EP0376787B1 - Temperature controller for the characteristics of an integrated circuit - Google Patents

Temperature controller for the characteristics of an integrated circuit Download PDF

Info

Publication number
EP0376787B1
EP0376787B1 EP89403487A EP89403487A EP0376787B1 EP 0376787 B1 EP0376787 B1 EP 0376787B1 EP 89403487 A EP89403487 A EP 89403487A EP 89403487 A EP89403487 A EP 89403487A EP 0376787 B1 EP0376787 B1 EP 0376787B1
Authority
EP
European Patent Office
Prior art keywords
temperature
circuit
transistors
voltages
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403487A
Other languages
German (de)
French (fr)
Other versions
EP0376787A1 (en
Inventor
Gérard Pataut
Pierre Quentin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne e2v Semiconductors SAS
Original Assignee
Thomson SCF Semiconducteurs Specifiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson SCF Semiconducteurs Specifiques filed Critical Thomson SCF Semiconducteurs Specifiques
Publication of EP0376787A1 publication Critical patent/EP0376787A1/en
Application granted granted Critical
Publication of EP0376787B1 publication Critical patent/EP0376787B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/245Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S323/00Electricity: power supply or regulation systems
    • Y10S323/907Temperature compensation of semiconductor

Definitions

  • the present invention relates to a device for controlling the temperature of monolithic integrated circuits, more particularly those which are produced on fast materials of group III-V such as GaAs.
  • the temperature behavior of circuits made on III-V substrates is one of the important parameters for the user. It must therefore be taken into account by the designer of the circuit, either by providing an accessible control electrode, or by producing on the circuit a device making it possible to correct the variations as a function of the temperature of the characteristic or characteristics of the circuit to be stabilized. .
  • US-A-4,723,108 describes a system integrated on the chip of the circuit to be checked, but its principle is different from that of the present invention.
  • a first current mirror uses the threshold voltage variation of a transistor as a temperature detector, to provide at the output of a second current mirror, a single variable voltage which makes it possible to act to compensate for the effects of temperature variation.
  • the temperature control device associates the control circuit with the circuit to be stabilized, in a single circuit produced in a homogeneous integrated circuit technology, microwave on Gallium Arsenide for example.
  • the manufacture of the two circuits side by side on the same substrate uses the standard stages of the technological process of the integrated circuit sectors.
  • the temperature is detected directly on the substrate and is used to control a correction voltage.
  • This technology must include at least two types of resistive elements, with different temperature coefficients. It is then possible to produce a divider bridge associating these two types of elements, capable of supplying a variable voltage as a function of temperature.
  • the device to be monitored must itself have the possibility of compensating for its thermal drifts with a DC voltage, such as, for example, the gate bias voltage to control the gain of a field effect transistor amplifier.
  • the invention relates to a device for controlling the temperature of the characteristics of an integrated circuit, carried by a substrate, this device, produced on the same substrate as the circuit to be stabilized, being characterized in that it comprises a divider bridge formed by four resistors (R1 - R4), supplied between two stable voltages (DC1 - DC2), these resistors being, in groups of two (R1 + R4), (R2 + R3) mounted diagonally from the bridge, opposite temperature coefficients, and delivering at their midpoints (A, B) two control voltages, which move in opposite directions with temperature.
  • a divider bridge formed by four resistors (R1 - R4), supplied between two stable voltages (DC1 - DC2), these resistors being, in groups of two (R1 + R4), (R2 + R3) mounted diagonally from the bridge, opposite temperature coefficients, and delivering at their midpoints (A, B) two control voltages, which move in opposite directions with temperature.
  • the measurement sensor of the control device comprises two resistors R1 and R2 mounted as a voltage divider bridge, supplied at its two terminals by external DC voltage generators, stable in temperature, DC1 and DC2; one of these two voltages can be in OV potential of the circuit (ground).
  • Resistors R1 and R2 have different thermal coefficients ⁇ 1 and ⁇ 2.
  • the output voltage Vc1 of the divider bridge is variable according to the temperature, and allows to control the circuit.
