larger than the collectors of tubes having the same characteristics and which operate in an atmosphere at atmospheric pressure.
  • the present invention aims to remedy these drawbacks by proposing an electron beam tube whose collector or electron collecting anode dissipate by direct radiation the thermal power to be discharged onto a cold source at low temperature, especially in space vacuum .
  • the invention provides an electron beam tube of the type with longitudinal interaction or with crossed fields comprising a collector or an electron collecting anode, substantially in the shape of a cylinder, with a longitudinal axis YY ′ characterized in that the outer wall collector or collector anode comprises fins oriented substantially radially with respect to the axis YY ′, some of these fins being arranged substantially parallel to the axis YY ′, the others being arranged substantially transversely to the axis YY ′, all the fins allowing the cooling of the collector or collector anode by direct radiation on a cold source at low temperature.
  • heat pipes are integral with the fins so as to decrease and standardize the temperature of the fins.
  • the fins are made of a metal or a light alloy.
  • FIG. 1 represents a collector 1 of traveling wave tube of substantially cylindrical external shape, of longitudinal axis YY ′.
  • the purpose of the collector of a traveling wave tube is to collect an electron beam produced by a cannon and circulating in a tunnel.
  • the collector is arranged at the exit of the tunnel substantially in the axis of the electron beam.
  • the collector 1 consists of one or more electrodes, not shown, surrounded by a metal wall 3, generally cylindrical. When there are several electrodes, they are brought to different potentials adapted to the speed dispersion of the electron beam. They are intended to distribute the impacts of electrons in a homogeneous way along the collector.
  • the outer wall 3 of the manifold 1 has a plurality of fins 4.
  • the wall 3 is produced from a metal part 2 in the form of a hollow cylinder , coaxial with the collector 1.
  • n fins 4 have been fixed.
  • the part 2 will preferably be the outer wall of a conventional collector of traveling wave tube.
  • This metallic part 2 is made of stainless steel or copper for example.
  • the fins 4 are substantially parallel to the axis YY ′ and are oriented radially with respect to this axis. Two consecutive fins 4 delimit a cavity 5 open towards the outside.
  • the fins 4 are made of a metal or a light alloy: an anodized aluminum alloy for example.
  • the fins 4, of rectangular shape for example are fixed to the metal part 2 by a side 6, in the figure it is a long side of the rectangle. They are fixed by welding, soldering, shrinking or any other means known to those skilled in the art.
  • the reference 7 indicates the side opposite to the side 6. The side 7 of each fin 4 is free.
  • the wall 3 of the manifold be directly produced with fins, by molding for example.
  • the number n of fins 4 is greater than or equal to two. But we notice that the radiated power varies in the same direction than the number of fins 4.
  • the collector 1 has an outer wall 3 defining cavities 5. Its equivalent emissivity is much higher than the emissivity of the material used. The collector 1 tends to behave like an artificial black body.
  • the fins 4 have two roles. They are used to transport the heat flow from the electrodes to the free side 7 of each fin 4. Their two main surfaces are radiative surfaces.
  • FIG. 1 shows fins 4 having a triangular cross section 8. This section 8 allows a better distribution of the temperature throughout the height d of each fin 4. This shape is easily achievable.
  • the dimensions of the fins 4 must be calculated, taking into account the power to be dissipated so that their average temperature is less than around 500 ° K. When one moves along the height d of a fin 4 between the side 6 and the side 7 the temperature gradually decreases.
  • This collector 1 dissipates thermal power also by natural convection and radiation if the traveling wave tube is placed in an atmosphere at atmospheric pressure.
  • the still radial fins could have been arranged substantially transversely to the axis YY ′ of the manifold. This variant would have given similar results from the point of view of dissipated power and emissivity.
  • the reference 20 designates a collector of traveling wave tube of longitudinal axis YY ′. It has the shape of a cylinder. It has a or several electrodes not shown, surrounded by an outer metal wall 22.
