EP0860340B1 - Method and device for generating a sensor signal - Google Patents

Method and device for generating a sensor signal Download PDF

Info

Publication number
EP0860340B1
EP0860340B1 EP97121013A EP97121013A EP0860340B1 EP 0860340 B1 EP0860340 B1 EP 0860340B1 EP 97121013 A EP97121013 A EP 97121013A EP 97121013 A EP97121013 A EP 97121013A EP 0860340 B1 EP0860340 B1 EP 0860340B1
Authority
EP
European Patent Office
Prior art keywords
angle
input
track superelevation
output
superelevation angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97121013A
Other languages
German (de)
French (fr)
Other versions
EP0860340A1 (en
Inventor
Johannes Beike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Afn-Industrie
Original Assignee
ANF-INDUSTRIE
ANF Industrie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANF-INDUSTRIE, ANF Industrie filed Critical ANF-INDUSTRIE
Publication of EP0860340A1 publication Critical patent/EP0860340A1/en
Application granted granted Critical
Publication of EP0860340B1 publication Critical patent/EP0860340B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies

Definitions

  • the invention relates to a method and a device for generating a Sensor signal according to the preambles of claims 1 and 7, for example for a track-dependent inclination of a rail vehicle according to claim 10.
  • a value is used as the signal, which is the relevant variable is used for the effective lateral acceleration.
  • One such value is, for example Angle of inclination of the car body relative to the earth, i.e. the as horizontal trending assumed surface of the earth. This angle of inclination adds up to one Track cant and is dependent on the track geometry of the curve and the Train speed.
  • DE 37 27 768 C1 specifies a method and a device for generating a Control signals for the inclination of a car body depending on the track curve.
  • the control signal is generated.
  • the disadvantage is that the lateral acceleration and not a track elevation is used to form the control signal.
  • the integration of the gyro offset creates a Roll angle drift, which only keeps the switching process functioning for a short time.
  • For extension gyroscope with a low gyro offset are required, which means that Generation of the control signal is expensive.
  • DE 27 05 221 C2 specifies an arrangement for controlling an inclination device, in which the noisy measurement signals of an acceleration sensor by measurements can be replaced with a roll and a yaw gyro. This makes it illegal Avoided time delays in the generation of the control signal, which at a necessary strong filtering of the measurement signal of the acceleration sensor arise, but by integrating the roll angle from the roll speed, the result disadvantages already mentioned.
  • EP 0 557 893 A1 describes a device for controlling the rotation of a car body of a rail vehicle around its longitudinal axis is known to the value of the Cross-directional, unbalanced acceleration acting on a passenger in the vehicle to reduce. Mathematical relationships are shown with its help a characteristic of the uncompensated lateral acceleration Signal is available.
  • the invention has for its object to provide a method and an apparatus with the help of which a sensor signal is generated in a simple and effective manner Has information of a track superelevation.
  • the invention is based on the idea of a cant angle from a Roll speed and an additionally measured yaw rate.
  • the track elevation angle is determined by an additional observation the track cant. This results in a signal from the observed track elevation generated, which is only in a slight difference between one already in one simulated model generated signal and a measured signal must be filtered.
  • a gyro sensor low noise
  • an acceleration sensor no drift
  • a noise-free, but drifty track elevation from the gyro sensor signal is estimated with the help of a model simulated inversely from the gyro.
  • the track elevation is measured drift-free, but noisy due to the acceleration sensor.
  • an additional measurement of the yaw rate as the speed of rotation about the vertical axis of the bogie and the train speed is carried out in order to calculate the centrifugal force as a disturbance variable from the measured track elevation of the acceleration sensor.
  • a difference is determined from the cantilever variables of the gyro model and the acceleration sensor, which are present in signal form, a difference also being formed in the case of noise disturbances, so that only the difference value is subject to noise.
  • this difference value is readjusted to zero and filtered in the process. The readjustment takes place very slowly because only drifts are compensated and provides a subsequent control system with a noise-free control signal.
  • the cut-off frequency for filtering the disturbances in the acceleration signal of the accelerometer can be significantly reduced without reducing the dynamics of the measurement of the track elevation angle. Because the drift of the gyroscope is compensated, inexpensive gyroscopes can be used.
  • the model has a higher accuracy in the estimation. It is also advantageous to integrate known route data into the system so that the Dynamics of the system for determining the cant angle is increased.
  • the sensor package 1 shows a sensor package 1, an observer unit 2 and a further observer unit 3, as well as a tilt angle generation unit 4 and an actuating system 5 of a real car body, not shown in any more detail.
  • the sensor package 1 preferably consists of a transmitter 6 for detecting the angular velocity ⁇ R in the roll plane, a transmitter 7, for example a gyroscope, for detecting the angular velocity ⁇ G in the yaw plane, and a transmitter 8, for example an acceleration sensor, for detecting the lateral acceleration aq.
  • the sensor package 1 is preferably arranged on the chassis of the car body, not shown in detail, and is preferably arranged horizontally to the earth's surface.
  • the train speed v is generally determined with a transmitter 9 already present in the train.
  • Outputs A1, A2 and A3 of sensor package 1 and thus the outputs of measured value transmitters 6, 7 and 8 are connected to adequate inputs E1, E2 and E3 of observer unit 2.
  • An input E4 of the observer unit 2 is connected to an output A1 of the sensor 9, the output A1 being present at an input E2 of the observer unit 3 and an input E2 of the tilt angle generation unit 4.
  • An output A1 of the observer unit 2 is connected to an input E1 of the observer unit 3.
  • An output A1 of the observer unit 3 is present at an input E1 of the tilt angle generation unit 4.
  • An output A1 of this inclination angle generation unit 4 is connected to the control system 5.
  • FIG. 2 shows the internal structure of the observer unit 2.
  • Another input E2 of comparator 11 is located at output A1 Measured value evaluation 12 on, the input E1 of the observer unit 2 is connected to the input E1 of the simulated inverse gyro system 10 connected.
  • the output A1 of the simulated inverse gyro system 10 is output A1 from the observer unit 2.
  • Inputs E1, E2 and E3 of the measured value evaluation 12 are via the adequate inputs E3, E2 and E4 of the observer unit 2 are connected to the sensors 7, 8 and 9.
  • the Observer unit 3 shows the internal structure of the observer unit 3.
  • the Observer unit 3 is a train speed integrator 13, which is the train speed v calculates the current route.
  • a mission monitor 14 Downstream of the train speed integrator 13 is a mission monitor 14, the other input E2 with an output A1 a knowledge base 15 is connected.
  • Mission monitoring 14 is on the output side an input E1 of the knowledge base 15 and an input E1 of a correction unit 16 connected.
  • At the input E3 of the mission monitoring 14 is the input E1 of the Observer unit 3, this input E1 also having an input E2 Comparator 17 is connected.
  • An output A1 of the comparator 17 has an input E2 of the correction unit 16 connected, another input E1 of the comparator 17 with an output A1 of the correction unit 16, this output A1 also as output A1 the observer device 3 functions.
  • the transmitter 9 determines the train speed v in a conventional manner. and gives this value as an output signal representing the train speed v the input E4 of the observer unit 2.
  • the measuring transducers 6 and 7 measure the Roll axis and the vehicle axis respectively occurring angular velocity ⁇ R and ⁇ G, which as corresponding output signals at the inputs E2 and E1 of the observer unit 2 concerns.
  • the sensor E8 receives the input E3 of the observer unit 2 a signal representing the lateral acceleration aq at the rail level.
  • the rail vehicle When entering a track curve, the rail vehicle hits one Elevation curve, which is represented by a real track elevation angle ⁇ g, not shown is characterized. This is because of the onset of the cross slope of the real Car body a rotation of the chassis about its roll axis, so that one around Angular velocity ⁇ R occurring on the roll axis is measured by the sensor 6.
  • the measured roll angular velocity ⁇ R is, due to the technical data of the Sensor 6, imprecise.
  • the simulated inverse gyro system 10 of the observer unit 2 an angular velocity ⁇ s estimated.
  • the measured roll angular velocity ⁇ R is applied to input E1 of the simulated system 10 switched.
  • technical data of the Sensor 6 considered as an inverse model, so that construction-related defects be eliminated.
  • the one specified in the technical data sheets The offset of the transmitter 6 is taken into account in such a way that in the simulated model of the system 10 this offset is built in as an inverse value and the one determined on the output side Angular velocity ⁇ s as the estimated angular velocity ⁇ s of the real roll angular velocity ⁇ R approximately corresponds.
  • the dynamic links of the top e.g. delaying links by their inverse elements, e.g. leading Links, are compensated in the inverse simulation model of the gyro system 10.
  • the Estimation of the real roll angular velocity ⁇ R is made by the inverse compensation more accurate.
  • This determined / estimated angular velocity ⁇ s becomes known Generated an observed (estimated) track cant angle ⁇ gb. To this observed track elevation angle ⁇ gb from the angular velocity ⁇ s integrated. Due to this integration, the determined value of the observed Track cant angle ⁇ gb is subject to drift and thus the inaccuracy of the value increases with time. However, in order to determine the real cant angle ⁇ g, the signals present at the inputs E2, E3 and E4 of the observer unit 2 used. From the train speed v, the yaw rate ⁇ G of the bogie, lateral acceleration aq at rail level and gravitational acceleration g is given in the measured value evaluation 12 calculates a track elevation angle ⁇ gs.
  • the Centrifugal force which arises as a disturbance variable during lateral acceleration, from the signal aq of the transducer 8 using the yaw rate ⁇ G and the train speed v calculated in a known manner.
  • the one from the measured signals The calculated cant angle ⁇ gs is identical in value to the real cant angle ⁇ g, but has high interference signals. Therefore, the drifty observed cant angle ⁇ gb and the measured (calculated) interference-prone Track elevation angle ⁇ gs compared using the comparator 11.
  • One of them resulting difference ⁇ g is made up of the observed drift-prone cant angle ⁇ gb minus the noisy track elevation angle ⁇ gs together and forms a difference ⁇ g to be adjusted (to be suppressed).
  • This difference ⁇ g consisting of the gyro drift and disturbances of the measurement signal of the transmitter 8 in the control loop, which results from the feedback from the comparator 11 to the simulated system 10 arises, filtered and regulated to zero.
  • the timing results from the Feedback factor K of the control loop closed by forming the difference.
  • the feedback factor K becomes the dynamics of the control loop (Observer poles) selected very small, preferably 0.1 Hz.
  • the short-term disturbances of the Measurement signals of the transmitter 8 in the difference ⁇ g are thereby strongly filtered and are only very reduced in an observed real cant angle ⁇ b.
  • a further observer unit 3 can be integrated into the system.
  • the Knowledge base 15 already known information such as track geometry, position more active and passive track marks (e.g. code transmitter, magnets) as well as track features, e.g. Stops, specified and saved.
  • Mission monitoring 14 determines the current position of the train. For this purpose, it receives the current route data from the knowledge base 15, which are determined from the integrated train speed v.
  • the current route data for example a track elevation stored in the knowledge base 15, are compared with the observed track elevation angle ⁇ b in the mission monitoring 14 and when the route is detected, the observer unit 3 switches into the system, ie the observer unit 3 becomes active and increases the dynamics of the control signal for the track-dependent inclination.
  • a pre-setting of the inclination on the control system 5 can be realized by a previously stored track elevation angle ⁇ gw.
  • the difference signal ⁇ s required for precise adjustment (readjustment) between the track elevation known from the knowledge base 15, the track elevation angle wgw known therefrom and the real track elevation angle beobb observed in the observer unit 2 is provided by the comparator 17.
  • This difference signal ⁇ s is made similar by a delayed feedback K the observer unit 2, regulated to zero.
  • the filtering of the observed track elevation angle ⁇ b, which results from the feedback of the difference signal ⁇ alsos, additionally dampens interference signals. If the observer unit 3 is not active, this track elevation angle ⁇ b is present at the output A1 of the observer unit 3 at the same time. If the observer unit 3 is activated, the observed track elevation angle ⁇ b is determined, as already described, by the additional inclusion of route data.
  • a tilting angle ⁇ N with respect to the chassis is calculated from the observed track elevation angle ⁇ b, the train speed v, the angular velocity ⁇ G (yaw rate) and the acceleration due to gravity g and is used as a setpoint or control and switching signal ⁇ N for the Car body tilt system given to the control system 5.
  • the control system is only activated when a threshold value is exceeded.
  • the calculation or generation of the tilt angle ⁇ N is carried out in a known manner.

