EP0376805B1 - Gesteuerte Richtungsbohreinrichtung mit einem geometrisch verstellbaren Stabilisator und deren Anwendung - Google Patents

Gesteuerte Richtungsbohreinrichtung mit einem geometrisch verstellbaren Stabilisator und deren Anwendung Download PDF

Info

Publication number
EP0376805B1
EP0376805B1 EP89403564A EP89403564A EP0376805B1 EP 0376805 B1 EP0376805 B1 EP 0376805B1 EP 89403564 A EP89403564 A EP 89403564A EP 89403564 A EP89403564 A EP 89403564A EP 0376805 B1 EP0376805 B1 EP 0376805B1
Authority
EP
European Patent Office
Prior art keywords
fitting
stabiliser
stabilizer
drilling
variable geometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403564A
Other languages
English (en)
French (fr)
Other versions
EP0376805A1 (de
Inventor
Pierre Morin
Christian Bardin
Jean Boulet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0376805A1 publication Critical patent/EP0376805A1/de
Application granted granted Critical
Publication of EP0376805B1 publication Critical patent/EP0376805B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/068Deflecting the direction of boreholes drilled by a down-hole drilling motor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1014Flexible or expansible centering means, e.g. with pistons pressing against the wall of the well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • E21B7/067Deflecting the direction of boreholes with means for locking sections of a pipe or of a guide for a shaft in angular relation, e.g. adjustable bent sub