  • the outer wall 22 includes a plurality of fins 23, 24.
  • the wall 22 is produced as in FIG. 1 from a metal part 21 in the form of a hollow cylinder, coaxial with the manifold. At the periphery of this part 21 is fixed, preferably uniformly, a plurality of fins 23,24.
  • the fins 23 are arranged parallel to the axis YY ′ while the fins 24 are arranged substantially transversely to the axis YY ′.
  • the fins 23, 24 are oriented radially with respect to the axis YY ′.
  • This collector 20 has an emissivity greater than that of the collector described in FIG. 1, thanks to the greater number of cavities. By increasing the number of cavities this makes it possible either to increase the dissipated thermal power or to decrease the average temperature of the fins 23, 24.
  • FIG. 3 represents another variant of a collector 30 of a traveling wave tube.
  • This collector 30 is comparable to the collector 20 of FIG. 2. It has an outer wall 32 which has a plurality of fins 33, 34.
  • This wall 32 surrounds one or more electrodes, not shown.
  • This wall 32 is produced from a metal part 31 in the form of a hollow cylinder, coaxial with the manifold 30.
  • a plurality of fins 33, 34 have been fixed uniformly.
  • the fins 33 are substantially parallel to the axis YY ′, while the fins 34 are substantially transverse to the axis YY ′.
  • the fins 33, 34 are oriented radially with respect to the axis YY ′.
  • the reference 35 designates a cavity open towards the outside delimited by two fins 33 consecutive and two fins 34 consecutive.
  • heat pipes 36 have been added to the fins 33, 34.
  • they are placed radially by relative to the axis YY ′ of the manifold 30, at the intersection between a fin 33 and a fin 34. They could have been placed, still radially to the axis of the manifold 30 but on a single fin 33 or 34. They are fixed to the fins 33, 34 by welding or any other known means. They can even be integrated into the thickness of the fins 33, 34.
  • a heat pipe is a closed circuit device generally in the form of a tube containing a liquid which evaporates then condenses.
  • the boiling temperature of the liquid used in the heat pipes will be slightly lower than the maximum temperature of the fins 33,34.
  • the number of heat pipes 36 is a function of the power to be dissipated. They make it possible to standardize the temperature of the fins 33, 34, to lower the maximum temperature and consequently also to lower the average temperature.
  • Tests have been carried out with a traveling wave tube delivering a microwave power of 130 watts, equipped with a collector whose outer wall has 8 fins in accordance with the invention. This tube is placed under vacuum. In operation, the total power to be dissipated is 110 W. It is distributed as follows: - 38 W dissipated by the cannon-line assembly by conduction; - 72 W dissipated by the collector by radiation.
  • the average temperature of the fins is 438 ° K.
  • a traveling wave tube of the same power equipped with a conduction cooling device both for the barrel-line assembly and for the collector, has a mass of 900 grams.
  • the total power of 110 W must be dissipated by conduction.
  • the same tube equipped with a direct radiating collector according to the known art has a mass of 2800 grams.
  • the same tube equipped with a collector according to the invention has a mass of 1150 grams.
  • the mass gain of this latter tube compared to the tube fitted with a radiating manifold directly, according to known art, is appreciable.
  • the increase in mass of the tube according to the invention compared to the tube cooled by conduction is largely offset by the gain on dissipation.
  • the collectors that have just been described are easily produced from the collectors of conventional traveling wave tubes which have not undergone any modification. Just attach fins.
  • the invention is not limited to the examples described in particular with regard to the geometry of the external wall of the collector.
  • the invention is not limited to traveling wave tubes. All collectors of longitudinally interacting tubes can have a manifold whose outer wall defines cavities open to the outside.
  • the invention also applies to cross-field tubes.
  • the electron collecting anode has an outer wall which defines a plurality of cavities open towards the outside, the electron collecting anode having a substantially cylindrical shape.