Description

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Generierung eines Sensorsignals nach den Oberbegriffen der Patentansprüche 1 bzw. 7, beispielsweise für eine gleisbogenabhängige Neigung eines Schienenfahrzeuges nach Anspruch 10.The invention relates to a method and a device for generating a Sensor signal according to the preambles of claims 1 and 7, for example for a track-dependent inclination of a rail vehicle according to claim 10.

Durch die Erhöhung der Geschwindigkeit beim schienengebundenen Personenverkehr zur Verkürzung der Reisezeit wird beim Durchfahren von Kurven bzw. Gleisbögen eine gleisbogenabhängige Neigungsregelung /-steuerung des Wagenkasten-Neigesystems angestrebt. Dadurch sollen die negativ auftretenden Querbeschleunigungserhöhungen beim Durchfahren von Gleisbögen vermieden bzw. minimiert werden, damit trotz Erhöhung der Zuggeschwindigkeiten eine Fahrkomforteinbuße für die Personen nicht eintritt.By increasing the speed of rail-bound passenger traffic To shorten the travel time, a is used when driving through curves or curves Track-dependent inclination regulation / control of the car body inclination system sought. This is supposed to reduce the negative acceleration increases be avoided or minimized when driving through bends, so despite Increasing train speeds does not result in a loss of comfort for people entry.

Bekannt sind dazu aktive und passive Neigungsverstellungen, wobei bei einer aktiven Einwirkung die Einstellung oder Veränderung der Neigung des Wagenkastens erfolgt, bei einer passiven Einwirkung die Pendelung des Wagenkastens ausgenutzt wird.Active and passive tilt adjustments are known, with an active one Influence the setting or change of the inclination of the car body takes place at a passive influence, the oscillation of the car body is used.

Bei einer aktiven Einwirkung wird als Signal ein Wert verwendet, der als relevante Größe für die wirksame Querbeschleunigung genutzt wird. Ein solcher Wert ist zum Beispiel der Neigungswinkel des Wagenkastens gegenüber der Erde, d.h. der als horizontal verlaufend angenommenen Erdoberfläche. Dieser Neigungswinkel addiert sich zu einer Gleisüberhöhung und ist abhängig von der Gleisgeometrie des Gleisbogens und der Zuggeschwindigkeit.In the case of active action, a value is used as the signal, which is the relevant variable is used for the effective lateral acceleration. One such value is, for example Angle of inclination of the car body relative to the earth, i.e. the as horizontal trending assumed surface of the earth. This angle of inclination adds up to one Track cant and is dependent on the track geometry of the curve and the Train speed.