  • the choice of the value of DC1 makes it possible to calculate the value of DC2 and the ratio of the resistors R1 and R2. The value of these resistors is determined by the acceptable consumption in the controlled circuit compared to the consumption in the control circuit.
  • the values of the supply voltages DC1 and DC2 can then be used as a posterior adjustment means of the temperature control device.
  • an amplifier can be stabilized by controlling a stage of this amplifier with automatic gain control.
  • a bigrille field effect structure can also be controlled if the control voltage is applied to the second grid.
  • An oscillator can be stabilized in temperature by applying a control voltage to a varactor in the circuit.
  • Other applications may be concerned from the moment when the controlling voltage can be applied to a gate of a transistor or else to a diode.
  • the differential structure of Figure 2 has two parts: a first part which detects temperature variations and a second part which formats the signal intended for the control of the circuit to be controlled in temperature.
  • the temperature variations are detected with a resistance bridge balanced at T0 (20 ° C for example) and which provides a voltage proportional to the temperature as it varies.
  • This bridge is formed on the one hand by the resistors R1 and R2, supplied between DC1 and the ground, and on the other hand the resistors R3 and R4, supplied in the same way.
  • the bridge resistors have opposite temperature coefficients, mounted diagonally.
  • Resistors R1 to R4 have the same value at T0 but opposite temperature coefficients: R1 and R4 have the same coefficient and are made for example of titanium (positive temperature coefficient), while R2 and R3 are made for example of tantalum and have a negative temperature coefficient, opposite to that of R1 and R4. The variations of these resistances, with temperature, are shown in Figure 3.
  • the second part of the device is a differential structure with transistors.
  • the load of the two channels is active and can therefore be adapted to the circuit to be temperature compensated.
  • the transistors T2 and T3 are supplied, through the current source T1, between DC1 and ground: the unbalance voltages at points A and B of the resistance bridge are applied to the gates of T2 and T3.
  • the load transistors T4 and T7 are used to obtain the correct operating point at T0.
  • the transistors T 5 and T6, controlled by the voltages DC3 and DC4, make it possible to control the gain of this differential circuit as a function of the circuit to be stabilized.
  • the output voltages are supplied at points V2 and V3, common to T2 / T5 and T3 / T6 respectively.
  • the voltage V2 applied for example to the gate of a transistor of the circuit to be controlled - which is integrated on the same chip - makes it possible to stabilize it the characteristics if the temperature changes.
  • the simplified differential structure presented on the diagram of principle can be designed more completely so as to obtain a response V2 or V3 linear, parabolic, logarithmic, etc ... according to the circuits to stabilize.
  • the diagrams of these shaping circuits are known art in logic design.
  • the advantage of this new device is its full compatibility with the stages of production of the microwave channels.
  • the circuit is small and can be installed alongside a transistor or a varactor in the microwave circuit to be stabilized in temperature.

Description

La présente invention concerne un dispositif de contrôle en température des circuits intégrés monolithiques, plus particulièrement ceux qui sont réalisés sur des matériaux rapides du groupe III-V tel que GaAs.The present invention relates to a device for controlling the temperature of monolithic integrated circuits, more particularly those which are produced on fast materials of group III-V such as GaAs.

Le comportement en température des circuits réalisés sur substrats III-V est un des paramètres importants pour l'utilisateur. Il doit donc être pris en compte par le concepteur du circuit, soit en prévoyant une électrode de contrôle accessible, soit en réalisant sur le circuit un dispositif permettant de corriger les variations en fonction de la température de la ou des caractéristiques du circuit devant être stabilisées.The temperature behavior of circuits made on III-V substrates is one of the important parameters for the user. It must therefore be taken into account by the designer of the circuit, either by providing an accessible control electrode, or by producing on the circuit a device making it possible to correct the variations as a function of the temperature of the characteristic or characteristics of the circuit to be stabilized. .

