EP0374290B1 - Railway vehicle - Google Patents

Railway vehicle Download PDF

Info

Publication number
EP0374290B1
EP0374290B1 EP88121424A EP88121424A EP0374290B1 EP 0374290 B1 EP0374290 B1 EP 0374290B1 EP 88121424 A EP88121424 A EP 88121424A EP 88121424 A EP88121424 A EP 88121424A EP 0374290 B1 EP0374290 B1 EP 0374290B1
Authority
EP
European Patent Office
Prior art keywords
signal
railway vehicle
rail
steering
vehicle according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88121424A
Other languages
German (de)
French (fr)
Other versions
EP0374290A1 (en
Inventor
Heinrich Dipl.-Ing. Scheucken
Hans-Jochen Girod
Gerhard Korn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE8888121424T priority Critical patent/DE3870247D1/en
Priority to EP88121424A priority patent/EP0374290B1/en
Priority to AT88121424T priority patent/ATE74846T1/en
Publication of EP0374290A1 publication Critical patent/EP0374290A1/en
Application granted granted Critical
Publication of EP0374290B1 publication Critical patent/EP0374290B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/38Arrangements or devices for adjusting or allowing self- adjustment of wheel axles or bogies when rounding curves, e.g. sliding axles, swinging axles
    • B61F5/383Adjustment controlled by non-mechanical devices, e.g. scanning trackside elements

Definitions

  • the invention relates to a rail vehicle according to the preamble of claim 1.
  • Such a rail vehicle is e.g. known from EP-A-0 247 389.
  • This rail vehicle has horizontally pivotable individual wheels, each of which is mounted in a single-arm wheel guide rocker and can be steered by means of an actuator. Means for detecting the course of the rail and the further processing of the corresponding signals are not described.
  • a rail vehicle which comprises individual wheels which are steered in pairs by tie rods.
  • the steering control criterion is derived from the leading pair of wheels or is transmitted to the wheel control mechanism by sensor amplification.
  • This embodiment is not yet optimal.
  • the individual wheels, which are connected to one another in pairs via tie rods, are subject to tracking errors which, even with known corrective measures, cannot be eliminated sufficiently for all radii of the rail curve.
  • DE-A-22 57 560 discloses a chassis for rail vehicles, in particular for fast-moving rail vehicles, with one or more wheel sets or with idler wheels.
  • Magnetic or electrodynamic elements are arranged on this undercarriage for guiding the wheel sets or the idler wheels so that they exert a predefinable magnetic force on the rails with their poles.
  • the magnetic force of the elements is regulated by sensors, not described in more detail, which measure the position of the undercarriage frame and / or the wheel sets relative to the track.
  • Both the poles of the elements and the sensors can e.g. interact with the side surfaces of the rail heads, which lie towards the middle of the track, or with the running surface of the rails.
  • the sensors can also interact with a guide rail, which is laid between or next to the rails. If there is a lateral deviation of the running gear from normal running, which is predetermined by the course of the track, the deviation is controlled by the magnetic force generated by the elements. This forces the wheelset or idler gears back into their normal position.
  • the magnetic or electrodynamic elements therefore serve to guide the rigid gear set or the gear set with idler gears.
  • the magnetic force generated must be relatively high and must be constantly maintained in order to ensure the positive guidance of the undercarriage after the course of the track.
  • DE-A-23 36 786 discloses a further embodiment of the wheelset undercarriage according to DE-A-22 57 560.
  • the elements for generating the magnetic force are arranged in pairs symmetrically to the longitudinal axis of the chassis.
  • the poles of the elements and the sensors interact with the side faces of the rail heads, which lie towards the middle of the track.
  • the poles and, if necessary, the sensors must therefore be removed from the side faces of the rail heads before crossing points, crossings and other profile-restricted track points. This can be done, for example, by swiveling out of the track area.
  • DE-A-24 14 228 deals with the measurement of the vehicle position or the chassis position relative to the track and the regulation of the magnetic force of the elements by means of which the wheel set undercarriages are positively guided.
  • the continuously changing position of the wheelset trolleys is to be detected, for example, by measuring the distance, the adjustment path, the adjustment speed or the adjustment acceleration or the adjustment frequency by means of sensors. If there is a fault in the lateral guidance of the wheel sets, i.e. after these have deviated from normal operation, the elements are regulated in such a way that the magnetic force generated by the elements counteracts the deviation of the wheel sets from normal operation. In this case too, the wheelsets are positively guided by means of magnetic forces acting laterally on the wheels of the wheelset bogies.
  • the object of the present invention is to construct a rail vehicle of the type mentioned at the outset in such a way that each individual wheel can be steered without tracking errors in all corner regions.
  • each individual wheel pair Due to the transition from tie rod control to independent wheel steering according to the invention, each individual wheel pair is now always correctly steered in any curve position so that tracking errors can no longer occur. It is therefore an individually controlled steering of each individual wheel and not a (magnetic) positive guidance, as described in the German published documents, with the aforementioned disadvantages.
  • the individual wheels 2-5 shown here are not mechanically directly connected to one another.
  • Each single wheel 2-5 can be steered with the aid of an actuator 8, 9, 10 or 11 assigned to it for straight signals g1, g2, g3, g4 and angle signals ⁇ , ⁇ , ⁇ , ⁇ which are to be supplied as a function of the respective actuator.
  • the respective individual wheel is arranged in the middle part of the longitudinal wheel rocker arm of the rail vehicle 1 in vertical slide or roller bearings, as is shown, for example, in DE-A1-35 38 513 in FIG. 8 or in the present patent application in FIGS. 11 and 12.
  • the body of the rail vehicle 1 is identified by the reference number 12.
  • the body 12 has the longitudinal axis 13 (longitudinal axis of symmetry of the body).
  • a rail course measuring device 14, 15, 16 and 17 is assigned to each individual wheel 2-5.
  • the rail course measuring devices 14 and 16 for the individual wheels 2 and 4 lie in the direction of travel indicated by arrow 18 in front of these individual wheels.
  • the rail course measuring devices 15 and 17, on the other hand, are located behind the individual wheels 3 and 5 of the rail vehicle 1 in this direction of travel.
  • Each of the rail course measuring devices 14-17 comprises a laser transmitter 19, 20, 21 or 22, the transmission beam 23, 24, 25 or 26 of which is directed onto the respective rail 6 or 7 and can be pivoted transversely thereto (for example by means of a rotating mirror polygon) is. It also includes a laser receiver 27, 28, 29 and 30, which detects the reference point reflector 31, 32, 33 and 34 from the respective rail 6 and 7 and from a reference point reflector also belonging to the rail profile measuring device 14, 15, 16 and 17 reflected laser beam of the laser transmitter receives. Finally, each rail profile measuring device 14-17 also includes blocks 35-38, which contain the evaluation electronics for the signals of the respective rail profile measuring device 14, 15, 16 and 17 respectively.
  • the signal outputs of the blocks 35-38 are with each other and with the actuators 8-11 of the individual wheels 2-5 of the rail vehicle 1 in the manner shown, directly or via OR gates 35a, 36a, 37a, 38a.
  • the circuit structure in the individual blocks 35-38 is essentially identical. Each block contains a steering signal generator 39, 40, 41 and 42 as well as logic switching elements 43, 44, 45 and 46, respectively. Only blocks 35 and 37 are additionally assigned a comparator 47 and 48, respectively.
  • the internal circuitry of the steering signal generators 39-42 is also essentially identical. For this reason, only the structure of the steering signal generator 39 is shown in more detail in FIG.
  • the steering signal generator 39 comprises, in addition to a transmission generator 60 for the laser transmitter (in the present case, the laser transmitter 19), a reception amplifier 61 for the laser receiver (in the present case, the laser receiver 27).
  • the reception amplifier 61 is followed by a signal generator 62 and an actual value determiner 63.
  • the signal generator 62 generates a reference point signal (main signal S h ) from the received laser beam reflected by the reference point reflector (in the present case the reference point reflector 31).
  • the actual value determiner 63 generates secondary signals S n1 and S n2 or S ' n1 and S' n2 from the laser beam reflected from the rail head surface outside the reference point reflector.
  • the two secondary signals S n1 and S n2 for driving straight ahead have the same foot width.
  • the secondary signals S ′ n1 and S ′ n2 occur, which have different foot widths that differ from the secondary signals S n1 and S n2 (see FIG. 10).
  • the output signals of the signal generator 62 and the actual value determiner 63 are fed to a comparison element 64.
  • the foot widths of the two secondary signals S n1 and S n2 or S ' n1 and S' n2 are compared and at different Foot widths (only the case with the secondary signals S ' n1 and S' n2 the case) at the output of the comparator 64 generates a signal ⁇ x1 corresponding to the change in the foot widths.
  • This signal ⁇ x1 is supplied on the one hand to a first threshold discriminator 65 and on the other hand to a second threshold discriminator 66.
  • the two threshold discriminators 65 and 66 are set to a predetermined threshold for the signal ⁇ x1. If the signal ⁇ x1 is below this threshold, it can pass the threshold discriminator 66 as the output signal ⁇ x2. However, if the signal ⁇ x1 is above the threshold, it passes the threshold discriminator 65 as signal x3.
  • a counter-regulator 67 is connected downstream of the threshold discriminator 66 and, depending on the resulting output signals ⁇ x2, generates an opposite straight-line signal g1 depending on their polarity.
  • This straight line signal g1 and the straight line signals g2, g3, g4 emitted by the further steering signal generators 40, 41, 42 keep the individual wheels 2-5 of the rail vehicle 1 on a straight line. In this way, deviations in the course of the rail and fluctuations in the car body relative to one another are compensated for.
  • the output signal ⁇ x3 of the threshold discriminator 65 is fed to a computer 68.
  • the computer 68 receives further signals, namely a length signal l c or L from a read-only memory 69 or 70.
  • the length signal l c corresponds to the distance of the respective measuring plane of the rail profile measuring device from the associated single wheel (see, for example, also FIG. 6).
  • the length signal L is the distance between the leading and trailing wheel pairs (see for example also FIG 4).
  • the computer 68 is supplied with a length signal l y, which gradually increases when cornering, when an angle stepper 72 is used.
  • it also receives a correspondingly gradually increasing length signal S via lines 73, 74 and an angle signal ⁇ .
  • the length signal S originates from the angle step generator corresponding to the angle step generator 72 in the steering signal generator 40 for the trailing single wheel 3.
  • the angle signal ⁇ is the output signal of the steering signal generator 40.
  • the output signal .DELTA.x3 of the threshold discriminator 65 is also fed via a line 75, 76 to the measuring start input 77 of the angle step generator 72 for the measuring section.
  • the start of the measurement for the test section is triggered when an output signal ⁇ x3 occurs for the first time.
  • the measurement of the distance l y begins.
  • the corresponding angle stepper in the steering signal generator 40 of the subsequent single wheel 3 for measuring a distance is started by the length signal S via line 75, 78.
  • the meaning of the lines corresponding to the length signals l y and S is also explained further below with reference to FIGS. 4 and 5.
  • the angular step encoder 72 also receives the length signal l c from the read-only memory 69 via the line 79 in the direction of travel 18 shown.
  • the angle stepper 72 receives a signal from the comparison element 47 via a line 80, namely when the angle signal ⁇ supplied to the comparison element 47 corresponds to the angle signal ⁇ of the steering signal generator 40 of the trailing single wheel 3.
  • the lines 81 and 82 couple signals ⁇ x3 'and S' from the steering signal generator 40 to the steering signal generator 39 or vice versa when the direction of travel of the rail vehicle 1 is reversed.
  • the output signal ⁇ x3 'then corresponds to the output signal ⁇ x3 when the direction is reversed, while the length signal S' also corresponds to the length signal S when the direction is reversed.
  • FIG. 3 shows the computer 68 in more detailed form. It therefore includes arithmetic terms 90,91,92,93,94,95 and 96. Furthermore, it contains two comparison terms 97 and 98.
  • the first computing element 90 calculates a radius of curvature R1 of the rails as a function of the signals ⁇ x3 and l y according to the following equation:
  • the second computing element 91 also calculates a radius R2 from the signals l c and ⁇ x3 according to the formula:
  • the arithmetic element 92 generates an angle signal ⁇ 'from the length signal l y and the output signal ⁇ x3 via the relationship
  • the arithmetic element 93 and the arithmetic element 94 also generate angle correction signals ⁇ 01 and ⁇ 02 for the purpose of correcting the angle signal ⁇ 'emitted by the arithmetic element 92.
  • the arithmetic element 93 calculates the angle correction signal ⁇ 01 via the relationship
  • the computing element 93 receives the radius signal R from the output of the comparing element 98 of the computing elements 90 and 91.
  • the computing element 94 generates its angle correction signal ⁇ 02 via the relationship
  • the two arithmetic elements 93 and 94 are activated as a function of the output signal of the comparator 97.
  • the signals ⁇ ′, ⁇ 01 and ⁇ 02 determined in this way are processed in the computing element 96 in such a way that an angle signal ⁇ results at the output thereof according to the following condition:
  • This angle signal ⁇ is the setting angle signal for the steering of the individual wheels 2 and 3.
  • the diagram in FIG. 4 shows the beginning of the curve phase, which is detected by the leading rail course measuring devices of the leading individual wheels 2 and 4. 4 shows only the course of the rail 6 and the leading single wheel 2.
  • the following explanations apply analogously to the rail 7 and the leading individual wheel 4.
  • the single wheel 2 and thus also its measuring plane MI defined by the wheel contact point is on the straight line and the measuring plane MII defined by the rail course measuring device is at the beginning of the curve (zero point).
  • the leading rail course measuring device of the single wheel 2 already detects the start of the curve in its measuring plane MII when the single wheel 2 is still on the straight line.
  • the radius signal R corresponding to the curve radius is determined while the single wheel 2 is traveling straight ahead.
  • the angle of the chord between the wheel contact point and the measuring plane MII is determined and given as the setting angle ⁇ to the actuator 8 of the leading single wheel 2.
  • the setting angle ⁇ is also fed to the actuator 3 of the trailing single wheel 3 in the opposite sense.
  • FIG. 5 shows the trailing single wheel 3.
  • L is the output signal corresponding to the distance between the wheel contact points of the individual wheels 2 and 3.
  • the length signal S occurring during the entry of the leading single wheel 2 into the curve is the y coordinate of the curve point; the signal a is its x coordinate. Both the length signal S and the signal a are determined from the measurements on the trailing single wheel 3. The determination of the signals S and a, which continuously increase when entering a curve, begins with the occurrence of an angle signal ⁇ on the trailing single wheel 3.
  • FIGS. 6-8 each show various sectional representations of the rail vehicle 1 in the area of its front wheel arches 151, 152.
  • 6 shows a side view of the left front single wheel 4, which is rotatably mounted in a longitudinal wheel rocker arm, not shown here, installed in the wheel housing 151.
  • the laser transmitter 21 and the laser receiver 29 are arranged in front of the wheel contact point P4 of the individual wheel 4 on the rail 7 at a fixed distance l c .
  • the reference point reflector 33 is located in the beam path of the laser beam 25 emitted by the laser transmitter 21 and reflected by the rail head surface.
  • a mirror polygon, not shown here, rotating at right angles to the longitudinal axis 13 of the rail vehicle 1 leads to an intermittent laser beam 25, the measuring interval frequency of which is determined by the speed of the reflecting mirror polygon is determined.
  • a 12-mirror polygon which has a speed of 3600 / min, for example, a measuring interval frequency of 0.72 laser beam passes / msec arises, which is a time expenditure per laser beam of 1.39 msec and with an evaluation computer time of 1.6 msec a ⁇ x3- Determination of 3 msec corresponds.
  • position surveys including evaluation are carried out at intervals of 15 to 80 mm, ie every 1.5 to 8 cm, it is checked whether the single wheel is on a straight line or in a curve.
  • the mirror rotor creates over it
  • an overpressure of clean air in an advantageous manner on the rail profile measuring devices, so that contaminants are kept away.
  • the clean air can be extracted from the inside of the car or from the wind through filters.
  • the measuring plane MI is determined in each case by the wheel contact point P2 of the individual wheel 2 or by the wheel contact point P4 of the individual wheel 4 and by the reflection point of the transmission beam 23 or 25, which are not visible in FIG. 7 (see FIG. 6), the Measuring level MII determined.
  • the distance between the two measuring planes MI and MII thus corresponds to the distance l c .
  • FIG. 8 shows a front view of the detail of the rail vehicle 1 shown in FIG. 7.
  • the direction of travel 18 shows here from the paper plane. Therefore, only the laser transmitters 19 and 21 lying in front of the laser receivers 27 and 29 are visible.
  • Both the laser beam 23 emitted by the laser transmitter 19 and the laser beam 25 emitted by the laser transmitter 21 rotate perpendicular to the longitudinal axis 13 of the rail vehicle 1, so that both laser beams 23 and 25 move in the plane of the drawing in the illustration selected in FIG.
  • the reference point reflectors 31 and 33 are arranged in the beam path and held in the wheel housing 151 and 152, respectively. The rotation of the laser beam 23 or 25 described above detects the course of the rail 6 or 7 in question for each individual wheel 2 or 4.
  • This sensory detection of the rail profile takes place at a distance l c in front of the respective edge contact point P2 or P4 of the respective individual wheel 2 or 4.
  • the deviation of the rail course by an amount .DELTA.x3 from the straight line course of the rails 6 and 7 is denoted by 6ri and 7ri or 6le and 7le.
  • the beam path of the laser beam 23 shown in FIG. 9 also applies analogously to the laser beams 24-26 of the laser transmitters 20-22 assigned to the individual wheels 3-5.
  • the rotating laser beam 23 is emitted by the laser transmitter 19 and reflected both by the reference point reflector 31 and by the rail 6 (straight line) or 6le (left curve) or 6ri (right curve).
  • the laser transmitter 19 and the laser receiver 27 are arranged at a distance l c in front of the wheel contact point P2 (viewed in the direction of travel 18), the course of the rail is determined before the individual wheel is reached.
  • the reference point reflector 31 is designed as a narrow web, the width of which is smaller than the width of the rail head surface, the differentiation of the transmitted beam reflected on the rail head surface described in FIG. 10 can also be provided.
  • the differentiation of the reflected laser beams 23-26 is possible. This differentiation will be explained in FIG. 10 using the example of the laser beam 23 emitted by the laser transmitter.
  • the rotating laser beam 23 in turn moves in the plane of the drawing.
  • the reflected transmission beams are not shown for a better overview.
  • the differentiation takes place in that the reflected laser beam 23 is broken down into a main signal S h and two secondary signals S n1 and S n2 .
  • the main signal S h results from the reflection at the reference point reflector 31, the secondary signals S n1 and S n2 are obtained by the reflection of the laser beam 23 on the surface of the rail head to the right and left of the reference point reflector 31.
  • the reference point reflector 31 With the rail 6 in a straight line, the reference point reflector 31 is in the center arranged to the rail head surface and the two secondary signals S n1 and S n2 have the same signal widths (symmetry of the reference point reflector 31).
  • the signal form shown above the laser transmitter 19 is thus obtained on a monitor.
  • the rail profile measuring device for individual wheels shown in FIGS. 11 and 12 differs from the rail profile measuring device described in FIGS. 1-10 in that a laser transmitter and a laser receiver are arranged not only in front of the first or behind the last individual wheel, but also that a laser transmitter and a laser receiver are arranged both in front of and behind each individual wheel.
  • the laser transmitters 19 and 20 and the laser receivers 27 and 28 are fastened in a swivel lever 153 which can be swiveled horizontally in the upper side about a swivel pin 154 which coincides with the vertical through the pivot point of the single wheel 2 the wheel guide longitudinal rocker 155 is mounted and is firmly connected to the wheel carrier.
  • the rail axis again lies in the y-axis when driving straight ahead, so that there is again a ⁇ x3 value for the deviation from the linear rail profile.
  • the relationship ⁇ arctan ( ⁇ x3 / l c ) results for the setting angle.
  • the setting angle is determined here by the measurement plane MII lying forward in the direction of travel 18.
  • both the front and rear ⁇ x3 values are dependent on the direction of the rail curve, ie the front ⁇ x3 value is negative on a right-hand curve and the front ⁇ x3 value is positive on a left-hand curve; the rear ⁇ x3 value occurs with the opposite sign.
  • the rear measuring plane MIII At the start of the control, there is a ⁇ x3 value in the rear measuring plane MIII, which corresponds to the setting angle of the respective control position.
  • the rear ⁇ x3 value matches the front ⁇ x3 value, the correction of the steering lock is finished and the adjustment angle ⁇ is maintained as long as until the front measuring plane MII determines a different ⁇ x3 value than the rear measuring plane MIII. If the front ⁇ x3 value becomes smaller than the rear ⁇ x3 value, the radius of the rail arch increases. With a front ⁇ x3 value equal to zero, a straight track section begins again. If a change of sign occurs at the front ⁇ x3 value during the control process, the rail vehicle 1 runs into an S curve.
  • FIGS. 13-15 A further embodiment of a rail profile measuring device is shown in FIGS. 13-15. With this rail profile measuring device, the rail profile is also recorded without contact. It differs from the rail profile measuring devices described in FIG. 1-12 in that the rail profile is not recorded on an opto-electronic basis, but on a magnetic or electromagnetic basis. 13 and 15 respectively show a rail vehicle 1 in the area of its left front wheel housing 152, in which the left front single wheel 4 is rotatably mounted in a manner not shown here. In relation to the direction of travel 18, a magnetic direction indicator 200 is arranged in front of the wheel contact point P4 of the individual wheel 4 on the rail 7.
  • the magnetic direction indicator 200 consists of a magnetic carrier 201 which can be rotated horizontally about an axis of rotation 202 arranged vertically at a distance l c .
  • the magnetic carrier 201 is roller-mounted in a splash-proof and impact-resistant housing 210 and can additionally be pivoted laterally about a pivot point 203.
  • the housing 210 including the magnetic carrier 201 is expediently designed as a telescopic pendulum 211.
  • an upward translation is provided between the magnet carrier 201 and the angular step encoder 207.
  • the magnet carrier 201 of the magnetic direction indicator 200 has at least one direction magnet 204, 205.
  • the two directional magnets are arranged at a distance b symmetrically on both sides of the axis of rotation. Between the two directional magnets 204 and 205, a pendulum magnet 206 is arranged centrally to these, which is firmly connected to the housing 210.
  • the embodiment of the magnetic direction indicator shown in FIG. 15 differs in that only one directional magnet 204 is provided instead of two directional magnets. This directional magnet 204 lies in the direction of travel 18 in front of the axis of rotation 202.
  • the magnetic direction indicator 200 swings out laterally in the cornering position and can thus automatically follow the maximum of the magnetic field between the directional magnets 204 and 205 and the rail 7.
  • FIG. 14 the automatic pivoting away of the telescopic pendulum 211 (dashed lines) is shown using the example of a left curve on the rail 7. Due to the magnetic field generated by the directional magnets 204 and 205 as well as by the pendulum magnets 206, the magnetic direction indicator 200 and thus the angle stepper 207 adjust themselves according to the course of the rail 7. The angle signals .alpha.
  • the pendulum magnet 206 which is fixedly connected to the housing 210, supports the pivoting movement (FIG. 14) caused by the directional magnets 204 and 205 when passing through a curve. In addition, the pendulum magnet 206 stabilizes the vertical position of the telescopic pendulum 211 when driving straight ahead.
  • the housing 210 of the magnetic carrier can optionally be filled with liquid. The distance of the magnetic carrier 201 from the top of the rail head depends on the wear of the respective individual wheel; it must therefore be readjusted manually at larger intervals. In the case of externally excited directional magnets (electromagnetic sensor device), this point in time is indicated by the increase in the excitation current consumption.