Die DE 37 27 768 C1 gibt ein Verfahren und eine Vorrichtung zur Erzeugung eines Ansteuersignales für die gleisbogenabhängige Neigung eines Wagenkastens an. Unter Verwendung von Meßsignalen für die Fahrzeuggeschwindigkeit, die Winkelgeschwindigkeit des Fahrzeuggestelles um seine in Fahrtrichtung orientierte Längsachse sowie die senkrecht zur Fahrtrichtung und parallel zur Gleisebene gerichtete Querbeschleunigung wird das Ansteuersignal erzeugt. Nachteilig ist, daß die Querbeschleunigung und nicht eine Gleisüberhöhung zur Bildung des Ansteuersignals herangezogen wird. Zum Ein- und Ausschalten der Neigesteuerung wird lediglich ein aus der Rollgeschwindigkeit integrierter Rollwinkel ermittelt. Durch die Integration des Kreiseloffsets entsteht jedoch ein Rollwinkeldrift, der den Schaltvorgang nur kurzzeitig funktionsfähig hält. Zur Verlängerung der Funktionszeit sind Kreisel mit einem geringen Kreiseloffset erforderlich, wodurch die Erzeugung des Ansteuersignales kostenaufwendig wird.DE 37 27 768 C1 specifies a method and a device for generating a Control signals for the inclination of a car body depending on the track curve. Under Use of measurement signals for the vehicle speed, the angular speed of the vehicle frame about its longitudinal axis oriented in the direction of travel and the Lateral acceleration perpendicular to the direction of travel and parallel to the track level the control signal is generated. The disadvantage is that the lateral acceleration and not a track elevation is used to form the control signal. For input and Switching off the tilt control is only an integrated from the rolling speed Roll angle determined. However, the integration of the gyro offset creates a Roll angle drift, which only keeps the switching process functioning for a short time. For extension gyroscope with a low gyro offset are required, which means that Generation of the control signal is expensive.

Die DE 27 05 221 C2 gibt eine Anordnung zum Steuern einer Neigungsvorrichtung an, bei der die verrauschten Meßsignale eines Beschleunigungssensors durch Messungen mit einem Roll- und einem Gierkreisel ersetzt werden. Dadurch werden zwar unzulässige Zeitverzögerungen bei der Erzeugung des Ansteuersignals vermieden, die bei einer notwendigen starken Filterung des Meßsignals des Beschleunigungssensors entstehen , aber durch die Integration des Rollwinkels aus der Rollgeschwindigkeit ergeben sich die bereits genannten Nachteile.DE 27 05 221 C2 specifies an arrangement for controlling an inclination device, in which the noisy measurement signals of an acceleration sensor by measurements can be replaced with a roll and a yaw gyro. This makes it illegal Avoided time delays in the generation of the control signal, which at a necessary strong filtering of the measurement signal of the acceleration sensor arise, but by integrating the roll angle from the roll speed, the result disadvantages already mentioned.

Aus der EP 0 557 893 A1 ist Vorrichtung zur Steuerung der Drehung eines Wagenkastens eines Schienenfahrzeugs um seine Längsachse bekannt, um den Wert der in Querrichtung auf einen Fahrgast im Fahrzeug wirkenden, nicht ausgeglichenen Beschleunigung zu verringern. Dabei werden mathematische Zusammenhänge aufgezeigt, mit dessen Hilfe ein für die nicht kompensierte Querbeschleunigung kennzeichnendes Signal erhältlich ist.EP 0 557 893 A1 describes a device for controlling the rotation of a car body of a rail vehicle around its longitudinal axis is known to the value of the Cross-directional, unbalanced acceleration acting on a passenger in the vehicle to reduce. Mathematical relationships are shown with its help a characteristic of the uncompensated lateral acceleration Signal is available.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, mit deren Hilfe ein Sensorsignal auf einfache und effektive Weise erzeugt wird, das Informationen einer Gleisüberhöhung besitzt.The invention has for its object to provide a method and an apparatus with the help of which a sensor signal is generated in a simple and effective manner Has information of a track superelevation.

Gelöst wird diese Aufgabe durch die in den Patentansprüchen 1 bzw. 7 enthaltenen Merkmale.This object is achieved by the one contained in claims 1 and 7, respectively Characteristics.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet.Advantageous further developments are characterized in the subclaims.

Dabei liegt der Erfindung die Idee zugrunde, einen Gleisüberhöhungswinkel aus einer Rollgeschwindigkeit und einer zusätzlich gemessenen Giergeschwindigkeit zu ermitteln. Die Ermittlung des Gleisüberhöhungswinkels erfolgt durch eine zusätzliche Beobachtung der Gleisüberhöhung. Dadurch wird aus der beobachteten Gleisüberhöhung ein Signal generiert, welches nur in einer geringen Differenz zwischen einem bereits in einem simulierten Modell generiertem Signal und einem gemessenem Signal gefiltert werden muß.The invention is based on the idea of a cant angle from a Roll speed and an additionally measured yaw rate. The track elevation angle is determined by an additional observation the track cant. This results in a signal from the observed track elevation generated, which is only in a slight difference between one already in one simulated model generated signal and a measured signal must be filtered.

So werden die Vorteile eines Kreiselsensors (geringes Rauschen) auch mit den Vorteilen eines Beschleunigungssensors (keine Drift) kombiniert. Um dies zu ermöglichen wird eine rauschfreie, jedoch driftbehaftete Gleisüberhöhung aus dem Kreiselsensorsignal mit Hilfe eines dem Kreisel inversen simuliert nachgestalteten Modells geschätzt. Gleichzeitig wird die Gleisüberhöhung driftfrei, jedoch rauschbehaftet durch den Beschleunigungssensor gemessen. Zur Ermittlung der Gleisüberhöhung mit dem Beschleunigungssensor wird eine zusätzliche Messung der Giergeschwindigkeit als der Drehgeschwindigkeit um die Hochachse des Drehgestells und der Zuggeschwindigkeit durchgeführt, um die Fliehkraft als Störgröße aus der gemessenen Gleisüberhöhung des Beschleunigungssensors herauszurechnen. Aus den in Signalform anliegenden Gleisüberhöhungsgrößen des Kreiselmodels und des Beschleunigungssensors wird eine Differenz ermittelt, wobei auch bei den Rauschstörungen eine Differenzbildung erfolgt, so daß nur noch der Differenzwert rauschbehaftet ist. Durch Rückkopplung in das inverse Modell des Kreisels wird dieser Differenzwert auf Null nachgeregelt und dabei gefiltert. Die Nachregelung erfolgt, da nur Drifte kompensiert werden, sehr langsam und stellt einem nachfolgenden Stellsystem ein rauschfreies Ansteuersignal zur Verfügung.
Mit diesem Verfahren kann die Grenzfrequenz zur Filterung der Störungen im Beschleunigungssignal des Beschleunigungsaufnehmers erheblich abgesenkt werden, ohne die Dynamik der Gleisüberhöhungswinkelmessung zu reduzieren. Da die Drift des Kreisels kompensiert wird, können kostengünstige Kreisel eingesetzt werden.
The advantages of a gyro sensor (low noise) are also combined with the advantages of an acceleration sensor (no drift). In order to make this possible, a noise-free, but drifty track elevation from the gyro sensor signal is estimated with the help of a model simulated inversely from the gyro. At the same time, the track elevation is measured drift-free, but noisy due to the acceleration sensor. To determine the track elevation with the acceleration sensor, an additional measurement of the yaw rate as the speed of rotation about the vertical axis of the bogie and the train speed is carried out in order to calculate the centrifugal force as a disturbance variable from the measured track elevation of the acceleration sensor. A difference is determined from the cantilever variables of the gyro model and the acceleration sensor, which are present in signal form, a difference also being formed in the case of noise disturbances, so that only the difference value is subject to noise. By feedback into the inverse model of the gyro, this difference value is readjusted to zero and filtered in the process. The readjustment takes place very slowly because only drifts are compensated and provides a subsequent control system with a noise-free control signal.
With this method, the cut-off frequency for filtering the disturbances in the acceleration signal of the accelerometer can be significantly reduced without reducing the dynamics of the measurement of the track elevation angle. Because the drift of the gyroscope is compensated, inexpensive gyroscopes can be used.