Dans l'art antérieur sont décrites des méthodes extérieures au circuit, qu'il s'agisse de réguiation de la température ambiante, ou d'un asservissement comportant un élément variable en fonction de la température, corrigeant généralement par une tension un paramètre du circuit.In the prior art, methods external to the circuit are described, whether it is a question of regulating the ambient temperature, or of a servo comprising a variable element depending on the temperature, generally correcting a parameter of the circuit by a voltage. .

C'est le cas par exemple du système de contrôle en température d'une tension décrit dans le brevet GB-A-960 015. La variation de température est détectée par un pont dans lequel deux résistances ont une valeur variable avec la température, mais ce système, destiné à des mémoires à tores de ferrite, n'est pas intégré au circuit qu'il contrôle.This is the case, for example, of the voltage temperature control system described in patent GB-A-960,015. The temperature variation is detected by a bridge in which two resistors have a variable value with temperature, but this system, intended for ferrite core memories, is not integrated into the circuit it controls.

Le brevet US-A-4 723 108 décrit un sytème intégré sur la puce du circuit à contrôler, mais son principe est différent de celui de la présente invention.US-A-4,723,108 describes a system integrated on the chip of the circuit to be checked, but its principle is different from that of the present invention.

Selon ce document, un premier miroir de courant utilise la variation de tension de seuil d'un transistor comme détecteur de température, pour fournir à la sortie d'un second miroir de courant, une unique tension variable qui permet d'agir pour compenser les effets de la variation de température.According to this document, a first current mirror uses the threshold voltage variation of a transistor as a temperature detector, to provide at the output of a second current mirror, a single variable voltage which makes it possible to act to compensate for the effects of temperature variation.

Le dispositif de contrôle en température selon l'invention associe le circuit de contrôle au circuit à stabiliser, en un seul circuit réalisé dans une technologie circuit intégré homogène, microonde sur Arséniure de Gallium par exemple. La fabrication des deux circuits côte à côte sur le même substrat utilise les étapes standards du procédé technologique des filières circuits intégrés. La température est détectée directement sur le substrat et sert à contrôler une tension de correction.The temperature control device according to the invention associates the control circuit with the circuit to be stabilized, in a single circuit produced in a homogeneous integrated circuit technology, microwave on Gallium Arsenide for example. The manufacture of the two circuits side by side on the same substrate uses the standard stages of the technological process of the integrated circuit sectors. The temperature is detected directly on the substrate and is used to control a correction voltage.

Cette technologie doit comporter au minimum deux types d'éléments résistifs, à coefficients de température différents. Il est possible alors de réaliser un pont diviseur associant ces deux types d'éléments, capable de fournir une tension variable en fonction de la température. Le dispositif à contrôler doit, lui, présenter la possibilité d'une compensation de ses dérives thermiques par une tension continue, comme, par exemple, la tension de polarisation grille pour commander le gain d un amplificateur à transistors à effet de champ.This technology must include at least two types of resistive elements, with different temperature coefficients. It is then possible to produce a divider bridge associating these two types of elements, capable of supplying a variable voltage as a function of temperature. The device to be monitored must itself have the possibility of compensating for its thermal drifts with a DC voltage, such as, for example, the gate bias voltage to control the gain of a field effect transistor amplifier.

De façon plus précise, l'invention concerne un dispositif de contrôle en température des caractéristiques d'un circuit intégré, porté par un substrat, ce dispositif, réalisé sur le même substrat que le circuit à stabiliser, étant caractérisé en ce qu'il comporte un pont diviseur formé par quatre résistances (R₁ - R₄), alimenté entre deux tensions stables (DC₁ - DC₂), ces résistances étant, par groupes de deux (R₁ + R₄), (R₂ + R₃) montés en diagonales du pont, de coefficients de température opposés, et délivrant en leurs points milieux (A,B) deux tensions de contrôle, qui évoluent en sens inverses avec la température.More precisely, the invention relates to a device for controlling the temperature of the characteristics of an integrated circuit, carried by a substrate, this device, produced on the same substrate as the circuit to be stabilized, being characterized in that it comprises a divider bridge formed by four resistors (R₁ - R₄), supplied between two stable voltages (DC₁ - DC₂), these resistors being, in groups of two (R₁ + R₄), (R₂ + R₃) mounted diagonally from the bridge, opposite temperature coefficients, and delivering at their midpoints (A, B) two control voltages, which move in opposite directions with temperature.