Landscapes

  • Microwave Tubes (AREA)

Abstract

La présente invention concerne un tube à faisceau d'électrons du type à interaction longitudinale ou à champs croisés comportant un collecteur (1) ou une anode collectrice d'électrons sensiblement cylindriques d'axe longitudinal YY′.
La paroi extérieure (3) du collecteur (1) ou de l'anode collectrice d'électrons définit une pluralité de cavités (5) ouvertes vers l'extérieur de manière à refroidir le collecteur (1) ou l'anode collectrice d'électrons, par rayonnement direct, sur une source à basse température, notamment dans le vide spatial. La paroi extérieure (3) du collecteur (1) ou de l'anode collectrice d'électrons comporte une pluralité d'ailettes (4). Des caloducs peuvent être intégrés à ces ailettes (4).
Applications aux tubes utilisés à bord de satellites notamment aux tubes à ondes progressives et aux klystrons.

Description

  • La présente invention concerne les tubes à faisceau d'électrons du type à intéraction longitudinale ou à champs croisés utilisés notamment dans l'espace.
  • Elle propose plus particulièrement un tube à faisceau d'électrons dont le collecteur ou l'anode collectrice d'électrons, dissipent la puissance thermique provenant du faisceau d'électrons, par rayonnement direct sur une source froide à basse température notamment dans le vide spatial.
  • Cette invention s'applique plus particulièrement aux tubes à ondes progressives ou aux klystrons qui sont fréquemment utilisés à bord de satellites de télécommunication ou de télédiffusion, où ils servent d'amplificateurs de puissance. Pour le satellite, ils représentent la principale source de dissipation thermique.
  • Actuellement les tubes à ondes progressives utilisés sur les satellites de télédiffusion représentent une source de chaleur d'environ 100 watts.
  • Un tiers de cette puissance est dissipé par l'ensemble canon-ligne et les deux tiers restants sont dissipés par le collecteur.
  • Sur certains satellites, toute la puissance du tube à ondes progressives est dissipée par conduction sur un panneau fixé au satellite, rayonnant dans le vide spatial. Ce panneau a une température proche de la température ambiante terrestre c'est-à-dire de l'ordre 300° K. Dans ce cas pour dissiper une centaine de watts une surface d'environ 0,3 m² est nécessaire. C'est une surface importante.
  • Sur d'autres satellites on utilise des tubes à ondes progressives dont le collecteur rayonne directement dans le vide spatial sans l'intermédiaire d'un panneau rayonnant. L'ensemble canon-ligne continue à dissiper la puissance thermique par conduction car le fonctionnement de l'ensemble canon-ligne est limité en température. L'ensemble canon-ligne est fixé sur un panneau rayonnant.
  • Le collecteur lui peut fonctionner à haute température et peut rayonner directement sans l'intermédiaire d'un panneau rayonnant. Le collecteur d'un tube à ondes progressives comporte une ou plusieurs électrodes entourées d'une paroi métallique en forme de cylindre.Les électrodes sont en contact thermique avec la paroi. S'il y a plusieurs électrodes elles sont portées à des tensions différentes adaptées à la dispersion de vitesse des électrons du faisceau.
  • Ce cylindre est généralement en acier inoxydable ou en cuivre. Pour que la paroi du collecteur rayonne directement il faut augmenter sa température. Néanmoins le collecteur doit présenter une surface extérieure suffisante et pour cela on est obligé d'augmenter ses dimensions et donc sa masse. On recouvre généralement la paroi extérieure du collecteur d'alumine afin qu'elle se rapproche le plus possible d'un corps noir.
  • Le fabricant doit réaliser des collecteurs spéciaux pour les tubes à usage spatial. Ces collecteurs sont plus grands que les collecteurs de tubes ayant les mêmes caractéristiques et qui fonctionnent dans une ambiance à pression atmosphérique.
  • La présente invention vise à remédier à ces inconvénients en proposant un tube à faisceau d'électrons dont le collecteur ou l'anode collectrice d'électrons dissipent par rayonnement direct la puissance thermique à évacuer sur une source froide à basse température notamment dans le vide spatial.
  • L'invention propose un tube à faisceau d'électrons du type à interaction longitudinale ou à champs croisés comportant un collecteur ou une anode collectrice d'électrons, sensiblement en forme de cylindre, d'axe longitudinal YY′ caractérisé en ce que la paroi extérieure du collecteur ou de l'anode collectrice comporte des ailettes orientées sensiblement radialement par rapport à l'axe YY′, certaines de ces ailettes étant disposées sensiblement parallèlement à l'axe YY′, les autres étant disposées sensiblement transversalement à l'axe YY′, toutes les ailettes permettant le refroidissement du collecteur ou de l'anode collectrice par rayonnement direct sur une source froide à basse température.
  • Selon un autre mode de réalisation des caloducs sont solidaires des ailettes de manière à diminuer et à uniformiser la température des ailettes.
  • Les ailettes sont réalisées dans un métal ou un alliage léger.