Durch die Einbeziehung der Sensorkomponenten, z.B. Offsetgrößen, in das Simulationsmodell wird erreicht, daß das Modell über eine höhere Genauigkeit bei der Schätzung verfügt. Auch ist es vorteilhaft, bekannte Streckendaten mit in das System zu intergrieren, so daß die Dynamik des Systems zur Ermittlung des Gleisüberhöhungswinkels erhöht wird.By including the sensor components, e.g. Offset sizes, in the simulation model it is achieved that the model has a higher accuracy in the estimation. It is also advantageous to integrate known route data into the system so that the Dynamics of the system for determining the cant angle is increased.

Anhand eines Ausführungsbeispieles mit Zeichnung soll die Erfindung näher erläutert werden. The invention is to be explained in more detail using an exemplary embodiment with a drawing become.

Es zeigen:

Fig. 1
ein Blockschaltbild zur Ermittlung einer beobachteten Gleisüberhöhung;
Fig. 2
einen inneren Aufbau einer Beobachtereinheit;
Fig. 3
einen inneren Aufbau einer weiteren Beobachtereinheit.
Show it:
Fig. 1
a block diagram for determining an observed track cant;
Fig. 2
an inner structure of an observer unit;
Fig. 3
an inner structure of another observer unit.

In Fig. 1 dargestellt ist ein Sensorpaket 1, eine Beobachtereinheit 2 und eine weitere Beobachtereinheit 3, sowie eine Neigewinkelgeneriereinheit 4 und ein Stellsystem 5 eines nicht näher dargestellten realen Wagenkastens. Das Sensorpaket 1 besteht vorzugsweise aus einem Meßwertgeber 6 zur Erfassung der Winkelgeschwindigkeit ωR in der Rollebene, einem Meßwertgeber 7, beispielsweise einem Kreisel, zur Erfassung der Winkelgeschwindigkeit ωG in der Gierebene, sowie einen Meßwertgeber 8, beispielsweise einem Beschleunigungssensor, zur Erfassung der Querbeschleunigung aq. Das Sensorpaket 1 ist vorzugsweise am Fahrgestell des nicht näher dargestellten Wagenkastens und dabei vorzugsweise horizontal zur Erdoberfläche angeordnet. Die Zuggeschwindigkeit v wird in der Regel mit einem schon im Zug vorhandenen Meßwertgeber 9 ermittelt. Ausgänge A1, A2 bzw. A3 des Sensorpaketes 1 und damit die Ausgänge der Meßtwertgeber 6, 7 und 8 sind mit adäquaten Eingängen E1, E2 bzw. E3 der Beobachtereinheit 2 verbunden.
Ein Eingang E4 der Beobachtereinheit 2 ist mit einem Ausgang A1 des Meßwertgebers 9 verschaltet, wobei der Ausgang A1 gleichzeitig an einem Eingang E2 der Beobachtereinheit 3 und einem Eingang E2 der Neigewinkelgeneriereinheit 4 anliegt.
Ein Ausgang A1 der Beobachtereinheit 2 ist mit einem Eingang E1 der Beobachtereinheit 3 verschaltet. Ein Ausgang A1 der Beobachereinheit 3 liegt an einem Eingang E1 der Neigewinkelgeneriereinheit 4 an. Ein Ausgang A1 dieser Neigewinkelgeneriereinheit 4 ist mit dem Stellsystem 5 verbunden.
1 shows a sensor package 1, an observer unit 2 and a further observer unit 3, as well as a tilt angle generation unit 4 and an actuating system 5 of a real car body, not shown in any more detail. The sensor package 1 preferably consists of a transmitter 6 for detecting the angular velocity ωR in the roll plane, a transmitter 7, for example a gyroscope, for detecting the angular velocity ωG in the yaw plane, and a transmitter 8, for example an acceleration sensor, for detecting the lateral acceleration aq. The sensor package 1 is preferably arranged on the chassis of the car body, not shown in detail, and is preferably arranged horizontally to the earth's surface. The train speed v is generally determined with a transmitter 9 already present in the train. Outputs A1, A2 and A3 of sensor package 1 and thus the outputs of measured value transmitters 6, 7 and 8 are connected to adequate inputs E1, E2 and E3 of observer unit 2.
An input E4 of the observer unit 2 is connected to an output A1 of the sensor 9, the output A1 being present at an input E2 of the observer unit 3 and an input E2 of the tilt angle generation unit 4.
An output A1 of the observer unit 2 is connected to an input E1 of the observer unit 3. An output A1 of the observer unit 3 is present at an input E1 of the tilt angle generation unit 4. An output A1 of this inclination angle generation unit 4 is connected to the control system 5.

In Fig. 2 ist der innere Aufbau der Beobachtereinheit 2 dargestellt. Dabei ist eine Simulation des inversen Kreiselsystems mit 10 gekennzeichnet, mit 11 ein Vergleicher, der eingangsseitig am Ausgang A1 und ausgangsseitig am Eingang E2 des simulierten inversen Kreiselsystems 10 anliegt. Ein weiterer Eingang E2 des Vergleichers 11 liegt am Ausgang A1 einer Meßwertauswertung 12 an, der Eingang E1 der Beobachtereinheit 2 ist mit dem Eingang E1 des simulierten inversen Kreiselsystems 10 verbunden. Der Ausgang A1 des simulierten inversen Kreiselsystems 10 wird als Ausgang A1 aus der Beobachtereinheit 2 geführt. 2 shows the internal structure of the observer unit 2. There is a simulation of the inverse gyro system marked with 10, with 11 a comparator, the input side at output A1 and on the output side at input E2 of the simulated inverse gyro system 10 is present. Another input E2 of comparator 11 is located at output A1 Measured value evaluation 12 on, the input E1 of the observer unit 2 is connected to the input E1 of the simulated inverse gyro system 10 connected. The output A1 of the simulated inverse gyro system 10 is output A1 from the observer unit 2.

Eingänge E1, E2 und E3 der Meßwertauswertung 12 sind über die adäquaten Eingänge E3, E2 bzw. E4 der Beobachtereinheit 2 mit den Meßwertgebern 7, 8 und 9 verbunden.Inputs E1, E2 and E3 of the measured value evaluation 12 are via the adequate inputs E3, E2 and E4 of the observer unit 2 are connected to the sensors 7, 8 and 9.

Die Fig. 3 gibt den inneren Aufbau der Beobachtereinheit 3 wieder. Am Eingang E2 der Beobachtereinheit 3 liegt ein Zuggeschwindigkeitsintegrator 13, der aus der Zuggeschwindigkeit v die aktuelle Strecke errechnet. Dem Zuggeschwindigkeitsintegrator 13 nachgeschaltet ist eine Missionsüberwachung 14, deren anderer Eingang E2 mit einem Ausgang A1 einer Wissensbasis 15 verbunden ist. Ausgangsseitig ist die Missionsüberwachung 14 mit einem Eingang E1 der Wissenbasis 15 sowie einem Eingang E1 einer Korrektureinheit 16 verschaltet. Am Eingang E3 der Missionsüberwachung 14 liegt der Eingang E1 der Beobachtereinheit 3 an, wobei dieser Eingang E1 auch mit einem Eingang E2 eines Vergleichers 17 verbunden ist. Ein Ausgang A1 des Vergleichers 17 ist mit einem Eingang E2 der Korrektureinheit 16 verbunden, ein weiterer Eingang E1 des Vergleichers 17 mit einem Ausgang A1 der Korrektureinheit 16, wobei dieser Ausgang A1 auch als Ausgang A1 der Beobachtereinrichtung 3 fungiert.3 shows the internal structure of the observer unit 3. At entrance E2 the Observer unit 3 is a train speed integrator 13, which is the train speed v calculates the current route. Downstream of the train speed integrator 13 is a mission monitor 14, the other input E2 with an output A1 a knowledge base 15 is connected. Mission monitoring 14 is on the output side an input E1 of the knowledge base 15 and an input E1 of a correction unit 16 connected. At the input E3 of the mission monitoring 14 is the input E1 of the Observer unit 3, this input E1 also having an input E2 Comparator 17 is connected. An output A1 of the comparator 17 has an input E2 of the correction unit 16 connected, another input E1 of the comparator 17 with an output A1 of the correction unit 16, this output A1 also as output A1 the observer device 3 functions.