L'invention sera mieux comprise par la description plus détaillée qui suit maintenant d'un exemple de réalisation, en conjonction avec les figures jointes qui représentent :

  • figure 1 : schéma électrique du détecteur intégré sur la pastille de circuit intégré,
  • figure 2 : schéma électrique d'une structure différentielle fournissant des tensions complémentaires fonction de la température,
  • figure 3 : courbes de résistances en fonction de la température, pour les capteurs de mesure
  • figure 4 : courbes de réponses de la structure de la figure 2, en fonction de la température.
The invention will be better understood from the more detailed description which now follows of an exemplary embodiment, in conjunction with the attached figures which represent:
  • Figure 1: electrical diagram of the integrated detector on the integrated circuit chip,
  • Figure 2: electrical diagram of a differential structure providing additional voltages as a function of temperature,
  • figure 3: resistance curves as a function of temperature, for measurement sensors
  • Figure 4: response curves of the structure of Figure 2, as a function of temperature.

Le capteur de mesure du dispositif de contrôle selon l'invention comprend deux résistances R1 et R2 montées en pont diviseur de tension, alimenté à ses deux bornes par des générateurs extérieurs de tension continue, stables en température, DC1 et DC2; l'une de ces deux tensions peut être en potentiel OV du circuit (masse).The measurement sensor of the control device according to the invention comprises two resistors R1 and R2 mounted as a voltage divider bridge, supplied at its two terminals by external DC voltage generators, stable in temperature, DC1 and DC2; one of these two voltages can be in OV potential of the circuit (ground).

Les résistances R1 et R2 ont des coefficients thermiques différents α1 et α2. La variation de résistance en fonction de la température peut s'écrive :

R₁ = [1 + α₁ (T - T₀)] R₁₀

Figure imgb0001


avec
T₀ = 20°C
R₁₀ = R₁ pour T = 20°C
De même :

R₂ = [1 + α₂ (T-T₀)] R₂₀
Figure imgb0002


Pour simplifier les expressions, posons

β T = 1 + α₁ (T-T₀)
Figure imgb0003


γ T = 1 + α₂ (T-T₀)
Figure imgb0004


   La tension de sortie Vc1 du pont diviseur est variable en fonction de la température, et permet de contrôler le circuit.Resistors R1 and R2 have different thermal coefficients α1 and α2. The variation in resistance as a function of temperature can be written:

R₁ = [1 + α₁ (T - T₀)] R₁₀
Figure imgb0001


with
T₀ = 20 ° C
R₁₀ = R₁ for T = 20 ° C
Similarly:

R₂ = [1 + α₂ (T-T₀)] R₂₀
Figure imgb0002


To simplify the expressions, let’s pose

β T = 1 + α₁ (T-T₀)
Figure imgb0003


γ T = 1 + α₂ (T-T₀)
Figure imgb0004


The output voltage Vc1 of the divider bridge is variable according to the temperature, and allows to control the circuit.

Le calcul des résistances du pont diviseur se fait à l'aide des équations suivantes :

Figure imgb0005

Soit un transistor à effet de champ, dont la dérive en température peut être compensée en modifiant sa tension grille de OV (à 80°C) à -0,3 V (à -40°C).

T₁ = - 40°C → VC1 (T₁) = -0,3 V
Figure imgb0006

T₂ = + 80°C → VC1 (T₂) = 0V
Figure imgb0007


On peut écrire :
Figure imgb0008
Figure imgb0009

   Le choix de la valeur de DC1 permet de calculer la valeur de DC2 et le rapport des résistances R1 et R2 . La valeur de ces résistances est déterminée par la consommation acceptable dans le circuit contrôlé par rapport à la consommation dans le circuit de commande.The calculation of the resistances of the divider bridge is done using the following equations:
Figure imgb0005

Or a field effect transistor, whose temperature drift can be compensated by modifying its gate voltage from OV (at 80 ° C) to -0.3 V (at -40 ° C).