Abstract

The invention relates to a rail vehicle, which comprises a predeterminable number of individual wheels on both sides along the longitudinal axis of the vehicle, which wheels can be swivelled by steering. A steering free from tracking errors of each individual wheel in all curve regions is achieved by a rail-run measuring device (14-17) being provided, which measures the deviation of a vehicle axis (13) from the run of the rails (6, 7) and which generates dependently of measured deviations a steering signal (g1-g4) for each individual wheel (2-5) independently from other wheels. <IMAGE>

Description

Die Erfindung bezieht sich auf ein Schienenfahrzeug gemäß Oberbegriff des Anspruchs 1.The invention relates to a rail vehicle according to the preamble of claim 1.

Ein derartiges Schienenfahrzeug ist z.B. durch die EP-A-0 247 389 bekannt. Dieses Schienenfahrzeug weist horizontal schwenkbare Einzelräder auf, die jeweils in einer einarmigen Radführungsschwinge gelagert und mittels eines Stellgliedes lenkbar sind. Mittel zur Erfassung des Schienenverlaufs und die Weiterverarbeitung der entsprechenden Signale sind nicht beschrieben.Such a rail vehicle is e.g. known from EP-A-0 247 389. This rail vehicle has horizontally pivotable individual wheels, each of which is mounted in a single-arm wheel guide rocker and can be steered by means of an actuator. Means for detecting the course of the rail and the further processing of the corresponding signals are not described.

Ferner ist durch die DE-A-35 38 513 ein Schienenfahrzeug bekannt, das Einzelräder umfaßt, die paarweise durch Spurstangen gelenkt werden. Das Steuerkriterium für die Lenkung wird von dem vorlaufenden Radpaar abgeleitet oder durch Sensorverstärkung auf den Radsteuermechanismus übertragen. Diese Ausführungsform ist noch nicht optimal. Die paarweise miteinander über Spurstangen verbundenen Einzelräder unterliegen Spurfehlern, die auch mit bekannten Korrekturmaßnahmen nicht hinreichend für alle Radien der Schienenkurve beseitigt werden können.Furthermore, from DE-A-35 38 513 a rail vehicle is known which comprises individual wheels which are steered in pairs by tie rods. The steering control criterion is derived from the leading pair of wheels or is transmitted to the wheel control mechanism by sensor amplification. This embodiment is not yet optimal. The individual wheels, which are connected to one another in pairs via tie rods, are subject to tracking errors which, even with known corrective measures, cannot be eliminated sufficiently for all radii of the rail curve.

Ferner ist durch die DE-A-22 57 560 ein Fahrwerk für Schienenfahrzeuge, insbesondere für schnell fahrende Schienenfahrzeuge, mit einem oder mehreren Radsätzen oder mit Losrädern bekannt. An diesem Fahrwerk sind zur Führung der Radsätze bzw. der Losräder magnetische oder elektrodynamische Elemente so angeordnet, daß sie mit ihren Polen eine vorgebbare magnetische Kraft auf die Schienen ausüben. Die magnetische Kraft der Elemente wird von nicht näher beschriebenen Sensoren geregelt, die die Lage des Fahrwerkrahmens und/oder der Radsätze relativ zum Gleis messen.Furthermore, DE-A-22 57 560 discloses a chassis for rail vehicles, in particular for fast-moving rail vehicles, with one or more wheel sets or with idler wheels. Magnetic or electrodynamic elements are arranged on this undercarriage for guiding the wheel sets or the idler wheels so that they exert a predefinable magnetic force on the rails with their poles. The magnetic force of the elements is regulated by sensors, not described in more detail, which measure the position of the undercarriage frame and / or the wheel sets relative to the track.