Das Verfahren läuft dabei wie folgt ab:The procedure is as follows:

Der Meßwertgeber 9 ermittelt auf herkömmliche Art und Weise die Zuggeschwindigkeit v, und gibt diesen Wert als ein die Zuggeschwindigkeit v repräsentierendes Ausgangssignal an den Eingang E4 der Beobachtereinheit 2. Die Meßwertgeber 6 und 7 messen die um die Rollachse und die Fahrzeugachse jeweils auftretende Winkelgeschwindigkeit ωR und ωG, welche als entsprechende Ausgangssignale an den Eingängen E2 und E1 der Beobachtereinheit 2 anliegen. Durch den Meßwertgeber 8 erhält der Eingang E3 der Beobachtereinheit 2 ein die Querbeschleunigung aq auf Schienenebene repräsentierendes Signal.The transmitter 9 determines the train speed v in a conventional manner. and gives this value as an output signal representing the train speed v the input E4 of the observer unit 2. The measuring transducers 6 and 7 measure the Roll axis and the vehicle axis respectively occurring angular velocity ωR and ωG, which as corresponding output signals at the inputs E2 and E1 of the observer unit 2 concerns. The sensor E8 receives the input E3 of the observer unit 2 a signal representing the lateral acceleration aq at the rail level.

Fährt ein Schienenfahrzeug auf einer Streckengerade ohne Kurvenüberhöhung, so wird über den Meßwertgeber 9 die Zuggeschwindigkeit v gemessen. Der Meßwertgeber 6 und der Meßwertgeber 8 geben nur geringe Signale ab, weil nur eine minimale Querneigung des realen Wagenkastens erfolgt. Die Beobachtereinheit 2 aktiviert das Stellsystem 5 nicht, denn die Gleisüberhöhung überschreitet einen eingestellten Minimalwert nicht. If a rail vehicle travels on a straight line without cornering, then over the transducer 9 measured the train speed v. The sensor 6 and the Transmitters 8 emit only small signals because only a minimal cross slope of the real car body. The observer unit 2 does not activate the control system 5, because the track elevation does not exceed a set minimum value.

Beim Einfahren in einen Streckengleisbogen gelangt das Schienenfahrzeug auf einen Überhöhungsbogen, der durch einen nicht dargestellten realen Gleisüberhöhungswinkel Φg charakterisiert wird. Dabei erfolgt wegen der einsetzenden Querneigung des realen Wagenkastens eine Drehung des Fahrgestelles um seine Rollachse, so daß eine um die Rollachse auftretende Winkelgeschwindigkeit ωR vom Meßwertgeber 6 gemessen wird.When entering a track curve, the rail vehicle hits one Elevation curve, which is represented by a real track elevation angle Φg, not shown is characterized. This is because of the onset of the cross slope of the real Car body a rotation of the chassis about its roll axis, so that one around Angular velocity ωR occurring on the roll axis is measured by the sensor 6.