T₁ = - 40 ° C → VC1 (T₁) = -0.3 V
Figure imgb0006

T₂ = + 80 ° C → VC1 (T₂) = 0V
Figure imgb0007


We can write :
Figure imgb0008
Figure imgb0009

The choice of the value of DC1 makes it possible to calculate the value of DC2 and the ratio of the resistors R1 and R2. The value of these resistors is determined by the acceptable consumption in the controlled circuit compared to the consumption in the control circuit.

Les valeurs des tensions d 'alimentation DC1 et DC2 peuvent alors servir de moyens de réglage à postériori du dispositif de contrôle en température.The values of the supply voltages DC1 and DC2 can then be used as a posterior adjustment means of the temperature control device.

Considérons maintenant un dispositif de contrôle complet, capt eur et circuit de mise en forme, de tel structure différentielle que représenté en figure 2 : il est intégré à la même pastille de matériau semiconducteur que le circuit à contrôler en température. La température, détectée directement sur le substrat, sert à contrôler le gain d'une structure différentielle fournissant des tensions complémentaires fonctions de la température.Let us now consider a complete control device, sensor and shaping circuit, of such differential structure as shown in FIG. 2: it is integrated into the same chip of semiconductor material as the circuit to be controlled in temperature. The temperature, detected directly on the substrate, is used to control the gain of a differential structure providing additional voltages which are functions of temperature.

Ainsi, un amplificateur peut être stabilisé en contrôlant un étage de cet amplificateur à contrôle automatique de gain. Une structure à effet de champ bigrille peut aussi être contrôlée si la tension contrôlante est appliquée sur la deuxième grille. Un oscillateur peut être stabilisé en température en appliquant une tension de contrôle sur un varactor du circuit. D'autres applications peuvent être concernées à partir du moment où la tension contrôlante peut être appliquée sur une grille d'un transistor ou bien sur une diode.Thus, an amplifier can be stabilized by controlling a stage of this amplifier with automatic gain control. A bigrille field effect structure can also be controlled if the control voltage is applied to the second grid. An oscillator can be stabilized in temperature by applying a control voltage to a varactor in the circuit. Other applications may be concerned from the moment when the controlling voltage can be applied to a gate of a transistor or else to a diode.

La structure différentielle de la figure 2 comprend deux parties : une première partie qui détecte les variations de température et une seconde partie qui met en forme le signal destiné à la commande du circuit à contrôler en température.The differential structure of Figure 2 has two parts: a first part which detects temperature variations and a second part which formats the signal intended for the control of the circuit to be controlled in temperature.

La détection des variations de température se fait avec un pont de résistances équilibré à T₀ (20° C par exemple) et qui fournit une tension proportionnelle à la température au fur et à mesure qu'elle varie. Ce pont est formé d'une part par les résitances R1 et R2, alimentées entre DC1 et la masse, et d'autre part les résistances R3 et R4, alimentées de la même façon. Les résistances du pont ont des coefficients de température opposés, montées en diagonales.The temperature variations are detected with a resistance bridge balanced at T₀ (20 ° C for example) and which provides a voltage proportional to the temperature as it varies. This bridge is formed on the one hand by the resistors R1 and R2, supplied between DC1 and the ground, and on the other hand the resistors R3 and R4, supplied in the same way. The bridge resistors have opposite temperature coefficients, mounted diagonally.

Les résistances R1 à R4 ont même valeur à T₀ mais des coefficients de température opposés : R1 et R4 ont même coefficient et sont réalisées par exemple en titane (coefficient de température positif), tandis que R2 et R3 sont réalisées par exemple en tantale et ont un coefficient de température négatif, opposé à celui de R1 et R4. Les variations de ces résistances, avec la température, sont représentées en figure 3.Resistors R1 to R4 have the same value at T₀ but opposite temperature coefficients: R1 and R4 have the same coefficient and are made for example of titanium (positive temperature coefficient), while R2 and R3 are made for example of tantalum and have a negative temperature coefficient, opposite to that of R1 and R4. The variations of these resistances, with temperature, are shown in Figure 3.