  • D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, faite à titre d'exemples non limitatifs et illustrée par les figures annexées :
    • - la figure 1 représente un collecteur de tube à ondes progressives dont la paroi extérieure comporte des ailettes orientées radialement et disposées parallèlement par rapport à l'axe longitudinal du collecteur,
    • - la figure 2 représente un collecteur de tube à ondes progressives dont la paroi extérieure comporte des ailettes radiales, certaines étant parallèles à l'axe du collecteur d'autres étant perpendiculaires au même axe.
    • - la figure 3 représente le même collecteur qu'à la figure 2 les ailettes étant équipées de caloducs.
  • La figure 1 représente un collecteur 1 de tube à ondes progressives de forme extérieure sensiblement cylindrique, d'axe longitudinal YY′. Le collecteur d'un tube à ondes progressives a pour but de recueillir un faisceau d'électrons produit par un canon et circulant dans un tunnel. Le collecteur est disposé à la sortie du tunnel sensiblement dans l'axe du faisceau d'électrons. Le collecteur 1 est constitué d'une ou plusieurs électrodes, non représentées, entourées d'une paroi 3 métallique, généralement cylindrique. Lorsqu'il y a plusieurs électrodes, elles sont portées à des potentiels différents adaptés à la dispersion de vitesse du faisceau d'électrons. Elles sont destinées à répartir les impacts d'électrons de manière homogène tout le long du collecteur.
  • Afin de pouvoir rayonner directement dans le vide spatial, par exemple, la paroi extérieure 3 du collecteur 1 comporte une pluralité d'ailettes 4. Sur la figure, la paroi 3 est réalisée à partir d'une pièce 2 métallique en forme de cylindre creux, coaxiale avec le collecteur 1. Sur cette pièce 2 on a fixé n ailettes 4. La pièce 2 sera, de préférence la paroi extérieure d'un collecteur classique, de tube à ondes progressives. Cette pièce 2 métallique est en acier inoxydable ou en cuivre par exemple. Les ailettes 4 sont sensiblement parallèles à l'axe YY′ et sont orientées radialement par rapport à cet axe. Deux ailettes 4 consécutives délimitent une cavité 5 ouverte vers l'extérieur. Les ailettes 4 sont réalisées dans un métal ou un alliage léger : un alliage d'aluminium anodisé par exemple.
  • Les ailettes 4, de forme rectangulaire par exemple sont fixées à la pièce 2 métallique par un côté 6, sur la figure il s'agit d'un grand côté du rectangle. Elles sont fixées par soudure, brasage, frettage ou tout autre moyen connu de l'homme de l'art. La référence 7 indique le côté opposé au côté 6. Le côté 7 de chaque ailette 4 est libre.
  • On aurait pu envisager que la paroi 3 du collecteur soit directement réalisée avec des ailettes, par moulage par exemple.
  • Si on a disposé n ailettes 4 rectangulaires de hauteur d et de longueur l , la puissance P rayonnée par la paroi extérieure du collecteur est donnée par :
    P = A.2 ¶.d.l.(T)⁴.[(sin ¶/n)/(¶/n)]
    - T représente la température moyenne des ailettes en degrés Kelvin, les ailettes étant considérées comme des éléments isothermes.
    - A représente la constante de Boltzmann et vaut
    5,7. 10⁻¹² W m⁻² K⁻⁴.
  • Le nombre n d'ailettes 4 est supérieur ou égal à deux. Mais on remarque que la puissance rayonnée varie dans le même sens que le nombre d'ailettes 4.
  • Sur la figure 1, huit ailettes 4 ont été représentées et ce choix a été guidé principalement par des considérations de tenue mécanique.
  • Le collecteur 1 a une paroi extérieure 3 définissant des cavités 5. Son émissivité équivalente est bien supérieure à l'émissivité du matériau utilisé. Le collecteur 1 tend à se comporter comme un corps noir artificiel.
  • Dans cette structure, les ailettes 4 ont deux rôles. Elles servent à transporter le flux de chaleur provenant des électrodes vers le côté 7 libre de chaque ailette 4. Leurs deux surfaces principales sont des surfaces radiatives.
  • Sur la figure 1 on a représenté des ailettes 4 ayant une section droite 8 triangulaire. Cette section 8 permet une meilleure répartition de la température tout au long de la hauteur d de chaque ailette 4. Cette forme est facilement réalisable.
  • Les dimensions des ailettes 4 doivent être calculées, compte tenu de la puissance à dissiper pour que leur température moyenne soit inférieure à environ 500°K. Lorsque l'on se déplace le long de la hauteur d d'une ailette 4 entre le côté 6 et le côté 7 la température décroît progressivement.
  • Ce collecteur 1 dissipe de la puissance thermique également par convection naturelle et rayonnement si le tube à ondes progressives est placé dans une ambiance à la pression atmosphérique.
  • Les ailettes toujours radiales auraient pu être disposées sensiblement transversalement à l'axe YY′ du collecteur. Cette variante aurait donné des résultats similaires au point de vue puissance dissipée et émissivité.