Die gemessene Rollwinkelgeschwindigkeit ωR ist, bedingt durch die technischen Daten des Meßwertgebers 6, ungenau. Um diese Ungenauigkeit zu eliminieren, wird über das simulierte inverse Kreiselsystem 10 der Beobachtereinheit 2 eine Winkelgeschwindigkeit ωs geschätzt. Dazu wird die gemessene Rollwinkelgeschwindigkeit ωR auf den Eingang E1 des simulierten Systems 10 geschaltet. In diesem System 10 werden technische Daten des Meßwertgebers 6 als inverses Modell berücksichtigt, so daß bautechnisch bedingte Mängel eliminiert werden. So wird beispielsweise der in technischen Datenblättern vorgegebene Offset des Meßwertgebers 6 derart berücksichtigt, daß im simulierten Modell des Systems 10 dieses Offset als inverser Wert eingebaut wird und die ausgangsseitig so ermittelte Winkelgeschwindigkeit ωs als geschätzte Winkelgeschwindigkeit ωs der realen Rollwinkelgeschwindigkeit ωR annähernd entspricht. Zusätzlich können auch die dynamischen Glieder des Kreisels, z.B. verzögernde Glieder durch ihre inversen Elemente, z.B. voreilende Glieder, im inversen Simulationsmodell des Kreiselsystems 10 kompensiert werden. Die Schätzung der realen Rollwinkelgeschwindigkeit ωR wird durch die inverse Kompensation genauer. Aus dieser ermittelten/geschätzten Winkelgeschwindigkeit ωs wird in bekannter Art und Weise ein beobachteter (geschätzter) Gleisüberhöhungswinkel Φgb generiert. Dazu wird dieser beobachtete Gleisüberhöhungswinkel Φgb aus der Winkelgeschwindigkeit ωs integriert. Bedingt durch dieses Integrieren ist der ermittelte Wert des beobachteten Gleisüberhöhungswinkels Φgb driftbehaftet und somit wächst die Ungenauigkeit des Wertes mit der Zeit an. Um jedoch den realen Gleisüberhöhungswinkel Φg zu ermitteln, werden die an den Eingängen E2, E3 und E4 der Beobachtereinheit 2 anliegenden Signale mit herangezogen. Aus der Zuggeschwindigkeit v, der Giergeschwindigkeit ωG des Drehgestells, der Querbeschleunigung aq auf Schienenebene und der Erdbeschleunigung g wird in der Meßwertauswertung 12 ein Gleisüberhöhungswinkel Φgs berechnet. Dazu wird die Fliehkraft, die sich als Störgröße bei einer Querbeschleunigung einstellt, aus dem Signal aq des Meßwertgebers 8 mit Hilfe der Gierwinkelgeschwindigkeit ωG und der Zuggeschwindigkeit v in bekannter Art und Weise herausgerechnet. Der aus den gemessenen Signalen berechnete Gleisüberhöhungswinkel Φgs ist wertmäßig identisch mit dem realen Gleisüberhöhungswinkel Φg, besitzt jedoch hohe Störsignale. Deshalb werden der driftbehaftete beobachtete Gleisüberhöhungswinkel Φgb und der störbehaftete gemessene (berechnete) Gleisüberhöhungswinkel Φgs mit Hilfe des Vergleichers 11 verglichen. Eine daraus resultierende Differenz ΔΦg setzt sich aus dem beobachteten driftbehafteten Gleisüberhöhungswinkel Φgb abzüglich des störbehafteten Gleisüberhöhungswinkel Φgs zusammen und bildet eine noch nachzuregelnde (zu entstörende) Differenz ΔΦg. Diese Differenz ΔΦg, bestehend aus der Kreiseldrift und Störungen des Meßsignales des Meßwertgebers 8, wird im Regelkreis, der durch die Rückkopplung vom Vergleicher 11 auf das simulierte System 10 entsteht, gefiltert und zu Null geregelt. Die zeitliche Regelung ergibt sich aus dem Rückkopplungsfaktor K des über die Differenzbildung geschlossenen Regelkreises. Durch Voreinstellung des Rückkopplungsfaktors K wird die Dynamik des Regelkreises (Beobachterpole) sehr klein gewählt, vorzugsweise 0,1 Hz. Die kurzzeitigen Störungen des Meßsignales des Meßwertgebers 8 in der Differenz ΔΦg werden dadurch stark gefiltert und gehen nur sehr reduziert in einen beobachteten realen Gleisüberhöhungswinkel Φb ein. Am Ausgang A1 des simulierten Kreiselsystems 10 und damit gleichzeitig am Ausgang A1 der Beobachtereinheit 2 liegt ein den realen Gleisüberhöhungswinkel Φg repräsentierender real beobachteter Gleisüberhöhungswinkel Φb an, der sich wertmäßig aus dem driftbehafteten beobachteten Gleisüberhöhungswinkel Φgb und dem störbehafteten gemessenen Gleisüberhöhungswinkel Φgs sowie der noch nachzuregelnden (zu entstörende) Differenz ΔΦg ergibt.The measured roll angular velocity ωR is, due to the technical data of the Sensor 6, imprecise. In order to eliminate this inaccuracy, the simulated inverse gyro system 10 of the observer unit 2 an angular velocity ωs estimated. For this purpose, the measured roll angular velocity ωR is applied to input E1 of the simulated system 10 switched. In this system 10, technical data of the Sensor 6 considered as an inverse model, so that construction-related defects be eliminated. For example, the one specified in the technical data sheets The offset of the transmitter 6 is taken into account in such a way that in the simulated model of the system 10 this offset is built in as an inverse value and the one determined on the output side Angular velocity ωs as the estimated angular velocity ωs of the real roll angular velocity ωR approximately corresponds. In addition, the dynamic links of the top, e.g. delaying links by their inverse elements, e.g. leading Links, are compensated in the inverse simulation model of the gyro system 10. The Estimation of the real roll angular velocity ωR is made by the inverse compensation more accurate. This determined / estimated angular velocity ωs becomes known Generated an observed (estimated) track cant angle Φgb. To this observed track elevation angle Φgb from the angular velocity ωs integrated. Due to this integration, the determined value of the observed Track cant angle Φgb is subject to drift and thus the inaccuracy of the value increases with time. However, in order to determine the real cant angle Φg, the signals present at the inputs E2, E3 and E4 of the observer unit 2 used. From the train speed v, the yaw rate ωG of the bogie, lateral acceleration aq at rail level and gravitational acceleration g is given in the measured value evaluation 12 calculates a track elevation angle Φgs. For this, the Centrifugal force, which arises as a disturbance variable during lateral acceleration, from the signal aq of the transducer 8 using the yaw rate ωG and the train speed v calculated in a known manner. The one from the measured signals The calculated cant angle Φgs is identical in value to the real cant angle Φg, but has high interference signals. Therefore, the drifty observed cant angle Φgb and the measured (calculated) interference-prone Track elevation angle Φgs compared using the comparator 11. One of them resulting difference ΔΦg is made up of the observed drift-prone cant angle Φgb minus the noisy track elevation angle Φgs together and forms a difference ΔΦg to be adjusted (to be suppressed). This difference ΔΦg, consisting of the gyro drift and disturbances of the measurement signal of the transmitter 8 in the control loop, which results from the feedback from the comparator 11 to the simulated system 10 arises, filtered and regulated to zero. The timing results from the Feedback factor K of the control loop closed by forming the difference. By Presetting the feedback factor K becomes the dynamics of the control loop (Observer poles) selected very small, preferably 0.1 Hz. The short-term disturbances of the Measurement signals of the transmitter 8 in the difference ΔΦg are thereby strongly filtered and are only very reduced in an observed real cant angle Φb. At the Output A1 of the simulated gyro system 10 and thus simultaneously at the output A1 of the Observer unit 2 is a real representative of the real cant angle Φg observed track elevation angle Φb, which is based on the value of the drift observed track cant angle Φgb and the interference-prone measured track cant angle Φgs as well as the difference Δ nochg to be readjusted (to be suppressed) results.

Zur Erhöhung der Dynamik der vorgenannten Ermittlung eines Gleisüberhöhungswinkels Φb ist eine weitere Beobachtereinheit 3 in das System integrierbar. Dazu werden in der Wissensbasis 15 bereits bekannte Informationen wie Gleisgeometrie, Position aktiver und passiver Streckenmarken (z.B. Codesender, Magnete) sowie Streckenbesonderheiten, z.B. Haltebahnhöfe, angegeben und gespeichert.To increase the dynamics of the aforementioned determination of a track cant angle Φb a further observer unit 3 can be integrated into the system. For this purpose, in the Knowledge base 15 already known information such as track geometry, position more active and passive track marks (e.g. code transmitter, magnets) as well as track features, e.g. Stops, specified and saved.