Dans ce type de pont, les potentiels aux points milieux A et B, égaux à l'équilibre à T₀, se déplacent en sens opposés, ce qui augmente la valeur du signal de sortie.In this type of bridge, the potentials at midpoints A and B, equal to the equilibrium at T₀, move in opposite directions, which increases the value of the output signal.

La seconde partie du dispositif est une structure différentielle à transistors. La charge des deux voies est active et peut donc être adaptée au circuit à compenser en température.The second part of the device is a differential structure with transistors. The load of the two channels is active and can therefore be adapted to the circuit to be temperature compensated.

Les transistors T2 et T3 sont alimentés, à travers la source de courant T1, entre DC1 et la masse : les tensions de déséquilibres aux points A et B du pont de résistances sont appliquées sur les grilles de T2 et T3. Les transistors de charge T4 et T7 servent à obtenir le bon point de fonctionnement à T₀. Les transistors T 5 et T6, commandés par les tensions DC3 et DC4, permettent de contrôler le gain de ce circuit différentiel en fonction du circuit à stabiliser. Les tensions de sortie sont délivrées aux points V2 et V3, communs respectivement à T2/T5 et à T3/T6. La tension V2, appliquée par exemple sur la grille d'un transistor du circuit à contrôler - qui est intégré sur la même pastille - permet d'en stabiliser les caractéristiques si la température évolue.The transistors T2 and T3 are supplied, through the current source T1, between DC1 and ground: the unbalance voltages at points A and B of the resistance bridge are applied to the gates of T2 and T3. The load transistors T4 and T7 are used to obtain the correct operating point at T₀. The transistors T 5 and T6, controlled by the voltages DC3 and DC4, make it possible to control the gain of this differential circuit as a function of the circuit to be stabilized. The output voltages are supplied at points V2 and V3, common to T2 / T5 and T3 / T6 respectively. The voltage V2, applied for example to the gate of a transistor of the circuit to be controlled - which is integrated on the same chip - makes it possible to stabilize it the characteristics if the temperature changes.

La réponse du circuit, en fonction de la température, est donnée en figure 4. Las courbes V2 et V3 (trait plein) correspondent à une réponse équilibrée parce que DC3 = DC4. On peut déplacer l'équilibre en faisant varier l'une des tensions DC3 ou DC4, ce qui donne alors, par exemple, la courbe V3 en pointillé : DC3 ≠ DC4.The response of the circuit, as a function of the temperature, is given in FIG. 4. The curves V2 and V3 (solid line) correspond to a balanced response because DC3 = DC4. We can move the balance by varying one of the DC3 or DC4 voltages, which then gives, for example, the dotted curve V3: DC3 ≠ DC4.

La structure différentielle simplifiée présentée sur le schéma de principe peut être conçue plus complétement de manière à obtenir une réponse V2 ou V3 linéaire, parabolique, logarithmique, etc... en fonction des circuits à stabiliser. Les schémas de ces circuits de mise en forme sont de l'art connu en conception logique.The simplified differential structure presented on the diagram of principle can be designed more completely so as to obtain a response V2 or V3 linear, parabolic, logarithmic, etc ... according to the circuits to stabilize. The diagrams of these shaping circuits are known art in logic design.

L'intérêt de ce nouveau dispositif est son entière compatibilité avec les étapes de réalisation des filières microondes. Le circuit est de petite taille et peut être implanté à côté d'un transistor ou d'un varactor dans le circuit microonde à stabiliser en température.The advantage of this new device is its full compatibility with the stages of production of the microwave channels. The circuit is small and can be installed alongside a transistor or a varactor in the microwave circuit to be stabilized in temperature.