  • Pour améliorer l'émissivité du collecteur, on peut être amené à augmenter le nombre de cavités. Cette variante est représentée sur la figure 2. Sur cette figure le repère 20 désigne un collecteur de tube à ondes progressives d'axe longitudinal YY′. Il a la forme d'un cylindre. Il comporte une ou plusieurs électrodes non représentées, entourées d'une paroi extérieure 22 métallique. La paroi extérieure 22 comporte une pluralité d'ailette 23,24. La paroi 22 est réalisée comme sur la figure 1 à partir d'une pièce 21 métallique en forme de cylindre creux, coaxiale avec le collecteur. A la périphérie de cette pièce 21 on a fixé, de préférence uniformément, une pluralité d'ailettes 23,24. Les ailettes 23 sont disposées parallèlement à l'axe YY′ tandis que les ailettes 24 sont disposées sensiblement transversalement à l'axe YY′. Les ailettes 23,24 sont orientées radialement par rapport à l'axe YY′.
  • Deux ailettes 23 consécutives et deux ailettes 24 consécutives délimitent une cavité 25 qui est ouverte vers l'extérieur. Ce collecteur 20 a une émissivité supérieure à celle du collecteur décrit à la figure 1, grâce au nombre plus important cavités. En augmentant le nombre de cavités cela permet soit d'augmenter la puissance thermique dissipée soit de diminuer la température moyenne des ailettes 23,24.
  • La figure 3 représente une autre variante d'un collecteur 30 d'un tube à ondes progressives. Ce collecteur 30 est comparable au collecteur 20 de la figure 2. Il a une paroi extérieure 32 qui comporte une pluralité d'ailettes 33,34. Cette paroi 32 entoure une ou plusieurs électrodes non représentées. Cette paroi 32 est réalisée à partir d'une pièce 31 métallique en forme de cylindre creux, coaxiale avec le collecteur 30. A la périphérie de cette pièce 31 on a fixé, de préference uniformement, une pluralité d'ailettes 33,34. Les ailettes 33 sont sensiblement parallèles à l'axe YY′, tandis que les ailettes 34 sont sensiblement transversales à l'axe YY′. Les ailettes 33,34 sont orientées radialement par rapport à l'axe YY′. Le repère 35 désigne une cavité ouverte vers l'extérieur délimitée par deux ailettes 33 consécutives et deux ailettes 34 consécutives.
  • Afin d'améliorer encore les caractéristiques thermiques du collecteur 30 on a rajouté sur les ailettes 33,34 des caloducs 36. Sur cette figure ils sont placés de façon radiale par rapport à l'axe YY′ du collecteur 30, à l'intersection entre une ailette 33 et une ailette 34. Ils auraient pu être placés, toujours radialement à l'axe du collecteur 30 mais sur une seule ailette 33 ou 34. Ils sont fixés sur les ailettes 33,34 par soudure ou tout autre moyen connu. Ils peuvent même être intégrés dans l'épaisseur des ailettes 33,34.
  • Un caloduc est un dispositif en circuit fermé généralement en forme de tube contenant un liquide qui s'évapore puis se condense. La température d'ébullition du liquide utilisé dans les caloducs sera légèrement inférieure à la température maximale des ailettes 33,34. Le nombre de caloducs 36 est fonction de la puissance à dissiper. Ils permettent d'uniformiser la température des ailettes 33,34, d'en abaisser la température maximale et par conséquent d'en abaisser aussi la température moyenne.
  • Des essais ont été réalisés avec un tube à ondes progressives délivrant une puissance hyperfréquence de 130 watts, équipé d'un collecteur dont la paroi extérieure comporte 8 ailettes conformément à l'invention. Ce tube est placé sous vide. En fonctionnement la puissance totale à dissiper est de 110 W. Elle se répartit de la manière suivante :
    - 38 W dissipés par l'ensemble canon-ligne par conduction ;
    - 72 W dissipés par le collecteur par rayonnement.
  • Dans ces conditions la température moyenne des ailettes est de 438° K.
  • Au point de vue masse un tube à ondes progressives de même puissance, équipé d'un dispositif de refroidissement par conduction à la fois pour l'ensemble canon-ligne et pour le collecteur a une masse de 900 grammes. La puissance totale de 110 W doit être dissipée par conduction.
  • Le même tube équipé d'un collecteur rayonnant directement selon l'art connu a une masse de 2800 grammes.
  • Le même tube équipé d'un collecteur selon l'invention a une masse de 1150 grammes. Le gain de masse de ce dernier tube par rapport au tube équipé d'un collecteur rayonnant directement, selon l'art connu, est appréciable. L'augmentation de masse du tube selon l'invention par rapport au tube refroidi par conduction est largement compensée par le gain sur la dissipation.
  • Les collecteurs que l'on vient de décrire se réalisent facilement à partir des collecteurs des tubes à ondes progressives classiques n'ayant subi aucune modification. Il suffit de fixer des ailettes.
  • L'invention n'est pas limitée aux exemples décrits notamment en ce qui concerne la géométrie de la paroi extérieure du collecteur.
  • L'invention n'est pas limitée aux tubes à ondes progressives. Tous les collecteurs de tubes à interaction longitudinale peuvent avoir un collecteur dont la paroi extérieure définit des cavités ouvertes vers l'extérieur.
  • L'invention s'applique aussi aux tubes à champs croisés. Dans ce cas, l'anode collectrice d'électrons a une paroi extérieure qui définit une pluralité de cavités ouvertes vers l'extérieur, l'anode collectrice d'électrons ayant une forme sensiblement cylindrique.