Sowohl die Pole der Elemente als auch die Sensoren können z.B. mit den zur Gleismitte hin liegenden Seitenflächen der Schienenköpfe oder mit der Lauffläche der Schienen zusammenwirken. Gemäß einer weiteren Ausgestaltung können die Sensoren auch mit einer Leitschiene, die zwischen oder neben den Schienen verlegt ist, zusammenwirken. Bei einer auftretenden seitlichen Abweichung des Fahrwerks vom Normallauf, der durch den Gleisverlauf vorgegeben ist, erfolgt eine der Abweichung entgegenwirkende Regelung der von den Elementen erzeugten magnetischen Kraft. Dadurch werden der Radsatz bzw. die Losräder wieder in ihre Normallage gezwungen. Die magnetischen oder elektrodynamischen Elemente dienen also zur Führung des starren Radsatzes bzw. des Radsatzes mit Losrädern. Die erzeugte magnetische Kraft muß relativ hoch sein und muß ständig aufrechterhalten werden, um die Zwangsführung des Fahrwerks nach dem Gleisverlauf sicherzustellen. Dies erzeugt erhebliche zusätzliche Fahrwiderstände, vergleichbar mit einer permanent wirkenden Wirbelstrombremse. Die hierdurch erforderliche größere Traktionsenergie ist wirtschaftlich nicht zu vertreten. Durch die Zwangsführung des Fahrwerks wird darüber hinaus bei einem unregelmäßigem Gleisverlauf der Fahrkomfort der Fahrzeuge beeinträchtigt.Both the poles of the elements and the sensors can e.g. interact with the side surfaces of the rail heads, which lie towards the middle of the track, or with the running surface of the rails. According to a further embodiment, the sensors can also interact with a guide rail, which is laid between or next to the rails. If there is a lateral deviation of the running gear from normal running, which is predetermined by the course of the track, the deviation is controlled by the magnetic force generated by the elements. This forces the wheelset or idler gears back into their normal position. The magnetic or electrodynamic elements therefore serve to guide the rigid gear set or the gear set with idler gears. The magnetic force generated must be relatively high and must be constantly maintained in order to ensure the positive guidance of the undercarriage after the course of the track. This creates considerable additional driving resistance, comparable to a permanent eddy current brake. The greater traction energy required as a result is not economically justifiable. Due to the forced guidance of the running gear, the driving comfort of the vehicles is also impaired if the track runs irregularly.

Darüber hinaus ist durch die DE-A-23 36 786 eine weitere Ausgestaltung des Radsatzfahrwerks gemäß DE-A- 22 57 560 bekannt. Die Elemente zur Erzeugung der magnetischen Kraft sind paarweise symmetrisch zur Fahrwerklängsachse angeordnet. Die Pole der Elemente und die Sensoren wirken mit dem zur Gleismitte hin liegenden Seitenflächen der Schienenköpfe zusammen. Die Pole und ggf. die Sensoren müssen deshalb vor dem Überfahren von Weichen, Kreuzungen und sonstigen profilbeschränkten Gleisstellen von den Seitenflächen der Schienenköpfe entfernt werden. Dies kann z.B. durch Herausschwenken aus dem Gleisbereich erfolgen.In addition, DE-A-23 36 786 discloses a further embodiment of the wheelset undercarriage according to DE-A-22 57 560. The elements for generating the magnetic force are arranged in pairs symmetrically to the longitudinal axis of the chassis. The poles of the elements and the sensors interact with the side faces of the rail heads, which lie towards the middle of the track. The poles and, if necessary, the sensors must therefore be removed from the side faces of the rail heads before crossing points, crossings and other profile-restricted track points. This can be done, for example, by swiveling out of the track area.

Die DE-A-24 14 228 behandelt in einer weiteren Ausgestaltung des Radfahrwerks gemäß DE-A-22 57 560 die Messung der Fahrzeuglage bzw. der Fahrwerklage relativ zum Gleis sowie die Regelung der magnetischen Kraft der Elemente, durch die die Radsatzfahrwerke zwangsgeführt werden. Die sich laufend ändernde Lage der Radsatzfahrwerke soll hierbei beispielsweise durch Messung des Abstandes, des Verstellweges, der Verstellgeschwindigkeit bzw. der Verstellbeschleunigung oder der Verstellfrequenz mittels Sensoren erfaßt werden. Wenn eine Störung in der Seitenführung der Radsätze beginnt, d.h. nachdem diese vom Normallauf abgewichen sind, werden die Elemente derart geregelt, daß die von den Elementen erzeugte magnetische Kraft der Abweichung der Radsätze vom Normallauf entgegenwirkt. Auch in diesem Fall wird also eine Zwangsführung der Radsätze mittels seitlich auf die Räder der Radsatzfahrwerke einwirkender magnetischer Kräfte vorgenommen.In a further embodiment of the wheel undercarriage according to DE-A-22 57 560, DE-A-24 14 228 deals with the measurement of the vehicle position or the chassis position relative to the track and the regulation of the magnetic force of the elements by means of which the wheel set undercarriages are positively guided. The continuously changing position of the wheelset trolleys is to be detected, for example, by measuring the distance, the adjustment path, the adjustment speed or the adjustment acceleration or the adjustment frequency by means of sensors. If there is a fault in the lateral guidance of the wheel sets, i.e. after these have deviated from normal operation, the elements are regulated in such a way that the magnetic force generated by the elements counteracts the deviation of the wheel sets from normal operation. In this case too, the wheelsets are positively guided by means of magnetic forces acting laterally on the wheels of the wheelset bogies.

Aufgabe vorliegender Erfindung ist es, ein Schienenfahrzeug der eingangs genannten Art dahingehend aufzubauen, daß in allen Kurvenbereichen jedes Einzelrad spurfehlerfrei lenkbar ist.The object of the present invention is to construct a rail vehicle of the type mentioned at the outset in such a way that each individual wheel can be steered without tracking errors in all corner regions.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.The object is achieved by the characterizing features of claim 1.

Durch den erfindungsgemäßen Übergang von Spurstangensteuerung zu Einzelradlenkung wird jetzt jedes Einzelradpaar in jeder beliebigen Kurvenlage immer korrekt so gelenkt, daß Spurfehler nicht mehr auftreten können. Es handelt sich hierbei also um eine individuell gesteuerte Lenkung jedes Einzelrades und nicht um eine (magnetische) Zwangsführung, wie in den deutschen Offenlegungsschriften beschrieben, mit den vorgenannten Nachteilen.Due to the transition from tie rod control to independent wheel steering according to the invention, each individual wheel pair is now always correctly steered in any curve position so that tracking errors can no longer occur. It is therefore an individually controlled steering of each individual wheel and not a (magnetic) positive guidance, as described in the German published documents, with the aforementioned disadvantages.

Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung und in Verbindung mit den Unteransprüchen. Es zeigen:

FIG 1
ein erstes Ausführungsbeispiel der Erfindung im Prinzipschaltbild auf opto-elektronischer Basis;
FIG 2
eine Detaildarstellung des Lenksignalerzeugers der Schienenverlauf-Meßeinrichtung der FIG 1;
FIG 3
den Rechner des Lenksignalerzeugers der FIG 2;
FIG 4
ein X-Y-Diagramm der Schiene mit einem vorlaufenden Einzelrad;
FIG 5
ein X-Y-Diagramm der Schiene mit einem vor- und einem nachlaufenden Einzelrad;
FIG 6
eine Seitenansicht des erfindungsgemäßen Schienenfahrzeugs im Bereich des linken vorderen Radkastens;
FIG 7
eine Draufsicht auf das Schienenfahrzeug gemäß FIG 6 im Bereich der vorderen Einzelräder;
FIG 8
eine Vorderansicht auf das Schienenfahrzeug gemäß FIG 6;
FIG 9
der Strahlengang eines Laserstrahls;
FIG 10
die Differenzierung eines reflektierten Laserstrahls;
FIG 11
eine Seitenansicht einer zweiten Ausführungsform der erfindungsgemäßen opto-elektronischen Sensoreinrichtung;
FIG 12
eine Draufsicht auf die Sensoreinrichtung gemäß FIG 11;
FIG 13
eine Seitenansicht eines Einzelrades mit einer elektromagnetischen Sensoreinrichtung;
FIG 14
eine Vorderansicht der Sensoreinrichtung gemäß FIG 13;
FIG 15
eine Seitenansicht eines Einzelrades mit einer zweiten Ausführungsform einer elektromagnetischen Sensoreinrichtung.
Further advantages and details of the invention emerge from the following description of exemplary embodiments with reference to the drawing and in conjunction with the subclaims. Show it:
FIG. 1
a first embodiment of the invention in the schematic diagram on an opto-electronic basis;
FIG 2
a detailed representation of the steering signal generator of the rail profile measuring device of Figure 1;
FIG 3
the computer of the steering signal generator of Figure 2;
FIG 4
an XY diagram of the rail with a leading single wheel;
FIG 5
an XY diagram of the rail with a leading and a trailing single wheel;
FIG 6
a side view of the rail vehicle according to the invention in the region of the left front wheel arch;
FIG 7
a plan view of the rail vehicle according to FIG 6 in the area of the front individual wheels;
FIG 8
a front view of the rail vehicle according to FIG 6;
FIG. 9
the beam path of a laser beam;
FIG 10
the differentiation of a reflected laser beam;
FIG 11
a side view of a second embodiment of the opto-electronic sensor device according to the invention;
FIG 12
a plan view of the sensor device according to FIG 11;
FIG. 13
a side view of a single wheel with an electromagnetic sensor device;
FIG 14
a front view of the sensor device according to FIG 13;
FIG. 15
a side view of a single wheel with a second embodiment of an electromagnetic sensor device.

In der FIG 1 fährt ein Schienenfahrzeug 1 mit z.B. vier Einzelrädern 2,3,4 und 5 auf einem Gleis mit den beiden Schienen 6 und 7. Die hier dargestellten Einzelräder 2-5 sind untereinander mechanisch nicht direkt verbunden. Jedes Einzelrad 2-5 ist mit Hilfe eines ihm zugeordneten Stellgliedes 8,9,10 bzw.11 für sich in Abhängigkeit von dem jeweiligen Stellglied zuzuführenden Geradeaussignalen g1,g2,g3,g4 und Winkelsignalen α, β, γ, δ, lenkbar. Dazu ist das jeweilige Einzelrad im Mittelteil der Radführungslängsschwinge des Schienenfahrzeugs 1 in vertikalen Gleit- oder Wälzlagern angeordnet, wie es z.B. in der DE-A1-35 38 513 in der FIG 8 bzw. in vorliegender Patentanmeldung in den FIG 11 und 12 dargestellt ist. Der Wagenkasten des Schienenfahrzeugs 1 ist mit der Kennziffer 12 bezeichnet. Der Wagenkasten 12 besitzt die Längsachse 13 (Symmetrielängsachse des Wagenkastens).1 shows a rail vehicle 1 with, for example, four individual wheels 2, 3, 4 and 5 on a track with the two rails 6 and 7. The individual wheels 2-5 shown here are not mechanically directly connected to one another. Each single wheel 2-5 can be steered with the aid of an actuator 8, 9, 10 or 11 assigned to it for straight signals g1, g2, g3, g4 and angle signals α, β, γ, δ which are to be supplied as a function of the respective actuator. For this purpose, the respective individual wheel is arranged in the middle part of the longitudinal wheel rocker arm of the rail vehicle 1 in vertical slide or roller bearings, as is shown, for example, in DE-A1-35 38 513 in FIG. 8 or in the present patent application in FIGS. 11 and 12. The body of the rail vehicle 1 is identified by the reference number 12. The body 12 has the longitudinal axis 13 (longitudinal axis of symmetry of the body).

Jedem Einzelrad 2-5 ist eine Schienenverlauf-Meßeinrichtung 14, 15,16 bzw.17 zugeordnet. Die Schienenverlauf-Meßeinrichtungen 14 und 16 für die Einzelräder 2 und 4 liegen in der durch Pfeil 18 angedeuteten Fahrtrichtung vor diesen Einzelrädern. Die Schienenverlauf-Meßeinrichtungen 15 und 17 liegen hingegen in dieser Fahrtrichtung hinter den Einzelrädern 3 und 5 des Schienenfahrzeugs 1. Bei Fahrtrichtungsumkehr ist es entsprechend umgekehrt.A rail course measuring device 14, 15, 16 and 17 is assigned to each individual wheel 2-5. The rail course measuring devices 14 and 16 for the individual wheels 2 and 4 lie in the direction of travel indicated by arrow 18 in front of these individual wheels. The rail course measuring devices 15 and 17, on the other hand, are located behind the individual wheels 3 and 5 of the rail vehicle 1 in this direction of travel.

Jede der Schienenverlauf-Meßeinrichtungen 14-17 umfaßt einen Lasersender 19,20,21 bzw.22, dessen Sendestrahl 23,24,25 bzw.26 auf die jeweilige Schiene 6 bzw.7 gerichtet und quer zu dieser (z.B. mittels rotierendem Spiegelpolygon) schwenkbar ist. Sie beinhaltet ferner einen Laserempfänger 27,28,29 bzw.30, der den von der jeweiligen Schiene 6 bzw.7 sowie von einem ebenfalls zur Schienenverlauf-Meßeinrichtung 14,15,16 bzw.17 gehörenden Bezugspunktreflektor 31,32,33 bzw.34 reflektierten Laserstrahl des Lasersenders empfängt. Schließlich umfaßt jede Schienenverlauf-Meßeinrichtung 14-17 auch noch Blöcke 35-38, die die Auswerteelektronik für die Signale der jeweiligen Schienenverlauf-Meßeinrichtung 14,15,16 bzw.17 beinhaltet. Die Signalausgänge der Blöcke 35-38 sind untereinander sowie mit den Stellgliedern 8-11 der Einzelräder 2-5 des Schienenfahrzeugs 1 in der dargestellten Weise direkt oder über ODER-Glieder 35a, 36a,37a,38a verbunden. Der Schaltungsaufbau in den einzelnen Blöcken 35-38 ist im wesentlichen identisch. Jeder Block enthält einen Lenksignalerzeuger 39,40, 41 bzw.42 sowie logische Schaltglieder 43,44,45 bzw.46. Lediglich den Blöcken 35 und 37 sind zusätzlich noch je ein Vergleichsglied 47 bzw.48 zugeordnet.Each of the rail course measuring devices 14-17 comprises a laser transmitter 19, 20, 21 or 22, the transmission beam 23, 24, 25 or 26 of which is directed onto the respective rail 6 or 7 and can be pivoted transversely thereto (for example by means of a rotating mirror polygon) is. It also includes a laser receiver 27, 28, 29 and 30, which detects the reference point reflector 31, 32, 33 and 34 from the respective rail 6 and 7 and from a reference point reflector also belonging to the rail profile measuring device 14, 15, 16 and 17 reflected laser beam of the laser transmitter receives. Finally, each rail profile measuring device 14-17 also includes blocks 35-38, which contain the evaluation electronics for the signals of the respective rail profile measuring device 14, 15, 16 and 17 respectively. The signal outputs of the blocks 35-38 are with each other and with the actuators 8-11 of the individual wheels 2-5 of the rail vehicle 1 in the manner shown, directly or via OR gates 35a, 36a, 37a, 38a. The circuit structure in the individual blocks 35-38 is essentially identical. Each block contains a steering signal generator 39, 40, 41 and 42 as well as logic switching elements 43, 44, 45 and 46, respectively. Only blocks 35 and 37 are additionally assigned a comparator 47 and 48, respectively.