Definitions

  • the present invention relates to a drill string with controlled trajectory.
  • the gasket according to the present invention is intended to be placed at the end of a drill string.
  • This lining makes it possible to control variations in direction and tilt of the borehole in real time. In addition, it makes it possible to control the azimuth, the radius of curvature in a precise manner and to reduce the phenomena of friction and to limit the risks of jamming and this without requiring to raise said lining on the surface.
  • Document DE-C-3423465 describes a device for drilling either in a rectilinear fashion, or according to a curved trajectory, depending on whether it is driven in rotation or not around the longitudinal axis. This device does not include a variable geometry element remotely controlled from the surface.
  • Document US-A-4185704 describes a directional drilling apparatus comprising deflection means equipped with a lateral thrust member. This device does not have a bent element or a remote-controlled variable geometry stabilizer.
  • the lining for drilling with controlled trajectory comprises a drilling tool placed at the end of said lining, a motor for rotating said tool, a bent element delimiting in said lining an upper part and a lower part. comprising said tool, each of said parts comprising at least one stabilizer. It is characterized in that at least one of the stabilizers is of geometry remote controlled from the surface and is suitable for controlling the radius of curvature of the trajectory in combination with said elbow.
  • the bent element may be at fixed angle or at variable angle.
  • the bent element can be integrated into said motor.
  • bent element means a member which introduces or can introduce locally, if not occasionally, a discontinuity in the direction of the axis of the drill string. That is to say that the axis of the drill string is a broken line at the bent element.
  • variable geometry stabilizer may include means adapted to vary the distance between the axis of said lining and the bearing surface of at least one blade of the stabilizer and / or means adapted to vary the position at least axially of the bearing surface of at least one blade of said stabilizer.
  • the lining according to the present invention may comprise at least one stabilizer integral in rotation with the body of the engine.
  • the lining according to the present invention may include a stabilizer with variable geometry as well as two other stabilizers placed on either side of said stabilizer with variable geometry.
  • the present invention relates to the use of one of the fittings described above at the end of a train of rods which can be driven in rotation by drive means located on the surface.
  • gasket according to the invention will be able to control the azimuth (of the direction of drilling), which may be facilitated by an elbow element integrated in the downhole motor, no rotation being applied to the drill string from the surface.
  • the control of the radius of curvature is facilitated by the association of an elbow and a stabilizer.
  • the reference 1 designates the surface of the ground from which the drilling of a well 2 is carried out.
  • the reference 3 designates the surface installation as a whole.
  • the drilling equipment 4 comprises a drill string 5 at the end of which a drilling string 6 is fixed.
  • the drill string 6 corresponds to the lower end of the drilling equipment and can be considered as part of the drill string.
  • a drill string generally has a length of a few tens of meters, of which the thirty meters closest to the drilling tool is generally considered to be active as regards the control of the trajectory.
  • the drill string includes a drilling tool 7, a downhole motor 8 and a variable geometry stabilizer 9.
  • the drilling tool 7 can be driven in rotation by the downhole motor 8, or by the drill string 5 which can be driven on the surface by motor means 10, such as a rotary table.
  • variable geometry stabilizer is meant, according to the present invention, that it can be acted upon to vary the geometric configuration of the support points of the blades on the walls of the drilled well, this variation having to be considered for the same position of the lining in the drilled well.
  • Figures 2 to 4 show different types of stabilizers with variable geometry.
  • the reference 11 designates the portion of rod which carries the stabilizer 12.
  • the stabilizer comprises several blades, two of which are shown: blades 13 and 14.
  • the blades can move so as to vary the distance d which separates the axis 15 from the rod portion 11, from the friction surface 16 of the blade 14 or 13.
  • Figure 3 shows a variable geometry stabilizer in which the blades 18 move axially, as shown by the arrows.
  • the dotted lines represent possible positions of the blades 18.
  • Figure 4 shows the case where there is a single blade 17 which moves.
  • This type of stabilizer is often called "off-set".
  • the same effect of decentering the axis 15 is obtained by having several movable blades placed on the same side of an axial plane containing the axis 15, or else by making the blades located from the same side of an axial plane containing the axis 15 as the blades located on the other side of this same plane.
  • the blades may have a helical shape, as shown in Figure 5, especially for the central stabilizer.
  • FIG. 5 represents an embodiment different from that of FIG. 1.
  • the reference 19 designates the drilling tool which is fixed to a shaft 20 driven by the motor 21.
  • the reference 22 designates a stabilizer with fixed geometry comprising blades 23 rectilinear and parallel to the axis of the lining 24.
  • the reference 25 designates a variable geometry stabilizer comprising blades 26 whose friction or cutting surfaces 27 are movable.
  • the blades have a helical shape.
  • the reference 28 designates a stabilizer with a fixed geometry with a helical blade 29.
  • the motor 21 may be a lobe motor of the "Sparrow" type, or a turbine supplied with drilling fluid from a passage 30 arranged in the lining, this passage itself being supplied with drilling fluid from the train of stems which is hollow. After passing through the motor 21 the drilling fluid is directed towards the tool 19 to evacuate the debris.
  • the motor 21 may also be an electric motor powered for example from the surface via a cable.
  • the lining may include several stabilizers with variable geometry.
  • the gasket according to the invention comprises a bent element with variable or fixed angle.
  • variable geometry stabilizer or of a variable angle bent element.
  • Figures 9A, 9B and 10 show a particularly advantageous embodiment of a variable angle bent element.
  • a tubular element has in its upper part a thread 59 allowing the mechanical connection to the drill string and in its lower part a thread 60 on the output shaft 46, in order to screw the tool. drilling 47.
  • the remote control mechanism consists of a shaft 48 which can slide in its upper part in the bore 65 of the body 43 and which can slide in its lower part in the bore 66 of the body 44.
  • This shaft has male grooves 49 meshing in female grooves of the body 43, alternately straight grooves 50 (parallel to the axis of the tubular body 43) and oblique (inclined with respect to the axis of the tubular body 43) in which fingers 67 slide along a axis perpendicular to that of the displacement of the shaft 48 and kept in contact with the shaft by springs 68, male splines 51 meshing with female splines of the body 44 only when the shaft 48 is in the high position.
  • the shaft 48 is equipped in its lower part with a bore 52 in front of which is a needle 53 coaxial with the movement of the shaft 48.
  • a return spring 54 keeps the shaft in the high position, the splines 51 meshing in the equivalent female splines of the body 44.
  • the bodies 43 and 44 are free to rotate at the level of the rotating surface 69 coaxial with the axes of the bodies 43 and 44 and composed of rows of cylindrical rollers 70 inserted in their raceways 72 and extractable at through the orifices 74 by dismantling the door 71.
  • a reserve of oil 76 is maintained at the pressure of the drilling fluid via an annular free piston 77.
  • the oil lubricates the sliding surfaces of the shaft 48 via the passage 78.