Claims (8)

1. Tube à faisceau d'électrons du type à interaction longitudinale ou à champs croisés comportant un collecteur (20,30) ou une anode collectrice d'électrons, sensiblement en forme d'un cylindre, d'axe longitudinal YY′ caractérisé en ce que la paroi extérieure (22,32) du collecteur ou de l'anode collectrice comporte des ailettes (23,33,24,34) orientées sensiblement radialement par rapport à l'axe YY′, certaines de ces ailettes (23,33) étant disposées sensiblement parallèlement à l'axe YY′, les autres (24,34) étant disposées sensiblement transversalement à l'axe YY′, toutes les ailettes (23,33,24,34) permettant le refroidissement du collecteur (20,30) ou de l'anode collectrice par rayonnement direct sur une source froide à basse température.
2. Tube à faisceau d'électrons selon la revendication 1 caractérisé en ce que des caloducs (36) orientés radialement par rapport à l'axe YY′ sont placés soit sur une seule ailette (23,24,33,34) soit à l'intersection entre deux ailettes (23,24,33,34).
3. Tube à faisceau d'électrons selon l'une des revendications 1 ou 2 caractérisé en ce que les ailettes (23,24,33,34) sont en métal ou alliage léger.
4. Tube à faisceau d'électrons selon la revendication 3 caractérisé en ce que les ailettes (23,24,33,34) sont en aluminium pur ou allié.
5. Tube à faisceau d'électrons selon l'une des revendications 1 à 4 caractérisé en ce que la paroi extérieure du collecteur ou de l'anode collectrice d'électrons est réalisée directement avec les ailettes.
6. Tube à faisceau d'électrons selon l'une des revendications 1 à 4 caractérisé en ce que la paroi extérieure (22,32) du collecteur ou de l'anode collectrice consiste en une pièce (2) sensiblement cylindrique sur laquelle sont rapportées les ailettes (23,24,33,34).
7. Tube à faisceau d'électrons selon la revendication 6 caractérisé en ce que les ailettes (23,24,33,34) sont rapportées par soudure, brasage ou frettage.
8. Tube à faisceau d'électrons selon l'une des revendications 1 à 7 caractérisé en ce que les dimensions des ailettes (23,24,33,34) et leur nombre permet le rayonnement intégral dans le vide spatial, de toute la puissance collectée par le collecteur (20,30) ou l'anode collectrice d'électrons, les ailettes (23,24,33,34) ayant une température moyenne inférieure à environ 500 ° K.
EP89403626A 1988-12-30 1989-12-22 Tube à faisceau d'électrons refroidi partiellement par rayonnement direct Withdrawn EP0376827A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817487A FR2641414A1 (fr) 1988-12-30 1988-12-30 Tube a faisceau d'electrons refroidi partiellement par rayonnement direct
FR8817487 1988-12-30

Publications (1)

Publication Number Publication Date
EP0376827A1 true EP0376827A1 (fr) 1990-07-04

Family

ID=9373624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403626A Withdrawn EP0376827A1 (fr) 1988-12-30 1989-12-22 Tube à faisceau d'électrons refroidi partiellement par rayonnement direct