Auch der innere Schaltungsaufbau der Lenksignalerzeuger 39-42 ist im wesentlichen identisch. Aus diesem Grund ist in der FIG 2 lediglich der Aufbau des Lenksignalerzeugers 39 detaillierter dargestellt.The internal circuitry of the steering signal generators 39-42 is also essentially identical. For this reason, only the structure of the steering signal generator 39 is shown in more detail in FIG.

Der Lenksignalerzeuger 39 gemäß der FIG 2 umfaßt neben einem Sendegenerator 60 für den Lasersender (im vorliegenden Fall den Lasersender 19) einen Empfangsverstärker 61 für den Laserempfänger (im vorliegenden Fall den Laserempfänger 27). Dem Empfangsverstärker 61 ist ein Signalerzeuger 62 und ein Istwertermittler 63 nachgeschaltet. Der Signalerzeuger 62 erzeugt dabei ein Bezugspunktsignal (Hauptsignal Sh) aus dem empfangenen, vom Bezugspunktreflektor (im vorliegenden Fall der Bezugspunktreflektor 31) reflektierten Laserstrahl. Der Istwertermittler 63 erzeugt Nebensignale Sn1 und Sn2 bzw.S′n1 und S′n2 aus dem außerhalb des Bezugspunktreflektors von der Schienenkopfoberfläche reflektierten Laserstrahl. Die beiden Nebensignale Sn1 und Sn2 für die Geradeausfahrt weisen die gleiche Fußbreite auf. Wenn die Schiene von der Geraden in die Kurve einschwenkt, treten die Nebensignale S′n1 und S′n2 auf, die von den Nebensignalen Sn1 und Sn2 abweichende, zueinander unterschiedliche Fußbreiten aufweisen (siehe FIG 10). Die Ausgangssignale des Signalerzeugers 62 sowie des Istwertermittlers 63 werden einem Vergleichsglied 64 zugeleitet. In diesem Vergleichsglied 64 werden die Fußbreiten der beiden Nebensignale Sn1 und Sn2 bzw.S′n1 und S′n2 verglichen und bei unterschiedlichen Fußbreiten (nur bei den Nebensignalen S′n1 und S′n2 der Fall) am Ausgang des Vergleichsgliedes 64 ein der Änderung der Fußbreiten entsprechendes Signal Δ x1 erzeugt.The steering signal generator 39 according to FIG. 2 comprises, in addition to a transmission generator 60 for the laser transmitter (in the present case, the laser transmitter 19), a reception amplifier 61 for the laser receiver (in the present case, the laser receiver 27). The reception amplifier 61 is followed by a signal generator 62 and an actual value determiner 63. The signal generator 62 generates a reference point signal (main signal S h ) from the received laser beam reflected by the reference point reflector (in the present case the reference point reflector 31). The actual value determiner 63 generates secondary signals S n1 and S n2 or S ' n1 and S' n2 from the laser beam reflected from the rail head surface outside the reference point reflector. The two secondary signals S n1 and S n2 for driving straight ahead have the same foot width. When the rail swivels into the curve from the straight line, the secondary signals S ′ n1 and S ′ n2 occur, which have different foot widths that differ from the secondary signals S n1 and S n2 (see FIG. 10). The output signals of the signal generator 62 and the actual value determiner 63 are fed to a comparison element 64. In this comparator 64, the foot widths of the two secondary signals S n1 and S n2 or S ' n1 and S' n2 are compared and at different Foot widths (only the case with the secondary signals S ' n1 and S' n2 the case) at the output of the comparator 64 generates a signal Δ x1 corresponding to the change in the foot widths.

Dieses Signal Δ x1 wird einerseits einem ersten Schwellendiskriminator 65 und andererseits einem zweiten Schwellendiskriminator 66 zugeführt. Die beiden Schwellendiskriminatoren 65 und 66 sind auf eine vorgegebene Schwelle für das anfallende Signal Δ x1 eingestellt. Liegt das Signal Δ x1 unterhalb dieser Schwelle, so kann es den Schwellendiskriminator 66 als Ausgangssignal Δ x2 passieren. Liegt das Signal Δ x1 hingegen über der Schwelle, so passiert es als Signal x3 den Schwellendiskriminator 65.This signal Δ x1 is supplied on the one hand to a first threshold discriminator 65 and on the other hand to a second threshold discriminator 66. The two threshold discriminators 65 and 66 are set to a predetermined threshold for the signal Δ x1. If the signal Δ x1 is below this threshold, it can pass the threshold discriminator 66 as the output signal Δ x2. However, if the signal Δ x1 is above the threshold, it passes the threshold discriminator 65 as signal x3.

Dem Schwellendiskriminator 66 ist ein Gegenregler 67 nachgeschaltet, der in Abhängigkeit von den anfallenden Ausgangssignalen Δ x2 je nach deren Polarität ein gegensinniges Geradeaussignal g1 erzeugt. Dieses Geradeaussignal g1 sowie die von den weiteren Lenksignalerzeugern 40,41,42 abgegebenen Geradeaussignale g2,g3,g4 halten die Einzelräder 2-5 des Schienenfahrzeugs 1 auf Geradeausfahrt. Es werden auf diese Weise Abweichungen des Schienenverlaufs und Schwankungen des Wagenkastens relativ zueinander ausgeglichen.A counter-regulator 67 is connected downstream of the threshold discriminator 66 and, depending on the resulting output signals Δ x2, generates an opposite straight-line signal g1 depending on their polarity. This straight line signal g1 and the straight line signals g2, g3, g4 emitted by the further steering signal generators 40, 41, 42 keep the individual wheels 2-5 of the rail vehicle 1 on a straight line. In this way, deviations in the course of the rail and fluctuations in the car body relative to one another are compensated for.

Das Ausgangssignal Δ x3 des Schwellendiskriminators 65 wird hingegen einem Rechner 68 zugeleitet. Der Rechner 68 empfängt weitere Signale, nämlich je ein Längensignal lc bzw. L von einem Festwertspeicher 69 bzw. 70. Das Längensignal lc entspricht dem Abstand der jeweiligen Meßebene der Schienenverlauf-Meßeinrichtung vom zugehörigen Einzelrad (siehe z.B. auch FIG 6). Das Längensignal L ist der Abstand zwischen den vor-und nachlaufenden Radpaaren (siehe z.B. auch FIG 4). Ferner wird dem Rechner 68 von einem Winkelschrittgeber 72 ein sich bei Kurvenanfahrt schrittweise vergrößerndes Längensignal ly zugeführt. Schließlich erhält er auch noch über Leitungen 73,74 ein sich entsprechend schrittweise vergrößerndes Längensignal S sowie ein Winkelsignal β. Das Längensignal S stammt von dem dem Winkelschrittgeber 72 entsprechenden Winkelschrittgeber im Lenksignalerzeuger 40 für das nachlaufende Einzelrad 3. Das Winkelsignal β ist das Ausgangssignal des Lenksignalerzeugers 40.The output signal Δ x3 of the threshold discriminator 65, however, is fed to a computer 68. The computer 68 receives further signals, namely a length signal l c or L from a read-only memory 69 or 70. The length signal l c corresponds to the distance of the respective measuring plane of the rail profile measuring device from the associated single wheel (see, for example, also FIG. 6). The length signal L is the distance between the leading and trailing wheel pairs (see for example also FIG 4). In addition, the computer 68 is supplied with a length signal l y, which gradually increases when cornering, when an angle stepper 72 is used. Finally, it also receives a correspondingly gradually increasing length signal S via lines 73, 74 and an angle signal β. The length signal S originates from the angle step generator corresponding to the angle step generator 72 in the steering signal generator 40 for the trailing single wheel 3. The angle signal β is the output signal of the steering signal generator 40.

Das Ausgangssignal Δ x3 des Schwellendiskriminators 65 wird auch noch über eine Leitung 75,76 auf den Meßstarteingang 77 des Winkelschrittgebers 72 für die Meßstrecke gegeben. Die Auslösung des Meßstartes für die Meßstrecke geschieht mit dem erstmaligen Auftreten eines Ausgangssignals Δ x3. Mit dem Auftreten eines solchen Signals beginnt die Messung der Strecke ly. Gleichzeitig wird über die Leitung 75,78 der entsprechende Winkelschrittgeber im Lenksignalerzeuger 40 des nachfolgenden Einzelrades 3 zur Messung einer Strecke wiedergegeben durch das Längensignal S gestartet. Die Bedeutung der den Längensignalen ly bzw. S entsprechenden Strecken wird auch noch weiter unten anhand der FIG 4 bzw.5 erläutert.The output signal .DELTA.x3 of the threshold discriminator 65 is also fed via a line 75, 76 to the measuring start input 77 of the angle step generator 72 for the measuring section. The start of the measurement for the test section is triggered when an output signal Δ x3 occurs for the first time. When such a signal occurs, the measurement of the distance l y begins. At the same time, the corresponding angle stepper in the steering signal generator 40 of the subsequent single wheel 3 for measuring a distance is started by the length signal S via line 75, 78. The meaning of the lines corresponding to the length signals l y and S is also explained further below with reference to FIGS. 4 and 5.

Der Winkelschrittgeber 72 empfängt über die Leitung 79 in der dargestellten Fahrtrichtung 18 auch noch vom Festwertspeicher 69 das Längensignal lc. Bei Betrieb in umgekehrter Fahrtrichtung erhält der Winkelschrittgeber 72 hingegen über eine Leitung 80 ein Signal vom Vergleichsglied 47, nämlich dann, wenn das dem Vergleichsglied 47 zugeführte Winkelsignal α dem Winkelsignal β des Lenksignalerzeugers 40 des nachlaufenden Einzelrades 3 entspricht.The angular step encoder 72 also receives the length signal l c from the read-only memory 69 via the line 79 in the direction of travel 18 shown. When operating in the opposite direction of travel, on the other hand, the angle stepper 72 receives a signal from the comparison element 47 via a line 80, namely when the angle signal α supplied to the comparison element 47 corresponds to the angle signal β of the steering signal generator 40 of the trailing single wheel 3.

Die Leitungen 81 bzw.82 koppeln Signale Δ x3′ bzw. S′ vom Lenksignalerzeuger 40 zum Lenksignalerzeuger 39 bzw. umgekehrt über, wenn sich die Fahrtrichtung des Schienenfahrzeugs 1 umkehrt. Das Ausgangssignal Δ x3′ entspricht dann dem Ausgangssignal Δ x3 bei Richtungsumkehr, während das Längensignal S′ dem Längensignal S ebenfalls bei Richtungsumkehr entspricht.The lines 81 and 82 couple signals Δ x3 'and S' from the steering signal generator 40 to the steering signal generator 39 or vice versa when the direction of travel of the rail vehicle 1 is reversed. The output signal Δ x3 'then corresponds to the output signal Δ x3 when the direction is reversed, while the length signal S' also corresponds to the length signal S when the direction is reversed.

Die FIG 3 zeigt den Rechner 68 in detaillierterer Form. Er umfaßt also Rechenglieder 90,91,92,93,94,95 und 96. Ferner beinhaltet er zwei Vergleichsglieder 97 und 98.3 shows the computer 68 in more detailed form. It therefore includes arithmetic terms 90,91,92,93,94,95 and 96. Furthermore, it contains two comparison terms 97 and 98.

Das erste Rechenglied 90 rechnet dabei einen Krümmungsradius R1 der Schienen in Abhängigkeit von den Signalen Δ x3 und ly gemäß der folgenden Gleichung:

Figure imgb0001
The first computing element 90 calculates a radius of curvature R1 of the rails as a function of the signals Δ x3 and l y according to the following equation:
Figure imgb0001

Das zweite Rechenglied 91 berechnet ebenfalls einen Radius R2 aus den Signalen lc und Δ x3 gemäß der Formel:

Figure imgb0002
The second computing element 91 also calculates a radius R2 from the signals l c and Δ x3 according to the formula:
Figure imgb0002

Die beiden den Radien R1 und R2 entsprechenden Ausgangssignale werden dem Vergleichsglied 98 zugeführt. Sind beide Ausgangssignale gleich, dann wird vom Vergleichsglied ein Radiussignal R = R1 = R2 für den Radius erzeugt. Dieses Radiussignal R wird in der dargestellten Weise einerseits dem Rechenglied 93 und andererseits dem Rechenglied 96 zugeführt. Ist R1 < R2 wird ein entsprechendes Signal lediglich dem Rechenglied 96 zugeleitet.The two output signals corresponding to the radii R1 and R2 are fed to the comparator 98. If both output signals are the same, the comparison element generates a radius signal R = R1 = R2 for the radius. This radius signal R is supplied in the manner shown to the computing element 93 on the one hand and to the computing element 96 on the other hand. If R1 <R2, a corresponding signal is only fed to the computing element 96.