  • the shaft 48 is machined so that an axial bore 79 authorizes the passage of the drilling fluid according to the arrow f.
  • the angle variation mechanism itself comprises a tubular body 45 which is rotationally integral with the tubular body 44 by means of a coupling 56.
  • the tubular body 45 can rotate relative to the tubular body 43 at the level of the rotary bearing 63 comprising rollers 75 and having an axis oblique to the axes of the tubular bodies 43 and 45.
  • FIG. 13 One possible embodiment for coupling 56 is shown in FIG. 13.
  • This type of remote control is based on a threshold value of the flow through the mechanism according to the arrow f.
  • the nozzle 52 will surround the needle 53 which will cause a large decrease in the drilling fluid passage section and therefore a large increase in the pressure difference ⁇ P and therefore a significant increase in the force F ensuring the complete descent of the shaft 48, despite the increase in the return force of the spring 54 due to its compression.
  • the fingers 67 will follow the oblique part of the grooves 50 during the downward stroke of the shaft 48 and will therefore cause the body to rotate tubular 44 relative to the tubular body 43, which is made possible by the fact that the male splines 51 will disengage from the corresponding female splines of the body 44 at the start of the downward travel of the shaft 48.
  • FIG. 13 is a developed illustration of parts 97 and 98 which make it possible to transmit the rotation of the tubular body 44 to the tubular body 45 while allowing relative angular movement of these two tubular bodies.
  • the part 97 includes housings 99 in which rods 100 cooperate comprising spheres 101.
  • rods 100 cooperate comprising spheres 101.
  • variable geometry stabilizer An embodiment of a variable geometry stabilizer is now described.
  • the remote control mechanism of this stabilizer is the same as that described above.
  • FIG. 11 describes the mechanism for varying the position of one or more blades of an integrated stabilizer.
  • Figure 11 can be considered as the lower part of Figure 9A.
  • grooves 92 At the lower end of the body 44 are grooves 92 whose depth differs depending on the angular sector concerned. Apply to the bottom of these grooves pushers 93 on which rest blades 94 straight or helically shaped under the effect of leaf return springs 95 positioned under protective covers 96.
  • the pushers 93 will be on a sector of the groove 92 whose depth will be different. This will cause a translation of the blades, either by moving away, or by approaching the axis of the body.
  • FIG. 11 shows on the right side a blade in the "retracted” position and on the left side a blade in the "extended” position.
  • FIG. 12 shows the developed curve of the profile of the bottom of the groove 92. This profile can correspond, for example, to the case of three blades controlled from the same groove.
  • the abscissa represents the radius of the groove bottom as a function of the angle at the center from a reference angular position. Since the three blades are controlled from the same groove and on a lathe, the profile is reproduced identically every 120 degrees. This is why it was only represented on 120 degrees.
  • the finger 93 of a stabilizer blade cooperates with the portion of the groove bottom profile corresponding to the bearing 1A, this blade is in the entered position.
  • a rotation of 40 degrees in the groove causes a change in the radius of the groove bottom from the position corresponding to the bearing 1A to that corresponding to the bearing 2A and therefore to an intermediate exit position in the blade.
  • Another rotation of 40 degrees causes an increase in the throat bottom radius corresponding to the bearing 3A and a maximum output of the blade. Between each landing a ramp X allows a gradual exit of the blade.
  • the ramp Y is a descending ramp which returns the device to the retracted position corresponding to the bearing 4A of the same value as the bearing 1A.
  • the present invention also relates to a method of implementing such a lining, in particular by using the means for driving the entire set of rods in rotation.
  • the radius of curvature of the trajectory of the drilling tool may be modified by variation of the geometry (for example the diameter) of the stabilizer, in addition to the methods currently available (variation of the weight per l tool, variation of the rotation speed etc ).
  • FIG. 14 represents the projection of the trajectory on the vertical plane and FIG. 15 represents the projection of the trajectory on the horizontal plane.
  • Reference 102 designates the substantially vertical phase of drilling. This phase is carried out by turning the entire packing from the drill string.
  • the diameter of the variable geometry stabilizer 39 is preferably equal to the diameter of the upper fixed geometry stabilizer 41.
  • the reference 103 designates the initiation of the deviation from 0 to about 10 degrees which is obtained by an orientation of the elbow 37 in the desired azimuth of the drilling followed by a rotary drive of the tool 35 from the motor of bottom 36, without the entire drill string being driven from the drill string.
  • the radius of curvature of the well can be adjusted by varying the diameter of the variable geometry stabilizer 39. Thus, for example, for an inclination of less than 5 degrees, the radius of curvature increases as the diameter of the stabilizer increases. This trend is reversed for larger slopes.
  • Reference 104 designates the phase of angle rise of approximately 10 degrees to the desired inclination, without intervention on the direction of the well. This phase is achieved by rotating the packing as a whole from the drill string. The radius of curvature is adjusted by the diameter of the variable geometry stabilizer 39.
  • the reference 105 designates an azimuth correction phase which can be carried out with or without angle correction. In the case of Figures 14 and 15, there is no angle correction. This azimuth correction is carried out by orienting the bent element in the appropriate direction to achieve the desired orientation correction and driving the tool by the downhole motor, without there being any a drive of the entire packing by the drill string.
  • variable geometry stabilizer 39 makes it possible to control the radius of curvature of the path.
  • reference 106 designates a drilling phase at constant inclination without controlling the azimuth. This drilling phase can be carried out by rotating the entire drilling string from the drill string.
  • the phase referenced 107 is an azimuth correction phase of the same type as that described above and which bears the reference 105.
  • the phases referenced 108 and 110 are drilling phases at constant inclination without controlling the azimuth. They are of the same type as the phase which bears the reference 106.
  • the phases referenced 109 and 111 are phases for decreasing the angle of inclination.
  • Reference 112 designates the target to be reached by drilling.
  • FIGS. 16 to 18 correspond to a gasket which comprises a bent element 121.
  • the elbow 121 is assumed to be of fixed geometry and has a deflection angle close to 1 degree.
  • the driving of the entire packing by the drill string causes drilling at constant inclination.
  • the elbow element 121 has only a very small influence on the behavior of the lining.
  • the elbow 121 is positioned so as to orient the borehole towards the bottom of the figure in the direction of the arrow 119.
  • This position represented in phantom 122 is qualified by the terms "Low side" by the driller.
  • the angular position of the bent element 121 is generally verified using conventional measuring means positioned in the drill string.
  • the adjustment of this position is obtained by rotation of the drill string by an angle of an appropriate value from the surface.
  • the tool 116 is driven in rotation by the motor 117.
  • variable geometry centralizer 113 amplifies the reduction in the angle of inclination.
  • FIG. 18 represents a bend oriented upwards position generally qualified as "high side” by the driller, as represented by the dashed line 123.
  • the angle of inclination is considered with respect to the vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Drilling And Boring (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Stored Programmes (AREA)