Die Missionsüberwachung 14 ermittelt die augenblickliche Position des Zuges. Dazu erhält sie aus der Wissensbasis 15 die aktuellen Streckendaten, die aus der integrierten Zuggeschwindigkeit v ermittelt werden. Die aktuellen Streckendaten ,beispielsweise eine in der Wissensbasis 15 abgelegte Gleisüberhöhung, werden mit dem beobachteten Gleisüberhöhungswinkel Φb in der Missionsüberwachung 14 verglichen und bei Streckenerkennung schaltet sich die Beobachtereinheit 3 in das System ein, d.h., die Beobachtereinheit 3 wird aktiv und erhöht die Dynamik des Ansteuersignales für die gleisbogenabhängige Neigung. Bereits mit der Streckenerkennung durch die Missionsüberwachung 14 ist eine Voreinstellung der Neigung am Stellsystem 5 durch einen vorher abgelegten Gleisüberhöhungswinkel Φgw realisierbar. Das zur genauen Verstellung (Nachstellung) notwendige Differenzsignal ΔΦs zwischen der aus der Wissensbasis 15 bekannten Gleisüberhöhung, dem daraus bekannten Gleisüberhöhungswinkel Φgw und dem in der Beobachtereinheit 2 beobachteten realen Gleisüberhöhungswinkel Φb liefert der Vergleicher 17. Dieses Differenzsignal ΔΦs wird durch eine verzögernde Rückkopplung K, ähnlich der Beobachtereinheit 2, auf Null geregelt. Durch die sich aus der Rückkopplung des Differenzsignals ΔΦs ergebene Filterung des beobachteten Gleisüberhöhungswinkels Φb werden Störsignale also zusätzlich gedämpft.
Ist die Beobachtereinheit 3 nicht aktiv, liegt dieser Gleisüberhöhungswinkel Φb zeitgleich am Ausgang A1 der Beobachtereinheit 3 an. Wird die Beobachtereinheit 3 aktiviert, so erfolgt, wie bereits beschrieben, die Ermittlung des beobachteten Gleisüberhöhungswinkels Φb durch die zusätzliche Einbeziehung von Streckendaten.
In der der Beobachtereinheit 3 nachfolgenden Neigewinkelgeneriereinheit 4 wird aus dem beobachteten Gleisüberhöhungswinkel Φb, der Zuggeschwindigkeit v, der Winkelgeschwindigkeit ωG (Giergeschwindigkeit) und der Erdbeschleunigung g ein Neigewinkel ΦN gegenüber dem Fahrgestell berechnet und als Sollwert bzw. Ansteuer- und Schaltsignal ΦN für das Wagenkasten-Neigesystem an das Stellsystem 5 gegeben. Nur bei Überschreitung eines Schwellwertes wird das Stellsystem aktiviert. Die Berechnung bzw. Generierung des Neigewinkels ΦN erfolgt in bekannter Art und Weise.
Mission monitoring 14 determines the current position of the train. For this purpose, it receives the current route data from the knowledge base 15, which are determined from the integrated train speed v. The current route data, for example a track elevation stored in the knowledge base 15, are compared with the observed track elevation angle Φb in the mission monitoring 14 and when the route is detected, the observer unit 3 switches into the system, ie the observer unit 3 becomes active and increases the dynamics of the control signal for the track-dependent inclination. Already with the route detection by the mission monitoring 14, a pre-setting of the inclination on the control system 5 can be realized by a previously stored track elevation angle Φgw. The difference signal ΔΦs required for precise adjustment (readjustment) between the track elevation known from the knowledge base 15, the track elevation angle wgw known therefrom and the real track elevation angle beobb observed in the observer unit 2 is provided by the comparator 17. This difference signal ΔΦs is made similar by a delayed feedback K the observer unit 2, regulated to zero. The filtering of the observed track elevation angle Φb, which results from the feedback of the difference signal Δ alsos, additionally dampens interference signals.
If the observer unit 3 is not active, this track elevation angle Φb is present at the output A1 of the observer unit 3 at the same time. If the observer unit 3 is activated, the observed track elevation angle Φb is determined, as already described, by the additional inclusion of route data.
In the tilting angle generation unit 4 following the observer unit 3, a tilting angle Φ N with respect to the chassis is calculated from the observed track elevation angle Φb, the train speed v, the angular velocity ωG (yaw rate) and the acceleration due to gravity g and is used as a setpoint or control and switching signal Φ N for the Car body tilt system given to the control system 5. The control system is only activated when a threshold value is exceeded. The calculation or generation of the tilt angle Φ N is carried out in a known manner.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Sensorpaketsensor package
22
Beobachtereinheitobserver unit
33
Beobachtereinheitobserver unit
44
NeigewinkelgeneriereinheitNeigewinkelgeneriereinheit
55
Stellsystemparking system
66
Meßwertgebertransmitter
77
Meßwertgebertransmitter
88th
Meßwertgebertransmitter
99
Meßwertgebertransmitter
1010
Simuliertes inverses KreiselsystemSimulated inverse gyro system
1111
Vergleichercomparator
1212
Meßwertauswertungdata evaluation
1313
ZuggeschwindigkeitsintegratorZuggeschwindigkeitsintegrator
1414
Missionsüberwachungmission control
1515
Wissensbasisknowledge base
1616
Korrektureinheitcorrection unit
1717
Vergleichercomparator
ωR.omega.R
RollwinkelgeschwindigkeitRoll angular velocity
ωGωG
Giergeschwindigkeityaw rate
ωsωs
geschätzte Winkelgeschwindigkeitestimated angular velocity
ΦgΦg
realen Gleisüberhöhungswinkelreal track cant angle
ΦgbΦgb
beobachteter (geschätzter) Gleisüberhöhungswinkelobserved (estimated) cant angle
ΦgsΦgs
gemessener Gleisüberhöhungswinkelmeasured cant angle
Φb.phi.b
beobachteter realer Gleisüberhöhungswinkelobserved real cant angle
ΦgwΦgw
abgelegter Gleisüberhöhungswinkelstored cant angle

Claims (10)

  1. Method for generating a sensor signal containing information on a track superelevation, using measuring signals for a train speed (v), for an angular speed (ωR) of a bogie about the roll axis, for a yaw angular speed (ωG) of the bogie about the longitudinal axis of the vehicle and for a transverse acceleration (aq), characterised in that in a first observer unit (2)
    an estimated track superelevation angle (Φgb) is estimated from the measured angular speed (ωR),
    this estimated track superelevation angle (Φgb) is compared with a track superelevation angle (Φgs) determined from the transverse acceleration (aq), the yaw angular speed (ωG) and the train speed (v), wherein
    a difference (ΔΦg) occurring here is looped back and filtered in the process and
    an observed track superelevation angle (Φb) resulting therefrom represents the real track superelevation angle (Φg) which is drift-compensated and low in noise.
  2. Method according to claim 1, characterised in that to form the observed track superelevation angle (Φb) a simulated gyratory system (10) as inverse model of a pick-up (6) is supplied on-line with measuring signals of the angular speed (ωR).
  3. Method according to claim 2, characterised in that measuring inaccuracies of the pick-up (6) measuring the angular speed (ωR) for determining the observed track superelevation angle (Φb) are eliminated by incorporating its sensor components in the simulated inverse gyratory system (10).
  4. Method according to any of claims 1 to 3, characterised in that a further observer unit (3) is included in the method, in which already known section information which can be called up is stored.
  5. Method according to claim 4, characterised in that mission monitoring (14) determines the instantaneous position of the train with the aid of a train speed integrator (13), compares the observed track superelevation angle (Φb) with a known track superelevation angle (Φgw) stored in a knowledge base (15) and switches the further observer unit (3) into the system upon section recognition.
  6. Method according to claim 5, characterised in that a difference (ΔΦs) formed during comparison of the observed track superelevation angle (Φb) and the known track superelevation angle (Φgw) is used to readjust the observed track superelevation angle (Φb) representing the real track superelevation angle (Φg).
  7. Device for generating a sensor signal containing information on a track superelevation, with a pick-up (9) for determining a vehicle speed (v), a pick-up (6) for determining an angular speed (ωR) of the bogie in the roll axis, a further pick-up (7) for measuring a yaw angular speed (ωG) and a pick-up (8) for determining a transverse acceleration (aq), characterised in that
    at least one observer unit (2) is incorporated between the pick-ups (6, 7) and the train's own control system (5), wherein
    the first observer unit (2) consists of a simulated inverse gyratory system (10) as a model of the pick-up (6), a comparator (10) and a measured value evaluation (12) in which
    a first input (E1) of the inverse gyratory system (10) is connected to a first output (A1) of the pick-up (6) for supplying on-line measuring signals of the angular speed (ωR),
    a second input (E2) of the inverse gyratory system (10) is connected to a first output (A1) of the comparator (11) and a first output (A1) of the inverse gyratory system (10) is connected to a first input (E1) of the comparator (11), wherein
    a second input (E2) of the comparator (11) is connected to a first output (A1) of the measured value evaluation (12) and the measured value evaluation (12) is connected at the input side to the further pick-ups (7, 8, 9), whereby
    an estimated track superelevation angle (Φgb) at the output (A1) of the inverse gyratory system (10) is guided as a yet to be readjusted difference (ΔΦg) to the input (E1) of the inverse gyratory system (10) after comparison with a track superelevation (Φbs) calculated in the measured value evaluation (12) and
    after correcting the difference (ΔΦg) there is an observed track superelevation angle (Φb) representing the real track superelevation angle (Φg) at the output (A1) of the first observer unit (2).
  8. Device according to claim 7, characterised in that a further observer unit (3) is connected downstream of the first observer unit (2).
  9. Device according to claim 8, characterised in that the further observer unit (3) consists of a train speed integrator (13), a mission monitoring (14), a knowledge base (15), a correcting unit (16) and a comparator (17), wherein
    a first input (E1) of the further observer unit (3) is guided to a third input (E3) of the mission monitoring (14) and to a second input (E2) of the comparator (17) to supply the observed track superelevation angle (Φb) from the first observer unit (2),
    a first output of the train speed integrator (13) is guided to a first input (E1) of the mission monitoring (14), a second input (E2) of the mission monitoring (14) is guided with a first output (A1) of the knowledge base (15) and a first output (A1) of the mission monitoring (14) is guided to a first input (E1) of the knowledge base (15), whereby
    the mission monitoring (14) can determine the instantaneous position of the train from the data in the train speed integrator (13) and a track superelevation angle (Φgw) stored in the knowledge base (15), which angle is then compared with the observed track superelevation angle (Φb) for the purpose of section recognition, and
    the first output (A1) of the mission monitoring (14) is additionally guided to a first input (E1) of the correcting unit (16) and the first output (A1) thereof guided to a first input (E1) of the comparator (17) and the output (A1) thereof guided to a second input (E2) of the correcting unit (16), wherein when the further observer unit. (3) is switched on
    a difference (ΔΦs) formed in the comparator (17) upon comparison of the observed track superelevation angle (Φb) and the stored track superelevation angle (Φgw) is returned to the second input (E2) of the correcting unit (16) and is then used to readjust the observed track superelevation angle (Φb) representing the real track superelevation angle (Φg).
  10. Method according to any of claims 1 to 6, characterised in that an angle of inclination (ΦN) is calculated from the observed track superelevation angle (Φb) in the train's own angle of inclination generating unit (4) and is provided as control and switching signal for a superstructure inclination system on a control system (5) of the superstructure inclination system.
EP97121013A 1997-02-22 1997-11-29 Method and device for generating a sensor signal Expired - Lifetime EP0860340B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19707175A DE19707175C2 (en) 1997-02-22 1997-02-22 Method and device for determining an angle around the vehicle's longitudinal axis when cornering
DE19707175 1997-02-22