Das Rechenglied 92 erzeugt aus dem Längensignal ly und dem Ausgangssignal Δ x3 ein Winkelsignal α′ über die Beziehung

Figure imgb0003
The arithmetic element 92 generates an angle signal α 'from the length signal l y and the output signal Δ x3 via the relationship
Figure imgb0003

Das Rechenglied 93 und das Rechenglied 94 erzeugen ebenfalls Winkelkorrektursignale α₀₁ und α₀₂ zum Zwecke einer Korrektur des vom Rechenglied 92 abgegebenen Winkelsignals α′.The arithmetic element 93 and the arithmetic element 94 also generate angle correction signals α₀₁ and α₀₂ for the purpose of correcting the angle signal α 'emitted by the arithmetic element 92.

Das Rechenglied 93 berechnet dabei das Winkelkorrektursignal α₀₁ über die Beziehung

Figure imgb0004
The arithmetic element 93 calculates the angle correction signal α₀₁ via the relationship
Figure imgb0004

Das Rechenglied 93 empfängt dabei das Radiussignal R vom Ausgang des Vergleichsgliedes 98 der Rechenglieder 90 und 91.The computing element 93 receives the radius signal R from the output of the comparing element 98 of the computing elements 90 and 91.

Das Rechenglied 94 erzeugt sein Winkelkorrektursignal α₀₂ über die Beziehung

Figure imgb0005
The computing element 94 generates its angle correction signal α₀₂ via the relationship
Figure imgb0005

Die Aktivierung der beiden Rechenglieder 93 und 94 erfolgt in Abhängigkeit vom Ausgangssignal des Vergleichsgliedes 97. Dieses Vergleichsglied 97 vergleicht das anfallende Längensignal ly mit dem Längensignal lc. Ist ly = lc, so wird über die Leitung 99 kurzzeitig das Rechenglied 93 zur Berechnung des Winkelkorrektursignals α₀₁ aktiviert. Anschließend wird über die Leitung 100 das Rechenglied 94 bei gleichzeitiger Deaktivierung des Rechengliedes 93 aktiviert. Ferner wird die ly-Messung am Winkelschrittgeber 72 (wie zuvor schon angedeutet) gestoppt.The two arithmetic elements 93 and 94 are activated as a function of the output signal of the comparator 97. This comparator 97 compares the length signal I y with the length signal I c . If l y = l c , the computing element 93 for calculating the angle correction signal α₀₁ is briefly activated via line 99. The computing element 94 is then activated via the line 100 while the computing element 93 is deactivated at the same time. Furthermore, the l y measurement on the angle stepper 72 is stopped (as previously indicated).

Das Rechenglied 94 erhält neben der Längensignal S auch noch ein Signal a, das sich aus dem Winkelsignal β sowie dem Längensignal L wie folgt ergibt:

a = L tanβ cosβ

Figure imgb0006

In addition to the length signal S, the arithmetic element 94 also receives a signal a which results from the angle signal β and the length signal L as follows:

a = L tanβ cosβ
Figure imgb0006

Die so ermittelten Signale α′, α₀₁ bzw. α₀₂ werden im Rechenglied 96 so verarbeitet, daß sich an dessen Ausgang ein Winkelsignal α nach der folgenden Bedingung ergibt:

Figure imgb0007
The signals α ′, α₀₁ and α₀₂ determined in this way are processed in the computing element 96 in such a way that an angle signal α results at the output thereof according to the following condition:
Figure imgb0007

Dieses Winkelsignal α ist das Stellwinkelsignal für die Lenkung der Einzelräder 2 und 3.This angle signal α is the setting angle signal for the steering of the individual wheels 2 and 3.

Entsprechendes gilt für die in den Rechnern der in den anderen Lenksignalerzeugern erzeugten Winkelsignale β, γ und δ.The same applies accordingly to the angle signals β, γ and δ generated in the computers of the other steering signal generators.

Die beschriebenen Rechenvorgänge werden anhand der X-Y-Diagramme der FIG 4 und 5 noch näher erläutert.The arithmetic processes described are explained in more detail with reference to the X-Y diagrams in FIGS. 4 and 5.

Das Diagramm der FIG 4 zeigt dabei die Kurvenanfangsphase, die durch die voreilenden Schienenverlauf-Meßeinrichtungen der vorlaufenden Einzelräder 2 und 4 erfaßt wird. In FIG 4 ist nur der Verlauf der Schiene 6 und das vorlaufende Einzelrad 2 eingezeichnet. Für die Schiene 7 und das vorlaufende Einzelrad 4 gelten die nachfolgenden Ausführungen analog. Zu einem Zeitpunkt t₀ befindet sich das Einzelrad 2 und somit auch seine durch den Radaufstandspunkt definierte Meßebene MI auf der Geraden und die durch die Schienenverlauf-Meßeinrichtung definierte Meßebene MII am Kurvenanfangspunkt (0-Punkt). Die voreilende Schienenverlauf-Meßeinrichtung des Einzelrades 2 erfaßt in ihrer Meßebene MII den Kurvenanfangspunkt also bereits, wenn sich das Einzelrad 2 noch auf der Geraden befindet. Ebenso wird das dem Kurvenradius entsprechende Radiussignal R noch während der Geradeausfahrt des Einzelrades 2 ermittelt. Mit schrittweiser Vergrößerung des Signals Δ x3 wird der Winkel der Sehne zwischen Radaufstandspunkt und Meßebene MII ermittelt und als Stellwinkel α auf das Stellglied 8 des vorlaufenden Einzelrades 2 gegeben. Gleichzeitig wird der Stellwinkel α auch dem Stellglied 3 des nachlaufenden Einzelrades 3 im gegenläufigen Sinne zugeführt. Solange R1 < R2, ist das Winkelsignal α = α′. Zum Zeitpunkt t₆ tritt am Vergleichsglied 97 ly = lc auf und am Vergleichsglied 98 tritt das Radiussignal R = R1 = R2 auf. Über das Rechenglied 93 wird dann das Korrekturwinkelsignal α₀₁ errechnet und kurzzeitig α = 90° - α₀₁ am Einzelrad 2 eingestellt.The diagram in FIG. 4 shows the beginning of the curve phase, which is detected by the leading rail course measuring devices of the leading individual wheels 2 and 4. 4 shows only the course of the rail 6 and the leading single wheel 2. The following explanations apply analogously to the rail 7 and the leading individual wheel 4. At a time t₀ the single wheel 2 and thus also its measuring plane MI defined by the wheel contact point is on the straight line and the measuring plane MII defined by the rail course measuring device is at the beginning of the curve (zero point). The leading rail course measuring device of the single wheel 2 already detects the start of the curve in its measuring plane MII when the single wheel 2 is still on the straight line. Likewise, the radius signal R corresponding to the curve radius is determined while the single wheel 2 is traveling straight ahead. With incremental increase in the signal Δ x3 the angle of the chord between the wheel contact point and the measuring plane MII is determined and given as the setting angle α to the actuator 8 of the leading single wheel 2. At the same time, the setting angle α is also fed to the actuator 3 of the trailing single wheel 3 in the opposite sense. As long as R1 <R2, the angle signal is α = α '. At the time t l, the comparator 97 l y = l c occurs and the radius signal R = R1 = R2 occurs at the comparator 98. About the arithmetic element 93, the correction angle signal α₀₁ is then calculated and briefly set α = 90 ° - α₀₁ on the single wheel 2.

Beim Überfahren des Kurvenanfangspunktes durch das vorlaufende Einzelrad 2 schwenkt die Längsachse 13 des Schienenfahrzeugs 1 und damit die parallele Achse 13a, wie in FIG 5 dargestellt, um einen sich ständig vergrößernden Winkel β aus der Geradeausrichtung heraus. In FIG 5 ist außer dem vorlaufenden Einzelrad 2 auch das nachlaufende Einzelrad 3 dargestellt. Mit L ist das dem Abstand der Radaufstandspunkte der Einzelräder 2 und 3 entsprechende Ausgangssignal bezeichnet. Nach dem Überfahren des Kurvenanfangspunktes werden ständig sowohl das Winkelkorrektursignal α₀₂ vom Rechenglied 94 errechnet als auch das Winkelsignal β aus den Messungen am nachlaufenden Einzelrad 3 ermittelt. Der Winkel β wird hierbei aus der Beziehung tan β = Δ x4/lc ermittelt, wobei es sich bei dem Δ x4-Wert des Einzelrades 3 um einen dem Δ x3-Wert des Einzelrades 2 entsprechenden Wert handelt. Bei dem während des Einlaufens des vorlaufenden Einzelrades 2 in die Kurve auftretenden Längensignal S handelt es sich um die y-Koordinate des Kurvenpunktes; bei dem Signal a handelt es sich um seine x-Koordinate. Sowohl das Längensignal S als auch das Signal a wird aus den Messungen am nachlaufenden Einzelrad 3 ermittelt. Die Ermittlung der sich bei Kurveneinlauf ständig vergrößernden Signale S und a beginnt mit dem Auftreten eines Winkelsignals β am nachlaufenden Einzelrad 3. Befinden sich beide Einzelräder 2 und 3 in der Kurve, dann ist Δ x3 = Δ x4 und damit α = β = dem halben Zentriwinkel dieses Bogenabschnittes. Die Übereinstimmung der Meßwerte wird von der Auswerteelektronik als Indiz dafür gewertet, daß sich das Schienenfahrzeug 1 voll im Gleisbogen bewegt. Der Stellwinkel α wird von da ab solange konstant gehalten, bis sich bei dem vorlaufenden Einzelrad 2 eine Änderung Δ x3-Wertes ergibt. Während der Konstanthaltung des Stellwinkels α werden die Werte für das Längensignal S und das Signal a auf Null gesetzt und der Rechenvorgang gestoppt. Die erneute Berechnung von S und a beginnt erst wenn sich Δ x3 erneut ändert.When the leading single wheel 2 passes over the starting point of the curve, the longitudinal axis 13 of the rail vehicle 1 and thus the parallel axis 13a, as shown in FIG. 5, swings out from the straight-ahead direction by an ever-increasing angle β. In addition to the leading single wheel 2, FIG. 5 also shows the trailing single wheel 3. L is the output signal corresponding to the distance between the wheel contact points of the individual wheels 2 and 3. After passing the curve starting point, both the angle correction signal α₀₂ is calculated by the computing element 94 and the angle signal β is determined from the measurements on the trailing single wheel 3. The angle β is determined here from the relationship tan β = Δ x4 / l c , the Δ x4 value of the individual wheel 3 being a value corresponding to the Δ x3 value of the individual wheel 2. The length signal S occurring during the entry of the leading single wheel 2 into the curve is the y coordinate of the curve point; the signal a is its x coordinate. Both the length signal S and the signal a are determined from the measurements on the trailing single wheel 3. The determination of the signals S and a, which continuously increase when entering a curve, begins with the occurrence of an angle signal β on the trailing single wheel 3. If both individual wheels 2 and 3 are in the curve, then Δ x3 = Δ x4 and thus α = β = half Central angle of this arc section. The evaluation electronics evaluate the correspondence of the measured values as an indication that the rail vehicle 1 is fully moving in the track curve. From this point on, the setting angle α is kept constant until there is a change Δ x3 in the leading single wheel 2. While the setting angle α is kept constant, the values for the length signal S and the signal a are set to zero and the calculation process is stopped. The recalculation of S and a begins only when Δ x3 changes again.

In den FIG 6-8 sind jeweils verschiedene Schnittdarstellungen des Schienenfahrzeugs 1 im Bereich seiner vorderen Radkästen 151,152 dargestellt. FIG 6 zeigt eine Seitenansicht des linken vorderen Einzelrades 4, das in einer hier nicht dargestellten, im Radkasten 151 eingebauten Radführungslängsschwinge drehbar gelagert ist. Auf die Fahrtrichtung 18 bezogen sind vor dem Radaufstandspunkt P4 des Einzelrades 4 auf der Schiene 7 in einem festen Abstand lc der Lasersender 21 und der Laserempfänger 29 angeordnet. Der Bezugspunktreflektor 33 befindet sich im Strahlengang des von dem Lasersender 21 ausgesandten und von der Schienenkopfoberfläche reflektierten Laserstrahls 25. Ein hier nicht dargestelltes, rechtwinklig zur Längsachse 13 des Schienenfahrzeugs 1 rotierendes Spiegelpolygon führt zu einem intermittierenden Laserstrahl 25, dessen Meßintervallfrequenz durch die Drehzahl des reflektierenden Spiegelpolygons bestimmt ist. Bei einem 12-Spiegelpolygon, das z.B. eine Drehzahl von 3600/min aufweist, entsteht eine Meßintervallfrequenz von 0,72 Laserstrahldurchgängen/msec, was einem Zeitaufwand pro Laserstrahl von 1,39 msec und bei einer Auswerterechnerzeit von 1,6 msec einer Δ x3-Bestimmung von 3 msec entspricht. Bei Geschwindigkeiten von 18 bis 100 km/h erfolgen dadurch Lageaufnahmen einschließlich Auswertung in Abständen von 15 bis 80 mm, d.h. alle 1,5 bis 8 cm wird geprüft, ob sich das Einzelrad auf einer geraden Strecke oder in einer Kurve befindet. Der Spiegelrotor erzeugt darüber hinaus in vorteilhafter Weise einen Überdruck aus sauberer Luft an den Schienenverlauf-Meßeinrichtungen, so daß Verunreinigungen fern gehalten werden. Die saubere Luft kann hierbei aus dem Wageninneren oder über Filter aus dem Fahrtwind entnommen werden.FIGS. 6-8 each show various sectional representations of the rail vehicle 1 in the area of its front wheel arches 151, 152. 6 shows a side view of the left front single wheel 4, which is rotatably mounted in a longitudinal wheel rocker arm, not shown here, installed in the wheel housing 151. In relation to the direction of travel 18, the laser transmitter 21 and the laser receiver 29 are arranged in front of the wheel contact point P4 of the individual wheel 4 on the rail 7 at a fixed distance l c . The reference point reflector 33 is located in the beam path of the laser beam 25 emitted by the laser transmitter 21 and reflected by the rail head surface. A mirror polygon, not shown here, rotating at right angles to the longitudinal axis 13 of the rail vehicle 1 leads to an intermittent laser beam 25, the measuring interval frequency of which is determined by the speed of the reflecting mirror polygon is determined. With a 12-mirror polygon, which has a speed of 3600 / min, for example, a measuring interval frequency of 0.72 laser beam passes / msec arises, which is a time expenditure per laser beam of 1.39 msec and with an evaluation computer time of 1.6 msec a Δ x3- Determination of 3 msec corresponds. At speeds of 18 to 100 km / h, position surveys including evaluation are carried out at intervals of 15 to 80 mm, ie every 1.5 to 8 cm, it is checked whether the single wheel is on a straight line or in a curve. The mirror rotor creates over it In addition, an overpressure of clean air in an advantageous manner on the rail profile measuring devices, so that contaminants are kept away. The clean air can be extracted from the inside of the car or from the wind through filters.