Claims (3)

  1. Device for the temperature control of the characteristics of an integrated circuit, carried by a substrate, this device, made on the same substrate as the circuit to be stabilized being characterized in that it includes a divider bridge formed by four resistors (R₁ - R₄), which is fed between two stable voltages (DC₁ - DC₂), these resistors having, in groups of two mounted on the diagonals of the bridge (R₁ + R₄) (R₂ + R₃), with opposite temperature coefficients, and delivering at their midpoints (A, B) two control voltages which evolve in opposite directions with temperature.
  2. Device according to Claim 1, characterized in that it furthermore includes a differential circuit for shaping the control signals, formed by two first transistors (T₂, T₃) and their load transistors (T₄, T₇), fed with the measurement bridge feed voltages (DC₁, DC₂), by means of a current source (T₁), the unbalancing voltages of the bridge being applied to the gates of the two first transistors (T₂, T₃) and the output voltages (V₂, V₃) being gathered at the common points between the first transistors (T₂, T₃) and their load transistors (T₄, T₇).
  3. Device according to Claim 2, characterized in that, in order to adjust the gain of the differential circuit on the basis of the integrated circuit to be stabilized, it furthermore includes two adjusting transistors (T₅, T₆) mounted in parallel with the load transistors (T₄, T₇), adjusting voltages (DC₃, DC₄) being applied to the gates of the adjusting transistors (T₅, T₆).
EP89403487A 1988-12-23 1989-12-14 Temperature controller for the characteristics of an integrated circuit Expired - Lifetime EP0376787B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8817091A FR2641127B1 (en) 1988-12-23 1988-12-23
FR8817091 1988-12-23

Publications (2)

Publication Number Publication Date
EP0376787A1 EP0376787A1 (en) 1990-07-04
EP0376787B1 true EP0376787B1 (en) 1994-07-13

Family

ID=9373354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403487A Expired - Lifetime EP0376787B1 (en) 1988-12-23 1989-12-14 Temperature controller for the characteristics of an integrated circuit

Country Status (5)

Country Link
US (1) US4952865A (en)
EP (1) EP0376787B1 (en)
JP (1) JPH02264310A (en)
DE (1) DE68916774T2 (en)
FR (1) FR2641127B1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444219A (en) * 1990-09-24 1995-08-22 U.S. Philips Corporation Temperature sensing device and a temperature sensing circuit using such a device
GB2248151A (en) * 1990-09-24 1992-03-25 Philips Electronic Associated Temperature sensing and protection circuit.
IE913900A1 (en) * 1990-12-28 1992-07-01 Eaton Corp Sure chip plus
US5639163A (en) * 1994-11-14 1997-06-17 International Business Machines Corporation On-chip temperature sensing system
US5946181A (en) * 1997-04-30 1999-08-31 Burr-Brown Corporation Thermal shutdown circuit and method for sensing thermal gradients to extrapolate hot spot temperature
US6437634B1 (en) * 1997-11-27 2002-08-20 Nec Corporation Semiconductor circuit in which distortion caused by change in ambient temperature is compensated
TW200624826A (en) * 2004-10-29 2006-07-16 Koninkl Philips Electronics Nv System for diagnosing impedances having accurate current source and accurate voltage level-shift
US7852098B2 (en) * 2005-08-01 2010-12-14 Marvell World Trade Ltd. On-die heating circuit and control loop for rapid heating of the die
SG129370A1 (en) * 2005-08-01 2007-02-26 Marvell World Trade Ltd On-die heating circuit and control loop for rapid heating of the die
TW201003356A (en) * 2008-07-10 2010-01-16 Mobien Corp Resistor device and circuit using the same
FR3140988A1 (en) * 2022-10-17 2024-04-19 Stmicroelectronics (Rousset) Sas Overheat protection circuit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30586A (en) * 1860-11-06 Dooe-lock
DE1200426B (en) * 1960-11-01 1965-09-09 Ericsson Telefon Ab L M Arrangement for temperature-dependent regulation of the output voltage of an energy source
US3887863A (en) * 1973-11-28 1975-06-03 Analog Devices Inc Solid-state regulated voltage supply
JPS51138848A (en) * 1975-05-28 1976-11-30 Hitachi Ltd Steady current circuit
JPS5913052B2 (en) * 1975-07-25 1984-03-27 日本電気株式会社 Reference voltage source circuit
US4263519A (en) * 1979-06-28 1981-04-21 Rca Corporation Bandgap reference
JPS56118362A (en) * 1980-02-22 1981-09-17 Toshiba Corp Semiconductor integrated circuit device
JP2575611B2 (en) * 1984-11-12 1997-01-29 日本電気株式会社 Integrated circuit semiconductor converter
US4622512A (en) * 1985-02-11 1986-11-11 Analog Devices, Inc. Band-gap reference circuit for use with CMOS IC chips
US4723108A (en) * 1986-07-16 1988-02-02 Cypress Semiconductor Corporation Reference circuit
US4882533A (en) * 1987-08-28 1989-11-21 Unitrode Corporation Linear integrated circuit voltage drop generator having a base-10-emitter voltage independent current source therein
US4883992A (en) * 1988-09-06 1989-11-28 Delco Electronics Corporation Temperature compensated voltage generator