Country Status (3)

Country Link
EP (1) EP0376827A1 (fr)
JP (1) JPH02226640A (fr)
FR (1) FR2641414A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109664A1 (de) * 1991-03-23 1992-09-24 Licentia Gmbh Elektronenstrahlroehre
GB2266989A (en) * 1992-05-15 1993-11-17 Eev Ltd Cooling magnetrons
GB2274542A (en) * 1993-01-26 1994-07-27 Matra Marconi Space France Satellite mounted travelling-wave tube
EP0831513A1 (fr) * 1996-09-19 1998-03-25 Nec Corporation Radiateur émissif de chaleur
EP0867910A1 (fr) * 1995-10-06 1998-09-30 Nec Corporation Structure de collecteur pour un tube à propagation d'ondes
WO2011110555A1 (fr) 2010-03-09 2011-09-15 Astrium Sas Ecran rayonnant pour tube a collecteur rayonnant
WO2011120995A1 (fr) 2010-03-30 2011-10-06 Astrium Sas Dispositif de controle thermique d'un tube a collecteur rayonnant comportant un ecran, une boucle fluide et un radiateur à haute temperature
WO2011120981A1 (fr) 2010-03-30 2011-10-06 Astrium Sas Dispositif de controle thermique d'un tube a collecteur rayonnant
EP2420448A1 (fr) 2010-08-20 2012-02-22 Astrium SAS Coupole absorbante pour tube à collecteur rayonnant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958797A (en) * 1959-04-24 1960-11-01 Eitel Mccullough Inc Detachable cooler for electron tubes
FR1316660A (fr) * 1961-12-21 1963-02-01 Lignes Telegraph Telephon Matériaux pour charges absorbantes pour terminaisons de guides d'ondes pour ultrahautes fréquences
US3448313A (en) * 1966-10-10 1969-06-03 Varian Associates Efficient radiation cooled beam collector for linear beam devices
FR1582287A (fr) * 1967-09-07 1969-09-26
FR2533364A1 (fr) * 1982-09-17 1984-03-23 Thomson Csf Dispositif de repartition de la chaleur pour composants electroniques du type comportant au moins un element chaud et un element froid tels que les tubes a ondes progressives et procede de realisation d'un tel dispositif

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958797A (en) * 1959-04-24 1960-11-01 Eitel Mccullough Inc Detachable cooler for electron tubes
FR1316660A (fr) * 1961-12-21 1963-02-01 Lignes Telegraph Telephon Matériaux pour charges absorbantes pour terminaisons de guides d'ondes pour ultrahautes fréquences
US3448313A (en) * 1966-10-10 1969-06-03 Varian Associates Efficient radiation cooled beam collector for linear beam devices
FR1582287A (fr) * 1967-09-07 1969-09-26
FR2533364A1 (fr) * 1982-09-17 1984-03-23 Thomson Csf Dispositif de repartition de la chaleur pour composants electroniques du type comportant au moins un element chaud et un element froid tels que les tubes a ondes progressives et procede de realisation d'un tel dispositif