FIG 7 zeigt eine Draufsicht auf die beiden vorderen Einzelräder 2 und 4. Vor den beiden Einzelrädern 2 und 4 sind jeweils die Lasersender 19 und 21 und die Laserempfänger 27 und 29 angeordnet. Durch den Radaufstandspunkt P2 des Einzelrades 2 bzw. durch den Radaufstandspunkt P4 des Einzelrades 4 wird jeweils die Meßebene MI bestimmt und durch den Reflektionspunkt des Sendestrahls 23 bzw.25, die in FIG 7 nicht sichtbar sind (vergleiche hierzu FIG 6), wird jeweils die Meßebene MII bestimmt. Der Abstand zwischen den beiden Meßebenen MI und MII entspricht also dem Abstand lc.7 shows a plan view of the two front individual wheels 2 and 4. The laser transmitters 19 and 21 and the laser receivers 27 and 29 are arranged in front of the two individual wheels 2 and 4, respectively. The measuring plane MI is determined in each case by the wheel contact point P2 of the individual wheel 2 or by the wheel contact point P4 of the individual wheel 4 and by the reflection point of the transmission beam 23 or 25, which are not visible in FIG. 7 (see FIG. 6), the Measuring level MII determined. The distance between the two measuring planes MI and MII thus corresponds to the distance l c .

FIG 8 zeigt eine Vorderansicht des in FIG 7 dargestellten Ausschnittes des Schienenfahrzeugs 1. Die Fahrtrichtung 18 zeigt hierbei aus der Papierebene heraus. Es sind deshalb nur die vor den Laserempfängern 27 und 29 liegenden Lasersender 19 und 21 sichtbar. Sowohl der vom Lasersender 19 ausgesendete Laserstrahl 23 als auch der vom Lasersender 21 ausgesendete Laserstrahl 25 rotieren senkrecht zur Längsachse 13 des Schienenfahrzeugs 1, so daß sich beide Laserstrahlen 23 und 25 bei der in FIG 8 gewählten Darstellung in der Zeichenebene bewegen. Die Bezugspunktreflektoren 31 und 33 sind im Strahlengang angeordnet und im Radkasten 151 bzw.152 gehalten. Durch die vorstehend beschriebene Rotation des Laserstrahls 23 bzw.25 wird für jedes Einzelrad 2 bzw.4 der Verlauf der betreffenden Schiene 6 bzw.7 erkannt. Diese sensorische Erfassung des Schienenverlaufs geschieht hierbei im Abstand lc vor dem jeweiligen Randaufstandspunkt P2 bzw.P4 des jeweiligen Einzelrades 2 bzw.4. Die Abweichung des Schienenverlaufs um einen Betrag Δ x3 von dem geradlinigen Verlauf der Schienen 6 und 7 ist mit 6ri und 7ri bzw.6le und 7le bezeichnet.FIG. 8 shows a front view of the detail of the rail vehicle 1 shown in FIG. 7. The direction of travel 18 shows here from the paper plane. Therefore, only the laser transmitters 19 and 21 lying in front of the laser receivers 27 and 29 are visible. Both the laser beam 23 emitted by the laser transmitter 19 and the laser beam 25 emitted by the laser transmitter 21 rotate perpendicular to the longitudinal axis 13 of the rail vehicle 1, so that both laser beams 23 and 25 move in the plane of the drawing in the illustration selected in FIG. The reference point reflectors 31 and 33 are arranged in the beam path and held in the wheel housing 151 and 152, respectively. The rotation of the laser beam 23 or 25 described above detects the course of the rail 6 or 7 in question for each individual wheel 2 or 4. This sensory detection of the rail profile takes place at a distance l c in front of the respective edge contact point P2 or P4 of the respective individual wheel 2 or 4. The deviation of the rail course by an amount .DELTA.x3 from the straight line course of the rails 6 and 7 is denoted by 6ri and 7ri or 6le and 7le.

Der in FIG 9 dargestellte Strahlengang des Laserstrahles 23 gilt analog auch für die Laserstrahlen 24-26 der den Einzelrädern 3-5 zugeordneten Lasersender 20-22. Der rotierende Laserstrahl 23 wird von dem Lasersender 19 emittiert und sowohl von dem Bezugspunktreflektor 31 als auch von der Schiene 6 (Gerade) bzw. 6le (Linkskurve) bzw. 6ri (Rechtskurve) reflektiert. Durch die Anordnung des Lasersenders 19 und des Laserempfängers 27 im Abstand lc vor dem Radaufstandspunkt P2 (in Fahrtrichtung 18 gesehen) wird der Schienenverlauf jeweils vor dem Erreichen des Einzelrades bestimmt. Dadurch daß der Bezugspunktreflektor 31 als schmaler Steg ausgebildet ist, dessen Breite kleiner als die Breite der Schienenkopfoberfläche ist, kann auch die in FIG 10 beschriebene Differenzierung des auf der Schienenkopfoberfläche reflektierten Sendestrahles vorgesehen werden.The beam path of the laser beam 23 shown in FIG. 9 also applies analogously to the laser beams 24-26 of the laser transmitters 20-22 assigned to the individual wheels 3-5. The rotating laser beam 23 is emitted by the laser transmitter 19 and reflected both by the reference point reflector 31 and by the rail 6 (straight line) or 6le (left curve) or 6ri (right curve). By arranging the laser transmitter 19 and the laser receiver 27 at a distance l c in front of the wheel contact point P2 (viewed in the direction of travel 18), the course of the rail is determined before the individual wheel is reached. Because the reference point reflector 31 is designed as a narrow web, the width of which is smaller than the width of the rail head surface, the differentiation of the transmitted beam reflected on the rail head surface described in FIG. 10 can also be provided.

Aufgrund der in FIG 9 beschriebenen Ausgestaltung der Bezugspunktreflektoren 31-34 ist die Differenzierung der reflektierten Laserstrahlen 23-26 möglich. Am Beispiel des vom Lasersender emittierten Laserstrahls 23 soll diese Differenzierung in FIG 10 erläutert werden. Der rotierende Laserstrahl 23 bewegt sich wiederum in der Zeichenebene. Die reflektierten Sendestrahlen sind zur besseren Übersicht nicht eingezeichnet. Die Differenzierung erfolgt dadurch, daß der reflektierte Laserstrahl 23 in ein Hauptsignal Sh und zwei Nebensignale Sn1 und Sn2 zerlegt wird. Das Hauptsignal Sh ergibt sich aus der Reflektion an dem Bezugspunktreflektor 31, die Nebensignale Sn1 und Sn2 erhält man durch die Reflektion des Laserstrahles 23 an der Schienenkopfoberfläche rechts und links vom Bezugspunktreflektor 31. Bei in Geradeauslage befindlicher Schiene 6 ist der Bezugspunktreflektor 31 mittig zur Schienenkopfoberfläche angeordnet und die beiden Nebensignale Sn1 und Sn2 weisen gleiche Signalbreiten auf (Symmetrielage des Bezugspunktreflektors 31). Auf einem Monitor erhält man somit die oberhalb des Lasersenders 19 dargestellte Signalform. Wandert der rotierende Laserstrahl 23 aus seiner Symmetrielage heraus, z.B. in die gestrichelt eingezeichnete Schienenlage aufgrund einer Schienenverwerfung bei Geradeausfahrt um einen Wert T, dann erhält man die beiden Nebensignale S′n1 und S′n2 (bei S′n2 ist die Fußbreite größer als bei Sn2, bei S′n2 ist sie dagegen kleiner als bei Sn1). Diese Änderung der beiden Nebensignale von Sn1 bzw.Sn2 in S′n1 bzw.S′n2 führt über die Beziehung Δ x1 = S′n2-S′n1 zu einem Δ x1-Wert, der bei überschreiten einer vorgegebenen Schwelle (Schwellendiskriminator 65 in FIG 2) einen Δ x3-Wert ergibt, der den Stellwinkel α entsprechend der Kurvenlage einsteuert. Unterhalb dieses Grenzwertes (Schwellendiskriminator 66 und Gegenregler 67 in FIG 2) wird über einen Δ x2-Wert der Stellwinkel α entgegen der Schienenabweichung korrigiert. Die Differenzierung des Reflektionssignals erfordert bei rotierenden Laserstrahlen eine entsprechend hohe Signalauflösung und entsprechend kurze Auswertezeiten. Wenn dies nicht gegeben ist, muß für die Geradeausfahrt ein zweiter Laser eingesetzt werden, der jedoch nur als Schwingkopf die doppelte Schienenkopfbreite erfassen muß und dadurch wesentlich längere Intervallzeiten erzeugt, die eine Signaldifferenzierung und Auswertung, wie zuvor beschrieben, zuläßt. Durch die Erfassung der doppelten Schienenkopfbreite kann dieses Verfahren auch zur Erkennung von Weichenüberfahrten benutzt werden.Due to the design of the reference point reflectors 31-34 described in FIG. 9, the differentiation of the reflected laser beams 23-26 is possible. This differentiation will be explained in FIG. 10 using the example of the laser beam 23 emitted by the laser transmitter. The rotating laser beam 23 in turn moves in the plane of the drawing. The reflected transmission beams are not shown for a better overview. The differentiation takes place in that the reflected laser beam 23 is broken down into a main signal S h and two secondary signals S n1 and S n2 . The main signal S h results from the reflection at the reference point reflector 31, the secondary signals S n1 and S n2 are obtained by the reflection of the laser beam 23 on the surface of the rail head to the right and left of the reference point reflector 31. With the rail 6 in a straight line, the reference point reflector 31 is in the center arranged to the rail head surface and the two secondary signals S n1 and S n2 have the same signal widths (symmetry of the reference point reflector 31). The signal form shown above the laser transmitter 19 is thus obtained on a monitor. The migrates rotating laser beam 23 out of its symmetry position, e.g. in the dashed rail position due to a rail warp when driving straight ahead by a value T, then one receives the two secondary signals S ' n1 and S' n2 (with S ' n2 the foot width is larger than with S n2 , however, it is smaller for S ′ n2 than for S n1 ). This change of the two secondary signals from S n1 and S n2 to S ′ n1 and S ′ n2 leads via the relationship Δ x1 = S ′ n2 -S ′ n1 to a Δ x1 value which, when a predetermined threshold is exceeded (threshold discriminator 65 in FIG. 2) gives a Δ x3 value which controls the setting angle α in accordance with the position of the curve. Below this limit value (threshold discriminator 66 and counter-regulator 67 in FIG. 2), the setting angle α is corrected against the rail deviation using a Δ x2 value. The differentiation of the reflection signal requires a correspondingly high signal resolution and correspondingly short evaluation times for rotating laser beams. If this is not the case, a second laser must be used for straight-ahead travel, which, however, only has to detect twice the rail head width as an oscillating head and thus generates significantly longer interval times which allow signal differentiation and evaluation, as described above. By recording the double rail head width, this method can also be used to detect switch crossings.