Claims (10)

  1. Garnitur für Bohrungen mit geregelter Trajektorie, umfassend ein am Ende dieser Garnitur angeordnetes Bohrwerkzeug, einen Motor zur Drehmitnahme dieses Werkzeugs, ein Krümmerelement, das in dieser Garnitur einen oberen Teil und einen unteren dieses Werkzeug umfassenden Teil begrenzt, wobei jeder dieser Teile wenigstens einen Stabilisator umfaßt, dadurch gekennzeichnet, daß wenigstens einer der Stabilisatoren von variabler von der Oberfläche aus ferngesteuerter Geometrie ist und so ausgelegt ist, daß er den Krümmungsradius der Trajektorie in Verbindung mit diesem Krümmer regelt.
  2. Garnitur nach Anspruch 1, dadurch gekennzeichnet, daß dieses Krümmerelement eines mit festem Winkel (37; 121) ist.
  3. Garnitur nach Anspruch 1, dadurch gekennzeichnet, daß dieses Krümmerelement von variablem Winkel (64) ist.
  4. Garnitur nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß dieses Krümmerelement (64) in diesen Motor (55) integriert ist.
  5. Garnitur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dieser Stabilisator von variabler Geometrie Mittel umfaßt, die so ausgebildet sind, daß sie die Entfernung zwischen der Achse dieser Garnitur und der Stützfläche wenigstens eines Stabilisatorblatts variieren lassen.
  6. Garnitur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dieser Stabilisator von variabler Geometrie Mittel umfaßt, die so ausgebildet sind, daß sie wenigstens achsial die Position der Stützfläche wenigstens eines Blatts dieses Stabilisators variieren lassen.
  7. Garnitur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie einen Stabilisator umfaßt, der drehfest mit diesem Werkzeug ist.
  8. Garnitur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie wenigstens einen drehfest mit dem Gehäuse des Motors verbundenen Stabilisator umfaßt.
  9. Garnitur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie einen Stabilisator mit variabler Geometrie sowie zwei andere Stabilisatoren umfaßt, die zu beiden Seiten dieses Stabilisators mit variabler Geometrie angeordnet sind.
  10. Verwendung der Garnitur nach einem der vorhergehenden Ansprüche am Ende eines Bohrstrangs, der durch Oberflächenantriebsmittel in Drehung mitgenommen werden kann.
EP89403564A 1988-12-30 1989-12-19 Gesteuerte Richtungsbohreinrichtung mit einem geometrisch verstellbaren Stabilisator und deren Anwendung Expired - Lifetime EP0376805B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817597 1988-12-30
FR8817597A FR2641315B1 (fr) 1988-12-30 1988-12-30 Garniture de forage a trajectoire controlee comportant un stabilisateur a geometrie variable et utilisation de cette garniture