Also Published As

Publication number Publication date
JPH02264310A (en) 1990-10-29
US4952865A (en) 1990-08-28
EP0376787A1 (en) 1990-07-04
DE68916774D1 (en) 1994-08-18
DE68916774T2 (en) 1994-11-10
FR2641127A1 (en) 1990-06-29
FR2641127B1 (en) 1993-12-24

Similar Documents

Publication Publication Date Title
KR100197821B1 (en) Hall sensor with automatic compensation
EP0376787B1 (en) Temperature controller for the characteristics of an integrated circuit
US9013167B2 (en) Hall effect device having voltage based biasing for temperature compensation
US4556807A (en) Pressure transducer with temperature compensation circuit
EP0382217B1 (en) Power source circuit and bridge type measuring device with output compensating circuit utilizing the same
US5365161A (en) Stabilized voltage supply
FR2842317A1 (en) REFERENCE VOLTAGE SOURCE, TEMPERATURE SENSOR, TEMPERATURE THRESHOLD DETECTOR, CHIP AND CORRESPONDING SYSTEM
FR2613491A1 (en) DEVICE FOR DETECTING THE HIGH LEVEL OF A VOLTAGE IN MOS TECHNOLOGY
EP0438363A1 (en) Current measurement circuit in a MOS power transistor
JP3731833B2 (en) Reference voltage generator
EP3422032B1 (en) A temperature compensation circuit, corresponding device and method
EP1566717A1 (en) Device for the generation of an improved reference voltage and corresponding integrated circuit
US5708420A (en) Voltage detection circuit compensated in technology and temperature
US5642034A (en) Regulated power supply circuit permitting an adjustment of output current when the output thereof is grounded
JP5981890B2 (en) Hall element drive circuit
US7023276B2 (en) Differential amplifier circuit
JP3017871B2 (en) Variation detection circuit on chip for IC device
JPH11249751A (en) High-accuracy current supplying means
JPH06112789A (en) Circuit device
US4914357A (en) Temperature compensated foldback current limiting
FR3102580A1 (en) Voltage Regulator
EP0829796B1 (en) Voltage controller with attenuated temperature sensitivity
FR2969328A1 (en) GENERATING CIRCUIT FOR REFERENCE VOLTAGE UNDER LOW POWER SUPPLY VOLTAGE
EP0655176B1 (en) Amplifier stage with low thermal distortion
SE518159C2 (en) Device for determining the size of a stream

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB GR IT NL

17P Request for examination filed

Effective date: 19900825

17Q First examination report despatched

Effective date: 19921210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB GR IT NL

REF Corresponds to:

Ref document number: 68916774

Country of ref document: DE

Date of ref document: 19940818

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941018

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013637

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071125

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071212

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071228

Year of fee payment: 19

Ref country code: DE

Payment date: 20071206

Year of fee payment: 19

Ref country code: GR

Payment date: 20071128

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081214

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081214

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081214