Die in den FIG 11 und 12 dargestellten Schienenverlauf-Meßeinrichtung für Einzelräder unterscheidet sich von der in den FIG 1-10 beschriebenen Schienenverlauf-Meßeinrichtung dadurch, daß nicht nur vor dem ersten oder hinter dem letzten Einzelrad je ein Lasersender und ein Laserempfänger angeordnet sind, sondern, daß sowohl vor als auch hinter jedem Einzelrad ein Lasersender und ein Laserempfänger angeordnet sind. Die Lasersender 19 und 20 sowie die Laserempfänger 27 und 28 sind in einem Schwenkhebel 153 befestigt, der um eine Schwenkbolzen 154, der mit der Senkrechten durch den Achsschenkeldrehpunkt des Einzelrades 2 zusammenfällt, horizontal schwenkbar in der Oberseite der Radführungslängsschwinge 155 gelagert und mit dem Radträger fest verbunden ist. Wie bei den vorhergehenden Ausführungsbeispielen liegt die Schienenachse bei Geradeausfahrt wiederum in der y-Achse, so daß sich für die Abweichung vom geradlinigen Schienenverlauf wiederum ein Δ x3-Wert ergibt. Bei vorgegebenem Abstand lc der Meßebene MII bzw.MIII von der Meßebene MI ergibt sich für den Einstellwinkel die Beziehung α = arctan ( Δ x3/lc). Der Einstellwinkel wird hierbei von der in Fahrtrichtung 18 vornliegenden Meßebene MII bestimmt. Durch Vergleich der Δ x3-Werte der vorderen Meßebene MII und der hinteren Meßebene MIII wird festgestellt, ob sich das Schienenfahrzeug 1 in einem geraden Gleisabschnitt oder im Kurvenein-oder -auslauf oder im Gleisbogendurchlauf befindet. Sind die Δ x3-Werte für die vordere Meßebene MII und die hintere Meßebene MIII gleich Null, so befindet sich die Fahrzeugeinheit im geraden Gleisabschnitt. Stimmen die Δ x3-Werte für die vordere Meßebene MII und die hintere Meßebene MIII nicht überein, so befindet sich das Schienenfahrzeug 1 im Kurvenein- oder -auslauf. Im Kurvenbeginn, also von y = 0 bis y = lc ist der Δ x3-Wert der vorderen Meßebene MII betragsmäßig größer als der Δ x3-Wert der hinteren Meßebene MIII. Darüber hinaus sind sowohl die vorderen als auch die hinteren Δ x3-Werte von der Schienenkurvenrichtung abhängig, d.h. bei einer Rechtskurve ist der vordere Δ x3-Wert negativ und bei einer Linkskurve ist der vordere Δ x3-Wert positiv; der hintere Δ x3-Wert tritt jeweils mit umgekehrten Vorzeichen auf. Die seitliche Schienenabweichung Δ x3 von der Geradeausrichtung wird von der vorderen Meßebene MII in einer Entfernung lc vom Radaufstandspunkt P2 gemessen und als Stellwinkelwert α aus der Beziehung α = arctan ( Δ x3/lc) berechnet und einem Stellglied 8 zugeführt. Zu Beginn der Einsteuerung ergibt sich in der hinteren Meßebene MIII ein Δ x3-Wert, der dem Stellwinkel der jeweiligen Steuerstellung entspricht. Bei Übereinstimmung des hinteren Δ x3- Wertes mit dem vorderen Δ x3-Wert ist die Korrektur des Lenkeinschlags beendet und der Stellwinkel α wird solange beibehalten, bis die vordere Meßebene MII einen anderen Δ x3-Wert als die hintere Meßebene MIII ermittelt. Wird der vordere Δ x3-Wert kleiner als der hintere Δ x3-Wert, so wird der Schienenbogenradius größer. Bei einem vorderen Δ x3-Wert gleich Null beginnt wieder ein gerader Gleisabschnitt. Tritt während des Steuervorganges ein Vorzeichenwechsel bei dem vorderen Δ x3-Wert auf, dann läuft das Schienenfahrzeug 1 in eine S-Kurve ein.The rail profile measuring device for individual wheels shown in FIGS. 11 and 12 differs from the rail profile measuring device described in FIGS. 1-10 in that a laser transmitter and a laser receiver are arranged not only in front of the first or behind the last individual wheel, but also that a laser transmitter and a laser receiver are arranged both in front of and behind each individual wheel. The laser transmitters 19 and 20 and the laser receivers 27 and 28 are fastened in a swivel lever 153 which can be swiveled horizontally in the upper side about a swivel pin 154 which coincides with the vertical through the pivot point of the single wheel 2 the wheel guide longitudinal rocker 155 is mounted and is firmly connected to the wheel carrier. As in the previous exemplary embodiments, the rail axis again lies in the y-axis when driving straight ahead, so that there is again a Δ x3 value for the deviation from the linear rail profile. For a given distance l c of the measuring plane MII or MIII from the measuring plane MI, the relationship α = arctan (Δ x3 / l c ) results for the setting angle. The setting angle is determined here by the measurement plane MII lying forward in the direction of travel 18. By comparing the Δ x3 values of the front measuring plane MII and the rear measuring plane MIII, it is determined whether the rail vehicle 1 is in a straight track section or in the corner entry or exit or in the track arc run. If the Δ x3 values for the front measuring plane MII and the rear measuring plane MIII are equal to zero, the vehicle unit is in the straight track section. If the Δ x3 values for the front measuring plane MII and the rear measuring plane MIII do not match, then the rail vehicle 1 is in the curve entry or exit. At the start of the curve, ie from y = 0 to y = l c , the amount of the Δ x3 of the front measuring plane MII is greater than the Δ x3 value of the rear measuring plane MIII. In addition, both the front and rear Δ x3 values are dependent on the direction of the rail curve, ie the front Δ x3 value is negative on a right-hand curve and the front Δ x3 value is positive on a left-hand curve; the rear Δ x3 value occurs with the opposite sign. The lateral rail deviation Δ x3 from the straight alignment is measured by the front measuring plane MII at a distance l c from the wheel contact point P2 and calculated as the setting angle value α from the relationship α = arctan (Δ x3 / l c ) and fed to an actuator 8. At the start of the control, there is a Δ x3 value in the rear measuring plane MIII, which corresponds to the setting angle of the respective control position. If the rear Δ x3 value matches the front Δ x3 value, the correction of the steering lock is finished and the adjustment angle α is maintained as long as until the front measuring plane MII determines a different Δ x3 value than the rear measuring plane MIII. If the front Δ x3 value becomes smaller than the rear Δ x3 value, the radius of the rail arch increases. With a front Δ x3 value equal to zero, a straight track section begins again. If a change of sign occurs at the front Δ x3 value during the control process, the rail vehicle 1 runs into an S curve.

In den FIG 13-15 ist eine weitere Ausführungsform einer Schienenverlauf-Meßeinrichtung dargestellt. Auch bei dieser Schienenverlauf-Meßeinrichtung wird der Schienenverlauf berührungslos erfaßt. Sie unterscheidet sich von den in FIG 1-12 beschriebenen Schienenverlauf-Meßeinrichtungen dadurch, daß die Erfassung des Schienenverlaufs nicht auf opto-elektronischer Basis, sondern auf magnetischer bzw. elektromagnetischer Basis erfolgt. In FIG 13 bzw.15 ist jeweils ein Schienenfahrzeug 1 im Bereich seines linken vorderen Radkastens 152 dargestellt, in dem das linke vordere Einzelrad 4 in hier nicht dargestellter Weise drehbar gelagert ist. Auf die Fahrtrichtung 18 bezogen ist vor dem Radaufstandspunkt P4 des Einzelrades 4 auf der Schiene 7 ein magnetischer Richtungsanzeiger 200 angeordnet. Der magnetische Richtungsanzeiger 200 besteht aus einem Magnetträger 201, der um eine in einem Abstand lc vertikal angeordnete Drehachse 202 horizontal drehbar ist. Der Magnetträger 201 ist in einem spritzwassergeschützten und schlagfesten Gehäuse 210 wälzgelagert und zusätzlich um einen Schwenkpunkt 203 seitlich schwenkbar. Das Gehäuse 210 einschließlich Magnetträger 201 ist, wie in den FIG 13-15 dargestellt, zweckmäßigerweise als Teleskop-Pendel 211 ausgebildet. Um bei geringen Schienenabweichungen in großen Gleisbögen die Winkelschritte deutlich anzuzeigen, ist eine Aufwärtsübersetzung zwischen dem Magnetträger 201 und dem Winkelschrittgeber 207 vorgesehen. Der Magnetträger 201 des magnetischen Richtungsanzeigers 200 weist mindestens einen Richtungsmagneten 204,205 auf. Die beiden Richtungsmagneten sind in einem Abstand b symmetrisch zu beiden Seiten der Drehachse angeordnet. Zwischen den beiden Richtungsmagneten 204 und 205 ist mittig zu diesen ein Pendelmagnet 206 angeordnet, der fest mit dem Gehäuse 210 verbunden ist.A further embodiment of a rail profile measuring device is shown in FIGS. 13-15. With this rail profile measuring device, the rail profile is also recorded without contact. It differs from the rail profile measuring devices described in FIG. 1-12 in that the rail profile is not recorded on an opto-electronic basis, but on a magnetic or electromagnetic basis. 13 and 15 respectively show a rail vehicle 1 in the area of its left front wheel housing 152, in which the left front single wheel 4 is rotatably mounted in a manner not shown here. In relation to the direction of travel 18, a magnetic direction indicator 200 is arranged in front of the wheel contact point P4 of the individual wheel 4 on the rail 7. The magnetic direction indicator 200 consists of a magnetic carrier 201 which can be rotated horizontally about an axis of rotation 202 arranged vertically at a distance l c . The magnetic carrier 201 is roller-mounted in a splash-proof and impact-resistant housing 210 and can additionally be pivoted laterally about a pivot point 203. As shown in FIGS. 13-15, the housing 210 including the magnetic carrier 201 is expediently designed as a telescopic pendulum 211. In order to clearly indicate the angular steps in the case of small rail deviations in large track arcs, an upward translation is provided between the magnet carrier 201 and the angular step encoder 207. The magnet carrier 201 of the magnetic direction indicator 200 has at least one direction magnet 204, 205. The two directional magnets are arranged at a distance b symmetrically on both sides of the axis of rotation. Between the two directional magnets 204 and 205, a pendulum magnet 206 is arranged centrally to these, which is firmly connected to the housing 210.

Die in FIG 15 dargestellte Ausführungsform des magnetischen Richtungsanzeigers unterscheidet sich dadurch, daß anstelle von zwei Richtungsmagneten nur ein Richtungsmagnet 204 vorgesehen ist. Dieser Richtungsmagnet 204 liegt in Fahrtrichtung 18 gesehen vor der Drehachse 202.The embodiment of the magnetic direction indicator shown in FIG. 15 differs in that only one directional magnet 204 is provided instead of two directional magnets. This directional magnet 204 lies in the direction of travel 18 in front of the axis of rotation 202.

Dadurch, daß das Teleskop-Pendel 211 wie vorstehend beschrieben um einen Schwenkpunkt 203 seitlich schwenkbar ist, schwenkt der magnetische Richtungsanzeiger 200 in der Kurvenlage seitlich aus und kann damit dem Maximum des Magnetfeldes zwischen den Richtungsmagneten 204 und 205 und der Schiene 7 selbsttätig folgen. In FIG 14 ist am Beispiel einer Linkskurve bei der Schiene 7 das selbsttätige Wegschwenken des Teleskop-Pendels 211 (gestrichelte Linien) dargestellt. Durch das von den Richtungsmagneten 204 und 205 sowie von den Pendelmagneten 206 erzeugten Magnetfeld stellt sich der magnetische Richtungsanzeiger 200 und damit der Winkelschrittgeber 207 entsprechend dem Verlauf der Schiene 7 ein. Vom Winkelschrittgeber 207 werden die Winkelsignale α in hier nicht näher beschriebener Weise über ein Kabel 208 zur Betätigung eines Stellgliedes 209 weitergeleitet. Der fest mit dem Gehäuse 210 verbundene Pendelmagnet 206 unterstützt die durch die Richtungsmagnete 204 und 205 verursachte Schwenkbewegung (FIG 14) bei Durchfahrt einer Kurve. Darüber hinaus stabilisiert der Pendelmagnet 206 die Senkrechtstellung des Teleskop-Pendels 211 bei Geradeausfahrt. Zur Dämpfung der Drehbewegung des Magnetträgers 201 kann das Gehäuse 210 des Magnetträgers gegebenenfalls mit Flüssigkeit gefüllt werden. Der Abstand des Magnetträgers 201 von der Schienenkopfoberseite ist abhängig vom Verschleiß des jeweiligen Einzelrades; er muß deshalb in größeren Zeitabständen manuell nachgestellt werden. Bei fremderregten Richtungsmagneten (elektromagnetische Sensoreinrichtung) wird dieser Zeitpunkt durch den Anstieg der Erregerstromaufnahme angezeigt.Because the telescopic pendulum 211 can be pivoted laterally about a pivot point 203 as described above, the magnetic direction indicator 200 swings out laterally in the cornering position and can thus automatically follow the maximum of the magnetic field between the directional magnets 204 and 205 and the rail 7. In FIG. 14, the automatic pivoting away of the telescopic pendulum 211 (dashed lines) is shown using the example of a left curve on the rail 7. Due to the magnetic field generated by the directional magnets 204 and 205 as well as by the pendulum magnets 206, the magnetic direction indicator 200 and thus the angle stepper 207 adjust themselves according to the course of the rail 7. The angle signals .alpha. Are transmitted from the angle step generator 207 in a manner not described here in more detail via a cable 208 for actuating an actuator 209. The pendulum magnet 206, which is fixedly connected to the housing 210, supports the pivoting movement (FIG. 14) caused by the directional magnets 204 and 205 when passing through a curve. In addition, the pendulum magnet 206 stabilizes the vertical position of the telescopic pendulum 211 when driving straight ahead. To dampen the rotary movement of the magnetic carrier 201, the housing 210 of the magnetic carrier can optionally be filled with liquid. The distance of the magnetic carrier 201 from the top of the rail head depends on the wear of the respective individual wheel; it must therefore be readjusted manually at larger intervals. In the case of externally excited directional magnets (electromagnetic sensor device), this point in time is indicated by the increase in the excitation current consumption.