Publications (2)

Publication Number Publication Date
EP0376805A1 EP0376805A1 (de) 1990-07-04
EP0376805B1 true EP0376805B1 (de) 1994-10-05

Family

ID=9373720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403564A Expired - Lifetime EP0376805B1 (de) 1988-12-30 1989-12-19 Gesteuerte Richtungsbohreinrichtung mit einem geometrisch verstellbaren Stabilisator und deren Anwendung

Country Status (5)

Country Link
US (1) US5316093A (de)
EP (1) EP0376805B1 (de)
CA (1) CA2006939C (de)
FR (1) FR2641315B1 (de)
NO (1) NO300787B1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670824B1 (fr) * 1990-12-21 1997-01-24 Inst Francais Du Petrole Dispositif d'actionnement a distance d'un equipement comportant un systeme duse/aiguille et son application a une garniture de forage .
US5332048A (en) * 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
GB9222298D0 (en) * 1992-10-23 1992-12-09 Stirling Design Int Directional drilling tool
US5318138A (en) * 1992-10-23 1994-06-07 Halliburton Company Adjustable stabilizer
US5318137A (en) * 1992-10-23 1994-06-07 Halliburton Company Method and apparatus for adjusting the position of stabilizer blades
FR2699222B1 (fr) * 1992-12-14 1995-02-24 Inst Francais Du Petrole Dispositif et méthode d'actionnement à distance d'un équipement comportant des moyens de temporisation - Application à une garniture de forage.
US5485889A (en) * 1994-07-25 1996-01-23 Sidekick Tools Inc. Steering drill bit while drilling a bore hole
US5542482A (en) * 1994-11-01 1996-08-06 Schlumberger Technology Corporation Articulated directional drilling motor assembly
US5727641A (en) * 1994-11-01 1998-03-17 Schlumberger Technology Corporation Articulated directional drilling motor assembly
US5520256A (en) * 1994-11-01 1996-05-28 Schlumberger Technology Corporation Articulated directional drilling motor assembly
US5738178A (en) * 1995-11-17 1998-04-14 Baker Hughes Incorporated Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation
US5669457A (en) * 1996-01-02 1997-09-23 Dailey Petroleum Services Corp. Drill string orienting tool
GB9610382D0 (en) * 1996-05-17 1996-07-24 Anderson Charles A Drilling apparatus
CA2183033A1 (en) * 1996-08-09 1998-02-10 Canadian Fracmaster Ltd. Orienting tool for coiled tubing drilling
US5947214A (en) 1997-03-21 1999-09-07 Baker Hughes Incorporated BIT torque limiting device
US6078891A (en) 1997-11-24 2000-06-20 Riordan; John Method and system for collecting and processing marketing data
US6092610A (en) * 1998-02-05 2000-07-25 Schlumberger Technology Corporation Actively controlled rotary steerable system and method for drilling wells
US6158529A (en) * 1998-12-11 2000-12-12 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing sliding sleeve
US6109372A (en) * 1999-03-15 2000-08-29 Schlumberger Technology Corporation Rotary steerable well drilling system utilizing hydraulic servo-loop
CA2359073A1 (en) 1999-11-10 2001-05-17 Schlumberger Holdings Limited Control method for use with a steerable drilling system
GB0101633D0 (en) * 2001-01-23 2001-03-07 Andergauge Ltd Drilling apparatus
US6554083B1 (en) * 2001-12-05 2003-04-29 Scott Kerstetter Adjustable bent housing sub for a mud motor
US7188685B2 (en) * 2001-12-19 2007-03-13 Schlumberge Technology Corporation Hybrid rotary steerable system
WO2004113664A1 (en) * 2003-06-23 2004-12-29 Schlumberger Holdings Limited Inner and outer motor with eccentric stabilizer
US7360609B1 (en) * 2005-05-05 2008-04-22 Falgout Sr Thomas E Directional drilling apparatus
NO333280B1 (no) * 2009-05-06 2013-04-29 Norwegian Hard Rock Drilling As Styreanordning for bergboremaskin.
GB2476463B (en) 2009-12-22 2012-05-30 Schlumberger Holdings System and Method for Torque Stabilization of a drilling system
EP2341211A1 (de) * 2009-12-30 2011-07-06 Welltec A/S Bohrlochleitwerkzeug
US9500031B2 (en) 2012-11-12 2016-11-22 Aps Technology, Inc. Rotary steerable drilling apparatus