Publications (2)

Publication Number Publication Date
EP0860340A1 EP0860340A1 (en) 1998-08-26
EP0860340B1 true EP0860340B1 (en) 2003-02-05

Family

ID=7821212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97121013A Expired - Lifetime EP0860340B1 (en) 1997-02-22 1997-11-29 Method and device for generating a sensor signal

Country Status (4)

Country Link
US (1) US6119056A (en)
EP (1) EP0860340B1 (en)
CA (1) CA2229834C (en)
DE (2) DE19707175C2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19753355C2 (en) * 1997-02-22 1999-01-28 Tzn Forschung & Entwicklung Method and device for controlling and / or regulating car body tilting systems
EP0860341B1 (en) 1997-02-22 2001-05-02 TZN Forschungs- und Entwicklungszentrum Unterlüss GmbH Method and device for operationd and/or control of systems for tilting of vehicle bodies
FR2794707B1 (en) * 1999-06-11 2003-03-14 Alstom METHOD AND DEVICE FOR CONTROLLING THE TILT OF A PENDULUM RAIL VEHICLE
DE102004020927A1 (en) * 2004-04-28 2005-11-17 Continental Aktiengesellschaft Car safety sensor functionality verification procedure compares car status values derived from two different sensors with threshold difference
US7729819B2 (en) * 2004-05-08 2010-06-01 Konkan Railway Corporation Ltd. Track identification system
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
CN113324510B (en) * 2021-06-01 2022-03-11 中国铁道科学研究院集团有限公司 Track line vertical curve curvature detection method and device and track line detection system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE396479B (en) * 1976-02-09 1977-09-19 Westbeck Navitele Ab DEVICE FOR CONTROLLING A SLOPE DEVICE AT VEHICLE
US4235402A (en) * 1976-12-17 1980-11-25 Westinghouse Electric Corp. Train vehicle speed control apparatus
US4459668A (en) * 1980-03-31 1984-07-10 Japanese National Railways Automatic train control device
DE3663500D1 (en) * 1986-12-15 1989-06-29 Honeywell Regelsysteme Gmbh Method and device for the regulation of tilting
DE3727768C1 (en) * 1987-08-20 1988-08-18 Messerschmitt Boelkow Blohm Method for generating a control signal for the inclination of a car body depending on the track curve
IT1256530B (en) * 1992-02-24 1995-12-07 Fiat Ferroviaria Spa SYSTEM FOR THE CONTROL OF THE ROTATION OF THE CASE OF A RAILWAY VEHICLE AROUND ITS LONGITUDINAL AXIS.
DE4228414B4 (en) * 1992-08-26 2006-11-16 Robert Bosch Gmbh Method and device for processing sensor signals
DE4228893B4 (en) * 1992-08-29 2004-04-08 Robert Bosch Gmbh System for influencing the driving dynamics of a motor vehicle
US5471387A (en) * 1994-04-18 1995-11-28 Westinghouse Air Brake Company Method of and apparatus for the combined detection of speed varying energy level wheel slip detection and determination of wheel slip intensity of a railway vehicle brake system
ES2136908T3 (en) * 1996-03-23 1999-12-01 Fiat Sig Schienenfahrzeuge Ag DRIVING SYSTEM FOR RAILWAY VEHICLES.

Also Published As

Publication number Publication date
US6119056A (en) 2000-09-12
EP0860340A1 (en) 1998-08-26
DE59709269D1 (en) 2003-03-13
DE19707175A1 (en) 1998-08-27
DE19707175C2 (en) 1999-09-02
CA2229834A1 (en) 1998-08-22
CA2229834C (en) 2006-02-14

Similar Documents

Publication Publication Date Title
DE2705221C2 (en) Arrangement for controlling an inclination device with which the car body of a vehicle can be adjusted in the direction of inclination in relation to the running gear
DE60307356T2 (en) Roll sensor for a vehicle
DE19844090B4 (en) A detection device and method for determining a road friction coefficient in a vehicle
DE69921067T2 (en) Rollage sensor system for a vehicle
DE4228414B4 (en) Method and device for processing sensor signals
EP3331734B1 (en) Braking system for a rail vehicle
DE19918525B4 (en) Device for estimating the center of gravity of vehicles
DE102006025773A1 (en) Method for controlling an active chassis of a rail vehicle
CH683107A5 (en) Continuously movable track maintenance machine for compacting the ballast bed of a track.
EP1929241A1 (en) System for determining an absolute tilt angle in relation to the horizontal
WO2018149650A1 (en) Track recording vehicle and method for detecting a vertical track level
DD265594A5 (en) MEASURING PROCEDURES FOR THE DYNAMIC STATE ASSESSMENT OF RAILWAY LINES
EP0860340B1 (en) Method and device for generating a sensor signal
EP0647553B1 (en) Guide system and method for controlling the lateral inclination of a railway vehicle
EP0770233B1 (en) Process and device for regulating the earth-related inclination of rail vehicle boxes
EP0374290B1 (en) Railway vehicle
DE4320478B4 (en) Driving stability regulator
EP0826548B1 (en) Electric drive control method for a railway vehicle
DE4416586A1 (en) Control of car body inclination
DE69918530T2 (en) A DEVICE FOR ASSESSING THE SIDE ACCELERATION OF A RAIL VEHICLE
DE3821281C2 (en) Device for measuring the inclination of vehicles in the direction of the path movement
EP1048542A2 (en) Method and device for increasing the normal force of a railway vehicle
EP0719688B1 (en) Guidance system for railway vehicles
DE60210532T2 (en) Rollage sensor for a vehicle
EP0901424B1 (en) Method of tilting and/or positioning a current collector disposed on a coach body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980722

AKX Designation fees paid

Free format text: CH DE FR IT LI SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR IT LI SE

17Q First examination report despatched

Effective date: 20010122

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AFN-INDUSTRIE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59709269

Country of ref document: DE

Date of ref document: 20030313

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ANF-INDUSTRIE

Free format text: ANF-INDUSTRIE#PLACE DES ATELIERS, 1#59154 CRESPIN (FR) -TRANSFER TO- ANF-INDUSTRIE#PLACE DES ATELIERS, 1#59154 CRESPIN (FR)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101122

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20111128

Year of fee payment: 15

Ref country code: CH

Payment date: 20111123

Year of fee payment: 15

Ref country code: FR

Payment date: 20111130

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59709269

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130