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. CHAMPEIX: "Physique et technique des tubes électroniques", vol. 1; "Eléments de technique du vide", 1958, pages 9-12, Dunod, Paris, FR *
RUNDFUNKTECHNISCHE MITTEILUNGEN, vol. 15, no. 4, août 1971, pages 141-148, Hamburg, DE; H. SEUNIK: "Leistungsröhren für Fernsehrundfunksatelliten" *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109664A1 (de) * 1991-03-23 1992-09-24 Licentia Gmbh Elektronenstrahlroehre
EP0505862A2 (fr) * 1991-03-23 1992-09-30 Licentia Patent-Verwaltungs-GmbH Tube à faisceau d'électrons
EP0505862A3 (en) * 1991-03-23 1992-12-23 Licentia Patent-Verwaltungs-Gmbh Electron beam tube
DE4109664C2 (de) * 1991-03-23 2000-06-08 Thomson Tubes Electroniques Gm Elektronenstrahlröhre
GB2266989A (en) * 1992-05-15 1993-11-17 Eev Ltd Cooling magnetrons
GB2274542A (en) * 1993-01-26 1994-07-27 Matra Marconi Space France Satellite mounted travelling-wave tube
GB2274542B (en) * 1993-01-26 1996-08-14 Matra Marconi Space France Sa A device for cooling a satellite-mounted travelling-wave tube
US5929566A (en) * 1995-10-06 1999-07-27 Nec Corporation Collector structure for a travelling-wave tube having oxide film on cooling fins
EP0867910A1 (fr) * 1995-10-06 1998-09-30 Nec Corporation Structure de collecteur pour un tube à propagation d'ondes
US5990600A (en) * 1996-09-19 1999-11-23 Nec Corporation Emissive heat radiator with semi-cylindrical heat radiating member
EP0831513A1 (fr) * 1996-09-19 1998-03-25 Nec Corporation Radiateur émissif de chaleur
WO2011110555A1 (fr) 2010-03-09 2011-09-15 Astrium Sas Ecran rayonnant pour tube a collecteur rayonnant
WO2011120995A1 (fr) 2010-03-30 2011-10-06 Astrium Sas Dispositif de controle thermique d'un tube a collecteur rayonnant comportant un ecran, une boucle fluide et un radiateur à haute temperature
WO2011120981A1 (fr) 2010-03-30 2011-10-06 Astrium Sas Dispositif de controle thermique d'un tube a collecteur rayonnant
EP2420448A1 (fr) 2010-08-20 2012-02-22 Astrium SAS Coupole absorbante pour tube à collecteur rayonnant
FR2963981A1 (fr) * 2010-08-20 2012-02-24 Astrium Sas Coupole absorbante pour tube a collecteur rayonnant
US9038960B2 (en) 2010-08-20 2015-05-26 Airbus Defence And Space Sas Absorbent dome for a radiating collector tube

Also Published As

Publication number Publication date
FR2641414A1 (fr) 1990-07-06
JPH02226640A (ja) 1990-09-10

Similar Documents

Publication Publication Date Title
EP0376827A1 (fr) Tube à faisceau d'électrons refroidi partiellement par rayonnement direct
FR2834584A1 (fr) Dispositif concentrateur d'energie solaire pour vehicule spatial et panneau generateur solaire
FR2797556A1 (fr) Dissipateur de chaleur et boitier electronique l'utilisant
WO2004114353A1 (fr) Tube generateur de rayons x a ensemble porte-cible orientable
EP0004492B1 (fr) Tube hyperfréquences comportant une ligne à retard refroidie par circulation de fluide
FR2480497A1 (fr) Collecteur deprime a plusieurs etages pour tube hyperfrequence et tube hyperfrequence comportant un tel collecteur
EP0020262B1 (fr) Ensemble collecteur isolé pour tubes de puissance et tube comportant un tel collecteur
FR2531521A1 (fr) Capteur de l'energie thermique solaire
FR2479558A1 (fr) Tube a ondes progressives a cavites couplees et focalisation par aimants permanents alternes, et ensemble amplificateur comprenant un tel tube
EP0362057B1 (fr) Dispositif pour engendrer une image infrarouge
FR2691012A1 (fr) Canon de pierce à électrode d'échelonnement.
FR2674987A1 (fr) Ensemble de chauffage d'une cathode thermo-electronique pour dispositifs a faisceau d'electrons.
EP0020253A1 (fr) Collecteur isolé pour tube électronique de puissance
FR2683091A1 (fr) Dispositif de refroidissement ameliore pour tube hyperfrequence.
US5260623A (en) Electron collector for an electron beam tube
FR2850453A1 (fr) Caloduc de tranfert de chaleur et/ou d'homogeneisation de temperatures sur un vehicule spatial
FR2833749A1 (fr) Refroidissement d'un tube electronique
FR2530788A1 (fr) Absorbeur plan pour capteur solaire, son procede de fabrication, et capteur utilisant un tel absorbeur
FR2472264A1 (fr) Dispositif pour produire des faisceaux d'electrons destines a durcir une couche de matiere
EP0048690A1 (fr) Tube à gaz à décharge pour émission laser de puissance à très haute stabilité
FR2859819A1 (fr) Tubes a ondes progressives comprenant une structure de rayonnement thermique avec une conductivite thermique elevee
FR2533364A1 (fr) Dispositif de repartition de la chaleur pour composants electroniques du type comportant au moins un element chaud et un element froid tels que les tubes a ondes progressives et procede de realisation d'un tel dispositif
FR2699003A1 (fr) Collecteur refroidi par conduction à forte dépression et grande capacité thermique.
FR2765727A1 (fr) Radiateur thermique utilise pour refroidir un tube a onde progressive par un rayonnement thermique
FR2683941A1 (fr) Collecteur de faisceau d'electrons.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910105