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2500267A (en) * 1945-03-26 1950-03-14 John A Zublin Apparatus for drilling deflecting well bores
US2890859A (en) * 1957-02-25 1959-06-16 Eastware Oil Well Survey Compa Turbine well drilling apparatus
FR1247454A (fr) * 1959-10-22 1960-12-02 Dispositif pour le guidage d'un outil de forage
US3156310A (en) * 1959-12-07 1964-11-10 Eastman Oil Well Survey Co Stabilized knuckle joint
US3561549A (en) * 1968-06-07 1971-02-09 Smith Ind International Inc Slant drilling tools for oil wells
US3888319A (en) * 1973-11-26 1975-06-10 Continental Oil Co Control system for a drilling apparatus
US4040495A (en) * 1975-12-22 1977-08-09 Smith International, Inc. Drilling apparatus
FR2369412A1 (fr) * 1976-11-02 1978-05-26 Alsthom Atlantique Procede et dispositif de forage dirige
US4108256A (en) * 1977-05-12 1978-08-22 Continental Oil Company Sliding stabilizer assembly
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
CH630700A5 (fr) * 1978-07-24 1982-06-30 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges.
FR2432079A1 (fr) * 1978-07-24 1980-02-22 Inst Francais Du Petrole Raccord coude a angle variable pour forages diriges
FR2445431A1 (fr) * 1978-12-29 1980-07-25 Inst Francais Du Petrole Garniture de forage avec etages de stabilisation a lames retractables
DE3403239C1 (de) * 1984-01-31 1985-06-27 Christensen, Inc., Salt Lake City, Utah Vorrichtungen zum wahlweisen Geradeaus- oder Richtungsbohren in unterirdische Gesteinsformationen
DE3423465C1 (de) * 1984-06-26 1985-05-02 Norton Christensen, Inc., Salt Lake City, Utah Vorrichtungen zum wahlweisen Geradeaus- oder Richtungsbohren in unterirdische Gesteinsformationen
US4739842A (en) * 1984-05-12 1988-04-26 Eastman Christensen Company Apparatus for optional straight or directional drilling underground formations
FR2585760B1 (fr) * 1985-07-30 1987-09-25 Alsthom Dispositif deviateur pour forage, colonne de forage pour forage a deviations et procede de forage de puits avec deviations
GB8529651D0 (en) * 1985-12-02 1986-01-08 Drilex Ltd Directional drilling
EP0251543B1 (de) * 1986-07-03 1991-05-02 Charles Abernethy Anderson Stabilisator im Bohrloch
US4813497A (en) * 1986-10-15 1989-03-21 Wenzel Kenneth H Adjustable bent sub
US4697651A (en) * 1986-12-22 1987-10-06 Mobil Oil Corporation Method of drilling deviated wellbores
FR2612985B1 (fr) * 1987-03-27 1989-07-28 Smf Int Procede et dispositif de reglage de la trajectoire d'un outil de forage fixe a l'extremite d'un train de tiges
GB8708791D0 (en) * 1987-04-13 1987-05-20 Shell Int Research Assembly for directional drilling of boreholes
DE3890497D2 (en) * 1987-06-16 1989-06-15 Preussag Ag Device for guiding a drilling tool and/or pipe string
US4817740A (en) * 1987-08-07 1989-04-04 Baker Hughes Incorporated Apparatus for directional drilling of subterranean wells