Claims (20)

  1. Railway vehicle which comprises a specifiable number of single wheels along both sides of the longitudinal axis of the vehicle, the single wheels being rotatable by steering, characterized by a rail-course measuring device (14-17) which measures the deviation of a vehicle axis (13) from the course of the rails (6,7) and which generates a steering signal (g1-g4) in dependence upon measured deviations for each single wheel (2-5) independently of each other one.
  2. Railway vehicle according to claim 1, characterized in that the vehicle axis is the longitudinal axis (13) or an axis (13a) of the railway vehicle (1) parallel thereto.
  3. Railway vehicle according to claim 1 or 2, characterized in that the rail-course measuring device (14-17) is constructed for the step by step measurement of the deviation of the vehicle axis (13) from the course of the rails (6,7).
  4. Railway vehicle according to one of claims 1 to 3, characterized in that the rail-course measuring device (14-17) is constructed for the contactless measurement of the deviation of the vehicle axis (13) from the course of the rails (6,7).
  5. Railway vehicle according to one of claims 2 to 4, characterized in that the rail-course measuring device (14-17) is constructed in such a way that with measured relative deviations between the longitudinal axis (13) of the vehicle or one (13a) parallel thereto and the longitudinal axis of the respective rail (6,7) in a specifiable lower range (Δ x2), a straight signal (g1-g4) is generated as steering signal, which counteracts the deviation so that the straight journey is preserved, and in that an angular signal (α - δ) is only generated as steering signal with a measured relative deviation (Δ x3), which exceeds the specifiable lower range, so that steering now takes place corresponding with the curve course.
  6. Railway vehicle according to claim 5, characterized in that the rail-course measuring device (14-17) is constructed in such a way that with the measuring of a relative deviation (Δ x3) exceeding the specifiable lower range at at least one single wheel (2-5) running in front, the angular signal (α - δ) generated thereby is supplied as steering signal both to this single wheel (2,4) and to further single wheels (3,5), in particular the ones running behind in pairs.
  7. Railway vehicle according to claim 6, characterized in that between the moment of the occurrence of an angular signal (α - δ) and the moment of the beginning of the steering of single wheels (2-5), time delays specifically allocated to the single wheels (2-5) are installed in such a way that the single wheels (2-5) are always rotated substantially first with curved arrival of the single wheels (2-5) or with the pivoting of the vehicle axis (13).
  8. Railway vehicle according to claim 6 or 7, characterized in that the rail-course measuring device (14-17) is constructed in such a way that after the beginning of a rotation of single wheels (2-5) due to a steering signal (α, γ) diverted from a single wheel (2,4) running in front it measures occurring relative deviations (Δ x3) of the longitudinal axis (13) of the vehicle or one (13a) parallel thereto with regard to the longitudinal axis of the respective rails (6,7), which axis lies in straight direction, and that thereupon the steering lock set beforehand is corrected to the respective steering lock (α') corresponding with the measuring result, so that with agreement of the steering locks (α - δ) of the single wheels (2-5) both running in front and behind, the longitudinal axis (13) of the vehicle is located in chordal position to the curve.
  9. Railway vehicle according to one or several of claims 1 to 8, characterized in that the rail-course measuring device (14-17) comprises at least one optoelectronic sensor device for each single wheel (2-5) as well as evaluation electronics (35-38), whereby preferably each optoelectronic sensor device consists of a laser transmitter (19-22), which emits a laser beam (23-26), a laser receiver (27-30) and a reference-point reflector (31-34).
  10. Railway vehicle according to claim 9, characterized in that the evaluation electronics consist of blocks (35-38), whose signal outputs are connected to one another as well as by means of OR elements (35a-38a) to the adjusting elements (8-11) of the single wheels (2-5) of the railway vehicle (1).
  11. Railway vehicle according to claim 10, characterized in that each block (35-38) of the evaluation electronics contains a steering-signal generator (39-42) as well as logical switching elements (43-46), and that the blocks (35,37) associated with the single wheels (2,4) running in front have an additional comparison element (47,48).
  12. Railway vehicle according to claim 11, characterized in that the steering-signal generator (39-42) comprises a transmitting generator (60) for the optical transmitter (19-22) and a receiving amplifier (61) for the optical receiver (27-30), whereby both a signal generator (62), which generates a main signal (Sh), and an actual value determiner (63), which generates additional signals (Sn1,Sn2,S'n1,S'n2), are connected after the receiving amplifier (61), and the main and additional signals can be supplied to a comparison element (64), which generates an output signal (Δ x1) at its output, the output signal corresponding with the change of the additional signals (Sn1,Sn2,S'n1,S'n2) and which can be supplied both to a first threshold discriminator (65) and to a second threshold discriminator (66), whereby an output signal (Δ x1) lying below a threshold value generates an output signal (Δ x2) at the output of the threshold discriminator (66) and an output signal (Δ x1) lying above a threshold value generates an output signal (Δ x3) at the output of the threshold discriminator (65).
  13. Railway vehicle according to claim 12, characterized in that a counter regulator (67) is connected after the threshold discriminator (66), the counter regulator (67) generating straight signals (g1-g4) for each single wheel (2-5) in dependence upon the output signals (Δ x2) of the threshold discriminator (66).
  14. Railway vehicle according to one or several of claims 11 to 13, characterized in that each steering-signal generator (39-42) has a computer (68), to which there can be supplied on one side the output signal (Δ x3) of the threshold discriminator (65) and a first constant length signal (1c) by a first fixed-value memory (69) as well as a second constant length signal (L) by a second fixed-value memory (70), whereby the first constant length signal (1c) corresponds with the distance of the rail-course measuring device (14-17) from the appertaining single wheel (2-5) and the second constant length signal (L) corresponds with the distance between the wheel contact points of the single wheels (2-5) running in front and behind, and that the computer (68) can be supplied one the other side with a first variable length signal (1y) by the shaft-angle encoder (72) as well as with a second variable length signal (S) and an angular signal (β) by a shaft-angle encoder arranged in the steering-signal generator (40) of the single wheel (3) running behind.
  15. Railway vehicle according to claim 14, characterized in that the computer (68) of the steering-signal generator (39-42) comprises seven computing elements (90-96) as well as a first and second comparison element (97 or 98), whereby the first computing element (90) determines a first radius (R1) in accordance with the equation
    Figure imgb0015
    the second computing element determines a second radius (R2) in accordance with the equation
    Figure imgb0016
    the third computing element (92) determines an angular signal (α') in accordance with the equation
    Figure imgb0017
    the fourth computing element (93) determines an angle correction signal (α₀₁) in accordance with the equation
    Figure imgb0018
    the fifth computing element (94) determines an angle correction signal (α₀₂) in accordance with the equation
    Figure imgb0019
    and the sixth computing element (95) determines a signal a in accordance with the equation

    a = L tan β cos β
    Figure imgb0020


    whereby the activation of the fourth computing element (93) and of the fifth computing element (94) takes place in dependence upon the output signal of the first comparison element (97) and the determined radii (R1,R2) can be supplied as output signals to the second comparison element (98), the signal a to the fifth computing element (94) and the angle correction signals (α₀₁, α₀₂) as well as the angular signal (α') to the seventh computing element (96) and the seventh computing element (96) results in an angular signal (α), which serves as adjusting angular signal for the single wheels (2-5), in accordance with the following condition
    Figure imgb0021
  16. Railway vehicle according to one or several of claims 1 to 8, characterized in that the rail-course measuring device (14-17) comprises an electromagnetic and/or magnetic sensor device, which consists of at least one magnetic direction indicator (200) for each single wheel (2-5).
  17. Railway vehicle according to claim 16, characterized in that the magnetic direction indicator (200) consists of a magnetic carrier (201) which is horizontally rotatable about a rotary axis (202) arranged vertically at a distance (1c) and is laterally pivotable about a pivot point (203).
  18. Railway vehicle according to claim 17, characterized in that the magnetic carrier (201) of the magnetic direction indicator (200) has at least one direction magnet (204,205).
  19. Railway vehicle according to claim 18, characterized in that the housing (210) of the magnetic carrier (201) has a pendulum magnet (206).
  20. Railway vehicle according to one or several of claims 16 to 19, characterized in that the deflection of the magnetic direction indicator (200) with regard to the longitudinal axis (13) of the railway vehicle (1) or an axis (13a) parallel thereto can be supplied by means of a shaft-angle encoder (207) to an adjusting element (209) for the respective single wheel (2-5).
EP88121424A 1988-12-21 1988-12-21 Railway vehicle Expired - Lifetime EP0374290B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8888121424T DE3870247D1 (en) 1988-12-21 1988-12-21 RAIL VEHICLE.
EP88121424A EP0374290B1 (en) 1988-12-21 1988-12-21 Railway vehicle
AT88121424T ATE74846T1 (en) 1988-12-21 1988-12-21 RAIL VEHICLE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP88121424A EP0374290B1 (en) 1988-12-21 1988-12-21 Railway vehicle

Publications (2)

Publication Number Publication Date
EP0374290A1 EP0374290A1 (en) 1990-06-27
EP0374290B1 true EP0374290B1 (en) 1992-04-15

Family

ID=8199701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88121424A Expired - Lifetime EP0374290B1 (en) 1988-12-21 1988-12-21 Railway vehicle

Country Status (3)

Country Link
EP (1) EP0374290B1 (en)
AT (1) ATE74846T1 (en)
DE (1) DE3870247D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137443A1 (en) * 2001-07-27 2003-03-06 Bombardier Transp Gmbh Method and device for active radial control of wheel pairs or wheel sets of vehicles
DE102013001973B3 (en) * 2013-02-05 2014-01-16 Josef Staltmeir Track guide for high-speed train, has traction motors controlled to optimize operation behavior of driving module and head bogie on railway and backwardly guide head bogie into central position, and sensors arranged in flange of wheel

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL106576A (en) * 1992-08-13 2000-08-13 Immunotec Res Corp Ltd Anti-cancer therapeutic compositions for prophylaxis or for treatment of cancer
DE4231346C2 (en) * 1992-09-18 1997-11-20 Siemens Ag Independent wheel control device
US5416707A (en) * 1992-09-29 1995-05-16 Siemens Aktiengesellschaft Method and apparatus for eliminating an inclination of a wheel-block bogie or undercarriage
DE59202042D1 (en) * 1992-09-29 1995-06-01 Siemens Ag Method and device for improving the running properties of a wheel block bogie.
FR2708548B1 (en) * 1993-07-30 1995-09-01 Gec Alsthom Transport Sa Method for centering the steerable axles of a bogie.
DE19601301A1 (en) * 1996-01-16 1997-07-17 Linke Hofmann Busch Procedure for tracking vehicles
DE19654862C2 (en) * 1996-12-04 1999-11-04 Abb Daimler Benz Transp Method for influencing the articulation angle of rail vehicle car bodies and rail vehicle for carrying out the method
DE19918071C1 (en) * 1999-04-21 2000-07-06 Siemens Ag Method of track guidance of steerable single free wheels for railway vehicles
CN1370121A (en) 1999-08-10 2002-09-18 毕索伯澳大利亚有限公司 Vehicle with steerable whellset
CN115535017A (en) * 2021-06-30 2022-12-30 比亚迪股份有限公司 Railway vehicle and bogie thereof
WO2023222821A1 (en) * 2022-05-18 2023-11-23 Traila Ag Railway bogie for leveling a vertical position of a sensor unit and a railway vehicle comprising the railway bogie

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2414228A1 (en) * 1972-11-24 1975-10-16 Franz Dipl Ing Hegenbarth Wheel system for railway vehicles - has sensors and computer system for producing stable running conditions on rails
DE2257560A1 (en) * 1972-11-24 1974-06-06 Josef Dipl Ing Berg WHEEL SET FOR RAIL VEHICLES WITH MAGNETIC OR ELECTRODYNAMIC GUIDANCE IN THE TRACK
DE2336786A1 (en) * 1972-11-24 1975-02-06 Josef Dipl Ing Berg WHEEL SET FOR RAIL VEHICLES WITH MAGNETIC OR ELECTRODYNAMIC GUIDANCE IN THE TRACK
DE3618308A1 (en) * 1986-05-30 1987-12-03 Siemens Ag WHEEL GUIDE SWINGARM FOR HORIZONTAL SWIVELABLE RAILWHEELS

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10137443A1 (en) * 2001-07-27 2003-03-06 Bombardier Transp Gmbh Method and device for active radial control of wheel pairs or wheel sets of vehicles
DE102013001973B3 (en) * 2013-02-05 2014-01-16 Josef Staltmeir Track guide for high-speed train, has traction motors controlled to optimize operation behavior of driving module and head bogie on railway and backwardly guide head bogie into central position, and sensors arranged in flange of wheel

Also Published As

Publication number Publication date
ATE74846T1 (en) 1992-05-15
EP0374290A1 (en) 1990-06-27
DE3870247D1 (en) 1992-05-21

Similar Documents

Publication Publication Date Title
EP0374290B1 (en) Railway vehicle
EP1738029B1 (en) Method for measuring tracks
DE19654862C2 (en) Method for influencing the articulation angle of rail vehicle car bodies and rail vehicle for carrying out the method
DE4133882A1 (en) Automatic vehicle guidance system - allows vehicle to accurately follow path taken by lead vehicle
EP2165917B1 (en) Guidance system
DE1923762C3 (en) Measuring device for geometrical checking and / or correction of railway tracks
AT519088A4 (en) Method for the contactless detection of a track geometry
EP2347941B1 (en) Measuring device for materials testing of rails in the track
DE3122970A1 (en) STEERING DEVICE FOR CONTROLLING THE STEERING OF AN UNMANNED VEHICLE
EP1412240B1 (en) Method and device for active radial control of wheel pairs or wheel sets on vehicles
DE19861086B4 (en) Axis alignment procedure for rail vehicles
WO2018215538A1 (en) Method for detecting derailment of a rail vehicle
EP0969997B1 (en) Rail vehicle with an articulated joint
DE2528293A1 (en) STRAIGHT CONTROL DEVICE
DE3727768C1 (en) Method for generating a control signal for the inclination of a car body depending on the track curve
EP0860340B1 (en) Method and device for generating a sensor signal
DE3206646A1 (en) WHEEL POSITION MEASURING DEVICE
DE4231346C2 (en) Independent wheel control device
DE2547057C2 (en) Device for measuring the alignment or alignment of tracks, in particular railway tracks
DE2512739C3 (en) Arrangement for determining the entry or exit of a rail vehicle into or out of a track curve
EP1361136A1 (en) Measuring method and an arrangement for detecting the compliance of a track
DE2530938A1 (en) Land vehicle guidance system - steers vehicle along fixed tracks with branching points, and has central guiding rail with gaps at points
EP0590234B1 (en) Method and apparatus for eliminating the inclination of a bogie with wheel units
EP1170420A2 (en) Apparatus for measuring the track location during the laying of railway tracks and method for performing such measurement
DE2414228A1 (en) Wheel system for railway vehicles - has sensors and computer system for producing stable running conditions on rails

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE LI

17Q First examination report despatched

Effective date: 19901029

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI

REF Corresponds to:

Ref document number: 74846

Country of ref document: AT

Date of ref document: 19920515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3870247

Country of ref document: DE

Date of ref document: 19920521

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980316

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19981211

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991221