Also Published As

Publication number Publication date
NO895302D0 (no) 1989-12-28
CA2006939C (fr) 2000-06-27
CA2006939A1 (fr) 1990-06-30
US5316093A (en) 1994-05-31
FR2641315B1 (fr) 1996-05-24
FR2641315A1 (fr) 1990-07-06
EP0376805A1 (de) 1990-07-04
NO300787B1 (no) 1997-07-21
NO895302L (no) 1990-07-02

Similar Documents

Publication Publication Date Title
EP0376805B1 (de) Gesteuerte Richtungsbohreinrichtung mit einem geometrisch verstellbaren Stabilisator und deren Anwendung
EP0380893B1 (de) Bohreinrichtung mit einer Betätigungsvorrichtung, einem Motor und Steuermitteln
EP0377373B1 (de) Gesteuerte Richtungsbohreinrichtung mit einem Kniestückteil mit verstellbarem Winkel und deren Anwendung
EP0376811B1 (de) Fernbetätigungsvorrichtung mit einem Düsen-Nadel-System
CA2647397C (fr) Dispositif d'orientation d'outils de forage
EP0201398B1 (de) Einheit, die das Richtbohren erlaubt
EP1870600B1 (de) Lager für den Drehzapfen einer Leitschaufel einer Turbomaschine mit variablem Einstellwinkel, zugehörige Leitschaufel und Turbomaschine
EP0190529B1 (de) Durchflussferngesteuerte Vorrichtung zum Betätigen insbesondere von Stabilisatoren in einem Bohrstrang
EP0517874B1 (de) Vorrichtung mit zwei in einer ebene beweglichen gelenkelementen für eine bohreinrichtung
BE1012191A5 (fr) Couronne de trepan pivotante/inclinable pour forages dans le sol.
CA1128925A (fr) Raccord coude a angle variable pour forages diriges
CA2276851C (fr) Dispositif et methode de controle de la trajectoire d'un forage
EP0212316B1 (de) Bohrstrang zum Ablenken der Bohrrichtung, Verfahren zum Bedienen dieses Stranges und in diesem Strang benutzte Ablenkvorrichtung
FR2843418A1 (fr) Dispositif stabilisateur d'un train de tiges de forage rotatif a frottement reduit
EP0286500A1 (de) Bohrvorrichtung entlang einer kontrollierbaren Bewegungsbahn und dazugehörendes Steuerungsverfahren
FR2649154A1 (fr) Carter de moteur coude pour forage curviligne
FR2580720A1 (fr) Systeme de forage de puits par vibrations
CA2384281C (fr) Procede et dispositif de forage rotary d'un puits
FR2579662A1 (fr) Dispositif de forage a trajectoire controlee
FR2593226A1 (fr) Systeme de montage d'un stabilisateur dans une garniture de forage, notamment pour forage dirige
WO2012175572A1 (fr) Dispositif de decouplage pour connecter un outil de forage a l'extremite d'une colonne de forage et un systeme de forage comprenant un tel dispositif de decouplage
FR2612983A2 (fr) Dispositif de forage a trajectoire controlee et procede de reglage de trajectoire correspondant
FR2574495A1 (fr) Perfectionnements apportes aux pompes hydrauliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT NL

17Q First examination report despatched

Effective date: 19920320

ITF It: translation for a ep patent filed

Owner name: MARIETTI E GISLON S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941026

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031124

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20031223

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041219

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051219